Chapter 01 Common Measurements in Exercise Physiology

Multiple Choice Questions

1	TT7 1	•	1 ~ 1	
Ι.	Work	15	defined	as

- A. the ability to transform energy from one state to another.
- B. the ability to utilize oxygen.
- C. force times distance.
- D. distance times power output.
- 2. Power is defined as
- A. the ability to perform work.
- **B.** work divided by time.
- C. work times force.
- D. force times distance.
- 3. The SI unit for work is the
- A. joule.
- B. watt.
- C. kpm.
- D. kcal.
- 4. Calculate the power if 600 joules of work are completed in 60 seconds.
- **A.** 10 watts
- B. 660 watts
- C. 36,000 watts
- D. Power cannot be calculated with the information provided.

- 5. Calculating the work performed on a cycle ergometer requires that you know all of the following *except*A. subject's body weight.

 B. resistance against flywheel.
 C. pedaling speed.
 D. exercise time.
- 6. Direct calorimetry is a means of determining energy expenditure and involves the measurement of
- A. oxygen consumption.
- **B.** heat production.
- C. ATP hydrolysis.
- D. carbon dioxide production.
- 7. The energy cost of horizontal running can be estimated reasonably accurately because
- A. the VO₂ of running is always the same.
- B. the VO₂ of horizontal running is always 1 MET.
- C. the VO₂ increases linearly with running speed.
- D. none of the above.
- 8. The most common technique used to measure oxygen consumption in exercise physiology laboratories is
- A. closed-circuit spirometry.
- **B.** open-circuit spirometry.
- C. direct calorimetry.
- D. computer calorimetry.
- 9. A MET is defined as a metabolic equivalent and is equal to
- A. resting VO₂.
- B. 50% of resting VO₂.
- \mathbb{C} . 200% of resting VO_2 .
- D. VO₂ max.

Chapter 01 - Common Measurements in Exercise Physiology

- 10. Net efficiency is defined as
- A. work output/energy expended at rest times 100.
- **B.** work performed/energy expended above rest times 100.
- C. work output/energy expended times 100.
- D. energy expended/work output times 100.
- 11. Exercise efficiency is greater in subjects who
- A. have a higher percentage of fast muscle fibers.
- **B.** have a higher percentage of slow muscle fibers.
- C. have 50% fast fibers and 50% slow fibers.
- 12. Recent evidence suggests that the optimum speed of movement
- A. increases as the power output increases.
- B. decreases as the power output increases.
- C. remains constant as the power output increases.
- D. increases as the power output decreases.
- 13. A subject performing a 10-MET activity would have an oxygen consumption of approximately
- A. 10 ml•kg⁻¹•min⁻¹.
- B. 25 ml•kg⁻¹•min⁻¹.
- <u>C.</u> 35 ml•kg⁻¹•min⁻¹.
- D. 45 ml•kg⁻¹•min⁻¹.
- 14. The SI units used to describe power are
- A. Newtons.
- B. joules.
- **C.** watts.
- D. joules per second.

Chapter 01 - Common Measurements in Exercise Physiology

15. Net efficiencyA. increases B. does not change C. decreases	as work rate increases.
16. A kilocalorie is equal to A. 100 calories. B. 1,000 calories. C. 4,186 kilojoules. D. 4.186 joules.	
B. a higher VO ₂ at any given running	ring economy would require g speed compared to an economical runner. g speed compared to an economical runner. ag speed compared to an economical runner.
True / False Questions	
18. Work equals power divided by ti	ime.
19. The SI unit used for both work a TRUE	nd energy is the joule.
20. One MET equals resting oxygen FALSE	consumption, which is approximately 5.3 ml•kg⁻¹•min⁻¹