Instructor's Solutions Manual

JOHN B. FRALEIGH AND NEAL BRAND

A FIRST COURSE IN ABSTRACT ALGEBRA

EIGHTH EDITION

John B. Fraleigh University of Rhode Island

Neal Brand
University of North Texas

This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development, research, and testing of the theories and programs to determine their effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this book. The author and publisher shall not be liable in any event for incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

Reproduced by Pearson from electronic files supplied by the author.

Copyright © 2021, 2003 by Pearson Education, Inc. 221 River Street, Hoboken, NJ 07030. All rights reserved.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of America.

ISBN-13: 978-0-32-139037-0

ISBN-10: 0-321-39037-7

Preface for Seventh Edition

This manual contains solutions to all exercises in the text, except those odd-numbered exercises for which fairly lengthy complete solutions are given in the answers at the back of the text. Then reference is simply given to the text answers to save typing.

I prepared these solutions myself. While I tried to be accurate, there are sure to be the inevitable mistakes and typos. An author reading proof tends to see what he or she wants to see. However, the instructor should find this manual adequate for the purpose for which it is intended.

Morgan, Vermont J.B.F July, 2002

Preface for Eighth Edition

In keeping with the seventh edition, this manual contains solutions to all exercises in the text except for some of the odd-numbered exercises whose solutions are in the back of the text book. I made few changes to solutions to exercises that were in the seventh edition. However, solutions to new exercises do not always include as much detail as would be found in the seventh edition. My thinking is that instructors teaching the class would use the solution manual to see the idea behind a solution and they would easily fill in the routine details.

As in the seventh edition, I tried to be accurate. However, there are sure to be some errors. I hope instructors find the manual helpful.

Denton, Texas N.B. March, 2020

CONTENTS

0.	Sets	and	Relations	01

I. Groups and Subgroups

- 1. Binary Operations 05
- 2. Groups 08
- 3. Abelian Examples 14
- 4. Nonabelian Examples 19
- 5. Subgroups 22
- 6. Cyclic Groups 27
- 7. Generators and Cayley Digraphs 32

II. Structure of Groups

- 8. Groups of Permutations 34
- 9. Finitely Generated Abelian Groups 40
- 10. Cosets and the Theorem of Lagrange 45
- 11. Plane Isometries 50

III. Homomorphisms and Factor Groups

- 12. Factor Groups 53
- 13. Factor Group Computations and Simple Groups 58
- 14. Group Action on a Set 65
- 15. Applications of G-Sets to Counting 70

VI. Advanced Group Theory

- 16. Isomorphism Theorems 73
- 17. Sylow Theorems 75
- 18. Series of Groups 80
- 19. Free Abelian Groups 85
- 20. Free Groups 88
- 21. Group Presentations 91

V. Rings and Fields

106

- 22. Rings and Fields 95 102 23. Integral Domains 24. Fermat's and Euler's Theorems 109 25. RSA Encryption VI. Constructing Rings and Fields 26. The Field of Quotients of an Integral Domain 27. Rings of Polynomials
- 28. Factorization of Polynomials over a Field 116
- 29. Algebraic Coding Theory
- 30. Homomorphisms and Factor Rings 125
- 31. Prime and Maximal Ideals 131
- 32. Noncommutative Examples 137

VII. Commutative Algebra

110

- 33. Vector Spaces 140
- 34. Unique Factorization Domains 145
- 35. Euclidean Domains 149
- 36. Number Theory 154
- 37. Algebraic Geometry 160
- 38. Gröbner Bases for Ideals 163

VIII. Extension Fields

- 39. Introduction to Extension Fields 168
- 40. Algebraic Extensions 174
- 41. Geometric Constructions 179
- 42. Finite Fields 182

IX. Galois Theory

- 43. Automorphisms of Fields 185
- 44. Splitting Fields 191
- 45. Separable Extensions 195
- 46. Galois Theory 199

47. Illustrations of Galois Theory 203

48. Cyclotomic Extensions 211

49. Insolvability of the Quintic 214

APPENDIX: Matrix Algebra 216

0. Sets and Relations

- 1. $\{\sqrt{3}, -\sqrt{3}\}$
- **2.** {2, -3}.
- **3.** {1, -1, 2, -2, 3, -3, 4, -4, 5, -5, 6, -6, 10, -10, 12, -12, 15, -15, 20, -20, 30, -30, 60, -60}
- **4.** {2, 3, 4, 5, 6, 7, 8}
- **5.** It is not a well-defined set. (Some may argue that no element of \mathbb{Z}^+ is large, because every element exceeds only a finite number of other elements but is exceeded by an infinite number of other elements. Such people might claim the answer should be \emptyset .)
- **6.** Ø
- 7. The set is \emptyset because $3^3 = 27$ and $4^3 = 64$.
- **8.** $\{r \in \mathbb{Q} \mid r = \frac{a}{2^n} \text{ for some a } a \in \mathbb{Z}^+ \text{ and some integer } n \ge 0\}.$
- **9.** It is not a well-defined set.
- 10. The set containing all numbers that are (positive, negative, or zero) integer multiples of 1, 1/2, or 1/3.
- **11.** $\{(a, 1), (a, 2), (a, c), (b, 1), (b, 2), (b, c), (c, 1), (c, 2), (c, c)\}$
- 12. a. This is a function which is both one-to-one and onto B.
 - **b.** This not a subset of $A \times B$, and therefore not a function.
 - **c.** It is not a function because there are two pairs with first member 1.
 - **d.** This is a function which is neither one-to-one (6 appears twice in the second coordinate) nor onto B (4 is not in the second coordinate).
 - **e.** It is a function. It is not one-to-one because there are two pairs with second member 6. It is not onto *B* because there is no pair with second member 2.
 - **f.** This is not a function mapping A into B since 3 is not in the first coordinate of any ordered pair.
- 13. Draw the line through P and x, and let y be its point of intersection with the line segment CD.
- **14. a.** $\phi: [0,1] \rightarrow [0,2]$ where $\phi(x) = 2x$
 - **b.** $\phi: [1,3] \to [5,25]$ where $\phi(x) = 2x + 3$
 - c. $\phi: [a, b] \rightarrow [c, d]$ where $\phi(x) = c + \frac{d-c}{b-a}(x-a)$
- **15.** Let $\phi: S \to \mathbb{R}$ be defined by $\phi(x) = \tan(\pi(x \frac{1}{2}))$.
- **16. a.** \emptyset ; cardinality 1
 - **b.** \emptyset , {a}; cardinality 2
 - c. \emptyset , $\{a\}$, $\{b\}$, $\{a, b\}$; cardinality 4
 - **d.** \emptyset , $\{a\}$, $\{b\}$, $\{c\}$, $\{a, b\}$, $\{a, c\}$, $\{b, c\}$, $\{a, b, c\}$; cardinality 8

17. Conjecture: $|P(A)| = 2^s = 2^{|A|}$.

Proof The number of subsets of a set A depends only on the cardinality of A, not on what the elements of A actually are. Suppose $B = \{1, 2, 3, \dots, s-1\}$ and $A = \{1, 2, 3, \dots, s\}$. Then A has all the elements of B plus the one additional element S. All subsets of S are also subsets of S; these are precisely the subsets of S that do not contain S, so the number of subsets of S not containing S is S0. Any other subset of S1 must contain S2, and removal of the S3 would produce a subset of S4. Thus the number of subsets of S4 containing S5 is also S6. Because every subset of S6 either contains S5 or does not contain S6 (but not both), we see that the number of subsets of S4 is S1 is also S2 is also S3.

We have shown that if A has one more element that B, then |P(A)| = 2|P(B)|. Now $|P(\emptyset)| = 1$, so if |A| = s, then $|P(A)| = 2^s$.

- 18. We define a one-to-one map ϕ of B^A onto P(A). Let $f \in B^A$, and let $\phi(f) = \{x \in A \mid f(x) = 1\}$. Suppose $\phi(f) = \phi(g)$. Then f(x) = 1 if and only if g(x) = 1. Because the only possible values for f(x) and g(x) are 0 and 1, we see that f(x) = 0 if and only if g(x) = 0. Consequently f(x) = g(x) for all $x \in A$ so f = g and ϕ is one to one. To show that ϕ is onto P(A), let $S \subseteq A$, and let $h : A \to \{0, 1\}$ be defined by h(x) = 1 if $x \in S$ and h(x) = 0 otherwise. Clearly $\phi(h) = S$, showing that ϕ is indeed onto P(A).
- 19. Picking up from the hint, let $Z = \{x \in A \mid x \not\in \phi(x)\}$. We claim that for any $a \in A$, $\phi(a) \not= Z$. Either $a \in \phi(a)$, in which case $a \not\in Z$, or $a \not\in \phi(a)$, in which case $a \in Z$. Thus Z and $\phi(a)$ are certainly different subsets of A; one of them contains a and the other one does not.

Based on what we just showed, we feel that the power set of A has cardinality greater than |A|. Proceeding naively, we can start with the infinite set \mathbb{Z} , form its power set, then form the power set of that, and continue this process indefinitely. If there were only a finite number of infinite cardinal numbers, this process would have to terminate after a fixed finite number of steps. Since it doesn't, it appears that there must be an infinite number of different infinite cardinal numbers.

The set of everything is not logically acceptable, because the set of all subsets of the set of everything would be larger than the set of everything, which is a fallacy.

- **20. a.** The set containing precisely the two elements of A and the three (different) elements of B is $C = \{1, 2, 3, 4, 5\}$ which has 5 elements.
 - i) Let $A = \{-2, -1, 0\}$ and $B = \{1, 2, 3, \dots\} = \mathbb{Z}^+$. Then |A| = 3 and $|B| = \aleph_0$, and A and B have no elements in common. The set C containing all elements in either A or B is $C = \{-2, -1, 0, 1, 2, 3, \dots\}$. The map $\phi : C \to B$ defined by $\phi(x) = x + 3$ is one to one and onto B, so $|C| = |B| = \aleph_0$. Thus we consider $3 + \aleph_0 = \aleph_0$.
 - ii) Let $A = \{1, 2, 3, \dots\}$ and $B = \{1/2, 3/2, 5/2, \dots\}$. Then $|A| = |B| = \aleph_0$ and A and B have no elements in common. The set C containing all elements in either A of B is $C = \{1/2, 1, 3/2, 2, 5/2, 3, \dots\}$. The map $\phi : C \to A$ defined by $\phi(x) = 2x$ is one to one and onto A, so $|C| = |A| = \aleph_0$. Thus we consider $\aleph_0 + \aleph_0 = \aleph_0$
 - **b.** We leave the plotting of the points in $A \times B$ to you. Figure 0.15 in the text, where there are \aleph_0 rows each having \aleph_0 entries, illustrates that we would consider that $\aleph_0 \cdot \aleph_0 = \aleph_0$.