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Preface for Seventh Edition 

This manual contains solutions to all exercises in the text, except those odd-numbered 
exercises for which fairly lengthy complete solutions are given in the answers at the back 
of the text. Then reference is simply given to the text answers to save typing. 

I prepared these solutions myself. While I tried to be accurate, there are sure to be the 
inevitable mistakes and typos. An author reading proof tends to see what he or she wants 
to see. However, the instructor should find this manual adequate for the purpose for 
which it is intended. 
 
Morgan, Vermont J.B.F 
July, 2002 
 

Preface for Eighth Edition 

In keeping with the seventh edition, this manual contains solutions to all exercises in the 
text except for some of the odd-numbered exercises whose solutions are in the back of the 
text book. I made few changes to solutions to exercises that were in the seventh edition. 
However, solutions to new exercises do not always include as much detail as would be 
found in the seventh edition. My thinking is that instructors teaching the class would use 
the solution manual to see the idea behind a solution and they would easily fill in the 
routine details. 

As in the seventh edition, I tried to be accurate. However, there are sure to be some 
errors. I hope instructors find the manual helpful. 
 
Denton, Texas N.B. 
March, 2020 
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0. Sets and Relations 

  1. { 3, 3}−  

  2. {2, –3}. 
  3. {1, −1, 2, −2, 3, −3, 4, −4, 5, −5, 6, −6, 10, −10, 12, −12, 15, −15, 20, −20, 30, −30,  

 60, −60} 
  4. {2, 3, 4, 5, 6, 7, 8} 

  5. It is not a well-defined set. (Some may argue that no element of +  is large, 
because every element exceeds only a finite number of other elements but is 
exceeded by an infinite number of other elements. Such people might claim the 
answer should be ∅.) 

  6. ∅ 
  7. The set is ∅ because 33 = 27 and 43 = 64. 

  8. {
2n
ar r∈ =  for some a a +∈  and some integer n ≥ 0}. 

  9. It is not a well-defined set. 
10. The set containing all numbers that are (positive, negative, or zero) integer 

multiples of 1, 1/2, or 1/3. 
11. {(a, 1), (a, 2), (a, c), (b, 1), (b, 2), (b, c), (c, 1), (c, 2), (c, c)} 
12. a. This is a function which is both one-to-one and onto B. 

b. This not a subset of A × B, and therefore not a function. 

c. It is not a function because there are two pairs with first member 1. 

d. This is a function which is neither one-to-one (6 appears twice in the second 
coordinate) nor onto B ( 4 is not in the second coordinate). 

e. It is a function. It is not one-to-one because there are two pairs with second member 6. 
It is not onto B because there is no pair with second member 2. 

f. This is not a function mapping A into B since 3 is not in the first coordinate of any 
ordered pair. 

13. Draw the line through P and x, and let y be its point of intersection with the line 
segment CD. 

14. a. [ ] [ ] ( ):  0,1 0,2  where 2x xφ φ→ =  

b. [ ] [ ] ( ):  1, 3 5, 25  wher 2 3e xxφ φ = +→  

c. [ ] [ ] ( ) ( ): ,      ,   where d ca b c d x c x a
b a

φ φ −→ = + −
−

 

15. Let ( ) 1
2: be defined by  tan( ( )).S x xφ φ π→ = −  

16. a. ; cardinality 1∅  

b. , ;  cardinali  { } ty 2a∅  

c. { } { } { }, , , ,  ;  cardinality 4a b a b∅   

d. { } { } { } { } { }, , , , ,  , ,  , ,  , ,  ,  ;  cardinalit{ } y { } 8a b c a b a c b c a b c∅   
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17. Conjecture:  ( ) | |.|  2  | 2s AP A = =   

 Proof The number of subsets of a set A depends only on the cardinality of A, not on 
what the elements of A actually are. Suppose B = {1, 2, 3, · · · , s − 1} and A = {1, 2, 
3, · · · , s}. Then A has all the elements of B plus the one additional element s. All 
subsets of B are also subsets of A; these are precisely the subsets of A that do not 
contain s, so the number of subsets of A not containing s is |P(B)|. Any other subset 
of A must contain s, and removal of the s would produce a subset of B. Thus the 
number of subsets of A containing s is also |P(B)|. Because every subset of A either 
contains s or does not contain s (but not both), we see that the number of subsets of 
A is 2|P(B)|. 

 We have shown that if A has one more element that B, then |P(A)| = 2|P(B)|. Now 
|P(∅)| = 1, so if |A| = s, then |P(A)| = 2s. 

18. We define a one-to-one map φ  of BA onto P(A). Let f ∈ BA, and let 
( ) ( ){ | 1 .}f x A f xφ = ∈ =  Suppose φ  (f ) = φ  (g). Then f (x) = 1 if and only if g(x) 

= 1. Because the only possible values for f (x) and g(x) are 0 and 1, we see that f (x) 
= 0 if and only if g(x) = 0. Consequently f (x) = g(x) for all x ∈ A so f = g and φ  is 
one to one. To show that φ  is onto P(A), let S ⊆ A, and let h : A → {0, 1} be 
defined by h(x) = 1 if x ∈ S and h(x) = 0 otherwise. Clearly φ  (h) = S, showing that 
φ  is indeed onto P(A). 

19. Picking up from the hint, let ( ){ | }.Z x A x xφ= ∈ ∈  We claim that for any 

( ),  .a A a Zφ∈ =  Either ( ) ,a aφ∈  in which case ( ),  or ,a Z a aφ∈ ∈  in which 
case .a Z∈  Thus Z and φ  (a) are certainly different subsets of A; one of them 
contains a and the other one does not. 

  Based on what we just showed, we feel that the power set of A has cardinality 
greater than |A|. Proceeding naively, we can start with the infinite set ,  form its 
power set, then form the power set of that, and continue this process indefinitely. If 
there were only a finite number of infinite cardinal numbers, this process would 
have to terminate after a fixed finite number of steps. Since it doesn’t, it appears 
that there must be an infinite number of different infinite cardinal numbers. 

  The set of everything is not logically acceptable, because the set of all subsets of 
the set of everything would be larger than the set of everything, which is a fallacy. 

20. a.  The set containing precisely the two elements of A and the three (different) 
 elements of B is C = {1, 2, 3, 4, 5} which has 5 elements. 

i) Let A = {−2, −1, 0} and B = {1, 2, 3, · · ·} = .+  Then |A| = 3 and |B| = ℵ0, and A and 
B have no elements in common. The set C containing all elements in either A or B is  
C = {−2, −1, 0, 1, 2, 3, · · ·}. The map φ  : C → B defined by φ  (x) = x + 3 is one to 
one and onto B, so |C| = |B| = ℵ0. Thus we consider 3 + ℵ0 = ℵ0. 

ii) Let A = {1, 2, 3, · · ·} and B = {1/2, 3/2, 5/2, · · ·}. Then |A| = |B| = ℵ0 and A and B 
have no elements in common.   The set C containing all elements in either A of B is C = 
{1/2, 1, 3/2, 2, 5/2, 3, · · ·}. The map φ  : C → A defined by φ  (x) = 2x is one to one 
and onto A, so |C| = |A| = ℵ0. Thus we consider ℵ0 + ℵ0 = ℵ0 

b. We leave the plotting of the points in A × B to you. Figure 0.15 in the text, where  
there are ℵ0 rows each having ℵ0 entries, illustrates that we would consider that  
ℵ0 · ℵ0 = ℵ0. 


