https://selldocx.com/products
/solution-manual-a-first-course-in-database-systems-3e-ullman

Exercise 2.2.1a

For relation Accounts, the attributes are:
acctNo, type, balance

For relation Customers, the attributes are:
firstName, lastName, idNo, account

Exercise 2.2.1b

For relation Accounts, the tuples are:
(12345, savings, 12000),
(23456, checking, 1000),
(34567, savings, 25)

For relation Customers, the tuples are:
(Robbie, Banks, 901-222, 12345),
(Lena, Hand, 805-333, 12345),
(Lena, Hand, 805-333, 23456)

Exercise 2.2.1¢

For relation Accounts and the first tuple, the components are:
123456 - acctNo
savings = type
12000 - balance

For relation Customers and the first tuple, the components are:
Robbie - firstName
Banks = lastName
901-222 - idNo
12345 - account

Exercise 2.2.1d

For relation Accounts, a relation schema is:

Accounts(acctNo, type, balance)

https://selldocx.com/products/solution-manual-a-first-course-in-database-systems-3e-ullman

For relation Customers, a relation schema is:
Customers(firstName, lastName, idNo, account)

Exercise 2.2.1e

An example database schema is:

Accounts (
acctNo,
type,
balance

)

Customers (
firstName,
lastName,
1idNo,
account

)

Exercise 2.2.1f
A suitable domain for each attribute:

acctNo - Integer

type = String

balance = Integer

firstName > String

lastName —> String

idNo > String (because there is a hyphen we cannot use Integer)
account = Integer

Exercise 2.2.1g

Another equivalent way to present the Account relation:

acctNo balance type
34567 25 savings
23456 1000 checking
12345 12000 savings

Another equivalent way to present the Customers relation:

1dNo firstName lastName account
805-333 Lena Hand 23456
805-333 Lena Hand 12345
901-222 Robbie Banks 12345

Exercise 2.2.2
Examples of attributes that are created for primarily serving as keys in a relation:

Universal Product Code (UPC) used widely in United States and Canada to track products in
stores.

Serial Numbers on a wide variety of products to allow the manufacturer to individually track
each product.

Vehicle Identification Numbers (VIN), a unique serial number used by the automotive industry
to identify vehicles.

Exercise 2.2.3a

We can order the three tuples in any of 3! = 6 ways. Also, the columns can be ordered in any of
3! = 6 ways. Thus, the number of presentations is 6*6 = 36.

Exercise 2.2.3b

We can order the three tuples in any of 5! = 120 ways. Also, the columns can be ordered in any
of 4! = 24 ways. Thus, the number of presentations is 120*24 = 2880

Exercise 2.2.3¢

We can order the three tuples in any of m! ways. Also, the columns can be ordered in any of n!
ways. Thus, the number of presentations is n!m!

Exercise 2.3.1a

CREATE TABLE Product (
maker CHAR(30),
model CHAR(10) PRIMARY KEY,
type CHAR(15)

);
Exercise 2.3.1b

CREATE TABLE PC (

model CHAR(30),
speed DECIMAL(4,2),
ram INTEGER,

hd INTEGER,

price DECIMAL(7,2)

)
Exercise 2.3.1¢

CREATE TABLE Laptop (
model CHAR(30),
speed DECIMAL(4,2),
ram INTEGER,
hd INTEGER,
screen DECIMAL(3,1),
price DECIMAL(7,2)

);
Exercise 2.3.1d

CREATE TABLE Printer (
model CHAR(30),
color BOOLEAN,
type CHAR (10),
price DECIMAL(7,2)

);

Exercise 2.3.1e

ALTER TABLE Printer DROP color;

Exercise 2.3.1f

ALTER TABLE Laptop ADD od CHAR (10) DEFAULT ‘none’;
Exercise 2.3.2a

CREATE TABLE Classes (
class CHAR(20),
type CHAR(S),
country CHAR(20),
numGuns INTEGER,
bore DECIMAL(3,1),
displacement INTEGER

Exercise 2.3.2b

CREATE TABLE Ships (
name CHAR(30),
class CHAR(20),
launched INTEGER

);
Exercise 2.3.2¢

CREATE TABLE Battles (
name CHAR(30),
date DATE

);

Exercise 2.3.2d

CREATE TABLE Outcomes (
ship CHAR(30),

battle CHAR(30),
result CHAR(10)

);

Exercise 2.3.2¢

ALTER TABLE Classes DROP bore;
Exercise 2.3.2f

ALTER TABLE Ships ADD yard CHAR(30);
Exercise 2.4.1a

R1 = 64peca=3.00 (PC)
R2 = Tfmodel(R 1)

model
1005
1006
1013

Exercise 2.4.1b

R1 := 6na= 100 (Laptop)
R2 := Product 1 (R1)
R3 = TCmaker (RZ)

maker

Q||| 3> |

Exercise 2.4.1¢

R1 = Gmaker—s (Product <1 PC)

R2 := Gmaker=s (Product <1 Laptop)
R3 := Omaker—s (Product 1 Printer)
R4 = TUmodel,price (Rl)

RS = TUmodel,price (Rz)

R6: = TUmodel,price (R3)

R7 :=R4|JR5JR6

model price
1004 649
1005 630
1006 1049
2007 1429
Exercise 2.4.1d

R1 = Geolor = true AND type = laser (Printer)
R2 = Tlmodel (R 1)

model
3003
3007

Exercise 2.4.1e

R1 = Otype=laptop (PI'OdLlCt)
R2 := Gype-pc(Product)
R3 = Mmaer(R1)

R4 = Tpae(R2)

R5:=R3-R4
maker
F
G

Exercise 2.4.1f

Rl = ppc1(PC)

R2 = ppcz(PC)
R3 = R1 <1 (pc1.na = pe2.nd AND PCImodel < PC2.model) R2
R4 = TEhd(R3)

hd

250
80
160

Exercise 2.4.1g

Rl = ppc1(PC)
R2 = ppcz(PC)

R3 :=R1 B4 (PCl.speed = PC2.speed AND PCl.ram = PC2.ram AND PC1.model < PC2.model) R2

R4 = 7Tpc1.model,Pc2.mode1(R3)

PCl.model | PC2.model
1004 1012

Exercise 2.4.1h

R1 := tmodei(Ospecd = 2.80(PC)) L Timodel(Ospeed > 2.50(Laptop))
R2 := Tmakermodel(R 1 <1 Product)

R3 := pramaker2.modei2)(R2)

R4 := R2 B (maker = maker2 AND model <> modei2) R3

RS = Mmaer(R4)

maker
B
E

Exercise 2.4.1i

R1 = nmodel,speed(PC)

R2 = Tmoderspecd(Laptop)
R3:=R1UR2

R4 := pR4(modeIZ,speed2)(R3)

RS = TUmodel,speed (R3 [(speed < speed2) R4)

R6 :=R3-R5

R7 := Tmake(R6 <1 Product)
maker

B

Exercise 2.4.1j

R1 = Tfmaker,speed(PrOduCt =] PC)

R2 = pRz(makerZ,speedZ)(RI)

R3 = pR3(maker3,speed3)(R1)

R4 :=R1 (maker = maker2 AND speed <> speed2) R2

RS := R4 B (maker3 = maker AND speed3 <> speed2 AND speed3 <> speed) R3

R6 = Tcmaker(RS)

maker

A
D
E

Exercise 2.4.1k

R1 = Tpakermocet(Product &1 PC)

R2 := promakerz;modeiz)(R1)

R3 = pR3(maker3,model3)(R1)

R4 := pragmakers;modeia(R 1)

RS := R1 B (maker = maker2 AND model < model2) R2

R6 = R3 =1 (maker3 = maker AND model3 <> model2 AND model3 <> model) R5

R7 :=R4] (maker4 = maker AND (model4=model OR model4=model2 OR model4=model3)) R6

R8 = Tcmaker(R7)

maker

esliwljvelo-2

Exercise 2.4.2a

Tmodel

Gspeed>3.00

PC

Exercise 2.4.2b

Tlmaker

Ghd > 100

Laptop

Exercise 2.4.2¢

Product

Tmodel,price

Oma

Printer

Exercise 2.4.2d

Tlmodel

ker=B

Product

Geolor = true AND type = laser

Printer

Tlmodel,price

Omaker=B

Laptop Product

TUmodel,price

Omaker=B

PC Product

Exercise 2.4.2¢

Tlmaker Tmaker
thpe:PC thpeZIaptop
Product Product
Exercise 2.4.2f
Tlhd

B> (PC1.hd = PC2.hd AND PC1.model <> PC2.model)

Prc2 Prci
PC PC
Exercise 2.4.2g

TlpC1.model,PC2.model

B (PCl.speed = PC2.speed AND PCl.ram = PC2.ram AND PCI.model < PC2.model)

prc2 Prci

PC PC

Exercise 2.4.2h

TUmaker

>4 (maker = maker2 AN

pR}(makerZ,modeIZ)

Tlmodel

Gspeed

>2.80

PC

Exercise 2.

4.2i

D model <> model2)

Tcmaker,model

Product

Tlmodel

Gspeed

>2.80

Laptop

Tmaker

- Product

Tlmodel,speed

>4 (speed < speed2)

pR4(mode12,speed2)

nmodel,speed Tnodel ,speed

PC Laptop

Exercise 2.4.2j

TUmaker

B (maker3 = maker AND speed3 <> speed2 AND speed3 <> speed)

> (maker = maker2 AND speed <> speed2)

pRZ(makcr2,spccd2)

71:makcr,spccd

Bd

Product

Exercise 2.4.2k

PR3(maker3 ,speed3)

Tlmaker

> (maker4 = maker AND (model4=model OR model4=model2 OR model4=model3))

[P (maker3 = maker AND model3 <> model2 AND model3 <> model)

>4 (maker = maker2 AND model <> model2)

PR2(maker2,model2) PR3(maker3,model3)

nmaker,model

Product PC

Exercise 2.4.3a

R1 := Obore = 16 (Classes)
R2 = Tlclass,country (Rl)

class country
Iowa USA
North Carolina USA
Yamato Japan

Exercise 2.4.3b

PR4(maker4,model4)

R1 = Glaunched < 1921 (Ships)
R2 = Tlhame (Rl)

name
Haruna

Hiei

Kirishima
Kongo

Ramillies
Renown
Repulse
Resolution
Revenge

Royal Oak
Royal Sovereign
Tennessee

Exercise 2.4.3¢

R1 = Obattle=Denmark Strait AND result:sunk(outcomes)
R2 = Ttship (RI)

ship
Bismarck
Hood

Exercise 2.4.3d

R1 := Classes 1 Ships

R2 := Glaunched > 1921 AND displacement > 35000 (R 1)

R3 = TChame (Rz)

name
Towa

Missouri
Musashi

New Jersey
North Carolina
Washington
Wisconsin
Yamato

Exercise 2.4.3¢

Rl = Gbattle:Guadalcanal(Outcomes)

R2 = ShlpS (e (ship=name) Rl
R3 :=Classes 1 R2

R4 = Tcname,displacement,numGuns(R3)
name displacement | numGuns
Kirishima 32000 8
Washington | 37000 9

Exercise 2.4.3f

R1 := Tyame(Ships)
R2 := mgip(Outcomes)
R3 = pRS(name)(Rz)

R4 =R

1UR3

name

California

Haruna

Hiei

Iowa

Kirishima

Kongo

Missouri

Musashi

New Je

rsey

North Carolina

Ramilli

€S

Renown

Repulse

Resolution

Revenge

Royal Oak

Royal Sovereign

Tennessee

Washington

Wisconsin

Yamato

Arizona

Bismarck

Duke of York

Fuso

Hood

King G

eorge V

Prince of Wales

Rodney

Scharnhorst

South Dakota
West Virginia
Yamashiro

Exercise 2.4.3g
From 2.3.2, assuming that every class has one ship named after the class.

R1 := mgas(Classes)
R2 = chlass(cname < class(Ships))
R3:=R1-R2

class
Bismarck

Exercise 2.4.3h

R1 = Teouniry(Giype=bn(Classes))
R2 = Teouniry(Oiype=be(Classes))
R3:=R1 NR2

country
Japan
Gt. Britain

Exercise 2.4.3i
R1 = Tcship,result,date(Battles Bl (battle=name) Outcomes)
R2 := pRZ(shipz,result2,date2)(R1)
R3 = R1 <1 (ship=ship2 AND resuli=damaged AND date < date2) R2
R4 := m4p(R3)

No results from sample data.

Exercise 2.4.4a

nclass,country

Obore > 16

Classes

Exercise 2.4.4b

nname

Glaunched < 1921

Ships
Exercise 2.4.4¢

Tship

Obattle=Denmark Strait AND result=sunk

Outcomes

Exercise 2.4.4d

nnamc

Olaunched > 1921 AND displacement > 35000

Classes Ships

Exercise 2.4.4e

Tlhame,displacement,numGuns

N

B (ship=name) Classes
Obattle=Guadalcanal ShlpS
QOutcomes
Exercise 2.4.4f
/U\
pRS(name) Tlhame
Tship Ships
Outcomes
Exercise 2.4.4g
Tclass Telass
Oname <> class ClaSSCS

Ships

Exercise 2.4.4h

N
/\
ncountry ncountry
thpe:bb thpe:bc
Classes Classes

Exercise 2.4.4i

Tship

B4 (ship=ship2 AND result=damaged AND date < date2)

/

PR2(ship2,result2,date2)

nship,rcsult,datc

> (battle=name)

Battles Outcomes

Exercise 2.4.5

The result of the natural join has only one attribute from each pair of equated attributes. On the
other hand, the result of the theta-join has both columns of the attributes and their values are
identical.

Exercise 2.4.6

Union
If we add a tuple to the arguments of the union operator, we will get all of the tuples of
the original result and maybe the added tuple. If the added tuple is a duplicate tuple, then
the set behavior will eliminate that tuple. Thus the union operator is monotone.

Intersection
If we add a tuple to the arguments of the intersection operator, we will get all of the
tuples of the original result and maybe the added tuple. If the added tuple does not exist
in the relation that it is added but does exist in the other relation, then the result set will
include the added tuple. Thus the intersection operator is monotone.

Difference
If we add a tuple to the arguments of the difference operator, we may not get all of the
tuples of the original result. Suppose we have relations R and S and we are computing R
— S. Suppose also that tuple 7 is in R but not in S. The result of R — S would include tuple
t. However, if we add tuple ¢ to S, then the new result will not have tuple 7. Thus the
difference operator is not monotone.

Projection
If we add a tuple to the arguments of the projection operator, we will get all of the tuples
of the original result and the projection of the added tuple. The projection operator only
selects columns from the relation and does not affect the rows that are selected. Thus the
projection operator is monotone.

Selection
If we add a tuple to the arguments of the selection operator, we will get all of the tuples
of the original result and maybe the added tuple. If the added tuple satisfies the select
condition, then it will be added to the new result. The original tuples are included in the
new result because they still satisfy the select condition. Thus the selection operator is
monotone.

Cartesian Product
If we add a tuple to the arguments of the Cartesian product operator, we will get all of the
tuples of the original result and possibly additional tuples. The Cartesian product pairs the
tuples of one relation with the tuples of another relation. Suppose that we are calculating
R x S where R has m tuples and S has n tuples. If we add a tuple to R that is not already
in R, then we expect the result of R x S to have (m + 1) * n tuples. Thus the Cartesian
product operator is monotone.

Natural Joins
If we add a tuple to the arguments of a natural join operator, we will get all of the tuples
of the original result and possibly additional tuples. The new tuple can only create
additional successful joins, not less. If, however, the added tuple cannot successfully join
with any of the existing tuples, then we will have zero additional successful joins. Thus
the natural join operator is monotone.

Theta Joins
If we add a tuple to the arguments of a theta join operator, we will get all of the tuples of
the original result and possibly additional tuples. The theta join can be modeled by a
Cartesian product followed by a selection on some condition. The new tuple can only
create additional tuples in the result, not less. If, however, the added tuple does not satisfy
the select condition, then no additional tuples will be added to the result. Thus the theta
join operator is monotone.

Renaming
If we add a tuple to the arguments of a renaming operator, we will get all of the tuples of
the original result and the added tuple. The renaming operator does not have any effect on
whether a tuple is selected or not. In fact, the renaming operator will always return as
many tuples as its argument. Thus the renaming operator is monotone.

Exercise 2.4.7a

If all the tuples of R and S are different, then the union has »n + m tuples, and this number is the
maximum possible.

The minimum number of tuples that can appear in the result occurs if every tuple of one relation
also appears in the other. Then the union has max(m , n) tuples.

Exercise 2.4.7b

If all the tuples in one relation can pair successfully with all the tuples in the other relation, then
the natural join has n * m tuples. This number would be the maximum possible.

The minimum number of tuples that can appear in the result occurs if none of the tuples of one
relation can pair successfully with all the tuples in the other relation. Then the natural join has
zero tuples.

Exercise 2.4.7¢

If the condition C brings back all the tuples of R, then the cross product will contain n * m tuples.
This number would be the maximum possible.

The minimum number of tuples that can appear in the result occurs if the condition C brings
back none of the tuples of R. Then the cross product has zero tuples.

Exercise 2.4.7d
Assuming that the list of attributes L makes the resulting relation n.(R) and relation S schema

compatible, then the maximum possible tuples is n. This happens when all of the tuples of n.(R)
are not in S.

The minimum number of tuples that can appear in the result occurs when all of the tuples in
n(R) appear in S. Then the difference has max(n —m , 0) tuples.

Exercise 2.4.8

Defining r as the schema of R and s as the schema of S:
1. m(R1S)
2. R 0(mns(S))where § is the duplicate-elimination operator in Section 5.2 pg. 213
3. R—-(R—n(R1Y))

Exercise 2.4.9

Defining r as the schema of R
1. R-n(RE=1S)

Exercise 2.4.10

TarA2..an(R <1 S)

Exercise 2.5.1a

Ospeed <2.00 AND price > 500(PC) = @

Model 1011 violates this constraint.

Exercise 2.5.1b

Oiscreen < 15.4 AND hd < 100 AND price > 1000(L.aptop) = o

Model 2004 violates the constraint.

Exercise 2.5.1c

Timaker Otype = laptop(PTOAUCE)) N Tmaker(Giype = pe(Product)) = o

Manufacturers A,B,E violate the constraint.

Exercise 2.5.1d

This complex expression is best seen as a sequence of steps in which we define temporary
relations R1 through R4 that stand for nodes of expression trees. Here is the sequence:

R1(maker, model, speed) := Mmakermodetspecd(Product [><J PC)

R2(maker, speed) := Mmakerspeca(Product [><1 Laptop)
R3 (mOdel) = ﬂ:model(Rl D{] R1.maker = R2.maker AND Rl.speed < R2.speed Rz)
R4(model) := mtmodet(PC)

The constraint is R4 < R3
Manufacturers B,C,D violate the constraint.

Exercise 2.5.1e

Ttmodel(G Laptop.ram > PC.ram AND Laptop.price < PC.pricc(PC X Laptop)) = o
Models 2002,2006,2008 violate the constraint.

Exercise 2.5.2a

Tetass(Obore > 16(Classes)) = @

The Yamato class violates the constraint.

Exercise 2.5.2b

Teelass(OnumGuns > 9 AND bore > 14(Classes)) = @

No violations to the constraint.

Exercise 2.5.2¢

This complex expression is best seen as a sequence of steps in which we define temporary
relations R1 through R5 that stand for nodes of expression trees. Here is the sequence:
R1(class,name) := Meass name(Classes <1 Ships)
R2(class2,name2) := proelasszname2)(R1)
R3(class3,name3) := Prs(elasss names(R1)
R4(class,name,class2,name2) := R1 [cjass = class2 AND name <> name2) R2

RS(claSS,name,ClaSSZ,namCZ,ClaSS3 ,name3) =R4 =] (class=class3 AND name <> name3 AND name2 <> name3) R3

The constraint is RS = o
The Kongo, Iowa and Revenge classes violate the constraint.

Exercise 2.5.2d
Teountry(Gtype = bb(C1asses)) M Teountry(Otype = be(Classes)) = o
Japan and Gt. Britain violate the constraint.

Exercise 2.5.2¢

This complex expression is best seen as a sequence of steps in which we define temporary
relations R1 through R5 that stand for nodes of expression trees. Here is the sequence:

R1(ship,battle,result,class) = menip patte.resuitctass(Outcomes B hip = name) Ships)
R2(ship,battle,result,numGuns) := Tghip patte resulmmauns(R 1 1 Classes)
R3(Shlp,battle) = Tcship,battle(GnumGuns <9 AND result = sunk (Rz))

R4(ship2,battle2) := pragship2.batie2)(Mship pattic(GnumGuns > 9(R2)))

R5(Ship2) = Rshipz(R3] (battle = battle2) R4)

The constraint is RS = ¢

No violations to the constraint. Since there are some ships in the Outcomes table that are not in
the Ships table, we are unable to determine the number of guns on that ship.

Exercise 2.5.3

Defining r as the schema Aj,A,,...,A, and s as the schema B;,B,,...,B,:

T(R) > ny(S) =0 where [> is the antisemijoin

Exercise 2.5.4

The form of a constraint as E; = E, can be expressed as the other two constraints.
Using the “equating an expression to the empty set” method, we can simply say:

E-E,=0
As a containment, we can simply say:
Ei € E; ANDE; C E;

Thus, the form E, = E; of a constraint cannot express more than the two other forms discussed in
this section.

