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Chapter 1

INTRODUCTION TO DIFFERENTIAL EQUATIONS

1.1 Definitions and Terminology

INTRODUCTION TO

DIFFERENTIAL EQUATIONS1

1.1 Definitions and Terminology

1. Second order; linear

2. Third order; nonlinear because of (dy/dx)4

3. Fourth order; linear

4. Second order; nonlinear because of cos(r + u)

5. Second order; nonlinear because of (dy/dx)2 or
√

1 + (dy/dx)2

6. Second order; nonlinear because of R2

7. Third order; linear

8. Second order; nonlinear because of ẋ2

9. Writing the boundary-value problem in the form x(dy/dx) + y2 = 1, we see that it is nonlinear

in y because of y2. However, writing it in the form (y2 − 1)(dx/dy) + x = 0, we see that it is

linear in x.

10. Writing the differential equation in the form u(dv/du) + (1 + u)v = ueu we see that it is linear

in v. However, writing it in the form (v+uv−ueu)(du/dv) +u = 0, we see that it is nonlinear

in u.

11. From y = e−x/2 we obtain y′ = −1
2e
−x/2. Then 2y′ + y = −e−x/2 + e−x/2 = 0.

12. From y = 6
5 −

6
5e
−20t we obtain dy/dt = 24e−20t, so that

dy

dt
+ 20y = 24e−20t + 20

(
6

5
− 6

5
e−20t

)
= 24.

13. From y = e3x cos 2x we obtain y′ = 3e3x cos 2x− 2e3x sin 2x and y′′ = 5e3x cos 2x− 12e3x sin 2x,

so that y′′ − 6y′ + 13y = 0.

14. From y = − cosx ln(secx+ tanx) we obtain y′ = −1 + sinx ln(secx+ tanx) and

y′′ = tanx+ cosx ln(secx+ tanx). Then y′′ + y = tanx.
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CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

15. The domain of the function, found by solving x+ 2 ≥ 0, is [−2,∞). From y′ = 1 + 2(x+ 2)−1/2

we have

(y − x)y′ = (y − x)[1 + (2(x+ 2)−1/2]

= y − x+ 2(y − x)(x+ 2)−1/2

= y − x+ 2[x+ 4(x+ 2)1/2 − x](x+ 2)−1/2

= y − x+ 8(x+ 2)1/2(x+ 2)−1/2 = y − x+ 8.

An interval of definition for the solution of the differential equation is (−2,∞) because y′ is

not defined at x = −2.

16. Since tanx is not defined for x = π/2 + nπ, n an integer, the domain of y = 5 tan 5x is

{x
∣∣ 5x 6= π/2 + nπ} or {x

∣∣ x 6= π/10 + nπ/5}. From y′ = 25 sec2 5x we have

y′ = 25(1 + tan2 5x) = 25 + 25 tan2 5x = 25 + y2.

An interval of definition for the solution of the differential equation is (−π/10, π/10). Another

interval is (π/10, 3π/10), and so on.

17. The domain of the function is {x
∣∣ 4−x2 6= 0} or {x

∣∣ x 6= −2 or x 6= 2}. From y′ = 2x/(4−x2)2

we have

y′ = 2x

(
1

4− x2

)2

= 2xy2.

An interval of definition for the solution of the differential equation is (−2, 2). Other intervals

are (−∞,−2) and (2,∞).

18. The function is y = 1/
√

1− sinx , whose domain is obtained from 1 − sinx 6= 0 or sinx 6= 1.

Thus, the domain is {x
∣∣ x 6= π/2 + 2nπ}. From y′ = −1

2(1− sinx)−3/2(− cosx) we have

2y′ = (1− sinx)−3/2 cosx = [(1− sinx)−1/2]3 cosx = y3 cosx.

An interval of definition for the solution of the differential equation is (π/2, 5π/2). Another

interval is (5π/2, 9π/2) and so on.

19. Writing ln(2X − 1)− ln(X − 1) = t and differentiating implicitly we obtain

2

2X − 1

dX

dt
− 1

X − 1

dX

dt
= 1(

2

2X − 1
− 1

X − 1

)
dX

dt
= 1

2X − 2− 2X + 1

(2X − 1)(X − 1)

dX

dt
= 1

dX

dt
= −(2X − 1)(X − 1) = (X − 1)(1− 2X).

2
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1.1 Definitions and Terminology

Exponentiating both sides of the implicit solution we obtain

2X − 1

X − 1
= et

2X − 1 = Xet − et

et − 1 = (et − 2)X

X =
et − 1

et − 2
.

-3 -2 -1 1 2 3

-2

-1

1

2

3

4

y

x

Solving et − 2 = 0 we get t = ln 2. Thus, the solution is defined on (−∞, ln 2) or on (ln 2,∞).

The graph of the solution defined on (−∞, ln 2) is dashed, and the graph of the solution defined

on (ln 2,∞) is solid.

20. Implicitly differentiating the solution, we obtain

−2x2
dy

dx
− 4xy + 2y

dy

dx
= 0

−x2 dy − 2xy dx+ y dy = 0

2xy dx+ (x2 − y)dy = 0.

Using the quadratic formula to solve y2− 2x2y− 1 = 0 for y,

we get y =
(
2x2 ±

√
4x4 + 4

)
/2 = x2 ±

√
x4 + 1 . Thus,

-4 -2 2 4

-4

-2

2

4

y

x

two explicit solutions are y1 = x2 +
√
x4 + 1 and y2 = x2 −

√
x4 + 1 . Both solutions are

defined on (−∞,∞). The graph of y1(x) is solid and the graph of y2 is dashed.

21. Differentiating P = c1e
t/
(
1 + c1e

t
)

we obtain

dP

dt
=

(
1 + c1e

t
)
c1e

t − c1et · c1et

(1 + c1et)
2 =

c1e
t

1 + c1et

[(
1 + c1e

t
)
− c1et

]
1 + c1et

=
c1e

t

1 + c1et

[
1− c1e

t

1 + c1et

]
= P (1− P ).

22. Differentiating y = e−x
2

∫ x

0
et

2
dt+ c1e

−x2 we obtain

y′ = e−x
2
ex

2 − 2xe−x
2

∫ x

0
et

2
dt− 2c1xe

−x2 = 1− 2xe−x
2

∫ x

0
et

2
dt− 2c1xe

−x2 .

Substituting into the differential equation, we have

y′ + 2xy = 1− 2xe−x
2

∫ x

0
et

2
dt− 2c1xe

−x2 + 2xe−x
2

∫ x

0
et

2
dt+ 2c1xe

−x2 = 1.

23. From y = c1e
2x + c2xe

2x we obtain
dy

dx
= (2c1 + c2)e

2x + 2c2xe
2x and

d2y

dx2
= (4c1 + 4c2)e

2x +

4c2xe
2x, so that

d2y

dx2
− 4

dy

dx
+ 4y = (4c1 + 4c2 − 8c1 − 4c2 + 4c1)e

2x + (4c2 − 8c2 + 4c2)xe
2x = 0.

3

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

24. From y = c1x
−1 + c2x+ c3x lnx+ 4x2 we obtain

dy

dx
= −c1x−2 + c2 + c3 + c3 lnx+ 8x,

d2y

dx2
= 2c1x

−3 + c3x
−1 + 8,

and

d3y

dx3
= −6c1x

−4 − c3x−2,

so that

x3
d3y

dx3
+ 2x2

d2y

dx2
− x dy

dx
+ y = (−6c1 + 4c1 + c1 + c1)x

−1 + (−c3 + 2c3 − c2 − c3 + c2)x

+ (−c3 + c3)x lnx+ (16− 8 + 4)x2

= 12x2.

25. From y =

{
−x2, x < 0

x2, x ≥ 0
we obtain y′ =

{
−2x, x < 0

2x, x ≥ 0
so that xy′ − 2y = 0.

26. The function y(x) is not continuous at x = 0 since lim
x→0−

y(x) = 5 and lim
x→0+

y(x) = −5. Thus,

y′(x) does not exist at x = 0.

27. From y = emx we obtain y′ = memx. Then y′ + 2y = 0 implies

memx + 2emx = (m+ 2)emx = 0.

Since emx > 0 for all x, m = −2. Thus y = e−2x is a solution.

28. From y = emx we obtain y′ = memx. Then 5y′ = 2y implies

5memx = 2emx or m =
2

5
.

Thus y = e2x/5 > 0 is a solution.

29. From y = emx we obtain y′ = memx and y′′ = m2emx. Then y′′ − 5y′ + 6y = 0 implies

m2emx − 5memx + 6emx = (m− 2)(m− 3)emx = 0.

Since emx > 0 for all x, m = 2 and m = 3. Thus y = e2x and y = e3x are solutions.

30. From y = emx we obtain y′ = memx and y′′ = m2emx. Then 2y′′ + 7y′ − 4y = 0 implies

2m2emx + 7memx − 4emx = (2m− 1)(m+ 4)emx = 0.

Since emx > 0 for all x, m = 1
2 and m = −4. Thus y = ex/2 and y = e−4x are solutions.

4
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1.1 Definitions and Terminology

31. From y = xm we obtain y′ = mxm−1 and y′′ = m(m− 1)xm−2. Then xy′′ + 2y′ = 0 implies

xm(m− 1)xm−2 + 2mxm−1 = [m(m− 1) + 2m]xm−1 = (m2 +m)xm−1

= m(m+ 1)xm−1 = 0.

Since xm−1 > 0 for x > 0, m = 0 and m = −1. Thus y = 1 and y = x−1 are solutions.

32. From y = xm we obtain y′ = mxm−1 and y′′ = m(m − 1)xm−2. Then x2y′′ − 7xy′ + 15y = 0

implies

x2m(m− 1)xm−2 − 7xmxm−1 + 15xm = [m(m− 1)− 7m+ 15]xm

= (m2 − 8m+ 15)xm = (m− 3)(m− 5)xm = 0.

Since xm > 0 for x > 0, m = 3 and m = 5. Thus y = x3 and y = x5 are solutions.

In Problems 33–36 we substitute y = c into the differential equations and use y′ = 0 and y′′ = 0.

33. Solving 5c = 10 we see that y = 2 is a constant solution.

34. Solving c2 + 2c− 3 = (c+ 3)(c− 1) = 0 we see that y = −3 and y = 1 are constant solutions.

35. Since 1/(c− 1) = 0 has no solutions, the differential equation has no constant solutions.

36. Solving 6c = 10 we see that y = 5/3 is a constant solution.

37. From x = e−2t + 3e6t and y = −e−2t + 5e6t we obtain

dx

dt
= −2e−2t + 18e6t and

dy

dt
= 2e−2t + 30e6t.

Then

x+ 3y = (e−2t + 3e6t) + 3(−e−2t + 5e6t) = −2e−2t + 18e6t =
dx

dt
and

5x+ 3y = 5(e−2t + 3e6t) + 3(−e−2t + 5e6t) = 2e−2t + 30e6t =
dy

dt
.

38. From x = cos 2t+ sin 2t+ 1
5e
t and y = − cos 2t− sin 2t− 1

5e
t we obtain

dx

dt
= −2 sin 2t+ 2 cos 2t+

1

5
et or

dy

dt
= 2 sin 2t− 2 cos 2t− 1

5
et

and

d2x

dt2
= −4 cos 2t− 4 sin 2t+

1

5
et or

d2y

dt2
= 4 cos 2t+ 4 sin 2t− 1

5
et.

Then

4y + et = 4(− cos 2t− sin 2t− 1

5
et) + et = −4 cos 2t− 4 sin 2t+

1

5
et =

d2x

dt2

and

4x− et = 4(cos 2t+ sin 2t+
1

5
et)− et = 4 cos 2t+ 4 sin 2t− 1

5
et =

d2y

dt2
.

5
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CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

Discussion Problems

39. (y′)2 + 1 = 0 has no real solutions because (y′)2 + 1 is positive for all functions y = φ(x).

40. The only solution of (y′)2 + y2 = 0 is y = 0, since, if y 6= 0, y2 > 0 and (y′)2 + y2 ≥ y2 > 0.

41. The first derivative of f(x) = ex is ex. The first derivative of f(x) = ekx is f ′(x) = kekx. The

differential equations are y′ = y and y′ = ky, respectively.

42. Any function of the form y = cex or y = ce−x is its own second derivative. The corresponding

differential equation is y′′ − y = 0. Functions of the form y = c sinx or y = c cosx have second

derivatives that are the negatives of themselves. The differential equation is y′′ + y = 0.

43. We first note that
√

1− y2 =
√

1− sin2 x =
√

cos2 x = | cosx|. This prompts us to consider

values of x for which cosx < 0, such as x = π. In this case

dy

dx

∣∣∣∣∣
x=π

=
d

dx
(sinx)

∣∣∣∣∣
x=π

= cosx
∣∣
x=π

= cosπ = −1,

but √
1− y2

∣∣∣
x=π

=
√

1− sin2 π =
√

1 = 1.

Thus, y = sinx will only be a solution of y′ =
√

1− y2 when cosx > 0. An interval of definition

is then (−π/2, π/2). Other intervals are (3π/2, 5π/2), (7π/2, 9π/2), and so on.

44. Since the first and second derivatives of sin t and cos t involve sin t and cos t, it is plausible that

a linear combination of these functions, A sin t+B cos t, could be a solution of the differential

equation. Using y′ = A cos t − B sin t and y′′ = −A sin t − B cos t and substituting into the

differential equation we get

y′′ + 2y′ + 4y = −A sin t−B cos t+ 2A cos t− 2B sin t+ 4A sin t+ 4B cos t

= (3A− 2B) sin t+ (2A+ 3B) cos t = 5 sin t.

Thus 3A − 2B = 5 and 2A + 3B = 0. Solving these simultaneous equations we find A = 15
13

and B = −10
13 . A particular solution is y = 15

13 sin t− 10
13 cos t.

45. One solution is given by the upper portion of the graph with domain approximately (0, 2.6).

The other solution is given by the lower portion of the graph, also with domain approximately

(0, 2.6).

46. One solution, with domain approximately (−∞, 1.6) is the portion of the graph in the second

quadrant together with the lower part of the graph in the first quadrant. A second solution,

with domain approximately (0, 1.6) is the upper part of the graph in the first quadrant. The

third solution, with domain (0, ∞), is the part of the graph in the fourth quadrant.

6
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1.1 Definitions and Terminology

47. Differentiating (x3 + y3)/xy = 3c we obtain

xy(3x2 + 3y2y′)− (x3 + y3)(xy′ + y)

x2y2
= 0

3x3y + 3xy3y′ − x4y′ − x3y − xy3y′ − y4 = 0

(3xy3 − x4 − xy3)y′ = −3x3y + x3y + y4

y′ =
y4 − 2x3y

2xy3 − x4
=
y(y3 − 2x3)

x(2y3 − x3)
.

48. A tangent line will be vertical where y′ is undefined, or in this case, where x(2y3 − x3) = 0.

This gives x = 0 and 2y3 = x3. Substituting y3 = x3/2 into x3 + y3 = 3xy we get

x3 +
1

2
x3 = 3x

(
1

21/3
x

)
3

2
x3 =

3

21/3
x2

x3 = 22/3x2

x2(x− 22/3) = 0.

Thus, there are vertical tangent lines at x = 0 and x = 22/3, or at (0, 0) and (22/3, 21/3). Since

22/3 ≈ 1.59, the estimates of the domains in Problem 46 were close.

49. The derivatives of the functions are φ′1(x) = −x/
√

25− x2 and φ′2(x) = x/
√

25− x2, neither

of which is defined at x = ±5.

50. To determine if a solution curve passes through (0, 3) we let t = 0 and P = 3 in the equation

P = c1e
t/(1 + c1e

t). This gives 3 = c1/(1 + c1) or c1 = −3
2 . Thus, the solution curve

P =
(−3/2)et

1− (3/2)et
=
−3et

2− 3et

passes through the point (0, 3). Similarly, letting t = 0 and P = 1 in the equation for the

one-parameter family of solutions gives 1 = c1/(1 + c1) or c1 = 1 + c1. Since this equation has

no solution, no solution curve passes through (0, 1).

51. For the first-order differential equation integrate f(x). For the second-order differential equa-

tion integrate twice. In the latter case we get y =
∫

(
∫
f(x)dx)dx+ c1x+ c2.

52. Solving for y′ using the quadratic formula we obtain the two differential equations

y′ =
1

x

(
2 + 2

√
1 + 3x6

)
and y′ =

1

x

(
2− 2

√
1 + 3x6

)
,

so the differential equation cannot be put in the form dy/dx = f(x, y).

53. The differential equation yy′ − xy = 0 has normal form dy/dx = x. These are not equivalent

because y = 0 is a solution of the first differential equation but not a solution of the second.

7
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CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

54. Differentiating y = c1x + c2x
2 we get y′ = c1 + 2c2x and y′′ = 2c2. Then c2 = 1

2 y
′′ and

c1 = y′ − xy′′, so

y = c1x+ c2x
2 = (y′ − xy′′)x+

1

2
y′′x2 = xy′ − 1

2
x2y′′.

The differential equation is 1
2 x

2y′′ − xy′ + y = 0 or x2y′′ − 2xy′ + 2y = 0.

55. (a) Since e−x
2

is positive for all values of x, dy/dx > 0 for all x, and a solution, y(x), of the

differential equation must be increasing on any interval.

(b) lim
x→−∞

dy

dx
= lim

x→−∞
e−x

2
= 0 and lim

x→∞

dy

dx
= lim

x→∞
e−x

2
= 0. Since

dy

dx
approaches 0 as x

approaches −∞ and ∞, the solution curve has horizontal asymptotes to the left and to

the right.

(c) To test concavity we consider the second derivative

d2y

dx2
=

d

dx

(
dy

dx

)
=

d

dx

(
e−x

2
)

= −2xe−x
2
.

Since the second derivative is positive for x < 0 and negative for x > 0, the solution curve

is concave up on (−∞, 0) and concave down on (0,∞). x

(d)

-4 -2 2 4

-1

0.5

y

x

56. (a) The derivative of a constant solution y = c is 0, so solving 5− c = 0 we see that c = 5 and

so y = 5 is a constant solution.

(b) A solution is increasing where dy/dx = 5− y > 0 or y < 5. A solution is decreasing where

dy/dx = 5− y < 0 or y > 5.

57. (a) The derivative of a constant solution is 0, so solving y(a− by) = 0 we see that y = 0 and

y = a/b are constant solutions.

(b) A solution is increasing where dy/dx = y(a − by) = by(a/b − y) > 0 or 0 < y < a/b. A

solution is decreasing where dy/dx = by(a/b− y) < 0 or y < 0 or y > a/b.

(c) Using implicit differentiation we compute

d2y

dx2
= y(−by′) + y′(a− by) = y′(a− 2by).

Solving d2y/dx2 = 0 we obtain y = a/2b. Since d2y/dx2 > 0 for 0 < y < a/2b and

d2y/dx2 < 0 for a/2b < y < a/b, the graph of y = φ(x) has a point of inflection at

y = a/2b.

8
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1.1 Definitions and Terminology

(d)

-2 -1 1 2

-4

-2

2

4

6

y

x

58. (a) If y = c is a constant solution then y′ = 0, but c2 + 4 is never 0 for any real value of c.

(b) Since y′ = y2 + 4 > 0 for all x where a solution y = φ(x) is defined, any solution must

be increasing on any interval on which it is defined. Thus it cannot have any relative

extrema.

(c) Using implicit differentiation we compute d2y/dx2 = 2yy′ = 2y(y2 +4). Setting d2y/dx2 =

0 we see that y = 0 corresponds to the only possible point of inflection. Since d2y/dx2 < 0

for y < 0 and d2y/dx2 > 0 for y > 0, there is a point of inflection where y = 0.

(d)

-1 1

-2

2

y

x

Computer Lab Assignments

59. In Mathematica use

Clear[y]

y[x ]:= x Exp[5x] Cos[2x]

y[x]

y ′ ′ ′ ′ [x] - 20 y ′ ′ ′ [x] + 158 y ′ ′ [x] - 580 y ′ [x] + 841 y[x] // Simplify

The output will show y(x) = e5xx cos 2x, which verifies that the correct function was entered,

and 0, which verifies that this function is a solution of the differential equation.

9
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CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

60. In Mathematica use

Clear[y]

y[x ]:= 20Cos[5 Log[x]]/x - 3 Sin[5 Log[x]]/x

y[x]

x ∧ 3 y ′ ′ ′ [x] + 2 x ∧ 2 y ′ ′ [x] + 20 x y ′ [x] - 78 y[x] // Simplify

The output will show y(x) =
20 cos(5 lnx)

x
− 3 sin(5 lnx)

x
, which verifies that the correct

function was entered, and 0, which verifies that this function is a solution of the differential

equation.

1.2 Initial-Value Problems

1.2 Initial-Value Problems

1. Solving −1/3 = 1/(1 + c1) we get c1 = −4. The solution is y = 1/(1− 4e−x).

2. Solving 2 = 1/(1 + c1e) we get c1 = −(1/2)e−1. The solution is y = 2/(2− e−(x+1)) .

3. Letting x = 2 and solving 1/3 = 1/(4 + c) we get c = −1. The solution is y = 1/(x2− 1). This

solution is defined on the interval (1,∞).

4. Letting x = −2 and solving 1/2 = 1/(4 + c) we get c = −2. The solution is y = 1/(x2 − 2).

This solution is defined on the interval (−∞,−
√

2 ).

5. Letting x = 0 and solving 1 = 1/c we get c = 1. The solution is y = 1/(x2 + 1). This solution

is defined on the interval (−∞,∞).

6. Letting x = 1/2 and solving −4 = 1/(1/4 + c) we get c = −1/2. The solution is y =

1/(x2 − 1/2) = 2/(2x2 − 1). This solution is defined on the interval (−1/
√

2 , 1/
√

2 ).

In Problems 7–10 we use x = c1 cos t+ c2 sin t and x′ = −c1 sin t+ c2 cos t to obtain a system of two

equations in the two unknowns c1 and c2.

7. From the initial conditions we obtain the system

c1 = −1

c2 = 8.

The solution of the initial-value problem is x = − cos t+ 8 sin t.

10
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1.2 Initial-Value Problems

8. From the initial conditions we obtain the system

c2 = 0

−c1 = 1.

The solution of the initial-value problem is x = − cos t.

9. From the initial conditions we obtain
√

3

2
c1 +

1

2
c2 =

1

2

−1

2
c1 +

√
3

2
c2 = 0.

Solving, we find c1 =
√

3/4 and c2 = 1/4. The solution of the initial-value problem is

x = (
√

3/4) cos t+ (1/4) sin t.

10. From the initial conditions we obtain
√

2

2
c1 +

√
2

2
c2 =

√
2

−
√

2

2
c1 +

√
2

2
c2 = 2

√
2 .

Solving, we find c1 = −1 and c2 = 3. The solution of the initial-value problem is

x = − cos t+ 3 sin t.

In Problems 11–14 we use y = c1e
x + c2e

−x and y′ = c1e
x − c2e

−x to obtain a system of two

equations in the two unknowns c1 and c2.

11. From the initial conditions we obtain

c1 + c2 = 1

c1 − c2 = 2.

Solving, we find c1 = 3
2 and c2 = −1

2 . The solution of the initial-value problem is

y =
3

2
ex − 1

2
e−x.

12. From the initial conditions we obtain

ec1 + e−1c2 = 0

ec1 − e−1c2 = e.

Solving, we find c1 = 1
2 and c2 = −1

2e
2. The solution of the initial-value problem is

y =
1

2
ex − 1

2
e2e−x =

1

2
ex − 1

2
e2−x.

11
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CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

13. From the initial conditions we obtain

e−1c1 + ec2 = 5

e−1c1 − ec2 = −5.

Solving, we find c1 = 0 and c2 = 5e−1. The solution of the initial-value problem is

y = 5e−1e−x = 5e−1−x.

14. From the initial conditions we obtain

c1 + c2 = 0

c1 − c2 = 0.

Solving, we find c1 = c2 = 0. The solution of the initial-value problem is y = 0.

15. Two solutions are y = 0 and y = x3.

16. Two solutions are y = 0 and y = x2. A lso, any constant multiple of x2 is a solution.

17. For f(x, y) = y2/3 we have Thus, the differential equation will have a unique solution in any

rectangular region of the plane where y 6= 0.

18. For f(x, y) =
√
xy we have ∂f/∂y = 1

2

√
x/y . Thus, the differential equation will have a unique

solution in any region where x > 0 and y > 0 or where x < 0 and y < 0.

19. For f(x, y) =
y

x
we have

∂f

∂y
=

1

x
. Thus, the differential equation will have a unique solution

in any region where x > 0 or where x < 0.

20. For f(x, y) = x+y we have
∂f

∂y
= 1. Thus, the differential equation will have a unique solution

in the entire plane.

21. For f(x, y) = x2/(4− y2) we have ∂f/∂y = 2x2y/(4− y2)2. Thus the differential equation will

have a unique solution in any region where y < −2, −2 < y < 2, or y > 2.

22. For f(x, y) =
x2

1 + y3
we have

∂f

∂y
=
−3x2y2

(1 + y3)2
. Thus, the differential equation will have a

unique solution in any region where y 6= −1.

23. For f(x, y) =
y2

x2 + y2
we have

∂f

∂y
=

2x2y

(x2 + y2)2
. Thus, the differential equation will have a

unique solution in any region not containing (0, 0).

24. For f(x, y) = (y + x)/(y − x) we have ∂f/∂y = −2x/(y − x)2. Thus the differential equation

will have a unique solution in any region where y < x or where y > x.

12
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1.2 Initial-Value Problems

In Problems 25–28 we identify f(x, y) =
√
y2 − 9 and ∂f/∂y = y/

√
y2 − 9. We see that f and

∂f/∂y are both continuous in the regions of the plane determined by y < −3 and y > 3 with no

restrictions on x.

25. Since 4 > 3, (1, 4) is in the region defined by y > 3 and the differential equation has a unique

solution through (1, 4).

26. Since (5, 3) is not in either of the regions defined by y < −3 or y > 3, there is no guarantee of

a unique solution through (5, 3).

27. Since (2,−3) is not in either of the regions defined by y < −3 or y > 3, there is no guarantee

of a unique solution through (2,−3).

28. Since (−1, 1) is not in either of the regions defined by y < −3 or y > 3, there is no guarantee

of a unique solution through (−1, 1).

29. (a) A one-parameter family of solutions is y = cx. Since y′ = c, xy′ = xc = y and y(0) =

c · 0 = 0.

(b) Writing the equation in the form y′ = y/x, we see that R cannot contain any point on the

y-axis. Thus, any rectangular region disjoint from the y-axis and containing (x0, y0) will

determine an interval around x0 and a unique solution through (x0, y0). Since x0 = 0 in

part (a), we are not guaranteed a unique solution through (0, 0).

(c) The piecewise-defined function which satisfies y(0) = 0 is not a solution since it is not

differentiable at x = 0.

30. (a) Since
d

dx
tan(x + c) = sec2(x + c) = 1 + tan2(x + c), we see that y = tan(x + c) satisfies

the differential equation.

(b) Solving y(0) = tan c = 0 we obtain c = 0 and y = tanx. Since tanx is discontinuous at

x = ±π/2, the solution is not defined on (−2, 2) because it contains ±π/2.

(c) The largest interval on which the solution can exist is (−π/2, π/2).

31. (a) Since
d

dx

(
− 1

x+ c

)
=

1

(x+ c)2
= y2, we see that y = − 1

x+ c
is a solution of the differential

equation.

(b) Solving y(0) = −1/c = 1 we obtain c = −1 and y = 1/(1− x). Solving y(0) = −1/c = −1

we obtain c = 1 and y = −1/(1 +x). Being sure to include x = 0, we see that the interval

of existence of y = 1/(1− x) is (−∞, 1), while the interval of existence of y = −1/(1 + x)

is (−1,∞).

(c) By inspection we see that y = 0 is a solution on (−∞,∞).

13
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CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

32. (a) Applying y(1) = 1 to y = −1/(x+ c) gives

1 = − 1

1 + c
or 1 + c = −1.

Thus c = −2 and

y = − 1

x− 2
=

1

2− x
.

(b) Applying y(3) = −1 to y = −1/(x+ c) gives

−1 = − 1

3 + c
or 3 + c = 1.

Thus c = −2 and

y = − 1

x− 2
=

1

2− x
.

H1, 1L

H3, -1L
1 2 3 4

x

-4

-2

2

4

y y = 1
2−x , (−∞, 2)

y = 1
2−x , (2, ∞)

(c) No, they are not the same solution. The interval I of definition for the solution in part (a)

is (−∞, 2); whereas the interval I of definition for the solution in part (b) is (2,∞). See

the figure.

33. (a) Differentiating 3x2 − y2 = c we get 6x− 2yy′ = 0 or yy′ = 3x.

(b) Solving 3x2 − y2 = 3 for y we get

y = φ1(x) =
√

3(x2 − 1) , 1 < x <∞,

y = φ2(x) = −
√

3(x2 − 1) , 1 < x <∞,

y = φ3(x) =
√

3(x2 − 1) , −∞ < x < −1,

y = φ4(x) = −
√

3(x2 − 1) , −∞ < x < −1.

H-2, 3L

-4 -2 2 4

-6

-4

-2

2

4

6

y

(c) Only y = φ3(x) satisfies y(−2) = 3.

34. (a) Setting x = 2 and y = −4 in 3x2 − y2 = c we get

12− 16 = −4 = c, so the explicit solution is

y = −
√

3x2 + 4 , −∞ < x <∞.

(b) Setting c = 0 we have y =
√

3x and y = −
√

3x, both

defined on (−∞,∞) and both passing through the

origin.

H2, -4L

-4 -2 2 4
x

-6

-4

-2

2

y

In Problems 35–38 we consider the points on the graphs with x-coordinates x0 = −1, x0 = 0, and

x0 = 1. The slopes of the tangent lines at these points are compared with the slopes given by y′(x0)

in (a) through (f).

35. The graph satisfies the conditions in (b) and (f).

36. The graph satisfies the conditions in (e).

14
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1.2 Initial-Value Problems

37. The graph satisfies the conditions in (c) and (d).

38. The graph satisfies the conditions in (a).

In Problems 39-44 y = c1 cos 2x + c2 sin 2x is a two parameter family of solutions of the second-

order differential equation y′′ + 4y = 0. In some of the problems we will use the fact that

y′ = −2c1 sin 2x+ 2c2 cos 2x.

39. From the boundary conditions y(0) = 0 and y
(π

4

)
= 3 we obtain

y(0) = c1 = 0

y
(π

4

)
= c1 cos

(π
2

)
+ c2 sin

(π
2

)
= c2 = 3.

Thus, c1 = 0, c2 = 3, and the solution of the boundary-value problem is y = 3 sin 2x.

40. From the boundary conditions y(0) = 0 and y(π) = 0 we obtain

y(0) = c1 = 0

y(π) = c1 = 0.

Thus, c1 = 0, c2 is unrestricted, and the solution of the boundary-value problem is y = c2 sin 2x,

where c2 is any real number.

41. From the boundary conditions y′(0) = 0 and y′
(π

6

)
= 0 we obtain

y′(0) = 2c2 = 0

y′
(π

6

)
= −2c1 sin

(π
3

)
= −
√

3 c1 = 0.

Thus, c2 = 0, c1 = 0, and the solution of the boundary-value problem is y = 0.

42. From the boundary conditions y(0) = 1 and y′(π) = 5 we obtain

y(0) = c1 = 1

y′(π) = 2c2 = 5.

Thus, c1 = 1, c2 =
5

2
, and the solution of the boundary-value problem is y = cos 2x+

5

2
sin 2x.

43. From the boundary conditions y(0) = 0 and y(π) = 2 we obtain

y(0) = c1 = 0

y(π) = c1 = 2.

Since 0 6= 2, this is not possible and there is no solution.

44. From the boundary conditions y′ =
(π

2

)
= 1 and y′(π) = 0 we obtain

y′
(π

2

)
= −2c2 = 1

y′(π) = 2c2 = 0.

Since 0 6= −1, this is not possible and there is no solution.

15
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CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

Discussion Problems

45. Integrating y′ = 8e2x + 6x we obtain

y =

∫
(8e2x + 6x)dx = 4e2x + 3x2 + c.

Setting x = 0 and y = 9 we have 9 = 4 + c so c = 5 and y = 4e2x + 3x2 + 5.

46. Integrating y′′ = 12x− 2 we obtain

y′ =

∫
(12x− 2)dx = 6x2 − 2x+ c1.

Then, integrating y′ we obtain

y =

∫
(6x2 − 2x+ c1)dx = 2x3 − x2 + c1x+ c2.

At x = 1 the y-coordinate of the point of tangency is y = −1 + 5 = 4. This gives the initial

condition y(1) = 4. The slope of the tangent line at x = 1 is y′(1) = −1. From the initial

conditions we obtain

2− 1 + c1 + c2 = 4 or c1 + c2 = 3

and 6− 2 + c1 = −1 or c1 = −5.

Thus, c1 = −5 and c2 = 8, so y = 2x3 − x2 − 5x+ 8.

47. When x = 0 and y = 1
2 , y′ = −1, so the only plausible solution curve is the one with negative

slope at (0, 12 ), or the red curve.

48. If the solution is tangent to the x-axis at (x0, 0), then y′ = 0 when x = x0 and y = 0.

Substituting these values into y′ + 2y = 3x− 6 we get 0 + 0 = 3x0 − 6 or x0 = 2.

49. The theorem guarantees a unique (meaning single) solution through any point. Thus, there

cannot be two distinct solutions through any point.

50. When y = 1
16x

4, y′ = 1
4x

3 = x(14x
2) = xy1/2, and y(2) = 1

16(16) = 1. When

y =

{
0, x < 0
1
16 x

4, x ≥ 0

we have

y′ =

{
0, x < 0
1
4x

3, x ≥ 0
= x

{
0, x < 0
1
4 x

2, x ≥ 0
= xy1/2 ,

and y(2) = 1
16(16) = 1. The two different solutions are the same on the interval (0,∞), which

is all that is required by Theorem 1.2.1.

51. At t = 0, dP/dt = 0.15P (0) + 20 = 0.15(100) + 20 = 35. Thus, the population is increasing at

a rate of 3,500 individuals per year. If the population is 500 at time t = T then

dP

dt

∣∣∣∣∣
t=T

= 0.15P (T ) + 20 = 0.15(500) + 20 = 95.

Thus, at this time, the population is increasing at a rate of 9,500 individuals per year.

16
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1.3 Differential Equations as Mathematical Models

1.3 Differential Equations as Mathematical Models

1.3 Differential Equations as Mathematical Models

Population Dynamics

1.
dP

dt
= kP + r;

dP

dt
= kP − r

2. Let b be the rate of births and d the rate of deaths. Then b = k1P and d = k2P . Since

dP/dt = b− d, the differential equation is dP/dt = k1P − k2P .

3. Let b be the rate of births and d the rate of deaths. Then b = k1P and d = k2P
2. Since

dP/dt = b− d, the differential equation is dP/dt = k1P − k2P 2.

4.
dP

dt
= k1P − k2P 2 − h, h > 0

Newton’s Law of cooling/Warming
5. From the graph in the text we estimate T0 = 180◦ and Tm = 75◦. We observe that when

T = 85, dT/dt ≈ −1. From the differential equation we then have

k =
dT/dt

T − Tm
=

−1

85− 75
= −0.1.

6. By inspecting the graph in the text we take Tm to be Tm(t) = 80 − 30 cosπt/12. Then the

temperature of the body at time t is determined by the differential equation

dT

dt
= k

[
T −

(
80− 30 cos

π

12
t
)]
, t > 0.

Spread of a Disease/Technology
7. The number of students with the flu is x and the number not infected is 1000− x, so dx/dt =

kx(1000− x).

8. By analogy, with the differential equation modeling the spread of a disease, we assume that the

rate at which the technological innovation is adopted is proportional to the number of people

who have adopted the innovation and also to the number of people, y(t), who have not yet

adopted it. Then x+y = n, and assuming that initially one person has adopted the innovation,

we have
dx

dt
= kx(n− x), x(0) = 1.

Mixtures
9. The rate at which salt is leaving the tank is

Rout (3 gal/min)

(
A

300
lb/gal

)
=

A

100
lb/min.

Thus dA/dt = −A/100 (where the minus sign is used since the amount of salt is decreasing).

The initial amount is A(0) = 50.

17
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CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

10. The rate at which salt is entering the tank is

Rin = (3 gal/min) · (2 lb/gal) = 6 lb/min.

Since the solution is pumped out at a slower rate, it is accumulating at the rate of

(3 − 2)gal/min = 1 gal/min. After t minutes there are 300 + t gallons of brine in the tank.

The rate at which salt is leaving is

Rout = (2 gal/min) ·
(

A

300 + t
lb/gal

)
=

2A

300 + t
lb/min.

The differential equation is
dA

dt
= 6− 2A

300 + t
.

11. The rate at which salt is entering the tank is

Rin = (3 gal/min)(2 lb/gal) = 6 lb/min.

Since the tank loses liquid at the net rate of

3 gal/min− 3.5 gal/min = −0.5 gal/min,

after t minutes the number of gallons of brine in the tank is 300− 1
2 t gallons. Thus the rate at

which salt is leaving is

Rout =

(
A

300− t/2
lb/gal

)
(3.5 gal/min) =

3.5A

300− t/2
lb/min =

7A

600− t
lb/min.

The differential equation is

dA

dt
= 6− 7A

600− t
or

dA

dt
+

7

600− t
A = 6.

12. The rate at which salt is entering the tank is

Rin = (cin lb/gal)(rin gal/min) = cinrin lb/min.

Now let A(t) denote the number of pounds of salt and N(t) the number of gallons of brine

in the tank at time t. The concentration of salt in the tank as well as in the outflow is

c(t) = x(t)/N(t). But the number of gallons of brine in the tank remains steady, is increased,

or is decreased depending on whether rin = rout, rin > rout, or rin < rout. In any case, the

number of gallons of brine in the tank at time t is N(t) = N0 + (rin − rout)t. The output rate

of salt is then

Rout =

(
A

N0 + (rin − rout)t
lb/gal

)
(rout gal/min) = rout

A

N0 + (rin − rout)t
lb/min.

The differential equation for the amount of salt, dA/dt = Rin −Rout, is

dA

dt
= cinrin − rout

A

N0 + (rin − rout)t
or

dA

dt
+

rout
N0 + (rin − rout)t

A = cinrin.

18
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1.3 Differential Equations as Mathematical Models

Draining a Tank

13. The volume of water in the tank at time t is V = Awh. The differential equation is then

dh

dt
=

1

Aw

dV

dt
=

1

Aw

(
−cAh

√
2gh

)
= −cAh

Aw

√
2gh .

Using Ah = π

(
2

12

)2

=
π

36
, Aw = 102 = 100, and g = 32, this becomes

dh

dt
= −cπ/36

100

√
64h = − cπ

450

√
h .

14. The volume of water in the tank at time t is V = 1
3πr

2h where r is the radius of the tank

at height h. From the figure in the text we see that r/h = 8/20 so that r = 2
5h and V =

1
3π
(
2
5h
)2
h = 4

75πh
3. Differentiating with respect to t we have dV/dt = 4

25πh
2 dh/dt or

dh

dt
=

25

4πh2
dV

dt
.

From Problem 13 we have dV/dt = −cAh
√

2gh where c = 0.6, Ah = π
(

2
12

)2
, and g = 32. Thus

dV/dt = −2π
√
h/15 and

dh

dt
=

25

4πh2

(
−2π
√
h

15

)
= − 5

6h3/2
.

Series Circuits

15. Since i = dq/dt and Ld2q/dt2 +Rdq/dt = E(t), we obtain Ldi/dt+Ri = E(t).

16. By Kirchhoff’s second law we obtain R
dq

dt
+

1

C
q = E(t).

Falling Bodies and Air Resistance

17. From Newton’s second law we obtain m
dv

dt
= −kv2 +mg.

Newton’s Second Law and Archimedes’ Principle

18. Since the barrel in Figure 1.3.17(b) in the text is submerged an additional y feet below its

equilibrium position the number of cubic feet in the additional submerged portion is the volume

of the circular cylinder: π×(radius)2×height or π(s/2)2y. Then we have from Archimedes’

principle

upward force of water on barrel = weight of water displaced

= (62.4)× (volume of water displaced)

= (62.4)π(s/2)2y = 15.6πs2y.

19
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CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

It then follows from Newton’s second law that

w

g

d2y

dt2
= −15.6πs2y or

d2y

dt2
+

15.6πs2g

w
y = 0,

where g = 32 and w is the weight of the barrel in pounds.

Newton’s Second Law and Hooke’s Law

19. The net force acting on the mass is

F = ma = m
d2x

dt2
= −k(s+ x) +mg = −kx+mg − ks.

Since the condition of equilibrium is mg = ks, the differential equation is

m
d2x

dt2
= −kx.

20. From Problem 19, without a damping force, the differential equation is md2x/dt2 = −kx.

With a damping force proportional to velocity, the differential equation becomes

m
d2x

dt2
= −kx− βdx

dt
or m

d2x

dt2
+ β

dx

dt
+ kx = 0.

Newton’s Second Law and Rocket Motion

21. Since the positive direction is taken to be upward, and the acceleration due to gravity g is

positive, (14) in Section 1.3 becomes

m
dv

dt
= −mg − kv +R.

This equation, however, only applies if m is constant. Since in this case m includes the variable

amount of fuel we must use (17) in Exercises 1.3:

F =
d

dt
(mv) = m

dv

dt
+ v

dm

dt
.

Thus, replacing mdv/dt with mdv/dt+ vdm/dt, we have

m
dv

dt
+ v

dm

dt
= −mg − kv +R or m

dv

dt
+ v

dm

dt
+ kv = −mg +R.

22. Here we are given that the variable mass of the rocket is m(t) = mp + mν + mf (t), where

mp and mν are the constant masses of the payload and vehicle, respectively, and mf (t) is the

variable mass of the fuel.

(a) Since
d

dt
m(t) =

d

dt

(
mp +mν +mf (t)

)
=

d

dt
mf (t),

the rates at which the mass of the rocket and the mass of the fuel change are the same.

20
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1.3 Differential Equations as Mathematical Models

(b) If the rocket loses fuel at a constant rate λ then we take dm/dt = −λ. We use −λ instead

of λ because the fuel is decreasing over time. We next divide the resulting differential

equation in Problem 21 by m, obtaining

dv

dt
+
v

m
(−λ) +

kv

m
= −g +

R

m
or

dv

dt
+
k − λ
m

v = −g +
R

m
.

Integrating dm/dt = −λ with respect to t we have m(t) = −λ + C. Since m(0) = m0,

C = m0 and m(t) = −λt+m0. The differential equation then may be written as

dv

dt
+

k − λ
m0 − λt

v = −g +
R

m0 − λt
.

(c) We integrate dmf/dt = −λ to obtain mf (t) = −λt + C. Since mf (0) = C we have

mf (t− λt+mf (0). At burnout mf (tb) = −λtb +mf (0) = 0, so tb = mf (0)/λ.

Newton’s Second Law and the Law of Universal Gravitation

23. From g = k/R2 we find k = gR2. Using a = d2r/dt2 and the fact that the positive direction is

upward we get

d2r

dt2
= −a = − k

r2
= −gR

2

r2
or

d2r

dt2
+
gR2

r2
= 0.

24. The gravitational force on m is F = −kMrm/r
2. Since Mr = 4πδr3/3 and M = 4πδR3/3 we

have Mr = r3M/R3 and

F = −k Mrm

r2
= −k r

3Mm/R3

r2
= −k mM

R3
r.

Now from F = ma = d2r/dt2 we have

m
d2r

dt2
= −k mM

R3
r or

d2r

dt2
= −kM

R3
r.

Additional Mathematical Models

25. The differential equation is
dA

dt
= k(M −A) where k > 0.

26. The differential equation is
dA

dt
= k1(M −A)− k2A.

27. The differential equation is x′(t) = r − kx(t) where k > 0.

28. By the Pythagorean Theorem the slope of the tangent line is y′ =
−y√
s2 − y2

.

21
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CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

29. We see from the figure that 2θ + α = π. Thus

y

−x
= tanα = tan(π − 2θ) = − tan 2θ = − 2 tan θ

1− tan2 θ
.

Since the slope of the tangent line is y′ = tan θ we have

y/x = 2y′/[1 − (y′)2] or y − y(y′)2 = 2xy′, which is the

quadratic equation y(y′)2 + 2xy′ − y = 0 in y′. Using the

quadratic formula, we get

y′ =
−2x±

√
4x2 + 4y2

2y
=
−x±

√
x2 + y2

y
.

Since dy/dx > 0, the differential equation is

dy

dx
=
−x+

√
x2 + y2

y
or y

dy

dx
−
√
x2 + y2 + x = 0.

Discussion Problems

30. The differential equation is dP/dt = kP , so from Problem 41 in Exercises 1.1, P = ekt, and a

one-parameter family of solutions is P = cekt.

31. The differential equation in (3) is dT/dt = k(T − Tm). When the body is cooling, T > Tm, so

T −Tm > 0. Since T is decreasing, dT/dt < 0 and k < 0. When the body is warming, T < Tm,

so T − Tm < 0. Since T is increasing, dT/dt > 0 and k < 0.

32. The differential equation in (8) is dA/dt = 6 − A/100. If A(t) attains a maximum, then

dA/dt = 0 at this time and A = 600. If A(t) continues to increase without reaching a maximum,

then A′(t) > 0 for t > 0 and A cannot exceed 600. In this case, if A′(t) approaches 0 as t

increases to infinity, we see that A(t) approaches 600 as t increases to infinity.

33. This differential equation could describe a population that undergoes periodic fluctuations.

34. (a) As shown in Figure 1.3.24(b) in the text, the resultant of the reaction force of magnitude

F and the weight of magnitude mg of the particle is the centripetal force of magnitude

mω2x. The centripetal force points to the center of the circle of radius x on which the

particle rotates about the y-axis. Comparing parts of similar triangles gives

F cos θ = mg and F sin θ = mω2x.

(b) Using the equations in part (a) we find

tan θ =
F sin θ

F cos θ
=
mω2x

mg
=
ω2x

g
or

dy

dx
=
ω2x

g
.

22
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1.3 Differential Equations as Mathematical Models

35. From Problem 23, d2r/dt2 = −gR2/r2. Since R is a constant, if r = R + s, then d2r/dt2 =

d2s/dt2 and, using a Taylor series, we get

d2s

dt2
= −g R2

(R+ s)2
= −gR2(R+ s)−2 ≈ −gR2

[
R−2 − 2sR−3 + · · ·

]
= −g +

2gs

R3
+ · · · .

Thus, for R much larger than s, the differential equation is approximated by d2s/dt2 = −g.

36. (a) If ρ is the mass density of the raindrop, then m = ρV and

dm

dt
= ρ

dV

dt
= ρ

d

dt

[4

3
πr3
]

= ρ
(

4πr2
dr

dt

)
= ρS

dr

dt
.

If dr/dt is a constant, then dm/dt = kS where ρ dr/dt = k or dr/dt = k/ρ. Since the

radius is decreasing, k < 0. Solving dr/dt = k/ρ we get r = (k/ρ)t+ c0. Since r(0) = r0,

c0 = r0 and r = kt/ρ+ r0.

(b) From Newton’s second law,
d

dt
[mv] = mg, where v is the velocity of the raindrop. Then

m
dv

dt
+ v

dm

dt
= mg or ρ

(4

3
πr3
)dv
dt

+ v(k4πr2) = ρ
(4

3
πr3
)
g.

Dividing by 4ρπr3/3 we get

dv

dt
+

3k

ρr
v = g or

dv

dt
+

3k/ρ

kt/ρ+ r0
v = g, k < 0.

37. We assume that the plow clears snow at a constant rate of k cubic miles per hour. Let t be the

time in hours after noon, x(t) the depth in miles of the snow at time t, and y(t) the distance

the plow has moved in t hours. Then dy/dt is the velocity of the plow and the assumption

gives

wx
dy

dt
= k,

where w is the width of the plow. Each side of this equation simply represents the volume

of snow plowed in one hour. Now let t0 be the number of hours before noon when it started

snowing and let s be the constant rate in miles per hour at which x increases. Then for t > −t0,
x = s(t+ t0). The differential equation then becomes

dy

dt
=

k

ws

1

t+ t0
.

Integrating, we obtain

y =
k

ws
[ ln(t+ t0) + c ],

where c is a constant. Now when t = 0, y = 0 so c = − ln t0 and

y =
k

ws
ln

(
1 +

t

t0

)
.

23
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CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

Finally, from the fact that when t = 1, y = 2 and when t = 2, y = 3, we obtain(
1 +

2

t0

)2

=

(
1 +

1

t0

)3

.

Expanding and simplifying gives t20 + t0 − 1 = 0. Since t0 > 0, we find t0 ≈ 0.618 hours ≈ 37

minutes. Thus it started snowing at about 11:23 in the morning.

38. (1) :
dP

dt
= kP is linear (2) :

dA

dt
= kA is linear

(3) :
dT

dt
= k(T − Tm) is linear (5) :

dx

dt
= kx(n+ 1− x) is nonlinear

(6) :
dX

dt
= k(α−X)(β −X) is nonlinear (8) :

dA

dt
= 6− A

100
is linear

(10) :
dh

dt
= −Ah

Aw

√
2gh is nonlinear (11) : L

d2q

dt2
+R

dq

dt
+

1

C
q = E(t) is linear

(12) :
d2s

dt2
= −g is linear (14) : m

dv

dt
= mg − kv is linear

(15) : m
d2s

dt2
+ k

ds

dt
= mg is linear

(16) :
dy

dx
=
W

T1
linearity or nonlinearity is determined by the manner in which W and T1 involve x.

1.R Chapter 1 in Review

1.
d

dx
c1e

10x = 10c1e
10x;

dy

dx
= 10y

2.
d

dx
(5 + c1e

−2x) = −2c1e
−2x = −2(5 + c1e

−2x − 5);
dy

dx
= −2(y − 5) or

dy

dx
= −2y + 10

3.
d

dx
(c1 cos kx+ c2 sin kx) = −kc1 sin kx+ kc2 cos kx;

d2

dx2
(c1 cos kx+ c2 sin kx) = −k2c1 cos kx− k2c2 sin kx = −k2(c1 cos kx+ c2 sin kx);

d2y

dx2
= −k2y or

d2y

dx2
+ k2y = 0

4.
d

dx
(c1 cosh kx+ c2 sinh kx) = kc1 sinh kx+ kc2 cosh kx;

d2

dx2
(c1 cosh kx+ c2 sinh kx) = k2c1 cosh kx+ k2c2 sinh kx = k2(c1 cosh kx+ c2 sinh kx);

d2y

dx2
= k2y or

d2y

dx2
− k2y = 0

24
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5. y = c1e
x + c2xe

x; y′ = c1e
x + c2xe

x + c2e
x; y′′ = c1e

x + c2xe
x + 2c2e

x;

y′′ + y = 2(c1e
x + c2xe

x) + 2c2e
x = 2(c1e

x + c2xe
x + c2e

x) = 2y′; y′′ − 2y′ + y = 0

6. y′ = −c1ex sinx+ c1e
x cosx+ c2e

x cosx+ c2e
x sinx;

y′′ = −c1ex cosx−c1ex sinx−c1ex sinx+c1e
x cosx−c2ex sinx+c2e

x cosx+c2e
x cosx+c2e

x sinx

y′′ = −2c1e
x sinx+ 2c2e

x cosx;

y′′ − 2y′ = −2c1e
x cosx− 2c2e

x sinx = −2y; y′′ − 2y′ + 2y = 0

7. a, d (8.) c (9.) b (10.) a, c (11.) b (12.) a, b, d

13. A few solutions are y = 0, y = c, and y = ex. In general, y = c1 + c2e
x is a solution for any

constants c1 and c2.

14. When y is a constant, then y′ = 0. Thus, easy solutions to see are y = 0 and y = 3.

15. The slope of the tangent line at (x, y) is y′, so the differential equation is y′ = x2 + y2.

16. The rate at which the slope changes is dy′/dx = y′′, so the differential equation is y′′ = −y′ or

y′′ + y′ = 0.

17. (a) The domain is all real numbers.

(b) Since y′ = 2/3x1/3, the solution y = x2/3 is undefined at x = 0. This function is a solution

of the differential equation on (−∞, 0) and also on (0,∞).

18. (a) Differentiating y2 − 2y = x2 − x+ c we obtain 2yy′ − 2y′ = 2x− 1 or (2y − 2)y′ = 2x− 1.

(b) Setting x = 0 and y = 1 in the solution we have 1 − 2 = 0 − 0 + c or c = −1. Thus, a

solution of the initial-value problem is y2 − 2y = x2 − x− 1.

(c) Solving y2 − 2y − (x2 − x− 1) = 0 by the quadratic formula we get

y =
2±

√
4 + 4(x2 − x− 1)

2
= 1±

√
x2 − x = 1±

√
x(x− 1) .

Since x(x − 1) ≥ 0 for x ≤ 0 or x ≥ 1, we see that neither y = 1 +
√
x(x− 1) nor

y = 1 −
√
x(x− 1) is differentiable at x = 0. Thus, both functions are solutions of the

differential equation, but neither is a solution of the initial-value problem.

19. Setting x = x0 and y = 1 in y = −2/x+ x, we get

1 = − 2

x0
+ x0 or x20 − x0 − 2 = (x0 − 2)(x0 + 1) = 0.

Thus, x0 = 2 or x0 = −1. Since x 6= 0 in y = −2/x+ x, we see that y = −2/x+ x is a solution

of the initial-value problem xy′ + y = 2x, y(−1) = 1 on the interval (−∞, 0) (−1 < 0), and

y = −2/x+ x is a solution of the initial-value problem xy′ + y = 2x, y(2) = 1, on the interval

(0,∞) (2 > 0).

25
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CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

20. From the differential equation, y′(1) = 12 +[y(1)]2 = 1+(−1)2 = 2 > 0, so y(x) is increasing in

some neighborhood of x = 1. From y′′ = 2x+ 2yy′ we have y′′(1) = 2(1) + 2(−1)(2) = −2 < 0,

so y(x) is concave down in some neighborhood of x = 1.

21. (a) x

-4 -2 2 4
x

-4

-2

2

4

y

-4 -2 2 4
x

-4

-2

2

4

y

y = x2 + c1 y = −x2 + c2

(b) When y = x2+c1, y
′ = 2x and (y′)2 = 4x2. When y = −x2+c2, y

′ = −2x and (y′)2 = 4x2.

(c) Pasting together x2, x ≥ 0, and −x2, x ≤ 0, we get

f(x) =

{
−x2, x ≤ 0

x2, x > 0.

22. The slope of the tangent line is y′
∣∣
(−1,4)= 6

√
4 + 5(−1)3 = 7.

23. Differentiating y = x sinx+ x cosx we get

y′ = x cosx+ sinx− x sinx+ cosx

y′′ = −x sinx+ cosx+ cosx− x cosx− sinx− sinxand

= −x sinx− x cosx+ 2 cosx− 2 sinx.

Thus

y′′ + y = −x sinx− x cosx+ 2 cosx− 2 sinx+ x sinx+ x cosx = 2 cosx− 2 sinx.

An interval of definition for the solution is (−∞,∞).

24. Differentiating y = x sinx+ (cosx) ln(cosx) we get

y′ = x cosx+ sinx+ cosx

(
− sinx

cosx

)
− (sinx) ln(cosx)

= x cosx+ sinx− sinx− (sinx) ln(cosx)

= x cosx− (sinx) ln(cosx)

26
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y′′ = −x sinx+ cosx− sinx

(
− sinx

cosx

)
− (cosx) ln(cosx)and,

= −x sinx+ cosx+
sin2 x

cosx
− (cosx) ln(cosx)

= −x sinx+ cosx+
1− cos2 x

cosx
− (cosx) ln(cosx)

= −x sinx+ cosx+ secx− cosx− (cosx) ln(cosx)

= −x sinx+ secx− (cosx) ln(cosx).

Thus

y′′ + y = −x sinx+ secx− (cosx) ln(cosx) + x sinx+ (cosx) ln(cosx) = secx.

To obtain an interval of definition we note that the domain of lnx is (0,∞), so we must have

cosx > 0. Thus, an interval of definition is (−π/2, π/2).

25. Differentiating y = sin(lnx) we obtain y′ = cos(lnx)/x and y′′ = −[sin(lnx) + cos(lnx)]/x2.

Then

x2y′′ + xy′ + y = x2
(
−sin(lnx) + cos(lnx)

x2

)
+ x

cos(lnx)

x
+ sin(lnx) = 0.

An interval of definition for the solution is (0,∞).

26. Differentiating y = cos(lnx) ln(cos(lnx)) + (lnx) sin(lnx) we obtain

y′ = cos(lnx)
1

cos(lnx)

(
−sin(lnx)

x

)
+ ln(cos(lnx))

(
−sin(lnx)

x

)
+ lnx

cos(lnx)

x
+

sin(lnx)

x

= − ln(cos(lnx)) sin(lnx)

x
+

(lnx) cos(lnx)

x

and

y′′ = −x
[
ln(cos(lnx))

cos(lnx)

x
+ sin(lnx)

1

cos(lnx)

(
−sin(lnx)

x

)] 1

x2

+ ln(cos(lnx)) sin(lnx)
1

x2
+ x

[
(lnx)

(
−sin(lnx)

x

)
+

cos(lnx)

x

]
1

x2
− (lnx) cos(lnx)

1

x2

=
1

x2

[
− ln(cos(lnx)) cos(lnx) +

sin2(lnx)

cos(lnx)
+ ln(cos(lnx)) sin(lnx)

− (lnx) sin(lnx) + cos(lnx)− (lnx) cos(lnx)

]
.

Then

x2y′′ + xy′ + y = − ln(cos(lnx)) cos(lnx) +
sin2(lnx)

cos(lnx)
+ ln(cos(lnx)) sin(lnx)

− (lnx) sin(lnx) + cos(lnx)− (lnx) cos(lnx)− ln(cos(lnx)) sin(lnx)

+ (lnx) cos(lnx) + cos(lnx) ln(cos(lnx)) + (lnx) sin(lnx)

=
sin2(lnx)

cos(lnx)
+ cos(lnx) =

sin2(lnx) + cos2(lnx)

cos(lnx)
=

1

cos(lnx)
= sec(lnx).

27
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CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

To obtain an interval of definition, we note that the domain of lnx is (0,∞), so we must have

cos(lnx) > 0. Since cosx > 0 when −π/2 < x < π/2, we require −π/2 < lnx < π/2. Since ex

is an increasing function, this is equivalent to e−π/2 < x < eπ/2. Thus, an interval of definition

is (e−π/2, eπ/2). Much of this problem is more easily done using a computer algebra system

such as Mathematica or Maple.

27. Using implicit differentiation on x3y3 = x3 + 1 we have

3x3y2y′ + 3x2y3 = 3x2

xy2y′ + y3 = 1

xy′ + y =
1

y2
.

28. Using implicit differentiation on (x− 5)2 + y2 = 1 we have

2(x− 5) + 2yy′ = 0

x− 5 + yy′ = 0

y′ = −x− 5

y(
y′
)2

=
(x− 5)2

y2
=

1− y2

y2
=

1

y2
− 1

(
y′
)2

+ 1 =
1

y2
.

29. Using implicit differentiation on y3 + 3y = 1− 3x we have

3y2y′ + 3y′ = −3

y2y′ + y′ = −1

y′ = − 1

y2 + 1
.

Again, using implicit differentiation, we have

y′′ = − −2yy′

(y2 + 1)2
= 2yy′

(
1

y2 + 1

)2

= 2yy′
(
− 1

y2 + 1

)2

= 2yy′
(
− y′

)2
= 2y(y′)3.

30. Using implicit differentiation on y = exy we have

y′ = exy
(
xy′ + y

)(
1− xexy

)
y′ = yexy.

Since y = exy we have

(1− xy)y′ = y · y or (1− xy)y′ = y2.

28
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In Problems 31–34 we have y′ = 3c1e
3x − c2ex − 2.

31. The initial conditions imply

c1 + c2 = 0

3c1 − c2 − 2 = 0,

so c1 = 1
2 and c2 = −1

2 . Thus y = 1
2e

3x − 1
2e
−x − 2x.

32. The initial conditions imply

c1 + c2 = 1

3c1 − c2 − 2 = −3,

so c1 = 0 and c2 = 1. Thus y = e−x − 2x.

33. The initial conditions imply

c1e
3 + c2e

−1 − 2 = 4

3c1e
3 − c2e−1 − 2 = −2,

so c1 = 3
2e
−3 and c2 = 9

2e. Thus y = 3
2e

3x−3 + 9
2e
−x+1 − 2x.

34. The initial conditions imply

c1e
−3 + c2e+ 2 = 0

3c1e
−3 − c2e− 2 = 1,

so c1 = 1
4e

3 and c2 = −9
4e
−1. Thus y = 1

4e
3x+3 − 9

4e
−x−1 − 2x.

35. From the graph we see that estimates for y0 and y1 are y0 = −3 and y1 = 0.

36. Figure 1.3.3 in the text can be used for reference in this problem. The differential equation is

dh

dt
= −cA0

Aw

√
2gh .

Using A0 = π(1/24)2 = π/576, Aw = π(2)2 = 4π, and g = 32, this becomes

dh

dt
= −cπ/576

4π

√
64h =

c

288

√
h .

37. Let P (t) be the number of owls present at time t. Then dP/dt = k(P − 200 + 10t).

38. Setting A′(t) = −0.002 and solving A′(t) = −0.0004332A(t) for A(t), we obtain

A(t) =
A′(t)

−0.0004332
=

−0.002

−0.0004332
≈ 4.6 grams.

29
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Chapter 2

FIRST-ORDER DIFFERENTIAL EQUATIONS

2.1 Solution Curves Without a Solutionq

FIRST-ORDER

DIFFERENTIAL EQUATIONS2
2.1 Solution Curves Without a Solutionq

2.1.1 DIRECTION FIELDS

In Problems 1–4 the graph corresponding to the initial condition in Part (a) is red, Part (b) is

green, Part (c) is blue, and Part (d) is brown. The pictures are obtain using Mathematica with

VectorPlot[{1, f[x, y]}, {x, lhs, rhs}, {y, down, up}, . . . ].

1. x

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

x

y 2. x

-8 -4 4 8

-8

-4

4

8

x

y

3. x

-4 -2 2 4

-4

-2

2

4

x

y 4. x

-4 -2 2 4

-4

-2

2

4

x

y

In Problems 5–12 the graph corresponding to the initial condition in Part (a) is red, and Part (b)

is blue. The pictures are obtain using Mathematica, as mentioned before Problem 1.

5. x

-4 -2 2 4

-4

-2

2

4

x

y 6. x

-4 -2 2 4

-4

-2

2

4

x

y
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2.1 Solution Curves Without a Solutionq

7. x

-4 -2 2 4

-4

-2

2

4

x

y 8. x

-4 -2 2 4

-4

-2

2

4

x

y

9. x

-4 -2 2 4

-4

-2

2

4

x

y 10. x

-4 -2 2 4

-4

-2

2

4

x

y

11. x

-4 -2 2 4

-4

-2

2

4

x

y 12. x

-4 -2 2 4

-4

-2

2

4

x

y

In Problems 13 and 14 Mathematica was used, as mentioned before Problem 1.

13. x

-3 -1 1 3

-3

-1

1

3

x

y
14. x

-4 -2 2 4

-4

-2

2

4

x

y
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

15. (a) The isoclines have the form y = −x + c, which are

straight lines with slope −1.

(b) The isoclines have the form x2 + y2 = c, which are

circles centered at the origin.

Discussion Problems

16. (a) When x = 0 or y = 4, dy/dx = −2 so the lineal elements have slope −2. When y = 3 or

y = 5, dy/dx = x− 2, so the lineal elements at (x, 3) and (x, 5) have slopes x− 2.

(b) At (0, y0) the solution curve is headed down. If y → ∞ as x increases, the graph must

eventually turn around and head up, but while heading up it can never cross y = 4 where

a tangent line to a solution curve must have slope −2. Thus, y cannot approach ∞ as x

approaches ∞.

17. When y < 1
2x

2, y′ = x2 − 2y is positive and the portions of

solution curves “outside” the nullcline parabola are increas-

ing. When y > 1
2x

2, y′ = x2−2y is negative and the portions

of the solution curves “inside” the nullcline parabola are de-

creasing.

18. (a) Any horizontal lineal element should be at a point on a nullcline. In Problem 1 the

nullclines are x2 − y2 = 0 or y = ±x. In Problem 3 the nullclines are 1 − xy = 0 or

y = 1/x. In Problem 4 the nullclines are (sinx) cos y = 0 or x = nπ and y = π/2 + nπ,

where n is an integer. The graphs on the next page show the nullclines for the differential

equations in Problems 1, 3, and 4 superimposed on the corresponding direction field.

32
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2.1 Solution Curves Without a Solution

(b) An autonomous first-order differential equation has the form y′ = f(y). Nullclines have

the form y = c where f(c) = 0. These are the equilibrium solutions of the differential

equation.

2.1.2 AUTONOMOUS FIRST-ORDER DEs

19. Writing the differential equation in the form dy/dx = y(1 − y)(1 + y) we see that

critical points are located at y = −1, y = 0, and y = 1. The phase portrait is shown

at the right.

(a) x

1 2
x

1

3

5

y (b)

-2 -1 1 2
x

1

y

(c) x

-2 -1 1 2
x

-1

y (d)

1 2
x

-5

-3

-1

y

20. Writing the differential equation in the form dy/dx = y2(1 − y)(1 + y) we see that

critical points are located at y = −1, y = 0, and y = 1. The phase portrait is shown

at the right, and the graphs of the typical solutions are shown on the next page.

33
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

(a) x

1 2
x

1

3

5

y (b)

-2 -1 1 2
x

1

y

(c) x

-2 -1 1 2
x

-1

y (d)

x

-5

-3

-1

y

In Problems 21–28 graphs of typical solutions are shown. However, in some of the solutions, even

though the upper and lower graphs either actually bend up or down, they display as straight line

segments. This is a peculiarity of the Mathematica graphing routine and may be due to the fact that

the NDSolve function was used rather than DSolve. NDSolve uses a numerical routine (see

Section 2.6 in the text), and involves sampling x-coordinates where the corresponding y-coordinates

are approximated. It may be that the routine involved breaks down as the graph becomes nearly

vertical, forcing the x-coordinates on the graph to becomes closer and closer together.

21. Solving y2 − 3y = y(y − 3) = 0 we obtain the critical points 0 and 3. From the

phase portrait we see that 0 is asymptotically stable (attractor) and 3 is unstable

(repeller).

-4 -2 2 4
x

-2

2

4

6

y

22. Solving y2−y3 = y2(1−y) = 0 we obtain the critical points 0 and 1. From the phase

portrait we see that 1 is asymptotically stable (attractor) and 0 is semi-stable.

-4 -2 2 4
x

-2

2

y
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2.1 Solution Curves Without a Solutionq

23. Solving (y − 2)4 = 0 we obtain the critical point 2. From the phase portrait we see

that 2 is semi-stable.

-4 -2 2 4
x

2

4

y

24. Solving 10 + 3y − y2 = (5 − y)(2 + y) = 0 we obtain the critical points −2 and 5.

From the phase portrait we see that 5 is asymptotically stable (attractor) and −2

is unstable (repeller).

-6 -4 -2 2 4 6
x

-4

-2

2

4

6

y

25. Solving y2(4 − y2) = y2(2 − y)(2 + y) = 0 we obtain the critical points −2, 0, and

2. From the phase portrait we see that 2 is asymptotically stable (attractor), 0 is

semi-stable, and −2 is unstable (repeller).

-6 -4 -2 2 4 6
x

-4

-2

2

4

y

26. Solving y(2−y)(4−y) = 0 we obtain the critical points 0, 2, and 4. From the phase

portrait we see that 2 is asymptotically stable (attractor) and 0 and 4 are unstable

(repellers).

-4 -2 2 4
x

-2

2

4

6

y
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

27. Solving y ln(y+ 2) = 0 we obtain the critical points −1 and 0. From the phase por-

trait we see that −1 is asymptotically stable (attractor) and 0 is unstable (repeller).

-4 -2 2 4
x

-2

2

y

28. Solving yey − 9y = y(ey − 9) = 0 (since ey is always positive) we obtain the critical

points 0 and ln 9. From the phase portrait we see that 0 is asymptotically stable

(attractor) and ln 9 is unstable (repeller).

-4 -2 2 4
x

-2

2

4

y

29. The critical points are 0 and c because the

graph of f(y) is 0 at these points. Since

f(y) > 0 for y < 0 and y > c, the graph

of the solution is increasing on (−∞, 0) and

(c, ∞). Since f(y) < 0 for 0 < y < c, the

graph of the solution is decreasing on (0, c).

30. The critical points are approximately at −2,

2, 0.5, and 1.7. Since f(y) > 0 for y < −2.2

and 0.5 < y < 1.7, the graph of the solution

is increasing on (−∞, −2.2) and (0.5, 1.7).

Since f(y) < 0 for −2.2 < y < 0.5 and

y > 1.7, the graph is decreasing on

(−2.2, 0.5) and (1.7, ∞).

36
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2.1 Solution Curves Without a Solutionq

Discussion Problems

31. From the graphs of z = (π/2)y and z = sin y we see that

(π/2)y− sin y = 0 has only three solutions. By inspection

we see that the critical points are −π/2, 0, and π/2. From

the graph at the right we see that

2

π
y − sin y

{
< 0 for y < −π/2
> 0 for y > π/2

2

π
y − sin y

{
> 0 for − π/2 < y < 0

< 0 for 0 < y < π/2.

This enables us to construct the phase portrait shown at the right. From this portrait we see

that π/2 and −π/2 are unstable (repellers), and 0 is asymptotically stable (attractor).

32. For dy/dx = 0 every real number is a critical point, and hence all critical points are nonisolated.

33. Recall that for dy/dx = f(y) we are assuming that f and f ′ are continuous functions of y

on some interval I. Now suppose that the graph of a nonconstant solution of the differential

equation crosses the line y = c. If the point of intersection is taken as an initial condition we

have two distinct solutions of the initial-value problem. This violates uniqueness, so the graph

of any nonconstant solution must lie entirely on one side of any equilibrium solution. Since f is

continuous it can only change signs at a point where it is 0. But this is a critical point. Thus,

f(y) is completely positive or completely negative in each region Ri. If y(x) is oscillatory or

has a relative extremum, then it must have a horizontal tangent line at some point (x0, y0).

In this case y0 would be a critical point of the differential equation, but we saw above that the

graph of a nonconstant solution cannot intersect the graph of the equilibrium solution y = y0.

34. By Problem 33, a solution y(x) of dy/dx = f(y) cannot have relative extrema and hence must

be monotone. Since y′(x) = f(y) > 0, y(x) is monotone increasing, and since y(x) is bounded

above by c2, limx→∞ y(x) = L, where L ≤ c2. We want to show that L = c2. Since L is a

horizontal asymptote of y(x), limx→∞ y
′(x) = 0. Using the fact that f(y) is continuous we

have

f(L) = f( lim
x→∞

y(x)) = lim
x→∞

f(y(x)) = lim
x→∞

y′(x) = 0.

But then L is a critical point of f . Since c1 < L ≤ c2, and f has no critical points between c1

and c2, L = c2.

35. Assuming the existence of the second derivative, points of inflection of y(x) occur where y′′(x) =

0. From dy/dx = f(y) we have d2y/dx2 = f ′(y) dy/dx. Thus, the y-coordinate of a point of

inflection can be located by solving f ′(y) = 0. Points where dy/dx = 0 correspond to constant

solutions of the differential equation.

37
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

36. Solving y2 − y − 6 = (y − 3)(y + 2) = 0 we see that 3 and −2

are critical points. Now

d2y/dx2 = (2y − 1) dy/dx = (2y − 1)(y − 3)(y + 2),

so the only possible point of inflection is at y = 1
2 , although

the concavity of solutions can be different on either side of

y = −2 and y = 3. Since y′′(x) < 0 for y < −2 and 1
2 < y < 3,

and y′′(x) > 0 for −2 < y < 1
2 and y > 3, we see that solution

curves are concave down for y < −2 and 1
2 < y < 3 and concave up for −2 < y < 1

2 and
y > 3. Points of inflection of solutions of autonomous differential equations will have the same
y-coordinates because between critical points they are horizontal translates of each other.

37. If (1) in the text has no critical points it has no constant solutions. The solutions have neither

an upper nor lower bound. Since solutions are monotonic, every solution assumes all real

values.

Mathematical Models

38. The critical points are 0 and b/a. From the phase portrait we see that 0 is an

attractor and b/a is a repeller. Thus, if an initial population satisfies P0 > b/a,

the population becomes unbounded as t increases, most probably in finite time,

i.e.P (t) → ∞ as t → T . If 0 < P0 < b/a, then the population eventually dies out,

that is, P (t) → 0 as t → ∞. Since population P > 0 we do not consider the case

P0 < 0.

39. The only critical point of the autonomous differential equation is the positive number h/k. A

phase portrait shows that this point is unstable, so h/k is a repeller. For any initial condition

P (0) = P0 < h/k, dP/dt < 0, which means P (t) is monotonic decreasing and so the graph of

P (t) must cross the t-axis or the line P = 0 at some time t1 > 0. But P (t1) = 0 means the

population is extinct at time t1.

40. Writing the differential equation in the form

dv

dt
=

k

m

(mg
k
− v
)

we see that a critical point is mg/k. From the phase portrait we see that mg/k is

an asymptotically stable critical point. Thus, limt→∞ v = mg/k.

38
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2.1 Solution Curves Without a Solutionq

41. Writing the differential equation in the form

dv

dt
=

k

m

(mg
k
− v2

)
=

k

m

(√
mg

k
− v
)(√

mg

k
+ v

)
we see that the only physically meaningful critical point is

√
mg/k. From the

phase portrait we see that
√
mg/k is an asymptotically stable critical point. Thus,

limt→∞ v =
√
mg/k.

42. (a) From the phase portrait we see that critical points are α and β. Let X(0) = X0.

• If X0 < α, we see that X → α as t→∞.

• If α < X0 < β, we see that X → α as t→∞.

• If X0 > β, we see that X(t) increases in an unbounded manner, but more specific

behavior of X(t) as t→∞ is not known.

(b) When α = β the phase portrait is as shown.

• If X0 < α, then X(t)→ α as t→∞.

• If X0 > α, then X(t) increases in an unbounded manner. This could happen in a

finite amount of time. That is, the phase portrait does not indicate that X becomes

unbounded as t→∞.

(c) When k = 1 and α = β the differential equation is dX/dt = (α − X)2. For X(t) =

α− 1/(t+ c) we have dX/dt = 1/(t+ c)2 and

(α−X)2 =

[
α−

(
α− 1

t+ c

)]2
=

1

(t+ c)2
=
dX

dt
.

For X(0) = α/2 we obtain

X(t) = α− 1

t+ 2/α
.

For X(0) = 2α we obtain

X(t) = α− 1

t− 1/α
.

39
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

For X0 > α, X(t) increases without bound up to t = 1/α. For t > 1/α, X(t) increases

but X → α as t→∞

2.2 Separable Equationsq

2.2 Separable Equationsq

In this section and ones following we will encounter an expression of the form ln |g(y)| = f(x) + c.

To solve for g(y) we exponentiate both sides of the equation. This yields |g(y)| = ef(x)+c = ecef(x)

which implies g(y) = ±ecef(x). Letting c1 = ±ec we obtain g(y) = c1e
f(x).

1. From dy = sin 5x dx we obtain y = −1
5 cos 5x+ c.

2. From dy = (x+ 1)2 dx we obtain y = 1
3(x+ 1)3 + c.

3. From dy = −e−3x dx we obtain y = 1
3e
−3x + c.

4. From
1

(y − 1)2
dy = dx we obtain − 1

y − 1
= x+ c or y = 1− 1

x+ c
.

5. From
1

y
dy =

4

x
dx we obtain ln |y| = 4 ln |x|+ c or y = c1x

4.

6. From
1

y2
dy = −2x dx we obtain −1

y
= −x2 + c or y =

1

x2 + c1
.

7. From e−2ydy = e3xdx we obtain 3e−2y + 2e3x = c.

8. From yeydy =
(
e−x + e−3x

)
dx we obtain yey − ey + e−x +

1

3
e−3x = c.

9. From

(
y + 2 +

1

y

)
dy = x2 lnx dx we obtain

y2

2
+ 2y + ln |y| = x3

3
ln |x| − 1

9
x3 + c.

10. From
1

(2y + 3)2
dy =

1

(4x+ 5)2
dx we obtain

2

2y + 3
=

1

4x+ 5
+ c.

11. From
1

csc y
dy = − 1

sec2 x
dx or sin y dy = − cos2 x dx = −1

2(1 + cos 2x) dx we obtain

− cos y = −1
2x−

1
4 sin 2x+ c or 4 cos y = 2x+ sin 2x+ c1.

12. From 2y dy = − sin 3x

cos3 3x
dx or 2y dy = − tan 3x sec2 3x dx we obtain y2 = −1

6 sec2 3x+ c.

13. From
ey

(ey + 1)2
dy =

−ex

(ex + 1)3
dx we obtain − (ey + 1)−1 = 1

2 (ex + 1)−2 + c.

14. From
y

(1 + y2)1/2
dy =

x

(1 + x2)1/2
dx we obtain

(
1 + y2

)1/2
=
(
1 + x2

)1/2
+ c.

15. From
1

S
dS = k dr we obtain S = cekr.

40
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2.2 Separable Equationsq

16. From
1

Q− 70
dQ = k dt we obtain ln |Q− 70| = kt+ c or Q− 70 = c1e

kt.

17. From
1

P − P 2
dP =

(
1

P
+

1

1− P

)
dP = dt we obtain ln |P | − ln |1 − P | = t + c so that

ln

∣∣∣∣ P

1− P

∣∣∣∣ = t+ c or
P

1− P
= c1e

t. Solving for P we have P =
c1e

t

1 + c1et
.

18. From
1

N
dN =

(
tet+2 − 1

)
dt we obtain ln |N | = tet+2 − et+2 − t+ c or N = c1e

tet+2−et+2−t.

19. From
y − 2

y + 3
dy =

x− 1

x+ 4
dx or

(
1− 5

y + 3

)
dy =

(
1− 5

x+ 4

)
dx we obtain y − 5 ln |y + 3| =

x− 5 ln |x+ 4|+ c or

(
x+ 4

y + 3

)5

= c1e
x−y.

20. From
y + 1

y − 1
dy =

x+ 2

x− 3
dx or

(
1 +

2

y − 1

)
dy =

(
1 +

5

x− 3

)
dx we obtain y+ 2 ln |y− 1| =

x+ 5 ln |x− 3|+ c or
(y − 1)2

(x− 3)5
= c1e

x−y.

21. From x dx =
1√

1− y2
dy we obtain 1

2x
2 = sin−1 y + c or y = sin

(
x2

2
+ c1

)
.

22. From
1

y2
dy =

1

ex + e−x
dx =

ex

(ex)2 + 1
dx we obtain −1

y
= tan−1 ex+c or y = − 1

tan−1 ex + c
.

23. From
1

x2 + 1
dx = 4 dt we obtain tan−1 x = 4t+ c. Using x(π/4) = 1 we find c = −3π/4. The

solution of the initial-value problem is tan−1 x = 4t− 3π

4
or x = tan

(
4t− 3π

4

)
.

24. From
1

y2 − 1
dy =

1

x2 − 1
dx or

1

2

(
1

y − 1
− 1

y + 1

)
dy =

1

2

(
1

x− 1
− 1

x+ 1

)
dx we obtain

ln |y−1|− ln |y+ 1| = ln |x−1|− ln |x+ 1|+ ln c or
y − 1

y + 1
=
c(x− 1)

x+ 1
. Using y(2) = 2 we find

c = 1. A solution of the initial-value problem is
y − 1

y + 1
=
x− 1

x+ 1
or y = x.

25. From
1

y
dy =

1− x
x2

dx =

(
1

x2
− 1

x

)
dx we obtain ln |y| = −1

x
− ln |x| = c or xy = c1e

−1/x.

Using y(−1) = −1 we find c1 = e−1. The solution of the initial-value problem is xy = e−1−1/x

or y = e−(1+1/x)/x.

26. From
1

1− 2y
dy = dt we obtain −1

2 ln |1− 2y| = t+ c or 1− 2y = c1e
−2t. Using y(0) = 5/2 we

find c1 = −4. The solution of the initial-value problem is 1− 2y = −4e−2t or y = 2e−2t + 1
2 .

41
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

27. Separating variables and integrating we obtain

dx√
1− x2

− dy√
1− y2

= 0 and sin−1 x− sin−1 y = c.

Setting x = 0 and y =
√

3/2 we obtain c = −π/3. Thus, an implicit solution of the initial-

value problem is sin−1 x − sin−1 y = −π/3. Solving for y and using an addition formula from

trigonometry, we get

y = sin
(

sin−1 x+
π

3

)
= x cos

π

3
+
√

1− x2 sin
π

3
=
x

2
+

√
3
√

1− x2
2

.

28. From
1

1 + (2y)2
dy =

−x
1 + (x2)2

dx we obtain

1

2
tan−1 2y = −1

2
tan−1 x2 + c or tan−1 2y + tan−1 x2 = c1.

Using y(1) = 0 we find c1 = π/4. Thus, an implicit solution of the initial-value problem is

tan−1 2y + tan−1 x2 = π/4 . Solving for y and using a trigonometric identity we get

2y = tan
(π

4
− tan−1 x2

)
y =

1

2
tan

(π
4
− tan−1 x2

)
=

1

2

(
tan(π/4)− tan(tan−1 x2)

1 + tan(π/4) tan(tan−1 x2)

)

=
1

2

(
1− x2

1 + x2

)
.

29. Separating variables, integrating from 4 to x, and using t as a dummy variable of integration

gives ∫ x

4

1

y

dy

dt
dt =

∫ x

4
e−t

2
dt

ln y(t)
∣∣∣x
4

=

∫ x

4
e−t

2
dt

ln y(x)− ln y(4) =

∫ x

4
e−t

2
dt,

Using the initial condition we have

ln y(x) = ln y(4) +

∫ x

4
e−t

2
dt = ln 1 +

∫ x

4
e−t

2
dt =

∫ x

4
e−t

2
dt.

Thus,

y(x) = e
∫ x
4 e−t2dt.

42
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q

30. Separating variables, integrating from −2 to x, and using t as a dummy variable of integration

gives ∫ x

−2

1

y2
dy

dt
dt =

∫ x

−2
sin t2dt

−y(t)−1
∣∣∣x
−2

=

∫ x

−2
sin t2dt

−y(x)−1 + y(−2)−1 =

∫ x

−2
sin t2dt

−y(x)−1 = −y(−2)−1 +

∫ x

−2
sin t2dt

y(x)−1 = 3−
∫ x

−2
sin t2dt.

Thus

y(x) =
1

3−
∫ x
−2 sin t2dt

.

31. Separating variables we have 2y dy = (2x+ 1)dx. Integrating

gives y2 = x2 + x + c. When y(−2) = −1 we find c = −1,

so y2 = x2 + x − 1 and y = −
√
x2 + x− 1 . The negative

square root is chosen because of the initial condition.

To obtain the exact interval of definition we want x2+x−1 >

0. Since y = x2 + x − 1 = 0 is a parabola opening up and

x2+x−1 = 0 when x = −1
2±

1
2

√
5, we use

(
−∞, −1

2−
1
2

√
5
)

(because of the initial condition).

-4 -2
x

-4

-2

y

32. The problem should read

(2y − 2)
dy

dx
= 3x2 + 4x+ 2, y(−2) = 1.

Separating variables we have (2y − 2)dy = (3x2 + 4x+ 2)dx.

Integrating gives y2 − 2y = x3 + 2x2 + 2x + c. We complete

the square by adding 1 to the left-hand side and absorbing

the 1 into the constant on the right-hand side. This gives

(y − 1)2 = x3 + 2x2 + 2x+ c1. From the initial condition we

find that c1 = 4, so the solution of the initial-value problem

is

y = 1−
√
x3 + 2x2 + 2x+ 4 ,

where the minus sign is determined by the initial condition.

-2 2
x

-4

-2

y

2.2 Separable Equations 43
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

To obtain the exact interval of definition of the solution we want

x3 + 2x2 + 2x+ 4 = (x2 + 2)(x+ 2) > 0 or x > −2.

Thus, the interval of definition of the solution is (−2, ∞).

33. Writing the differential equation as exdx = e−ydy and inte-

grating we have ex = −e−y + c. Using y(0) = 0 we find that

c = 2 so that y = − ln(2− ex).

To find the interval of definition of this solution we note that

2− ex > 0 so x must be in (−∞, ln 2).

-4 -2
x

2

4

y

34. Integrating the differential equation we have − cosx+ 1
2y

2 =

c. Then y(0) = 1 implies that c = −1
2 , and so y =

√
2 cosx− 1. We choose the positive square root because

of the initial condition.

To find the interval of definition of the solution we note that

-1 1
x

1

y

2 cosx− 1 > 0 or cosx >
1

2
, so − π

3
< x <

π

3
,

and x must be in
(
−π

3
,
π

3

)
.

35. (a) The equilibrium solutions y(x) = 2 and y(x) = −2 satisfy the initial conditions y(0) = 2

and y(0) = −2, respectively. Setting x = 1
4 and y = 1 in y = 2(1 + ce4x)/(1 − ce4x) we

obtain

1 = 2
1 + ce

1− ce
, 1− ce = 2 + 2ce, −1 = 3ce, and c = − 1

3e
.

The solution of the corresponding initial-value problem is

y = 2

(
1− 1

3e
4x−1

1 + 1
3e

4x−1

)
= 2

(
3− e4x−1

3 + e4x−1

)
.

(b) Separating variables and integrating yields

1

4
ln |y − 2| − 1

4
ln |y + 2|+ ln c1 = x

ln |y − 2| − ln |y + 2|+ ln c = 4x

ln
∣∣∣ c(y − 2)

y + 2

∣∣∣ = 4x

c
y − 2

y + 2
= e4x .

Solving for y we get y = 2(c + e4x)/(c − e4x). The initial condition y(0) = −2 implies

2(c + 1)/(c − 1) = −2 which yields c = 0 and y(x) = −2. The initial condition y(0) = 2

44
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does not correspond to a value of c, and it must simply be recognized that y(x) = 2 is a

solution of the initial-value problem. Setting x = 1
4 and y = 1 in y = 2(c+ e4x)/(c− e4x)

leads to c = −3e. Thus, a solution of the initial-value problem is

y = 2
−3e+ e4x

−3e− e4x
= 2

3− e4x−1

3 + e4x−1
.

36. Separating variables, we have

dy

y2 − y
=
dx

x
or

∫
dy

y(y − 1)
= ln |x|+ c.

Using partial fractions, we obtain∫ (
1

y − 1
− 1

y

)
dy = ln |x|+ c

ln |y − 1| − ln |y| = ln |x|+ c

ln

∣∣∣∣y − 1

xy

∣∣∣∣ = c

y − 1

xy
= ec = c1.

Solving for y we get y = 1/(1 − c1x). We note by inspection that y = 0 is a singular solution

of the differential equation.

(a) Setting x = 0 and y = 1 we have 1 = 1/(1 − 0), which is true for all values of c1. Thus,

solutions passing through (0, 1) are y = 1/(1− c1x).

(b) Setting x = 0 and y = 0 in y = 1/(1− c1x) we get 0 = 1. Thus, the only solution passing

through (0, 0) is y = 0.

(c) Setting x = 1
2 and y = 1

2 we have 1
2 = 1/(1− 1

2 c1), so c1 = −2 and y = 1/(1 + 2x).

(d) Setting x = 2 and y = 1
4 we have 1

4 = 1/(1 − 2c1), so c1 = −3
2 and y = 1/(1 + 3

2x) =

2/(2 + 3x).

37. Singular solutions of dy/dx = x
√

1− y2 are y = −1 and y = 1. A singular solution of

(ex + e−x)dy/dx = y2 is y = 0.

38. Differentiating ln(x2 + 10) + csc y = c we get

2x

x2 + 10
− csc y cot y

dy

dx
= 0,

2x

x2 + 10
− 1

sin y
· cos y

sin y

dy

dx
= 0,

or

2x sin2 y dx− (x2 + 10) cos y dy = 0.
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

Writing the differential equation in the form

dy

dx
=

2x sin2 y

(x2 + 10) cos y

we see that singular solutions occur when sin2 y = 0, or y = kπ, where k is an integer.

39. The singular solution y = 1 satisfies the initial-value
problem.

40. Separating variables we obtain
dy

(y − 1)2
= dx. Then

− 1

y − 1
= x+ c and y =

x+ c− 1

x+ c
.

Setting x = 0 and y = 1.01 we obtain c = −100. The
solution is

y =
x− 101

x− 100
.

41. Separating variables we obtain
dy

(y − 1)2 + 0.01
= dx.

Then

10 tan−1 10(y−1) = x+c and y = 1+
1

10
tan

x+ c

10
.

Setting x = 0 and y = 1 we obtain c = 0. The
solution is

y = 1 +
1

10
tan

x

10
.

46
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42. Separating variables we obtain
dy

(y − 1)2 + 0.01
= dx.

Then

10 tan−1 10(y−1) = x+c and y = 1+
1

10
tan

x+ c

10
.

Setting x = 0 and y = 1 we obtain c = 0. The

solution is

y = 1 +
1

10
tan

x

10
.

Alternatively, we can use the fact that∫
dy

(y − 1)2 − 0.01
= − 1

0.1
tanh−1

y − 1

0.1
= −10 tanh−1 10(y − 1).

We use the inverse hyperbolic tangent because |y−1| < 0.1 or 0.9 < y < 1.1. This follows from

the initial condition y(0) = 1. Solving the above equation for y we get y = 1 + 0.1 tanh(x/10).

43. Separating variables, we have

dy

y − y3
=

dy

y(1− y)(1 + y)
=

(
1

y
+

1/2

1− y
− 1/2

1 + y

)
dy = dx.

Integrating, we get

ln |y| − 1

2
ln |1− y| − 1

2
ln |1 + y| = x+ c.

When y > 1, this becomes

ln y − 1

2
ln(y − 1)− 1

2
ln(y + 1) = ln

y√
y2 − 1

= x+ c.

Letting x = 0 and y = 2 we find c = ln(2/
√

3 ). Solving for y we get y1(x) = 2ex/
√

4e2x − 3 ,

where x > ln(
√

3/2).

When 0 < y < 1 we have

ln y − 1

2
ln(1− y)− 1

2
ln(1 + y) = ln

y√
1− y2

= x+ c.

Letting x = 0 and y = 1
2 we find c = ln(1/

√
3 ). Solving for y we get y2(x) = ex/

√
e2x + 3 ,

where −∞ < x <∞.

When −1 < y < 0 we have

ln(−y)− 1

2
ln(1− y)− 1

2
ln(1 + y) = ln

−y√
1− y2

= x+ c.

Letting x = 0 and y = −1
2 we find c = ln(1/

√
3 ). Solving for y we get y3(x) = −ex/

√
e2x + 3 ,

where −∞ < x <∞.
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

When y < −1 we have

ln(−y)− 1

2
ln(1− y)− 1

2
ln(−1− y) = ln

−y√
y2 − 1

= x+ c.

Letting x = 0 and y = −2 we find c = ln(2/
√

3 ). Solving for y we get y4(x) = −2ex/
√

4e2x − 3 ,

where x > ln(
√

3/2).

44. (a) The second derivative of y is

d2y

dx2
= − dy/dx

(y − 3)2
= −1/(y − 3)

(y − 3)2
= − 1

(y − 3)3
.

The solution curve is concave down when
d2y/dx2 < 0 or y > 3, and concave up when
d2y/dx2 > 0 or y < 3. From the phase portrait
we see that the solution curve is decreasing when
y < 3 and increasing when y > 3.

(b) Separating variables and integrating we obtain

(y − 3) dy = dx

1

2
y2 − 3y = x+ c

y2 − 6y + 9 = 2x+ c1

(y − 3)2 = 2x+ c1

y = 3±
√

2x+ c1 .

The initial condition dictates whether to use the plus or minus sign.

When y1(0) = 4 we have c1 = 1 and y1(x) = 3 +
√

2x+ 1 .

When y2(0) = 2 we have c1 = 1 and y2(x) = 3−
√

2x+ 1 .

When y3(1) = 2 we have c1 = −1 and y3(x) = 3−
√

2x− 1 .

When y4(−1) = 4 we have c1 = 3 and y4(x) = 3 +
√

2x+ 3 .

45. We separate variable and rationalize the denominator:

dy =
1

1 + sinx
· 1− sinx

1− sinx
dx =

1− sinx

1− sin2 x
dx =

1− sinx

cos2x
dx

= (sec2 x− tanx secx)dx.

48
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2.2 Separable Equationsq

Integrating, we have y = tanx− secx+ C.

46. Separating variables we have
√
y dy = sin

√
x dx. Then∫

√
y dy =

∫
sin
√
x dx and

2

3
y3/2 =

∫
sin
√
x dx.

To integrate sin
√
x we first make the substitution u =

√
x. then du =

1

2
√
x
dx =

1

2u
du and∫

sin
√
x dx =

∫
(sinu)(2u)du = 2

∫
u sinu du.

Using integration by parts we find∫
u sinu du = −u cosu+ sinu = −

√
x cos

√
x+ sin

√
x.

Thus

2

3
y =

∫
sin
√
x dx = −2

√
x cos

√
x+ 2 sin

√
x+ C

y = 32/3
(
−
√
x cos

√
x+ sin

√
x+ C

)
.and

47. Separating variables we have dy/(
√
y + y) = dx/(

√
x + x). To integrate

∫
dx/(
√
x + x) we

substitute u2 = x and get∫
2u

u+ u2
du =

∫
2

1 + u
du = 2 ln |1 + u|+ c = 2 ln(1 +

√
x ) + c.

Integrating the separated differential equation we have

2 ln(1 +
√
y ) = 2 ln(1 +

√
x ) + c or ln(1 +

√
y ) = ln(1 +

√
x ) + ln c1.

Solving for y we get y = [c1(1 +
√
x )− 1]2.

48. Separating variables and integrating we have∫
dy

y2/3(1− y1/3)
=

∫
dx

∫
y2/3

1− y1/3
dy = x+ c1

−3 ln
∣∣1− y1/3∣∣ = x+ c1

ln
∣∣1− y1/3∣∣ = −x

3
+ c2∣∣1− y1/3∣∣ = c3e
−x/3

1− y1/3 = c4e
−x/3

y1/3 = 1 + c5e
−x/3

y =
(
1 + c5e

−x/3)3.

49
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

49. Separating variables we have y dy = e
√
x dx. If u =

√
x, then u2 = x and 2u du = dx. Thus,∫

e
√
x dx =

∫
2ueu du and, using integration by parts, we find∫

y dy =

∫
e
√
x dx so

1

2
y2 =

∫
2ueu du = −2eu + C = 2

√
xe
√
x − 2e

√
x + C,

y = 2

√√
x e
√
x − e

√
x + C .and

To find C we solve y(1) = 4.

y(1) = 2

√√
1 e
√
1 − e

√
1 + C = 2

√
C = 4 so C = 4,

and the solution of the initial-value problem is y = 2
√√

x e
√
x − e

√
x + 4.

50. Separating variables we have y dy = x tan−1 x dx. Integrating both sides and using integration

by parts with u = tan−1 x and dv = x dx we have∫
y dy = x tan−1 x dx

1

2
y2 =

1

2
x2 tan−1 x− 1

2
x+

1

2
tan−1 x+ C

y2 = x2 tan−1 x− x+ tan−1 x+ C1

y =
√
x2 tan−1 x− x+ tan−1 x+ C1

To find C1 we solve y(0) = 3.

y(0) =
√

02 tan−1 0− 0 + tan−1 0 + C1 =
√
C1 = 3 so C1 = 9,

and the solution of the initial-value problem is y =
√
x2 tan−1 x− x+ tan−1 x+ 9.

Discussion Problems

51. (a) While y2(x) = −
√

25− x2 is defined at x = −5 and x = 5, y′2(x) is not defined at these

values, and so the interval of definition is the open interval (−5, 5).

(b) At any point on the x-axis the derivative of y(x) is undefined, so no solution curve can

cross the x-axis. Since −x/y is not defined when y = 0, the initial-value problem has no

solution.

52. (a) Separating variables and integrating we obtain x2 − y2 = c. For c 6= 0 the graph is a

hyperbola centered at the origin. All four initial conditions imply c = 0 and y = ±x.

Since the differential equation is not defined for y = 0, solutions are y = ±x, x < 0 and

y = ±x, x > 0. The solution for y(a) = a is y = x, x > 0; for y(a) = −a is y = −x; for

y(−a) = a is y = −x, x < 0; and for y(−a) = −a is y = x, x < 0.

50
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q

(b) Since x/y is not defined when y = 0, the initial-value problem has no solution.

(c) Setting x = 1 and y = 2 in x2− y2 = c we get c = −3, so y2 = x2 + 3 and y(x) =
√
x2 + 3 ,

where the positive square root is chosen because of the initial condition. The domain is

all real numbers since x2 + 3 > 0 for all x.

53. Separating variables we have dy/
(√

1 + y2 sin2 y
)

=

dx which is not readily integrated (even by a CAS).

We note that dy/dx ≥ 0 for all values of x and y and

that dy/dx = 0 when y = 0 and y = π, which are

equilibrium solutions.

54. (a) The solution of y′ = y, y(0) = 1, is y = ex. Using separation of variables we find that the

solution of y′ = y
[
1 + 1/(x lnx)

]
, y(e) = 1, is y = ex−e lnx. Solving the two solutions

simultaneously we obtain

ex = ex−e lnx, so ee = lnx and x = ee
e
.

(b) Since y = e(e
ee ) ≈ 2.33 × 101,656,520, the y-coordinate of the point of intersection of the

two solution curves has over 1.65 million digits.

55. We are looking for a function y(x) such that

y2 +

(
dy

dx

)2

= 1.

Using the positive square root gives

dy

dx
=
√

1− y2

dy√
1− y2

= dx

sin−1 y = x+ c.

Thus a solution is y = sin(x+ c). If we use the negative square root we obtain

y = sin(c− x) = − sin(x− c) = − sin(x+ c1).

Note that when c = c1 = 0 and when c = c1 = π/2 we obtain the well known particular

solutions y = sinx, y = − sinx, y = cosx, and y = − cosx. Note also that y = 1 and y = −1

are singular solutions.

2.2 Separable Equations 51
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

56. (a) x

(b) For |x| > 1 and |y| > 1 the differential equation is dy/dx =
√
y2 − 1 /

√
x2 − 1 . Separating

variables and integrating, we obtain

dy√
y2 − 1

=
dx√
x2 − 1

and cosh−1 y = cosh−1 x+ c.

Setting x = 2 and y = 2 we find c = cosh−1 2− cosh−1 2 = 0 and cosh−1 y = cosh−1 x. An

explicit solution is y = x.

Mathematical Model

57. Since the tension T1 (or magnitude T1) acts at the lowest point of the cable, we use symmetry

to solve the problem on the interval [0, L/2]. The assumption that the roadbed is uniform (that

is, weighs a constant ρ pounds per horizontal foot) implies W = ρx, where x is measured in feet

and 0 ≤ x ≤ L/2. Therefore (10) in the text becomes dy/dx = (ρ/T1)x. This last equation is a

separable equation of the form given in (1) of Section 2.2 in the text. Integrating and using the

initial condition y(0) = a shows that the shape of the cable is a parabola: y(x) = (ρ/2T1)x
2+a.

In terms of the sag h of the cable and the span L, we see from Figure 2.2.5 in the text that

y(L/2) = h+ a. By applying this last condition to y(x) = (ρ/2T1)x
2 + a enables us to express

ρ/2T1 in terms of h and L: y(x) = (4h/L2)x2 + a. Since y(x) is an even function of x, the

solution is valid on −L/2 ≤ x ≤ L/2.

Computer Lab Assignments

58. (a) Separating variables and integrating, we have

(3y2 + 1)dy = −(8x+ 5)dx

and
y3 + y = −4x2 − 5x+ c.

Using a CAS we show various contours of f(x, y) =

y3+y+4x2+5x. The plots, shown on [−5, 5]×[−5, 5],

correspond to c-values of 0, ±5, ±20, ±40, ±80, and

±125.

52
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2.2 Separable Equationsq

(b) The value of c corresponding to y(0) = −1 is

f(0, −1) = −2; to y(0) = 2 is f(0, 2) = 10; to

y(−1) = 4 is f(−1, 4) = 67; and to y(−1) = −3 is

−31.

59. (a) An implicit solution of the differential equation (2y + 2)dy − (4x3 + 6x)dx = 0 is

y2 + 2y − x4 − 3x2 + c = 0.

The condition y(0) = −3 implies that c = −3. Therefore y2 + 2y − x4 − 3x2 − 3 = 0.

(b) Using the quadratic formula we can solve for y in terms of x:

y =
−2±

√
4 + 4(x4 + 3x2 + 3)

2
.

The explicit solution that satisfies the initial condition is then

y = −1−
√
x4 + 3x3 + 4 .

(c) From the graph of f(x) = x4 + 3x3 + 4 below we see that f(x) ≤ 0 on the approximate

interval −2.8 ≤ x ≤ −1.3. Thus the approximate domain of the function

y = −1−
√
x4 + 3x3 + 4 = −1−

√
f(x)

is x ≤ −2.8 or x ≥ −1.3. The graph of this function is shown below.

53
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

(d) Using the root finding capabilities of a CAS, the zeros of f are found

to be −2.82202 and −1.3409. The domain of definition of the solution

y(x) is then x > −1.3409. The equality has been removed since the

derivative dy/dx does not exist at the points where f(x) = 0. The

graph of the solution y = φ(x) is given on the right.

60. (a) Separating variables and integrating, we
have

(−2y + y2)dy = (x− x2)dx

and

−y2 +
1

3
y3 =

1

2
x2 − 1

3
x3 + c.

Using a CAS we show some contours of

f(x, y) = 2y3 − 6y2 + 2x3 − 3x2. The plots

shown on [−7, 7]× [−5, 5] correspond to c-values of −450, −300, −200, −120, −60, −20,

−10, −8.1, −5, −0.8, 20, 60, and 120.

(b) The value of c corresponding to y(0) = 3
2 is

f
(
0, 3

2

)
= −27

4 . The portion of the graph

between the dots corresponds to the solution

curve satisfying the initial condition. To deter-

mine the interval of definition we find dy/dx for

2y3 − 6y2 + 2x3 − 3x2 = −27
4 . Using implicit

differentiation we get y′ = (x − x2)/(y2 − 2y),

which is infinite when y = 0 and y = 2. Letting

y = 0 in 2y3 − 6y2 + 2x3 − 3x2 = −27
4 and using a CAS to solve for x we get x =

−1.13232. Similarly, letting y = 2, we find x = 1.71299. The largest interval of definition

is approximately (−1.13232, 1.71299).

(c) The value of c corresponding to y(0) = −2 is

f(0, −2) = −40. The portion of the graph to

the right of the dot corresponds to the solution

curve satisfying the initial condition. To deter-

mine the interval of definition we find dy/dx for

2y3−6y2+2x3−3x2 = −40. Using implicit differ-

entiation we get y′ = (x − x2)/(y2 − 2y), which

is infinite when y = 0 and y = 2. Letting
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2.3 Linear Equationsq

y = 0 in 2y3−6y2 +2x3−3x2 = −40 and using a CAS to solve for x we get x = −2.29551.

The largest interval of definition is approximately (−2.29551, ∞).

2.3 Linear Equationsq

2.3 Linear Equationsq

1. For y′ − 5y = 0 an integrating factor is e−
∫
5 dx = e−5x so that

d

dx

[
e−5xy

]
= 0 and y = ce5x

for −∞ < x <∞. There is no transient term.

2. For y′ + 2y = 0 an integrating factor is e
∫
2 dx = e2x so that

d

dx

[
e2xy

]
= 0 and y = ce−2x for

−∞ < x <∞. The transient term is ce−2x.

3. For y′+ y = e3x an integrating factor is e
∫
dx = ex so that

d

dx
[exy] = e4x and y = 1

4e
3x + ce−x

for −∞ < x <∞. The transient term is ce−x.

4. For y′+4y = 4
3 an integrating factor is e

∫
4 dx = e4x so that

d

dx

[
e4xy

]
= 4

3e
4x and y = 1

3 +ce−4x

for −∞ < x <∞. The transient term is ce−4x.

5. For y′ + 3x2y = x2 an integrating factor is e
∫
3x2 dx = ex

3
so that

d

dx

[
ex

3
y
]

= x2ex
3

and

y = 1
3 + ce−x

3
for −∞ < x <∞. The transient term is ce−x

3
.

6. For y′ + 2xy = x3 an integrating factor is e
∫
2x dx = ex

2
so that

d

dx

[
ex

2
y
]

= x3ex
2

and

y = 1
2x

2 − 1
2 + ce−x

2
for −∞ < x <∞. The transient term is ce−x

2
.

7. For y′+
1

x
y =

1

x2
an integrating factor is e

∫
(1/x)dx = x so that

d

dx
[xy] =

1

x
and y =

1

x
lnx+

c

x
for 0 < x <∞. The entire solution is transient.

8. For y′−2y = x2+5 an integrating factor is e−
∫
2 dx = e−2x so that

d

dx

[
e−2xy

]
= x2e−2x+5e−2x

and y = −1
2x

2 − 1
2x−

11
4 + ce2x for −∞ < x <∞. There is no transient term.

9. For y′ − 1

x
y = x sinx an integrating factor is e−

∫
(1/x)dx =

1

x
so that

d

dx

[
1

x
y

]
= sinx and

y = cx− x cosx for 0 < x <∞. There is no transient term.

10. For y′+
2

x
y =

3

x
an integrating factor is e

∫
(2/x)dx = x2 so that

d

dx

[
x2y
]

= 3x and y = 3
2 +cx−2

for 0 < x <∞.
1

2
The transient term is cx−2.

11. For y′ +
4

x
y = x2 − 1 an integrating factor is e

∫
(4/x)dx = x4 so that

d

dx

[
x4y
]

= x6 − x4 and

y = 1
7x

3 − 1
5x+ cx−4 for 0 < x <∞.

1

2
The transient term is cx−4.
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

12. For y′− x

(1 + x)
y = x an integrating factor is e−

∫
[x/(1+x)]dx = (x+1)e−x so that

d

dx

[
(x+ 1)e−xy

]
=

x(x+ 1)e−x and y = −x− 2x+ 3

x+ 1
+

cex

x+ 1
for −1 < x <∞. There is no transient term.

13. For y′+

(
1 +

2

x

)
y =

ex

x2
an integrating factor is e

∫
[1+(2/x)]dx = x2ex so that

d

dx

[
x2exy

]
= e2x

and y =
1

2

ex

x2
+
ce−x

x2
for 0 < x <∞. The transient term is

ce−x

x2
.

14. For y′+

(
1 +

1

x

)
y =

1

x
e−x sin 2x an integrating factor is e

∫
[1+(1/x)]dx = xex so that

d

dx
[xexy] =

sin 2x and y = − 1

2x
e−x cos 2x+

ce−x

x
for 0 < x <∞. The entire solution is transient.

15. For
dx

dy
− 4

y
x = 4y5 an integrating factor is e−

∫
(4/y)dy = eln y

−4
= y−4 so that

d

dy

[
y−4x

]
= 4y

and x = 2y6 + cy4 for 0 < y <∞.
1

2
There is no transient term.

16. For
dx

dy
+

2

y
x = ey an integrating factor is e

∫
(2/y)dy = y2 so that

d

dy

[
y2x
]

= y2ey and

x = ey − 2

y
ey +

2

y2
ey +

c

y2
for 0 < y <∞. The transient term is

c

y2
.

17. For y′+(tanx)y = secx an integrating factor is e
∫
tanx dx = secx so that

d

dx
[(secx) y] = sec2 x

and y = sinx+ c cosx for −π/2 < x < π/2. There is no transient term.

18. For y′ + (cotx)y = sec2 x cscx an integrating factor is e
∫
cotx dx = eln | sinx| = sinx so that

d

dx
[(sinx) y] = sec2 x and y = secx+ c cscx for 0 < x < π/2. There is no transient term.

19. For y′+
x+ 2

x+ 1
y =

2xe−x

x+ 1
an integrating factor is e

∫
[(x+2)/(x+1)]dx = (x+1)ex, so

d

dx
[(x+ 1)exy] =

2x and y =
x2

x+ 1
e−x +

c

x+ 1
e−x for −1 < x <∞. The entire solution is transient.

20. For y′+
4

x+ 2
y =

5

(x+ 2)2
an integrating factor is e

∫
[4/(x+2)]dx = (x+2)4 so that

d

dx

[
(x+ 2)4y

]
=

5(x+ 2)2 and y =
5

3
(x+ 2)−1 + c(x+ 2)−4 for −2 < x <∞. The entire solution is transient.

1

2

21. For
dr

dθ
+ r sec θ = cos θ an integrating factor is e

∫
sec θ dθ = eln | secx+tanx| = sec θ+ tan θ so that

d

dθ
[(sec θ + tan θ)r] = 1 + sin θ and (sec θ + tan θ)r = θ − cos θ + c for −π/2 < θ < π/2 .

1

2

22. For
dP

dt
+ (2t − 1)P = 4t − 2 an integrating factor is e

∫
(2t−1) dt = et

2−t so that
d

dt

[
et

2−tP
]

=

(4t− 2)et
2−t and P = 2 + cet−t

2
for −∞ < t <∞. The transient term is cet−t

2
.
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23. For y′+

(
3 +

1

x

)
y =

e−3x

x
an integrating factor is e

∫
[3+(1/x)]dx = xe3x so that

d

dx

[
xe3xy

]
= 1

and y = e−3x +
ce−3x

x
for 0 < x <∞. The entire solution is transient.

24. For y′+
2

x2 − 1
y =

x+ 1

x− 1
an integrating factor is e

∫
[2/(x2−1)]dx =

x− 1

x+ 1
so that

d

dx

[
x− 1

x+ 1
y

]
=

1 and (x− 1)y = x(x+ 1) + c(x+ 1) for −1 < x < 1.

25. For y′ − 5y = x an integrating factor is e
∫
−5 dx = e−5x so that

d

dx
[e−5xy] = xe−5x and

y = e5x
∫
xe−5xdx = e5x

(
−1

5
xe−5x − 1

25
e−5x + c

)
= −1

5
x− 1

25
+ ce5x.

If y(0) = 3 then c = 1
25 and y = −1

5 x−
1
25 + 76

25 e
5x. The solution is defined on I = (−∞, ∞).

26. For y′ + 3y = 2x an integrating factor is e
∫
3 dx = e3x so that

d

dx
[e3xy] = 2xe3x and

y = e−3x
∫

2xe3xdx = e−3x
(

2

3
xe3x − 2

9
e3x + c

)
=

2

3
x− 2

9
+ ce−3x.

If y(0) = 1
3 then c = 5

9 and y = 2
3 x−

2
9 + 5

9 e
−3x. The solution is defined on I = (−∞, ∞).

27. For y′+
1

x
y =

1

x
ex an integrating factor is e

∫
(1/x)dx = x so that

d

dx
[xy] = ex and y =

1

x
ex+

c

x

for 0 < x < ∞. If y(1) = 2 then c = 2 − e and y =
1

x
ex +

2− e
x

. The solution is defined on

I = (0, ∞).

28. For
dx

dy
− 1

y
x = 2y an integrating factor is e−

∫
(1/y)dy =

1

y
so that

d

dy

[
1

y
x

]
= 2 and x = 2y2+cy

for 0 < y < ∞. If y(1) = 5 then c = −49

5
and x = 2y2 − 49

5
y. The solution is defined on

I = (0, ∞).

29. For
di

dt
+
R

L
i =

E

L
an integrating factor is e

∫
(R/L) dt = eRt/L so that

d

dt

[
eRt/L i

]
=
E

L
eRt/L and

i =
E

R
+ce−Rt/L for−∞ < t <∞. If i(0) = i0 then c = i0−E/R and i =

E

R
+

(
i0 −

E

R

)
e−Rt/L.

The solution is defined on I = (−∞, ∞).

30. For
dT

dt
− kT = −Tmk an integrating factor is e

∫
(−k)dt = e−kt so that

d

dt
[e−ktT ] = −Tmke−kt

and T = Tm+ cekt for −∞ < t <∞.If T (0) = T0 then c = T0−Tm and T = Tm+(T0−Tm)ekt.

The solution is defined on I = (−∞, ∞).
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

31. For y′ +
1

x
y = 4 +

1

x
an integrating factor is e

∫
(1/x) dx = x so that

d

dx
[xy] = 4x+ 1 and

y =
1

x

∫
(4x+ 1)dx =

1

x

(
2x2 + x+ c

)
= 2x+ 1 +

c

x
.

If y(1) = 8 then c = 5 and y = 2x+ 1 +
5

x
. The solution is defined on I = (0, ∞).

32. For y′ + 4xy = x3ex
2

an integrating factor is e4x dx = e2x
2

so that
d

dx
[e2x

2
y] = x3e3x

2
and

y = e−2x
2

∫
x3e3x

2
dx = e−2x

2

(
1

6
x2e3x

2 − 1

18
e3x

2
+ c

)
=

1

6
x2ex

2 − 1

18
ex

2
+ ce−2x

2
.

If y(0) = −1 then c = −17
18 and y = 1

6 x
2ex

2 − 1
18 e

x2 − 17
18 e
−2x2 . The solution is defined on

I = (−∞, ∞).

33. For y′+
1

x+ 1
y =

lnx

x+ 1
an integrating factor is e

∫
[1/(x+1)]dx = x+1 so that

d

dx
[(x+1)y] = lnx

and

y =
x

x+ 1
lnx− x

x+ 1
+

c

x+ 1

for 0 < x <∞. If y(1) = 10 then c = 21 and y =
x

x+ 1
lnx− x

x+ 1
+

21

x+ 1
. The solution is

defined on I = (0, ∞).

34. For y′+
1

x+ 1
y =

1

x(x+ 1)
an integrating factor is e

∫
[1/(x+1)]dx = x+1 so that

d

dx
[(x+1)y] =

1

x

and

y =
1

x+ 1

∫
1

x
dx =

1

x+ 1
(lnx+ c) =

lnx

x+ 1
+

c

x+ 1
.

If y(e) = 1 then c = e and y =
lnx

x+ 1
+

e

x+ 1
. The solution is defined on I = (0, ∞).

35. For y′ − (sinx)y = 2 sinx an integrating factor is e
∫
(− sinx) dx = ecosx so that

d

dx
[ecosxy] =

2(sinx)ecosx and

y = e− cosx

∫
2(sinx)ecosxdx = e− cosx (−2ecosx + c) = −2 + ce− cosx.

If y(π/2) = 1 then c = 3 and y = −2 + 3e− cosx. The solution is defined on I = (−∞, ∞).

36. For y′ + (tanx)y = cos2 x an integrating factor is e
∫
tanx dx = eln | secx| = secx so that

d

dx
[(secx) y] = cosx and y = sinx cosx + c cosx for −π/2 < x < π/2. If y(0) = −1 then

c = −1 and y = sinx cosx− cosx. The solution is defined on I = (−π/2, π/2).
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37. For y′ + 2y = f(x) an integrating factor is e2x so that

ye2x =

{
1
2e

2x + c1, 0 ≤ x ≤ 3

c2, 0 ≤ x > 3.

If y(0) = 0 then c1 = −1/2 and for continuity we must

have c2 = 1
2e

6 − 1
2 so that

y =


1
2(1− e−2x), 0 ≤ x ≤ 3

1
2(e6 − 1)e−2x, 0 ≤ x > 3.

38. For y′ + y = f(x) an integrating factor is ex so that

yex =

{
ex + c1, 0 ≤ x ≤ 1

−ex + c2, 0 ≤ x > 1.

If y(0) = 1 then c1 = 0 and for continuity we must have

c2 = 2e so that

y =

{
1, 0 ≤ x ≤ 1

2e1−x − 1, 0 ≤ x > 1.

39. For y′ + 2xy = f(x) an integrating factor is ex
2

so that

yex
2

=

{
1
2e
x2 + c1, 0 ≤ x < 1

c2, 0 ≤ x ≥ 1.

If y(0) = 2 then c1 = 3/2 and for continuity we must have

c2 = 1
2e+ 3

2 so that

y =


1
2 + 3

2e
−x2 , 0 ≤ x < 1(

1
2e+ 3

2

)
e−x

2
, 0 ≤ x ≥ 1.

40. For

y′ +
2x

1 + x2
y =


x

1 + x2
, 0 ≤ x ≤ 1

−x
1 + x2

, 0 < x > 1,

an integrating factor is 1 + x2 so that

(
1 + x2

)
y =


1

2
x2 + c1, 0 ≤ x ≤ 1

−1

2
x2 + c2, 0 ≤ x > 1.
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

If y(0) = 0 then c1 = 0 and for continuity we must have c2 = 1 so that

y =


1

2
− 1

2 (1 + x2)
, 0 ≤ x ≤ 1

3

2 (1 + x2)
− 1

2
, 0 ≤ x > 1.

41. We first solve the initial-value problem y′+ 2y = 4x, y(0) = 3 on the

interval [0, 1]. The integrating factor is e
∫
2 dx = e2x, so

d

dx
[e2xy] = 4xe2x

e2xy =

∫
4xe2xdx = 2xe2x − e2x + c1

y = 2x− 1 + c1e
−2x.

Using the initial condition, we find y(0) = −1 + c1 = 3, so c1 = 4

and y = 2x − 1 + 4e−2x, 0 ≤ x ≤ 1. Now, since y(1) = 2 − 1 + 4e−2 = 1 + 4e−2, we solve the

initial-value problem y′− (2/x)y = 4x, y(1) = 1 + 4e−2 on the interval (1, ∞). The integrating

factor is e
∫
(−2/x)dx = e−2 lnx = x−2, so

d

dx
[x−2y] = 4xx−2 =

4

x

x−2y =

∫
4

x
dx = 4 lnx+ c2

y = 4x2 lnx+ c2x
2.

(We use lnx instead of ln |x| because x > 1.) Using the initial condition we find y(1) = c2 =

1 + 4e−2, so y = 4x2 lnx+ (1 + 4e−2)x2, x > 1. Thus, the solution of the original initial-value

problem is

y =

{
2x− 1 + 4e−2x, 0 ≤ x ≤ 1

4x2 lnx+ (1 + 4e−2)x2, 0 ≤ x > 1.

See Problem 48 in this section.

42. For y′ + exy = 1 an integrating factor is ee
x
. Thus

d

dx

[
ee

x
y
]

= ee
x

and ee
x
y =

∫ x

0
ee

t
dt+ c.

From y(0) = 1 we get c = e, so y = e−e
x ∫ x

0 e
etdt+ e1−e

x
.

When y′ + exy = 0 we can separate variables and integrate:

dy

y
= −ex dx and ln |y| = −ex + c.

Thus y = c1e
−ex . From y(0) = 1 we get c1 = e, so y = e1−e

x
.

When y′ + exy = ex we can see by inspection that y = 1 is a solution.
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43. An integrating factor for y′ − 2xy = 1 is e−x
2
. Thus

d

dx
[e−x

2
y] = e−x

2

e−x
2
y =

∫ x

0
e−t

2
dt =

√
π

2
erf(x) + c

y =

√
π

2
ex

2
erf(x) + cex

2
.

From y(1) =

√
π

2
e erf(1) + ce = 1 we get c = e−1 −

√
π

2
erf(1). The solution of the initial-value

problem is

y =

√
π

2
ex

2
erf(x) +

(
e−1 −

√
π

2
erf(1)

)
ex

2

= ex
2−1 +

√
π

2
ex

2(
erf(x)− erf(1)

)
.

Discussion Problems

44. We want 4 to be a critical point, so we use y′ = 4− y.

45. (a) All solutions of the form y = x5ex − x4ex + cx4 satisfy the initial condition. In this case,

since 4/x is discontinuous at x = 0, the hypotheses of Theorem 1.2.1 are not satisfied and

the initial-value problem does not have a unique solution.

(b) The differential equation has no solution satisfying y(0) = y0, y0 > 0.

(c) In this case, since x0 > 0, Theorem 1.2.1 applies and the initial-value problem has a unique

solution given by y = x5ex − x4ex + cx4 where c = y0/x
4
0 − x0ex0 + ex0 .

46. On the interval (−3, 3) the integrating factor is

e
∫
x dx/(x2−9) = e−

∫
x dx/(9−x2) = e

1
2
ln(9−x2) =

√
9− x2 ,

and so
d

dx

[√
9− x2 y

]
= 0 and y =

c√
9− x2

.

47. We want the general solution to be y = 3x − 5 + ce−x. (Rather than e−x, any function that

approaches 0 as x→∞ could be used.) Differentiating we get

y′ = 3− ce−x = 3− (y − 3x+ 5) = −y + 3x− 2,

so the differential equation y′ + y = 3x− 2 has solutions asymptotic to the line y = 3x− 5.

48. The left-hand derivative of the function at x = 1 is 1/e and the right-hand derivative at x = 1

is 1− 1/e. Thus, y is not differentiable at x = 1.
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

49. (a) Differentiating yc = c/x3 we get

y′c = −3c

x4
= −3

x

c

x3
= −3

x
yc

so a differential equation with general solution yc = c/x3 is xy′ + 3y = 0. Now

xy′p + 3yp = x(3x2) + 3(x3) = 6x3,

so a differential equation with general solution y = c/x3 + x3 is xy′ + 3y = 6x3. This will

be a general solution on (0, ∞).

(b) Since y(1) = 13−1/13 = 0, an initial condition is y(1) = 0.

Since y(1) = 13+2/13 = 3, an initial condition is y(1) = 3.

In each case the interval of definition is (0, ∞). The initial-

value problem xy′+3y = 6x3, y(0) = 0 has solution y = x3

for −∞ < x < ∞. In the figure the lower curve is the

graph of y(x) = x3 − 1/x3, while the upper curve is the

graph of y = x3 − 2/x3.

(c) The first two initial-value problems in part (b) are not unique. For example, setting

y(2) = 23 − 1/23 = 63/8, we see that y(2) = 63/8 is also an initial condition leading to

the solution y = x3 − 1/x3.

50. Since e
∫
P (x)dx+c = ece

∫
P (x)dx = c1e

∫
P (x)dx, we would have

c1e
∫
P (x)dxy = c2+

∫
c1e

∫
P (x)dxf(x) dx and y = c3e

−
∫
P (x)dx+e−

∫
P (x)dx

∫
e
∫
P (x)dxf(x) dx,

which is the same as (4) in the text.

51. We see by inspection that y = 0 is a solution.

Mathematical Models

52. The solution of the first equation is x = c1e
−λ1t. From x(0) = x0 we obtain c1 = x0 and so

x = x0e
−λ1t. The second equation then becomes

dy

dt
= x0λ1e

−λ1t − λ2y or
dy

dt
+ λ2y = x0λ1e

−λ1t,

which is linear. An integrating factor is eλ2t. Thus

d

dt
[eλ2ty ] = x0λ1e

−λ1teλ2t = x0λ1e
(λ2−λ1)t

eλ2ty =
x0λ1
λ2 − λ1

e(λ2−λ1)t + c2

y =
x0λ1
λ2 − λ1

e−λ1t + c2e
−λ2t.
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q

From y(0) = y0 we obtain c2 = (y0λ2 − y0λ1 − x0λ1)/(λ2 − λ1). The solution is

y =
x0λ1
λ2 − λ1

e−λ1t +
y0λ2 − y0λ1 − x0λ1

λ2 − λ1
e−λ2t.

53. Writing the differential equation as
dE

dt
+

1

RC
E = 0 we see that an integrating factor is et/RC .

Then

d

dt
[et/RCE] = 0

et/RCE = c

E = ce−t/RC .

From E(4) = ce−4/RC = E0 we find c = E0e
4/RC . Thus, the solution of the initial-value

problem is

E = E0e
4/RCe−t/RC = E0e

−(t−4)/RC .

Computer Lab Assignments

54. (a) An integrating factor for y′ − 2xy = −1 is e−x
2
. Thus

d

dx
[e−x

2
y] = −e−x2

e−x
2
y = −

∫ x

0
e−t

2
dt = −

√
π

2
erf(x) + c.

From y(0) =
√
π/2, and noting that erf(0) = 0, we get c =

√
π/2. Thus

y = ex
2

(
−
√
π

2
erf(x) +

√
π

2

)
=

√
π

2
ex

2
(1− erf(x)) =

√
π

2
ex

2
erfc(x).

(b) Using a CAS we find y(2) ≈ 0.226339.

55. (a) An integrating factor for

y′ +
2

x
y =

10 sinx

x3

is x2. Thus

d

dx
[x2y] = 10

sinx

x

x2y = 10

∫ x

0

sin t

t
dt+ c

y = 10x−2Si(x) + cx−2.
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

From y(1) = 0 we get c = −10Si(1). Thus

y = 10x−2Si(x)− 10x−2Si(1) = 10x−2
(
Si(x)− Si(1)

)
.

(b) x

(c) From the graph in part (b) we see that the absolute maximum occurs around x = 1.7.

Using the root-finding capability of a CAS and solving y′(x) = 0 for x we see that the

absolute maximum is (1.688, 1.742).

56. (a) The integrating factor for y′ − (sinx2)y = 0 is e−
∫ x
0 sin t2 dt. Then

d

dx

[
e−

∫ x
0 sin t2dty

]
= 0

e−
∫ x
0 sin t2 dty = c1

y = c1e
∫ x
0 sin t2dt.

Letting t =
√
π/2u we have dt =

√
π/2 du and∫ x

0
sin t2 dt =

√
π

2

∫ √2/π x

0
sin
(π

2
u2
)
du =

√
π

2
S

(√
2

π
x

)
so y = c1e

√
π/2S(

√
2/π x). Using S(0) = 0 and y(0) = c1 = 5 we have y = 5e

√
π/2S(

√
2/π x).

(b) x

(c) From the graph we see that as x → ∞, y(x) oscillates with decreasing amplitudes ap-

proaching 9.35672. Since limx→∞ 5S(x) = 1
2 , limx→∞ y(x) = 5e

√
π/8 ≈ 9.357, and since

limx→−∞ S(x) = −1
2 , limx→−∞ y(x) = 5e−

√
π/8 ≈ 2.672.
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2.4 Exact Equations

(d) From the graph in part (b) we see that the absolute maximum occurs around x = 1.7 and

the absolute minimum occurs around x = −1.8. Using the root-finding capability of a

CAS and solving y′(x) = 0 for x, we see that the absolute maximum is (1.772, 12.235)

and the absolute minimum is (−1.772, 2.044).

2.4 Exact Equationsq

2.4 Exact Equationsq

1. Let M = 2x − 1 and N = 3y + 7 so that My = 0 = Nx. From fx = 2x − 1 we obtain

f = x2 − x+ h(y), h′(y) = 3y + 7, and h(y) = 3
2y

2 + 7y. A solution is x2 − x+ 3
2y

2 + 7y = c.

2. Let M = 2x+ y and N = −x− 6y. Then My = 1 and Nx = −1, so the equation is not exact.

3. Let M = 5x + 4y and N = 4x − 8y3 so that My = 4 = Nx. From fx = 5x + 4y we obtain

f = 5
2x

2 + 4xy + h(y), h′(y) = −8y3, and h(y) = −2y4. A solution is 5
2x

2 + 4xy − 2y4 = c.

4. Let M = sin y − y sinx and N = cosx + x cos y − y so that My = cos y − sinx = Nx. From

fx = sin y − y sinx we obtain f = x sin y + y cosx + h(y), h′(y) = −y, and h(y) = −1
2y

2. A

solution is x sin y + y cosx− 1
2y

2 = c.

5. Let M = 2y2x− 3 and N = 2yx2 + 4 so that My = 4xy = Nx. From fx = 2y2x− 3 we obtain

f = x2y2 − 3x+ h(y), h′(y) = 4, and h(y) = 4y. A solution is x2y2 − 3x+ 4y = c.

6. Let M = 4x3− 3y sin 3x− y/x2 and N = 2y− 1/x+ cos 3x so that My = −3 sin 3x− 1/x2 and

Nx = 1/x2 − 3 sin 3x. The equation is not exact.

7. Let M = x2− y2 and N = x2− 2xy so that My = −2y and Nx = 2x− 2y. The equation is not

exact.

8. LetM = 1+lnx+y/x andN = −1+lnx so thatMy = 1/x = Nx. From fy = −1+lnx we obtain

f = −y+y lnx+h(y), h′(x) = 1+lnx, and h(y) = x lnx. A solution is −y+y lnx+x lnx = c.

9. Let M = y3 − y2 sinx − x and N = 3xy2 + 2y cosx so that My = 3y2 − 2y sinx = Nx. From

fx = y3 − y2 sinx − x we obtain f = xy3 + y2 cosx − 1
2x

2 + h(y), h′(y) = 0, and h(y) = 0. A

solution is xy3 + y2 cosx− 1
2x

2 = c.

10. Let M = x3 + y3 and N = 3xy2 so that My = 3y2 = Nx. From fx = x3 + y3 we obtain

f = 1
4x

4 + xy3 + h(y), h′(y) = 0, and h(y) = 0. A solution is 1
4x

4 + xy3 = c.

11. Let M = y ln y− e−xy and N = 1/y+ x ln y so that My = 1 + ln y+ xe−xy and Nx = ln y. The

equation is not exact.

12. Let M = 3x2y+ ey and N = x3 + xey − 2y so that My = 3x2 + ey = Nx. From fx = 3x2y+ ey

we obtain f = x3y+xey+h(y), h′(y) = −2y, and h(y) = −y2. A solution is x3y+xey−y2 = c.
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

13. Let M = y−6x2−2xex and N = x so that My = 1 = Nx. From fx = y−6x2−2xex we obtain

f = xy−2x3−2xex+2ex+h(y), h′(y) = 0, and h(y) = 0. A solution is xy−2x3−2xex+2ex = c.

14. Let M = 1 − 3/x + y and N = 1 − 3/y + x so that My = 1 = Nx. From fx = 1 − 3/x + y

we obtain f = x − 3 ln |x| + xy + h(y), h′(y) = 1 − 3

y
, and h(y) = y − 3 ln |y|. A solution is

x+ y + xy − 3 ln |xy| = c.

15. Let M = x2y3 − 1/
(
1 + 9x2

)
and N = x3y2 so that My = 3x2y2 = Nx. From

fx = x2y3−1/
(
1 + 9x2

)
we obtain f = 1

3x
3y3− 1

3 arctan(3x)+h(y), h′(y) = 0, and h(y) = 0.

A solution is x3y3 − arctan(3x) = c.

16. Let M = −2y and N = 5y − 2x so that My = −2 = Nx. From fx = −2y we obtain

f = −2xy + h(y), h′(y) = 5y, and h(y) = 5
2y

2. A solution is −2xy + 5
2y

2 = c.

17. Let M = tanx − sinx sin y and N = cosx cos y so that My = − sinx cos y = Nx. From

fx = tanx− sinx sin y we obtain f = ln | secx|+ cosx sin y + h(y), h′(y) = 0, and h(y) = 0. A

solution is ln | secx|+ cosx sin y = c.

18. Let M = 2y sinx cosx− y + 2y2exy
2

and N = −x+ sin2 x+ 4xyexy
2

so that

My = 2 sinx cosx− 1 + 4xy3exy
2

+ 4yexy
2

= Nx.

From fx = 2y sinx cosx − y + 2y2exy
2

we obtain f = y sin2 x − xy + 2exy
2

+ h(y), h′(y) = 0,

and h(y) = 0. A solution is y sin2 x− xy + 2exy
2

= c.

19. Let M = 4t3y−15t2−y and N = t4+3y2−t so that My = 4t3−1 = Nt. From ft = 4t3y−15t2−y
we obtain f = t4y−5t3−ty+h(y), h′(y) = 3y2, and h(y) = y3. A solution is t4y−5t3−ty+y3 = c.

20. LetM = 1/t+1/t2−y/
(
t2 + y2

)
andN = yey+t/

(
t2 + y2

)
so thatMy =

(
y2 − t2

)
/
(
t2 + y2

)2
=

Nt. From ft = 1/t+1/t2−y/
(
t2 + y2

)
we obtain f = ln |t|− 1

t
−arctan

(
t

y

)
+h(y), h′(y) = yey,

and h(y) = yey − ey. A solution is

ln |t| − 1

t
− arctan

(
t

y

)
+ yey − ey = c.

21. Let M = x2 + 2xy + y2 and N = 2xy + x2 − 1 so that My = 2(x + y) = Nx. From fx =

x2 + 2xy+ y2 we obtain f = 1
3x

3 + x2y+ xy2 +h(y), h′(y) = −1, and h(y) = −y. The solution

is 1
3x

3 +x2y+xy2−y = c. If y(1) = 1 then c = 4/3 and a solution of the initial-value problem

is 1
3x

3 + x2y + xy2 − y = 4
3 .

22. Let M = ex + y and N = 2 + x + yey so that My = 1 = Nx. From fx = ex + y we

obtain f = ex + xy + h(y), h′(y) = 2 + yey, and h(y) = 2y + yey − y. The solution is

ex + xy + 2y + yey − ey = c. If y(0) = 1 then c = 3 and a solution of the initial-value problem

is ex + xy + 2y + yey − ey = 3.
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2.4 Exact Equations

23. Let M = 4y + 2t − 5 and N = 6y + 4t − 1 so that My = 4 = Nt. From ft = 4y + 2t − 5

we obtain f = 4ty + t2 − 5t + h(y), h′(y) = 6y − 1, and h(y) = 3y2 − y. The solution is

4ty+ t2 − 5t+ 3y2 − y = c. If y(−1) = 2 then c = 8 and a solution of the initial-value problem

is 4ty + t2 − 5t+ 3y2 − y = 8.

24. Let M = t/2y4 and N =
(
3y2 − t2

)
/y5 so that My = −2t/y5 = Nt. From ft = t/2y4 we obtain

f =
t2

4y4
+ h(y), h′(y) =

3

y3
, and h(y) = − 3

2y2
. The solution is

t2

4y4
− 3

2y2
= c. If y(1) = 1

then c = −5/4 and a solution of the initial-value problem is
t2

4y4
− 3

2y2
= −5

4
.

25. Let M = y2 cosx− 3x2y − 2x and N = 2y sinx− x3 + ln y so that My = 2y cosx− 3x2 = Nx.

From fx = y2 cosx − 3x2y − 2x we obtain f = y2 sinx − x3y − x2 + h(y), h′(y) = ln y, and

h(y) = y ln y − y. The solution is y2 sinx − x3y − x2 + y ln y − y = c. If y(0) = e then c = 0

and a solution of the initial-value problem is y2 sinx− x3y − x2 + y ln y − y = 0.

26. Let M = y2 + y sinx and N = 2xy − cosx− 1/
(
1 + y2

)
so that My = 2y + sinx = Nx. From

fx = y2+y sinx we obtain f = xy2−y cosx+h(y), h′(y) = −1/(1+y2) , and h(y) = − tan−1 y.

The solution is xy2 − y cosx − tan−1 y = c. If y(0) = 1 then c = −1 − π/4 and a solution of

the initial-value problem is xy2 − y cosx− tan−1 y = −1− π/4 .

27. Equating My = 3y2 + 4kxy3 and Nx = 3y2 + 40xy3 we obtain k = 10.

28. Equating My = 18xy2 − sin y and Nx = 4kxy2 − sin y we obtain k = 9/2.

29. Let M = −x2y2 sinx+ 2xy2 cosx and N = 2x2y cosx so that My = −2x2y sinx+ 4xy cosx =

Nx. From fy = 2x2y cosx we obtain f = x2y2 cosx+h(y), h′(y) = 0, and h(y) = 0. A solution

of the differential equation is x2y2 cosx = c.

30. Let M =
(
x2 + 2xy − y2

)
/
(
x2 + 2xy + y2

)
and N =

(
y2 + 2xy − x2

)
/
(
y2 + 2xy + x2

)
so

that My = −4xy/(x + y)3 = Nx. From fx =
(
x2 + 2xy + y2 − 2y2

)
/(x + y)2 we obtain

f = x +
2y2

x+ y
+ h(y), h′(y) = −1, and h(y) = −y. A solution of the differential equation is

x2 + y2 = c(x+ y).

31. We note that (My−Nx)/N = 1/x, so an integrating factor is e
∫
dx/x = x. Let M = 2xy2 + 3x2

and N = 2x2y so that My = 4xy = Nx. From fx = 2xy2 + 3x2 we obtain f = x2y2 +x3 +h(y),

h′(y) = 0, and h(y) = 0. A solution of the differential equation is x2y2 + x3 = c.

32. We note that (My−Nx)/N = 1, so an integrating factor is e
∫
dx = ex. Let M = xyex+y2ex+yex

and N = xex + 2yex so that My = xex + 2yex + ex = Nx. From fy = xex + 2yex we obtain

f = xyex + y2ex + h(x), h′(y) = 0, and h(y) = 0. A solution of the differential equation is

xyex + y2ex = c.

33. We note that (Nx −My)/M = 2/y, so an integrating factor is e
∫
2dy/y = y2. Let M = 6xy3

and N = 4y3 + 9x2y2 so that My = 18xy2 = Nx. From fx = 6xy3 we obtain f = 3x2y3 + h(y),

h′(y) = 4y3, and h(y) = y4. A solution of the differential equation is 3x2y3 + y4 = c.

67

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed 
with a certain product or service or otherwise on a password-protected website for classroom use. Not For Sale

©
 C

en
ga

ge
 L

ea
rn

in
g.

 A
ll 

rig
ht

s r
es

er
ve

d.
 N

o 
di

st
rib

ut
io

n 
al

lo
w

ed
 w

ith
ou

t e
xp

re
ss

 a
ut

ho
riz

at
io

n.



CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

34. We note that (My − Nx)/N = − cotx, so an integrating factor is e−
∫
cotx dx = cscx. Let

M = cosx cscx = cotx and N = (1 + 2/y) sinx cscx = 1 + 2/y, so that My = 0 = Nx. From

fx = cotx we obtain f = ln(sinx) + h(y), h′(y) = 1 + 2/y, and h(y) = y + ln y2. A solution of

the differential equation is ln(sinx) + y + ln y2 = c.

35. We note that (My −Nx)/N = 3, so an integrating factor is e
∫
3 dx = e3x. Let

M = (10− 6y + e−3x)e3x = 10e3x − 6ye3x + 1 and N = −2e3x,

so that My = −6e3x = Nx. From fx = 10e3x−6ye3x+1 we obtain f = 10
3 e

3x−2ye3x+x+h(y),

h′(y) = 0, and h(y) = 0. A solution of the differential equation is 10
3 e

3x − 2ye3x + x = c.

36. We note that (Nx −My)/M = −3/y, so an integrating factor is e−3
∫
dy/y = 1/y3. Let

M = (y2 + xy3)/y3 = 1/y + x and N = (5y2 − xy + y3 sin y)/y3 = 5/y − x/y2 + sin y,

so that My = −1/y2 = Nx. From fx = 1/y + x we obtain f = x/y + 1
2x

2 + h(y),

h′(y) = 5/y + sin y, and h(y) = 5 ln |y| − cos y. A solution of the differential equation is

x/y + 1
2x

2 + 5 ln |y| − cos y = c.

37. We note that (My − Nx)/N = 2x/(4 + x2), so an integrating factor is e−2
∫
x dx/(4+x2) =

1/(4 + x2). Let M = x/(4 + x2) and N = (x2y + 4y)/(4 + x2) = y, so that My = 0 = Nx.

From fx = x(4 + x2) we obtain f = 1
2 ln(4 + x2) + h(y), h′(y) = y, and h(y) = 1

2y
2. A solution

of the differential equation is 1
2 ln(4 + x2) + 1

2y
2 = c. Multiplying both sides by 2 and then

exponentiating we find ey
2
(4 + x2) = c1. Using the initial condition y(4) = 0 we see that

c1 = 20 and the solution of the initial-value problem is ey
2
(4 + x2) = 20.

38. We note that (My − Nx)/N = −3/(1 + x), so an integrating factor is e−3
∫
dx/(1+x) =

1/(1 + x)3. Let M = (x2 + y2 − 5)/(1 + x)3 and N = −(y + xy)/(1 + x)3 = −y/(1 + x)2, so

that My = 2y/(1 + x)3 = Nx. From fy = −y/(1 + x)2 we obtain f = −1
2y

2/(1 + x)2 + h(x),

h′(x) = (x2 − 5)/(1 + x)3, and h(x) = 2/(1 + x)2 + 2/(1 + x) + ln |1 + x|. A solution of the

differential equation is

− y2

2(1 + x)2
+

2

(1 + x)2
+

2

(1 + x)
+ ln |1 + x| = c.

Using the initial condition y(0) = 1 we see that c = 7
2 and the solution of the initial-value

problem is

− y2

2(1 + x)2
+

2

(1 + x)2
+

2

(1 + x)
+ ln |1 + x| = 7

2
.

39. (a) Implicitly differentiating x3 + 2x2y + y2 = c and solving for dy/dx we obtain

3x2 + 2x2
dy

dx
+ 4xy + 2y

dy

dx
= 0 and

dy

dx
= −3x2 + 4xy

2x2 + 2y
.

By writing the last equation in differential form we get (4xy+ 3x2)dx+ (2y+ 2x2)dy = 0.
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2.4 Exact Equatio q

(b) Setting x = 0 and y = −2 in x3 + 2x2y + y2 = c we find c = 4, and setting x = y = 1 we

also find c = 4. Thus, both initial conditions determine the same implicit solution.

(c) Solving x3 + 2x2y + y2 = 4 for y we get

y1(x) = −x2 −
√

4− x3 + x4

and
y2(x) = −x2 +

√
4− x3 + x4 .

Observe in the figure that y1(0) = −2 and y2(1) = 1.

Discussion Problems

40. To see that the equations are not equivalent consider dx = −(x/y)dy. An integrating factor is

µ(x, y) = y resulting in y dx+ x dy = 0. A solution of the latter equation is y = 0, but this is

not a solution of the original equation.

41. The explicit solution is y =
√

(3 + cos2 x)/(1− x2) . Since 3 + cos2 x > 0 for all x we must

have 1− x2 > 0 or −1 < x < 1. Thus, the interval of definition is (−1, 1).

42. (a) Since fy = N(x, y) = xexy + 2xy +
1

x
we obtain f = exy + xy2 +

y

x
+ h(x) so that

fx = yexy + y2 − y

x2
+ h′(x). Let M(x, y) = yexy + y2 − y

x2
.

(b) Since fx = M(x, y) = y1/2x−1/2+x
(
x2 + y

)−1
we obtain f = 2y1/2x1/2+1

2 ln
∣∣x2 + y

∣∣+g(y)

so that fy = y−1/2x1/2 + 1
2

(
x2 + y

)−1
+ g′(x). Let N(x, y) = y−1/2x1/2 + 1

2

(
x2 + y

)−1
.

43. First note that

d
(√

x2 + y2
)

=
x√

x2 + y2
dx+

y√
x2 + y2

dy.

Then x dx+ y dy =
√
x2 + y2 dx becomes

x√
x2 + y2

dx+
y√

x2 + y2
dy = d

(√
x2 + y2

)
= dx.

The left side is the total differential of
√
x2 + y2 and the right side is the total differential of

x+ c. Thus
√
x2 + y2 = x+ c is a solution of the differential equation.

44. To see that the statement is true, write the separable equation as −g(x) dx + dy/h(y) = 0.

Identifying M = −g(x) and N = 1/h(y), we see that My = 0 = Nx, so the differential equation

is exact.
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

Mathematical Model

45. (a) In differential form we have (v2−32x)dx+xv dv = 0. This is not an exact form, but µ(x) =

x is an integrating factor. Multiplying by x we get (xv2−32x2)dx+x2v dv = 0. This form

is the total differential of u = 1
2x

2v2 − 32
3 x

3, so an implicit solution is 1
2x

2v2 − 32
3 x

3 = c.

Letting x = 3 and v = 0 we find c = −288. Solving for v we get

v = 8

√
x

3
− 9

x2
.

(b) The chain leaves the platform when x = 8, so the velocity at this time is

v(8) = 8

√
8

3
− 9

64
≈ 12.7 ft/s.

Computer Lab Assignments

46. (a) Letting

M(x, y) =
2xy

(x2 + y2)2
and N(x, y) = 1 +

y2 − x2

(x2 + y2)2

we compute

My =
2x3 − 8xy2

(x2 + y2)3
= Nx,

so the differential equation is exact. Then we have

∂f

∂x
= M(x, y) =

2xy

(x2 + y2)2
= 2xy(x2 + y2)−2

f(x, y) = −y(x2 + y2)−1 + g(y) = − y

x2 + y2
+ g(y)

∂f

∂y
=

y2 − x2

(x2 + y2)2
+ g′(y) = N(x, y) = 1 +

y2 − x2

(x2 + y2)2
.

Thus, g′(y) = 1 and g(y) = y. The solution is y − y

x2 + y2
= c. When c = 0 the solution

is x2 + y2 = 1.

(b) The first graph below is obtained in Mathematica using f(x, y) = y − y/(x2 + y2) and

ContourPlot[f[x, y], { x, -3, 3}, { y, -3, 3},
Axes−>True, AxesOrigin−>{0, 0}, AxesLabel−>{ x, y},
Frame−>False, PlotPoints−>100, ContourShading−>False,
Contours−>{ 0, -0.2, 0.2, -0.4, 0.4, -0.6, 0.6, -0.8, 0.8} ]

The second graph uses

x = −

√
y3 − cy2 − y

c− y
and x =

√
y3 − cy2 − y

c− y
.
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2.5 Solutions by Substitutions

In this case the x-axis is vertical and the y-axis is horizontal. To obtain the third graph,

we solve y−y/(x2+y2) = c for y in a CAS. This appears to give one real and two complex

solutions. When graphed in Mathematica however, all three solutions contribute to the

graph. This is because the solutions involve the square root of expressions containing c.

For some values of c the expression is negative, causing an apparent complex solution to

actually be real.

2.5 Solutions by Substitutionsq

2.5 Solutions by Substitutionsq

1. Letting y = ux we have

(x− ux) dx+ x(u dx+ x du) = 0

dx+ x du = 0

dx

x
+ du = 0

ln |x|+ u = c

x ln |x|+ y = cx.

2. Letting y = ux we have

(x+ ux) dx+ x(u dx+ x du) = 0

(1 + 2u) dx+ x du = 0

dx

x
+

du

1 + 2u
= 0

ln |x|+ 1

2
ln |1 + 2u| = c

x2
(

1 + 2
y

x

)
= c1

x2 + 2xy = c1.
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

3. Letting x = vy we have

vy(v dy + y dv) + (y − 2vy) dy = 0

vy2 dv + y
(
v2 − 2v + 1

)
dy = 0

v dv

(v − 1)2
+
dy

y
= 0

ln |v − 1| − 1

v − 1
+ ln |y| = c

ln

∣∣∣∣xy − 1

∣∣∣∣− 1

x/y − 1
+ ln y = c

(x− y) ln |x− y| − y = c(x− y).

4. Letting x = vy we have

y(v dy + y dv)− 2(vy + y) dy = 0

y dv − (v + 2) dy = 0

dv

v + 2
− dy

y
= 0

ln |v + 2| − ln |y| = c

ln

∣∣∣∣xy + 2

∣∣∣∣− ln |y| = c

x+ 2y = c1y
2.

5. Letting y = ux we have

(
u2x2 + ux2

)
dx− x2(u dx+ x du) = 0

u2 dx− x du = 0

dx

x
− du

u2
= 0

ln |x|+ 1

u
= c

ln |x|+ x

y
= c

y ln |x|+ x = cy.
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2.5 Solutions by Substitutions

6. Letting y = ux and using partial fractions, we have

(
u2x2 + ux2

)
dx+ x2(u dx+ x du) = 0

x2
(
u2 + 2u

)
dx+ x3 du = 0

dx

x
+

du

u(u+ 2)
= 0

ln |x|+ 1

2
ln |u| − 1

2
ln |u+ 2| = c

x2u

u+ 2
= c1

x2
y

x
= c1

(y
x

+ 2
)

x2y = c1(y + 2x).

7. Letting y = ux we have

(ux− x) dx− (ux+ x)(u dx+ x du) = 0(
u2 + 1

)
dx+ x(u+ 1) du = 0

dx

x
+

u+ 1

u2 + 1
du = 0

ln |x|+ 1

2
ln
(
u2 + 1

)
+ tan−1 u = c

lnx2
(
y2

x2
+ 1

)
+ 2 tan−1

y

x
= c1

ln
(
x2 + y2

)
+ 2 tan−1

y

x
= c1.

8. Letting y = ux we have

(x+ 3ux) dx− (3x+ ux)(u dx+ x du) = 0(
u2 − 1

)
dx+ x(u+ 3) du = 0

dx

x
+

u+ 3

(u− 1)(u+ 1)
du = 0

ln |x|+ 2 ln |u− 1| − ln |u+ 1| = c

x(u− 1)2

u+ 1
= c1

x
(y
x
− 1
)2

= c1

(y
x

+ 1
)

(y − x)2 = c1(y + x).
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

9. Letting y = ux we have

−ux dx+ (x+
√
ux)(u dx+ x du) = 0

(x2 + x2
√
u ) du+ xu3/2 dx = 0(

u−3/2 +
1

u

)
du+

dx

x
= 0

−2u−1/2 + ln |u|+ ln |x| = c

ln |y/x|+ ln |x| = 2
√
x/y + c

y(ln |y| − c)2 = 4x.

10. Letting y = ux we have(
ux+

√
x2 − (ux)2

)
dx− x(udx+ xdu) du = 0√
x2 − u2x2 dx− x2 du = 0

x
√

1− u2 dx− x2 du = 0, (x > 0)

dx

x
− du√

1− u2
= 0

lnx− sin−1 u = c

sin−1 u = lnx+ c1

sin−1
y

x
= lnx+ c2

y

x
= sin(lnx+ c2)

y = x sin(lnx+ c2).

See Problem 33 in this section for an analysis of the solution.

11. Letting y = ux we have

(
x3 − u3x3

)
dx+ u2x3(u dx+ x du) = 0

dx+ u2x du = 0

dx

x
+ u2 du = 0

ln |x|+ 1

3
u3 = c

3x3 ln |x|+ y3 = c1x
3.

Using y(1) = 2 we find c1 = 8. The solution of the initial-value problem is 3x3 ln |x|+y3 = 8x3.
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2.5 Solutions by Substitutionsq

12. Letting y = ux we have

(x2 + 2u2x2)dx− ux2(u dx+ x du) = 0

x2(1 + u2)dx− ux3 du = 0

dx

x
− u du

1 + u2
= 0

ln |x| − 1

2
ln(1 + u2) = c

x2

1 + u2
= c1

x4 = c1(x
2 + y2).

Using y(−1) = 1 we find c1 = 1/2. The solution of the initial-value problem is 2x4 = y2 + x2.

13. Letting y = ux we have

(x+ uxeu) dx− xeu(u dx+ x du) = 0

dx− xeu du = 0

dx

x
− eu du = 0

ln |x| − eu = c

ln |x| − ey/x = c.

Using y(1) = 0 we find c = −1. The solution of the initial-value problem is ln |x| = ey/x − 1.

14. Letting x = vy we have

y(v dy + y dv) + vy(ln vy − ln y − 1) dy = 0

y dv + v ln v dy = 0

dv

v ln v
+
dy

y
= 0

ln |ln |v||+ ln |y| = c

y ln

∣∣∣∣xy
∣∣∣∣ = c1.

Using y(1) = e we find c1 = −e. The solution of the initial-value problem is y ln

∣∣∣∣xy
∣∣∣∣ = −e.

15. From y′ +
1

x
y =

1

x
y−2 and w = y3 we obtain

dw

dx
+

3

x
w =

3

x
. An integrating factor is x3 so

that x3w = x3 + c or y3 = 1 + cx−3.

16. From y′ − y = exy2 and w = y−1 we obtain
dw

dx
+w = −ex. An integrating factor is ex so that

exw = −1
2e

2x + c or y−1 = −1
2e
x + ce−x.
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

17. From y′ + y = xy4 and w = y−3 we obtain
dw

dx
− 3w = −3x. An integrating factor is e−3x so

that e−3xw = xe−3x + 1
3e
−3x + c or y−3 = x+ 1

3 + ce3x.

18. From y′ −
(

1 +
1

x

)
y = y2 and w = y−1 we obtain

dw

dx
+

(
1 +

1

x

)
w = −1. An integrating

factor is xex so that xexw = −xex + ex + c or y−1 = −1 +
1

x
+
c

x
e−x.

19. From y′ − 1

t
y = − 1

t2
y2 and w = y−1 we obtain

dw

dt
+

1

t
w =

1

t2
. An integrating factor is t so

that tw = ln t + c or y−1 =
1

t
ln t +

c

t
. Writing this in the form

t

y
= ln t + c, we see that the

solution can also be expressed in the form et/y = c1t.

20. From y′ +
2

3 (1 + t2)
y =

2t

3 (1 + t2)
y4 and w = y−3 we obtain

dw

dt
− 2t

1 + t2
w =

−2t

1 + t2
. An

integrating factor is
1

1 + t2
so that

w

1 + t2
=

1

1 + t2
+ c or y−3 = 1 + c

(
1 + t2

)
.

21. From y′− 2

x
y =

3

x2
y4 and w = y−3 we obtain

dw

dx
+

6

x
w = − 9

x2
. An integrating factor is x6 so

that x6w = −9
5x

5+c or y−3 = −9
5x
−1+cx−6. If y(1) = 1

2 then c = 49
5 and y−3 = −9

5x
−1+ 49

5 x
−6.

22. From y′ + y = y−1/2 and w = y3/2 we obtain
dw

dx
+

3

2
w =

3

2
. An integrating factor is e3x/2 so

that e3x/2w = e3x/2 + c or y3/2 = 1 + ce−3x/2. If y(0) = 4 then c = 7 and y3/2 = 1 + 7e−3x/2.

23. Let u = x + y + 1 so that du/dx = 1 + dy/dx. Then
du

dx
− 1 = u2 or

1

1 + u2
du = dx. Thus

tan−1 u = x+ c or u = tan(x+ c), and x+ y + 1 = tan(x+ c) or y = tan(x+ c)− x− 1.

24. Let u = x+y so that du/dx = 1+dy/dx. Then
du

dx
−1 =

1− u
u

or u du = dx. Thus 1
2u

2 = x+c

or u2 = 2x+ c1, and (x+ y)2 = 2x+ c1.

25. Let u = x + y so that du/dx = 1 + dy/dx. Then
du

dx
− 1 = tan2 u or cos2 u du = dx. Thus

1
2u + 1

4 sin 2u = x + c or 2u + sin 2u = 4x + c1, and 2(x + y) + sin 2(x + y) = 4x + c1 or

2y + sin 2(x+ y) = 2x+ c1.

26. Let u = x+y so that du/dx = 1+dy/dx. Then
du

dx
−1 = sinu or

1

1 + sinu
du = dx. Multiplying

by (1 − sinu)/(1 − sinu) we have
1− sinu

cos2 u
du = dx or (sec2 u − secu tanu)du = dx. Thus

tanu− secu = x+ c or tan(x+ y)− sec(x+ y) = x+ c.

27. Let u = y − 2x+ 3 so that du/dx = dy/dx− 2. Then
du

dx
+ 2 = 2 +

√
u or

1√
u
du = dx. Thus

2
√
u = x+ c and 2

√
y − 2x+ 3 = x+ c.
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2.5 Solutions by Substitutions

28. Let u = y − x + 5 so that du/dx = dy/dx − 1. Then
du

dx
+ 1 = 1 + eu or e−udu = dx. Thus

−e−u = x+ c and −ey−x+5 = x+ c.

29. Let u = x+ y so that du/dx = 1 + dy/dx. Then
du

dx
− 1 = cosu and

1

1 + cosu
du = dx. Now

1

1 + cosu
=

1− cosu

1− cos2 u
=

1− cosu

sin2 u
= csc2 u− cscu cotu,

so we have
∫

(csc2 u − cscu cotu)du =
∫
dx and − cotu + cscu = x + c. Thus − cot(x + y) +

csc(x+ y) = x+ c. Setting x = 0 and y = π/4 we obtain c =
√

2− 1. The solution is

csc(x+ y)− cot(x+ y) = x+
√

2− 1.

30. Let u = 3x+2y so that du/dx = 3+2 dy/dx. Then
du

dx
= 3+

2u

u+ 2
=

5u+ 6

u+ 2
and

u+ 2

5u+ 6
du =

dx. Now by long division

u+ 2

5u+ 6
=

1

5
+

4

25u+ 30

so we have

∫ (
1

5
+

4

25u+ 30

)
du = dx

and 1
5u+ 4

25 ln |25u+ 30| = x+ c. Thus

1

5
(3x+ 2y) +

4

25
ln |75x+ 50y + 30| = x+ c.
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

Setting x = −1 and y = −1 we obtain c = 4
25 ln 95. The solution is

1

5
(3x+ 2y) +

4

25
ln |75x+ 50y + 30| = x+

4

25
ln 95

or 5y − 5x+ 2 ln |75x+ 50y + 30| = 2 ln 95.

Discussion Problems

31. We write the differential equation M(x, y)dx+N(x, y)dy = 0 as dy/dx = f(x, y) where

f(x, y) = −M(x, y)

N(x, y)
.

The function f(x, y) must necessarily be homogeneous of degree 0 when M and N are homo-

geneous of degree α. Since M is homogeneous of degree α, M(tx, ty) = tαM(x, y), and letting

t = 1/x we have

M(1, y/x) =
1

xα
M(x, y) or M(x, y) = xαM(1, y/x).

Thus
dy

dx
= f(x, y) = −x

αM(1, y/x)

xαN(1, y/x)
= −M(1, y/x)

N(1, y/x)
= F

(y
x

)
.

32. Rewrite (5x2 − 2y2)dx− xy dy = 0 as

xy
dy

dx
= 5x2 − 2y2

and divide by xy, so that
dy

dx
= 5

x

y
− 2

y

x
.

We then identify

F
(y
x

)
= 5

(y
x

)−1
− 2

(y
x

)
.

33. (a) By inspection y = x and y = −x are solutions of the differential equation and not members

of the family y = x sin(lnx+ c2).

(b) Letting x = 5 and y = 0 in sin−1(y/x) = lnx + c2 we

get sin−1 0 = ln 5 + c or c = − ln 5. Then sin−1(y/x) =

lnx − ln 5 = ln(x/5). Because the range of the arcsine

function is [−π/2, π/2] we must have

−π
2
≤ ln

x

5
≤ π

2

e−π/2 ≤ x

5
≤ eπ/2

5e−π/2 ≤ x ≤ 5eπ/2.

The interval of definition of the solution is approximately [1.04, 24.05].
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2.5 Solutions by Substitutions

34. As x→ −∞, e6x → 0 and y → 2x+ 3. Now write (1 + ce6x)/(1− ce6x) as (e−6x+ c)/(e−6x− c).
Then, as x→∞, e−6x → 0 and y → 2x− 3.

35. (a) The substitutions

y = y1 + u and
dy

dx
=
dy1
dx

+
du

dx

lead to

dy1
dx

+
du

dx
= P +Q(y1 + u) +R(y1 + u)2

= P +Qy1 +Ry21 +Qu+ 2y1Ru+Ru2

or
du

dx
− (Q+ 2y1R)u = Ru2.

This is a Bernoulli equation with n = 2 which can be reduced to the linear equation

dw

dx
+ (Q+ 2y1R)w = −R

by the substitution w = u−1.

(b) Identify P (x) = −4/x2, Q(x) = −1/x, and R(x) = 1. Then
dw

dx
+

(
−1

x
+

4

x

)
w = −1. An

integrating factor is x3 so that x3w = −1
4x

4 +c or u =
(
− 1

4x+cx−3
)−1

. Thus, y =
2

x
+u.

36. Write the differential equation in the form x(y′/y) = lnx + ln y and let u = ln y. Then

du/dx = y′/y and the differential equation becomes x(du/dx) = lnx + u or du/dx − u/x =

(lnx)/x, which is first-order and linear. An integrating factor is e−
∫
dx/x = 1/x, so that (using

integration by parts)

d

dx

[1

x
u
]

=
lnx

x2
and

u

x
= −1

x
− lnx

x
+ c.

The solution is

ln y = −1− lnx+ cx or y =
ecx−1

x
.

Mathematical Models

37. Write the differential equation as

dv

dx
+

1

x
v = 32v−1,

and let u = v2 or v = u1/2. Then
dv

dx
=

1

2
u−1/2

du

dx
,

and substituting into the differential equation, we have

1

2
u−1/2

du

dx
+

1

x
u1/2 = 32u−1/2 or

du

dx
+

2

x
u = 64.
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

The latter differential equation is linear with integrating factor e
∫
(2/x)dx = x2, so

d

dx
[x2u] = 64x2

and

x2u =
64

3
x3 + c or v2 =

64

3
x+

c

x2
.

38. Write the differential equation as dP/dt− aP = −bP 2 and let u = P−1 or P = u−1. Then

dp

dt
= −u−2 du

dt
,

and substituting into the differential equation, we have

−u−2 du
dt
− au−1 = −bu−2 or

du

dt
+ au = b.

The latter differential equation is linear with integrating factor e
∫
a dt = eat, so

d

dt
[eatu] = beat

and

eatu =
b

a
eat + c

eatP−1 =
b

a
eat + c

P−1 =
b

a
+ ce−at

P =
1

b/a+ ce−at
=

a

b+ c1e−at
.

2.6 A Numerical Methodq

1. We identify f(x, y) = 2x− 3y + 1. Then, for h = 0.1,

yn+1 = yn + 0.1(2xn − 3yn + 1) = 0.2xn + 0.7yn + 0.1,

and

y(1.1) ≈ y1 = 0.2(1) + 0.7(5) + 0.1 = 3.8

y(1.2) ≈ y2 = 0.2(1.1) + 0.7(3.8) + 0.1 = 2.98.
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2.6 A Numerical Methodq

For h = 0.05,

yn+1 = yn + 0.05(2xn − 3yn + 1) = 0.1xn + 0.85yn + 0.05,

and

y(1.05) ≈ y1 = 0.1(1) + 0.85(5) + 0.05 = 4.4

y(1.1) ≈ y2 = 0.1(1.05) + 0.85(4.4) + 0.05 = 3.895

y(1.15) ≈ y3 = 0.1(1.1) + 0.85(3.895) + 0.05 = 3.47075

y(1.2) ≈ y4 = 0.1(1.15) + 0.85(3.47075) + 0.05 = 3.11514.

2. We identify f(x, y) = x+ y2. Then, for h = 0.1,

yn+1 = yn + 0.1(xn + y2n) = 0.1xn + yn + 0.1y2n,

and

y(0.1) ≈ y1 = 0.1(0) + 0 + 0.1(0)2 = 0

y(0.2) ≈ y2 = 0.1(0.1) + 0 + 0.1(0)2 = 0.01.

For h = 0.05,

yn+1 = yn + 0.05(xn + y2n) = 0.05xn + yn + 0.05y2n,

and

y(0.05) ≈ y1 = 0.05(0) + 0 + 0.05(0)2 = 0

y(0.1) ≈ y2 = 0.05(0.05) + 0 + 0.05(0)2 = 0.0025

y(0.15) ≈ y3 = 0.05(0.1) + 0.0025 + 0.05(0.0025)2 = 0.0075

y(0.2) ≈ y4 = 0.05(0.15) + 0.0075 + 0.05(0.0075)2 = 0.0150.

3. Separating variables and integrating, we have

dy

y
= dx and ln |y| = x+ c.

Thus y = c1e
x and, using y(0) = 1, we find c = 1, so y = ex is the solution of the initial-value

problem.
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

4. Separating variables and integrating, we have

dy

y
= 2x dx and ln |y| = x2 + c.

Thus y = c1e
x2 and, using y(1) = 1, we find c = e−1, so y = ex

2−1 is the solution of the

initial-value problem.

h=0.1 h=0.05
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2.6 A Numerical Methodq

5. h=0.1 h=0.05 6. h=0.1 h=0.05

7. h=0.1 h=0.05 8. h=0.1 h=0.05

9. h=0.1 h=0.05 10. h=0.1 h=0.05
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

11. Tables of values were computed using the Euler and RK4 methods. The resulting points were

plotted and joined using ListPlot in Mathematica.

h=0.25 h=0.1 h=0.05

12. Tables of values were computed using the Euler and RK4 methods. The resulting points were

plotted and joined using ListPlot in Mathematica.

h=0.25 h=0.1 h=0.05

Discussion Problems

13. Tables of values, shown below, were first computed using Euler’s method with h = 0.1 and

h = 0.05, and then using the RK4 method with the same values of h. Using separation of

variables we find that the solution of the differential equation is y = 1/(1 − x2), which is

undefined at x = 1, where the graph has a vertical asymptote. Because the actual solution

of the differential equation becomes unbounded at x approaches 1, very small changes in the

inputs x will result in large changes in the corresponding outputs y. This can be expected to

have a serious effect on numerical procedures.
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2.6 A Numerical Methodq

h=0.1 (Euler) h=0.05 (Euler) h=0.1 (RK4) h=0.05 (RK4)

The points in the tables above were plotted and joined using ListPlot in Mathematica.

h=0.1 h=0.05

Computer Lab Assignments

14. (a) The graph to the right was obtained using RK4 and

ListPlot in Mathematica with h = 0.1.

(b) Writing the differential equation in the form y′+2xy = 1 we see that an integrating factor

is e
∫
2xdx = ex

2
, so

d

dx
[ex

2
y] = ex

2
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

and

y = e−x
2

∫ x

0
et

2
dt+ ce−x

2
.

This solution can also be expressed in terms of the inverse error function as

y =

√
π

2
e−x

2
erfi(x) + ce−x

2
.

Letting x = 0 and y(0) = 0 we find c = 0, so the solution of the initial-value problem is

y = e−x
2

∫ x

0
et

2
dt =

√
π

2
e−x

2
erfi(x).

(c) Using FindRoot in Mathematica we see that y′(x) = 0 when x = 0.924139. Since

y(0.924139) = 0.541044, we see from the graph in part (a) that (0.924139, 0.541044)

is a relative maximum. Now, using the substitution u = −t in the integral below, we have

y(−x) = e−(−x)
2

∫ −x
0

et
2
dt = e−x

2

∫ x

0
e(−u)

2
(−du) = −e−x2

∫ x

0
eu

2
du = −y(x).

Thus, y(x) is an odd function and (−0.924139, −0.541044) is a relative minimum.

2.7 Chapter 2 in Reviewq

2.R Chapter 2 in Reviewq

1. Writing the differential equation in the form y′ = k(y + A/k) we see that the critical point

−A/k is a repeller for k > 0 and an attractor for k < 0.

2. Separating variables and integrating we have

dy

y
=

4

x
dx

ln y = 4 lnx+ c = lnx4 + c

y = c1x
4.

We see that when x = 0, y = 0, so the initial-value problem has an infinite number of solutions

for k = 0 and no solutions for k 6= 0.

3. True; y = k2/k1 is always a solution for k1 6= 0.

4. True; writing the differential equation as a1(x) dy + a2(x)y dx = 0 and separating variables

yields
dy

y
= −a2(x)

a1(x)
dx.
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2.R Chapter 2 in Reviewq

5. An example of a nonlinear third-order differential equation in normal form is
d3y

dx3
= xey.

There are many possible answers.

6. False, because rθ + r + θ + 1 = (r + 1)(θ + 1) and the differential equation can be written as

dr

r + 1
= (θ + 1)dθ.

7. True, because the differential equation can be written as
dy

f(y)
= dx .

8. Since the differential equation is autonomous, 2 − |y| = 0 implies that y = 2 and y = −2 are

critical points and hence solutions of the differential equation.

9. The differential equation is separable so

dy

y
= exdx implies ln |y| = ee

x
+ c,

and thus y = c1e
ex is the general solution of the differential equation.

10. We have

y′ = |x| =

{
−x, x < 0

x, x ≥ 0
implies y =

{
−1

2x
2 + c1, x < 0

1
2x

2 + c2, x ≥ 0.

The initial condition y(−1) = 2 implies that −1
2(−1)2 + c1 = 2 so

c1 = 5
2 . Since y(x) is supposed to be continuous at x = 0, the two

parts of the function must agree. That is, c2 must also be 5
2 , and

y(x) =

{
−1

2x
2 + 5

2 , x < 0

1
2x

2 + 5
2 , x ≥ 0

=

{
−1

2(5− x2), x < 0

1
2(5 + x2), x ≥ 0 .

-5 5
x

-10

-5

5

10

y

11. Differentiating we find

dy

dx
= ecosxxe− cosx + (− sinx) cosx

∫ x

0
te− cos tdt = x− (sinx)y.

Thus the linear differential equation is
dy

dx
+ (sinx)y = x.

12. An example of an autonomous linear first-order differential equation with a single critical point

at −3 is
dy

dx
= y + 3, whereas an autonomous nonlinear first-order differential equation with

a single critical point −3 is
dy

dx
= (y + 3)2.

13.
dy

dx
= (y − 1)2(y − 3)2
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

14.
dy

dx
= y(y − 2)2(y − 4)

15. When n is odd, xn < 0 for x < 0 and xn > 0 for x > 0. In this case 0 is unstable. When n is

even, xn > 0 for x < 0 and for x > 0. In this case 0 is semi-stable. When n is odd, −xn > 0 for

x < 0 and −xn < 0 for x > 0. In this case 0 is asymptotically stable. When n is even, −xn < 0

for x < 0 and for x > 0. In this case 0 is semi-stable. Technically, 00 is an indeterminant form;

however for all values of x except 0, x0 = 1. Thus, we define 00 to be 1 in this case.

16. Using a CAS we find that the zero of f occurs at approximately P = 1.3214. From the graph

we observe that dP/dt > 0 for P < 1.3214 and dP/dt < 0 for P > 1.3214, so P = 1.3214 is an

asymptotically stable critical point. Thus, limt→∞ P (t) = 1.3214.

17. x

18. (a) linear in y, homogeneous, exact (b) linear in x

(c) separable, exact, linear in x and y (d) Bernoulli in x

(e) separable (f) separable, linear in x, Bernoulli

(g) linear in x (h) homogeneous

(i) Bernoulli (j) homogeneous, exact, Bernoulli

(k) linear in x and y, exact, separable,

homogeneous

(l) exact, linear in y

(m) homogeneous (n) separable

19. Separating variables and using the identity cos2 x = 1
2(1 + cos 2x), we have

cos2 x dx =
y

y2 + 1
dy,

1

2
x+

1

4
sin 2x =

1

2
ln
(
y2 + 1

)
+ c,

2x+ sin 2x = 2 ln
(
y2 + 1

)
+ c.and
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2.R Chapter 2 in Reviewq

20. Write the differential equation in the form

y ln
x

y
dx =

(
x ln

x

y
− y
)
dy.

This is a homogeneous equation, so let x = uy. Then dx = u dy + y du and the differential

equation becomes

y lnu(u dy + y du) = (uy lnu− y) dy or y lnu du = −dy.

Separating variables, we obtain

lnu du = −dy
y

u ln |u| − u = − ln |y|+ c

x

y
ln

∣∣∣∣xy
∣∣∣∣− x

y
= − ln |y|+ c

x(lnx− ln y)− x = −y ln |y|+ cy.

21. The differential equation
dy

dx
+

2

6x+ 1
y = − 3x2

6x+ 1
y−2

is Bernoulli. Using w = y3, we obtain the linear equation

dw

dx
+

6

6x+ 1
w = − 9x2

6x+ 1
.

An integrating factor is 6x+ 1, so

d

dx
[(6x+ 1)w] = −9x2,

w = − 3x3

6x+ 1
+

c

6x+ 1
,

and

(6x+ 1)y3 = −3x3 + c.

Note: The differential equation is also exact.

22. Write the differential equation in the form (3y2 + 2x)dx + (4y2 + 6xy)dy = 0. Letting M =

3y2 + 2x and N = 4y2 + 6xy we see that My = 6y = Nx, so the differential equation is exact.

From fx = 3y2 + 2x we obtain f = 3xy2 + x2 + h(y). Then fy = 6xy + h′(y) = 4y2 + 6xy and

h′(y) = 4y2 so h(y) = 4
3y

3. A one-parameter family of solutions is

3xy2 + x2 +
4

3
y3 = c.
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

23. Write the equation in the form
dQ

dt
+

1

t
Q = t3 ln t.

An integrating factor is eln t = t, so

d

dt
[tQ] = t4 ln t

tQ = − 1

25
t5 +

1

5
t5 ln t+ c

and

Q = − 1

25
t4 +

1

5
t4 ln t+

c

t
.

24. Letting u = 2x+ y + 1 we have
du

dx
= 2 +

dy

dx
,

and so the given differential equation is transformed into

u

(
du

dx
− 2

)
= 1 or

du

dx
=

2u+ 1

u
.

Separating variables and integrating we get

u

2u+ 1
du = dx(

1

2
− 1

2

1

2u+ 1

)
du = dx

1

2
u− 1

4
ln |2u+ 1| = x+ c

2u− ln |2u+ 1| = 2x+ c1.

Resubstituting for u gives the solution

4x+ 2y + 2− ln |4x+ 2y + 3| = 2x+ c1

or
2x+ 2y + 2− ln |4x+ 2y + 3| = c1.

25. Write the equation in the form

dy

dx
+

8x

x2 + 4
y =

2x

x2 + 4
.

An integrating factor is
(
x2 + 4

)4
, so

d

dx

[(
x2 + 4

)4
y
]

= 2x
(
x2 + 4

)3
(
x2 + 4

)4
y =

1

4

(
x2 + 4

)4
+ c

y =
1

4
+ c

(
x2 + 4

)−4
.and
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2.R Chapter 2 in Reviewq

26. LettingM = 2r2 cos θ sin θ+r cos θ andN = 4r+sin θ−2r cos2 θ we see thatMr = 4r cos θ sin θ+

cos θ = Nθ, so the differential equation is exact. From fθ = 2r2 cos θ sin θ + r cos θ we obtain

f = −r2 cos2 θ+ r sin θ+ h(r). Then fr = −2r cos2 θ+ sin θ+ h′(r) = 4r+ sin θ− 2r cos2 θ and

h′(r) = 4r so h(r) = 2r2. The solution is

−r2 cos2 θ + r sin θ + 2r2 = c.

27. The differential equation has the form (d/dx) [(sinx)y] = 0. Integrating, we have (sinx)y = c

or y = c/ sinx. The initial condition implies c = −2 sin(7π/6) = 1. Thus, y = 1/ sinx = cscx,

where the interval π < x < 2π is chosen to include x = 7π/6.

28. Separating variables and integrating we have

dy

y2
= −2(t+ 1) dt

−1

y
= −(t+ 1)2 + c

y =
1

(t+ 1)2 + c1
← letting −c = c1 .

The initial condition y(0) = −1
8 implies c1 = −9, so a solution of the initial-value problem is

y =
1

(t+ 1)2 − 9
or y =

1

t2 + 2t− 8
,

where −4 < t < 2.

29. (a) For y < 0,
√
y is not a real number.

(b) Separating variables and integrating we have

dy
√
y

= dx and 2
√
y = x+ c.

Letting y(x0) = y0 we get c = 2
√
y0 − x0, so that

2
√
y = x+ 2

√
y0 − x0 and y =

1

4
(x+ 2

√
y0 − x0)2.

Since
√
y > 0 for y 6= 0, we see that dy/dx = 1

2(x + 2
√
y0 − x0) must be positive. Thus,

the interval on which the solution is defined is (x0 − 2
√
y0 , ∞).

30. (a) The differential equation is homogeneous and we let y = ux. Then

(x2 − y2) dx+ xy dy = 0

(x2 − u2x2) dx+ ux2(u dx+ x du) = 0

dx+ ux du = 0

u du = −dx
x

1

2
u2 = − ln |x|+ c

y2

x2
= −2 ln |x|+ c1.
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

The initial condition gives c1 = 2, so an implicit solution is y2 = x2(2− 2 ln |x|).

(b) Solving for y in part (a) and being sure that the initial con-

dition is still satisfied, we have y = −
√

2 |x|(1− ln |x|)1/2,
where −e ≤ x ≤ e so that 1 − ln |x| ≥ 0. The graph of

this function indicates that the derivative is not defined

at x = 0 and x = e. Thus, the solution of the initial-value

problem is y = −
√

2x(1− lnx)1/2, for 0 < x < e.

31. The graph of y1(x) is the portion of the closed blue curve lying in the fourth quadrant. Its

interval of definition is approximately (0.7, 4.3). The graph of y2(x) is the portion of the

left-hand blue curve lying in the third quadrant. Its interval of definition is (−∞, 0).

32. The first step of Euler’s method gives y(1.1) ≈ 9 + 0.1(1 + 3) = 9.4. Applying Euler’s method

one more time gives y(1.2) ≈ 9.4 + 0.1(1 + 1.1
√

9.4 ) ≈ 9.8373.

33. Since the differential equation is autonomous, all lineal

elements on a given horizontal line have the same slope.

The direction field is then as shown in the figure at the

right. It appears from the figure that the differential

equation has critical points at −2 (an attractor) and at 2

(a repeller). Thus, −2 is an asymptotically stable critical

point and 2 is an unstable critical point.

34. Since the differential equation is autonomous, all lineal

elements on a given horizontal line have the same slope.

The direction field is then as shown in the figure at the

right. It appears from the figure that the differential

equation has no critical points.
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