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INTRODUCTION TO
DIFFERENTIAL EQUATIONS

1.1 | Definitions and Terminology

10.

11.

12.

13.

14.

. Second order; linear
. Third order; nonlinear because of (dy/dx)*

. Fourth order; linear

Second order; nonlinear because of cos(r + u)

. Second order; nonlinear because of (dy/dx)? or \/1 + (dy/dx)?
. Second order; nonlinear because of R?

. Third order; linear

. Second order; nonlinear because of 42

. Writing the boundary-value problem in the form z(dy/dx) + y? = 1, we see that it is nonlinear

in y because of y2. However, writing it in the form (y? — 1)(dz/dy) + = = 0, we see that it is

linear in .

Writing the differential equation in the form u(dv/du) + (1 + u)v = ue™ we see that it is linear
in v. However, writing it in the form (v + uv — ue*)(du/dv) +u = 0, we see that it is nonlinear

in u.
From y = e~ */2 we obtain y’ = —%e_$/2. Then 2y +y = —e %/2 4 e=%/2 = .

From y = g - ge_QOt we obtain dy/dt = 24e=2% so that

dy —20t 6 6 oy
— + 20y =24 20 = — = = 24.
at + 20y e + 5 56

3

From y = €3% cos 2z we obtain ' = 3e3? cos 2z — 2e3% sin 2z and v = 5e3® cos 2z — 12€37 sin 2z,

so that ¢y’ — 6y’ + 13y = 0.

From y = — cos z In(sec  + tan z) we obtain y' = —1 + sin z In(sec x + tan ) and

y" =tanz + coszIn(secx + tanx). Then 3" + y = tanx.
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CHAPTER 1  INTRODUCTION TO DIFFERENTIAL EQUATIONS

15. The domain of the function, found by solving x+2 > 0, is [~2, 00). From ' = 14 2(z +2)~1/2

we have

(y—2)y = (y —2)1+ (2(x+2)7"/7
a2y )+ 2)
—y—az+2z+4x+2)Y2 —z)(x+2)7?
—y—z+8x+2) (e +2)" V2 =y —z+8

An interval of definition for the solution of the differential equation is (—2,00) because y' is
not defined at x = —2.

16. Since tanzx is not defined for z = 7/2 + nm, n an integer, the domain of y = 5tanbz is
{z | br #m/2+nn} or {z ’ x # 7/10 + n7/5}. From y' = 25sec? 5z we have

y = 25(1 + tan® 5x) = 25 4 25 tan® 5z = 25 + 2.

An interval of definition for the solution of the differential equation is (—m/10,7/10). Another
interval is (7/10,37/10), and so on.

17. The domain of the function is {z | 4—2% # 0} or {z | # # —2 or z # 2}. From y/ = 2z/(4—2?)?

we have
1 )\? )
I _
y—2x(4_x2> = 2zy°.

An interval of definition for the solution of the differential equation is (—2,2). Other intervals

are (—oo, —2) and (2, 00).

18. The function is y = 1/4/1 — sinz, whose domain is obtained from 1 —sinz # 0 or sinz # 1.

Thus, the domain is {z | z # 7/2 + 2n7}. From y/ = —3(1 — sinz)~3/2(— cos z) we have

-3/2 —1/2]3

2y = (1 —sinx) cosz = [(1 —sinx) cosz = y° cos .

An interval of definition for the solution of the differential equation is (7w/2,57/2). Another

interval is (57 /2,97 /2) and so on.
19. Writing In(2X — 1) — In(X — 1) = ¢ and differentiating implicitly we obtain

2 X _ 1 dX _
2X -1 dt X -—1dt

2 Loydx
2X -1 X —1/) dt

2X —2-2X+1dX
22X -1)(X—-1) dt

% — X —1)(X—1) = (X — (1 —2X).
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1.1 Definitions and Terminology

Exponentiating both sides of the implicit solution we obtain Yx
41
2X —1
— ¢t 3t
X -1 5l
2X —1=Xet — ¢ 1l
el —1=(e' —2)X —=T== >
- 3 2 -1 vl 2 3 =
— -1}
X = ¢ . 1
et —2 21

Solving e/ — 2 = 0 we get t = In2. Thus, the solution is defined on (—o0,In2) or on (In2,00).
The graph of the solution defined on (—oo, In 2) is dashed, and the graph of the solution defined
on (In2,00) is solid.

20. Implicitly differentiating the solution, we obtain YA

dy dy

—222 -2 —4 2y = =0
v dx Ty + ydw

—2%dy — 2zydx +ydy =0

2zy dx + (z° — y)dy = 0. No

Using the quadratic formula to solve y? — 222y — 1 = 0 for v,

we get y = (22?2 £ V42 +4)/2 = 2 £ Vz* + 1. Thus,
two explicit solutions are y; = 22 + Vot +1 and gy = 22 — Vvt + 1. Both solutions are
defined on (—o0, 00). The graph of y;(z) is solid and the graph of yo is dashed.

21. Differentiating P = cje'/ (1 + clet) we obtain

dP _ (1 + C1et) cre! — ciet - crel _ cret [(1 + C1€t) - Clet]
dt (14 cret)? 1+ et 1+ cret
t t
= A - 9° 1 _pa-p).
1+ cret 1+ cret

x
22. Differentiating y = e_xz/ e’ dt + cre™™ we obtain
0

x x
y = e~ — 21’6362/ e dt — 261:116712 =1- 2336902/ et dt — 2011}67%2.
0 0
Substituting into the differential equation, we have
/ —x? ’ 2 —x2 —x? ‘ 2 —x?
y +2xy =1—2zxe e’ dt —2cixe™™ + 2xe e" dt + 2cixe =1
0 0

2

2z

d
we obtain =2 — (2¢1 + (32)@2;r + 2cowe®® and 4der + 462)623: +

23. From y = c1€%* + coze
dx

Yy _
dz? (
4egze®®, so that

d%y

d
— 4—y + 4y = (4eg + 4deg — 8¢y — 4eg + 461)62’” + (4cg — 8cy + 462)x62x =0.
dxz? dx

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed
with a certain product or service or otherwise on a password-protected website for classroom use.



CHAPTER 1  INTRODUCTION TO DIFFERENTIAL EQUATIONS

24. From y = ciz~! + cox + ez Inx + 422 we obtain

d
d—y = —ciz 2+ o+ c3+czlna + 8,
T

d2
dT:g = 21273 + 0330_1 + 8,

and
d3
d—x‘z = —6cz 7t — 631‘_2,

so that

a3 d? d
xgd—;é—l—Q:ch—ag —m%—i—y: (—6c1 +4c1 + 1 —|—cl)x*1+ (—c3+2c3 —cog —c3+c2)x

+ (—c3 + c3)zlnz + (16 — 8 + 4)2?
= 122°.

2
) <0 . —2 5 <0
25. From y = { e we obtain ' = { oo so that xy’ — 2y = 0.

z2, x>0 2z, x>0
26. The function y(z) is not continuous at x = 0 since lim y(z) =5 and lim y(z) = —5. Thus,
z—0~ z—0t+

y'(x) does not exist at x = 0.
27. From y = ¢™* we obtain ¢y’ = me™®. Then 3’ + 2y = 0 implies
me™ + 2e™* = (m + 2)e™* = 0.

22 s a solution.

Since e™* > 0 for all x, m = —2. Thus y = e~
28. From y = ™" we obtain ' = me™*. Then 5y’ = 2y implies

max — Qemx

2
5 - .
me or m 5

2z/5 5 () is a solution.

Thusy =e
29. From y = €™ we obtain ' = me™ and 3y = m?e™*. Then 3’ — 5y’ + 6y = 0 implies
m2e™® — 5me™ + 6™ = (m — 2)(m — 3)e™* = 0.
Since €™® > 0 for all z, m = 2 and m = 3. Thus y = €?* and y = €3* are solutions.
30. From y = ¢™® we obtain 3y = me™® and y" = m?e™*. Then 2y” 4+ 7y’ — 4y = 0 implies
2m2e™® 4 Tme™® — 4e™® = (2m — 1)(m + 4)e™ = 0.
1

Since €™* > 0 for all z, m = 5 and m = —4. Thus y = e?/2andy=e

—4% are solutions.

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed
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1.1 Definitions and Terminology

31. From y = 2™ we obtain ¢’ = ma™ ! and y” = m(m — 1)2™~2. Then xy” + 2y’ = 0 implies

= (m?® +m)z™!

zm(m — 1)z™ 2 4+ 2ma™ 1 = [m(m — 1) 4+ 2m]z™"
=m(m+1)z™ 1 = 0.

1

Since ™! > 0 for £ >0, m =0 and m = —1. Thus y = 1 and y = 2~ ! are solutions.

32. From y = 2™ we obtain 3y’ = mz™ ! and ¢ = m(m — 1)z™"2. Then x%y" — Tzy’ + 15y = 0

implies

*m(m — 1)z™ % — Tema™ ! + 152™ = [m(m — 1) — Tm + 15]z™
= (m? — 8m + 15)z™ = (m — 3)(m — 5)z™ = 0.

5 are solutions.

Since 2™ >0 for . >0, m =3 and m =5. Thus y = 2% and y =
In Problems 33-36 we substitute y = c into the differential equations and use y' =0 and y" = 0.
33. Solving 5¢ = 10 we see that y = 2 is a constant solution.
34. Solving ¢ +2¢c — 3 = (c+3)(c — 1) = 0 we see that y = —3 and y = 1 are constant solutions.

35. Since 1/(c — 1) = 0 has no solutions, the differential equation has no constant solutions.

36. Solving 6¢ = 10 we see that y = 5/3 is a constant solution.

37. From z = e 2" + 3¢5 and y = —e 2! + 5¢% we obtain
d d
dif = —2e72 +18¢%  and dié — 2¢7% 4 30e%.
Then
d
x4 3y = (€72 4+ 3e%) + 3(—e ™ 4+ 5e%) = 27 1 18¢% = d—f
and
d
5z + 3y = 5(e 2 + 3e5) + 3(—e 2 4 5e) = 2e7 % 4 305 = dit/ .
38. From x = cos 2t + sin 2t + %et and y = —cos 2t —sin 2t — %et we obtain
d 1 d 1
d—f:—2sin2t+2cos2t+get or d—i:2sin2t—2cos2t—get
and
d? 1 d? 1
£:—4cos2t—4sin2t+get or $:40082t—|—4sin2t—5et.
Then
1 1 d?
4y 4 €' = 4(— cos 2t — sin 2t — 56t) + e = —4cos2t — 4sin 2t + 5et = ?f
and
t : Ly t . 14 d*y
4x — ' = 4(cos 2t + sin 2t + =€ ) — e =4cos2t + 4sin 2t — ¢ = o

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed
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CHAPTER 1  INTRODUCTION TO DIFFERENTIAL EQUATIONS

Discussion Problems

39.

40.

41.

42.

43.

44.

45.

46.

(v')? + 1 = 0 has no real solutions because (y')? + 1 is positive for all functions y = ¢(z).
The only solution of (y')2 +y? = 01is y = 0, since, if y # 0, y? > 0 and (/)% +y*> > % > 0.

The first derivative of f(z) = e” is e*. The first derivative of f(x) = e is f/(z) = kek*. The

differential equations are v’ = y and 3’ = ky, respectively.

Any function of the form y = ce” or y = ce™ is its own second derivative. The corresponding
differential equation is " —y = 0. Functions of the form y = ¢sinx or y = ccos x have second

derivatives that are the negatives of themselves. The differential equation is 3" + y = 0.

We first note that /1 —y2 = v/1 —sin?x = Vcos2z = |cosz|. This prompts us to consider

values of x for which cosx < 0, such as = 7. In this case

dy = —(sinx)
dzx _dws v

:cosx‘ __=cosm=—1,
=T

T=T T=T

but

V1—12 =V1-sin’r=v1=1.
=7

Thus, y = sin x will only be a solution of ' = /1 — y2 when cosx > 0. An interval of definition
is then (—7/2,7/2). Other intervals are (37/2,57/2), (77/2,97/2), and so on.

T

Since the first and second derivatives of sint¢ and cost involve sint and cost, it is plausible that
a linear combination of these functions, Asint + B cost, could be a solution of the differential
equation. Using 3y’ = Acost — Bsint and y” = —Asint — Bcost and substituting into the

differential equation we get

y" +2y +4y = —Asint — Beost +2Acost — 2Bsint + 4Asint + 4B cost
= (34 —2B)sint + (2A + 3B) cost = 5sint.

Thus 3A — 2B = 5 and 24 + 3B = 0. Solving these simultaneous equations we find A = %

and B = _% . A particular solution is y = % sint — % cost.

One solution is given by the upper portion of the graph with domain approximately (0,2.6).
The other solution is given by the lower portion of the graph, also with domain approximately
(0,2.6).

One solution, with domain approximately (—oo, 1.6) is the portion of the graph in the second
quadrant together with the lower part of the graph in the first quadrant. A second solution,
with domain approximately (0, 1.6) is the upper part of the graph in the first quadrant. The
third solution, with domain (0, c0), is the part of the graph in the fourth quadrant.
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1.1 Definitions and Terminology

47. Differentiating (23 + y®)/zy = 3¢ we obtain

zy(3z? + 3y%y) — (@ + ) (@ +y)

222 =0

3333?/ + 3xy3y/ _ I4y/ . JISy . IySyl o y4 =0
(3zy® — 2zt — 29®)y = =323y + 23y + ¢
, oyt =22% oy - 22%)

C2ryd — a2t w(2y3 —a3)

48. A tangent line will be vertical where 3 is undefined, or in this case, where z(2y3 — z3) = 0.

This gives = 0 and 2y% = 3. Substituting y> = 23/2 into 2 + y> = 3xy we get

1 1
3 3
z° + —x° =3z <21/3 .’B)

2

3 3 3 2
2% = 51"
23— 92/3,2

2z —22/%) = 0.

Thus, there are vertical tangent lines at z = 0 and 2 = 2%/3, or at (0, 0) and (22/3, 21/3). Since

22/3 ~~ 1.59, the estimates of the domains in Problem 46 were close.

49. The derivatives of the functions are ¢} (z) = —z/v25 — 22 and ¢, (x) = x/v/25 — x?, neither
of which is defined at z = +5.

50. To determine if a solution curve passes through (0,3) we let £ = 0 and P = 3 in the equation
P =cie'/(1+ cie’). This gives 3 =c1/(1+¢;1) or ¢; = —3. Thus, the solution curve

(—=3/2)e" -3¢

P = =
1—-(3/2)et 2 —3et

passes through the point (0,3). Similarly, letting ¢ = 0 and P = 1 in the equation for the
one-parameter family of solutions gives 1 = ¢1/(1+¢1) or ¢; = 1+ ¢1. Since this equation has

no solution, no solution curve passes through (0, 1).

51. For the first-order differential equation integrate f(x). For the second-order differential equa-

tion integrate twice. In the latter case we get y = [([ f(z)dz)dx + 1z + co.

52. Solving for 3 using the quadratic formula we obtain the two differential equations

1 1
y':f(2+2\/m) and y’:—(2—2m),
T X

so the differential equation cannot be put in the form dy/dx = f(z,y).

53. The differential equation yy’ — zy = 0 has normal form dy/dz = x. These are not equivalent
because y = 0 is a solution of the first differential equation but not a solution of the second.
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CHAPTER 1  INTRODUCTION TO DIFFERENTIAL EQUATIONS

2

54. Differentiating y = 12 + coz® we get y' = ¢1 + 2coz and y” = 2co. Then ¢; = 13" and

/ /!
=y —ay’, so

1 1
y = 6137—1—621’2 — (y/ _ a:y")x—i— 5y//xz — xy/ _ 51:2y//.
The differential equation is § 2%y — zy’ +y = 0 or 2%y” — 22y’ + 2y = 0.

55. (a) Since e~ is positive for all values of z, dy/dz > 0 for all z, and a solution, y(z), of the

differential equation must be increasing on any interval.

2

d d d
(b) lim U~ lim e =0and lim -2 = lim e * = 0. Since d—y approaches 0 as z
x

T—r—00 d:,E T——00 T—00 d:,U T—00

approaches —oo and oo, the solution curve has horizontal asymptotes to the left and to
the right.

(c) To test concavity we consider the second derivative

Py _d (dy\ _ d () = ~20c
dz?  dx \dr) dx N '

Since the second derivative is positive for z < 0 and negative for x > 0, the solution curve

is concave up on (—o0,0) and concave down on (0,00). x

() r

56. (a) The derivative of a constant solution y = ¢ is 0, so solving 5 — ¢ = 0 we see that ¢ = 5 and

so y = 5 is a constant solution.

(b) A solution is increasing where dy/dz =5—y > 0 or y < 5. A solution is decreasing where
dy/dx =5—y <0ory>b5.

57. (a) The derivative of a constant solution is 0, so solving y(a — by) = 0 we see that y = 0 and

y = a/b are constant solutions.

(b) A solution is increasing where dy/dz = y(a — by) = by(a/b—y) >0o0r 0 <y < a/b. A
solution is decreasing where dy/dx = by(a/b—y) <0 ory <0 or y > a/b.

(c) Using implicit differentiation we compute
&y
dz?

Solving d?y/dz? = 0 we obtain y = a/2b. Since d?y/dz?> > 0 for 0 < y < a/2b and
d%y/dx® < 0 for a/2b < y < a/b, the graph of y = ¢(z) has a point of inflection at
y = a/2b.

=y(=by') +¢'(a — by) =y (a — 2by).
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1.1 Definitions and Terminology

58. (a) If y = c is a constant solution then 3’ = 0, but ¢? + 4 is never 0 for any real value of c.

(b) Since 3 = y? +4 > 0 for all z where a solution y = ¢(x) is defined, any solution must
be increasing on any interval on which it is defined. Thus it cannot have any relative

extrema.

(c) Using implicit differentiation we compute d?y/dx? = 2yy’ = 2y(y*+4). Setting d?y/dx? =
0 we see that y = 0 corresponds to the only possible point of inflection. Since d?y/dz? < 0
for y < 0 and d?y/dz? > 0 for y > 0, there is a point of inflection where y = 0.

(d) !

Computer Lab Assignments

59. In Mathematica use

Clear[y]
y[x_]:= x Exp[5x] Cos[2x]

y[x]
y''""[x]-20y’"" [x] + 158y’ [x] - 580y’ [x] + 841 y[x] // Simplify

5

The output will show y(z) = e*z cos 2z, which verifies that the correct function was entered,

and 0, which verifies that this function is a solution of the differential equation.
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10 CHAPTER 1  INTRODUCTION TO DIFFERENTIAL EQUATIONS

60. In Mathematica use

Clear][y]
y[x_]:= 20 Cos[5 Log[x]]/x - 3 Sin[5 Log[x]]/x

y[x]

x"3y'"[x] +2x"2y" [x] + 20x y'[x] - 78y[x] // Simplify

20 51 3sin(51
The output will show y(x) = cos(blnz) _ 3sin( nac)’ which verifies that the correct
x x

function was entered, and 0, which verifies that this function is a solution of the differential

equation.

1.2 | Inifial-Value Problems

1. Solving —1/3 =1/(1+¢1) we get ¢; = —4. The solution is y = 1/(1 —4e™ ).
2. Solving 2 = 1/(1 + c1e) we get ¢; = —(1/2)e~ L. The solution is y = 2/(2 — e~ @+1).

3. Letting x = 2 and solving 1/3 = 1/(4 + ¢) we get ¢ = —1. The solution is y = 1/(z% — 1). This

solution is defined on the interval (1, 00).

4. Letting z = —2 and solving 1/2 = 1/(4 + ¢) we get ¢ = —2. The solution is y = 1/(z% — 2).
This solution is defined on the interval (—oo, —v/2).

5. Letting # = 0 and solving 1 = 1/c we get ¢ = 1. The solution is y = 1/(z? + 1). This solution

is defined on the interval (—oo, 00).

6. Letting # = 1/2 and solving —4 = 1/(1/4 + ¢) we get ¢ = —1/2. The solution is y =
1/(x® —1/2) = 2/(22? — 1). This solution is defined on the interval (—1/v/2,1/v/2).

In Problems 7-10 we use x = ¢y cost+cosint and ' = —cysint + ¢y cost to obtain a system of two
equations in the two unknowns c1 and cs.

7. From the initial conditions we obtain the system

c1 = -1
Cy = 8.
The solution of the initial-value problem is x = — cost + 8sint.
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1.2 Initial-Value Problems

8. From the initial conditions we obtain the system

Cy = 0
—C1 = 1.
The solution of the initial-value problem is x = — cost.
9. From the initial conditions we obtain
V3 1 1
o atye=;
1
_Z Y2 =0
5 ¢+ 5 &)

Solving, we find ¢; = V3 /4 and c2 = 1/4. The solution of the initial-value problem is
x = (V/3/4) cost + (1/4)sint.

10. From the initial conditions we obtain

2
_701*‘702:2\@-

2
Solving, we find ¢; = —1 and co = 3. The solution of the initial-value problem is
xr = —cost+ 3sint.

T

In Problems 11-14 we use y = cie* + coe™® and y' = c1e¥ — cae™® to obtain a system of two

equations in the two unknowns c1 and cs.

11. From the initial conditions we obtain

c1+e=1
c1—cy = 2.
Solving, we find ¢; = % and cg = —% . The solution of the initial-value problem is
3, 1 _,
y=ge —3e

12. From the initial conditions we obtain

ec1 + 67102 =0

ecy — 6_162 =e.

Solving, we find ¢; = % and ¢y = —%62. The solution of the initial-value problem is
y:161—162672—16w— 162736
2 2 2 2
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13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

CHAPTER 1  INTRODUCTION TO DIFFERENTIAL EQUATIONS

From the initial conditions we obtain

e_lcl +eco =95

eflcl —ecy = —Db.
Solving, we find ¢; = 0 and ¢3 = 5e~!. The solution of the initial-value problem is

y="5e le™® =5e 177,

From the initial conditions we obtain

c1+eco=0

61—0220.

Solving, we find ¢; = ¢ = 0. The solution of the initial-value problem is y = 0.

Two solutions are y = 0 and y = 23.

Two solutions are y = 0 and y = 22. A Iso, any constant multiple of 2?2 is a solution.

For f(z,y) = y%/3 we have Thus, the differential equation will have a unique solution in any

rectangular region of the plane where y # 0.

For f(x,y) = /2y we have 0f /0y = %\/ x/y . Thus, the differential equation will have a unique

solution in any region where x > 0 and y > 0 or where x < 0 and y < 0.

0 1
For f(z,y) = J we have —f = — . Thus, the differential equation will have a unique solution
x y T
in any region where x > 0 or where x < 0.
of : : o . .
For f(x,y) = x4y we have 30 = 1. Thus, the differential equation will have a unique solution
Y

in the entire plane.

For f(x,y) = 22/(4 — y?) we have 0f /0y = 22%y/(4 — y*)2. Thus the differential equation will

have a unique solution in any region where y < —2, =2 <y < 2, or y > 2.

2 9 3222
Lg we have —f = % Thus, the differential equation will have a
l+y oy (1+413)

unique solution in any region where y # —1.

For f(z,y) =

2 o 92 2
% we have —f - Y Thus, the differential equation will have a
T Yy

For f(xay) = ay - ($2+y2)2 :

unique solution in any region not containing (0, 0).

For f(z,y) = (y+ x)/(y — x) we have 0f /0y = —2x/(y — z)?. Thus the differential equation

will have a unique solution in any region where y < x or where y > x.
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1.2 Initial-Value Problems

In Problems 25-28 we identify f(x,y) = /y> —9 and 0f/0y = y/\/y?> —9. We see that f and
Of /0y are both continuous in the regions of the plane determined by y < —3 and y > 3 with no

restrictions on x.

25.

26.

27.

28.

29.

30.

31.

Since 4 > 3, (1,4) is in the region defined by y > 3 and the differential equation has a unique
solution through (1,4).

Since (5, 3) is not in either of the regions defined by y < —3 or y > 3, there is no guarantee of

a unique solution through (5, 3).

Since (2, —3) is not in either of the regions defined by y < —3 or y > 3, there is no guarantee

of a unique solution through (2, —3).

Since (—1,1) is not in either of the regions defined by y < —3 or y > 3, there is no guarantee

of a unique solution through (—1,1).

(a) A one-parameter family of solutions is y = cx. Since y' = ¢, zy’ = z¢ = y and y(0) =
c-0=0.

(b) Writing the equation in the form ¢y’ = y/z, we see that R cannot contain any point on the
y-axis. Thus, any rectangular region disjoint from the y-axis and containing (xg,yo) will
determine an interval around zp and a unique solution through (z, o). Since xg = 0 in

part (a), we are not guaranteed a unique solution through (0,0).

(c) The piecewise-defined function which satisfies y(0) = 0 is not a solution since it is not
differentiable at x = 0.

d
(a) Since o tan(z + ¢) = sec?(x + ¢) = 1 + tan?(z + ¢), we see that y = tan(x + ¢) satisfies
x

the differential equation.

(b) Solving y(0) = tanc = 0 we obtain ¢ = 0 and y = tanz. Since tanz is discontinuous at

x = £7m/2, the solution is not defined on (—2,2) because it contains £7/2.

(c) The largest interval on which the solution can exist is (—m/2,7/2).

d 1 1 1
(a) Since — (— ) = = y2, we see that y = — is a solution of the differential
dz\ z+c¢ (x+c)? x+ec
equation.

(b) Solving y(0) = —1/c¢ =1 we obtain ¢ = —1 and y = 1/(1 — ). Solving y(0) = —1/c = —1
we obtain ¢ = 1 and y = —1/(1 4+ z). Being sure to include x = 0, we see that the interval
of existence of y = 1/(1 — z) is (—o0, 1), while the interval of existence of y = —1/(1 4 x)

is (—1, 00).

(c) By inspection we see that y = 0 is a solution on (—o0, 00).
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14 CHAPTER 1  INTRODUCTION TO DIFFERENTIAL EQUATIONS

32. (a) Applying y(1) =1toy = —1/(x + ¢) gives

Thus ¢ = —2 and

(b) Applying y(3) = -1 to y = —1/(z + ¢) gives

1
—1l=——— or 34c=1 4L./
3+c¢
20 @
Thus ¢ = —2 and

1 1

y:— = .
r—2 2-z

yzgiz’ (2700)

(c) No, they are not the same solution. The interval I of definition for the solution in part (a)
is (—o0,2); whereas the interval I of definition for the solution in part (b) is (2,00). See

the figure.

33. (a) Differentiating 322 — y? = ¢ we get 6z — 2yy’ = 0 or yy’ = 3z.
olving 3z° — y° = 3 for y we get
(b) Solving 322 — y? = 3 for y we g

y = di(z) = V3«2 - 1), 1< < oo,
Yy (z) = —/3(22 - 1), 1<z < oo,
?/:¢3(I):m, —co<x < —1,
Y ():—\/m, —oo <z < -1

(c) Only y = ¢3(x) satisfies y(—2) = 3.

T

I
<= o
N =

I
-

74\ T

34. (a) Setting x = 2 and y = —4 in 322 — 3?> = ¢ we get

12 — 16 = —4 = ¢, so the explicit solution is

y=—V3r2+4, —oo<z<o0.

(b) Setting ¢ = 0 we have y = v/3z and y = —/3z, both
defined on (—o0,00) and both passing through the

origin.

In Problems 35-38 we consider the points on the graphs with x-coordinates xo = —1, g = 0, and
xo = 1. The slopes of the tangent lines at these points are compared with the slopes given by y'(xo)
in (a) through (f).

35. The graph satisfies the conditions in (b) and (f).
36. The graph satisfies the conditions in (e).
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1.2 |Initial-Value Problems 15

37. The graph satisfies the conditions in (c¢) and (d).
38. The graph satisfies the conditions in (a).

In Problems 39-44 y = c1 cos2x + cosin 2z is a two parameter family of solutions of the second-

order differential equation vy" + 4y = 0. In some of the problems we will use the fact that

Yy = —2c1 sin 2z + 2¢9 cos 2.

39. From the boundary conditions y(0) = 0 and y (%) = 3 we obtain
y(0) =c1 =0
7r T . (T
Y (Z) = (] COS (5) + cosin (§> =cy = 3.
Thus, ¢; = 0, c2 = 3, and the solution of the boundary-value problem is y = 3sin 2z.

40. From the boundary conditions y(0) = 0 and y(7) = 0 we obtain

y(0) =c1 =0

y(m) =c1 = 0.

Thus, ¢; = 0, ¢o is unrestricted, and the solution of the boundary-value problem is y = ¢o sin 2z,

where cg is any real number.

41. From the boundary conditions ¢'(0) = 0 and ¢/ (%) = (0 we obtain

y'(0) =2c2 =0
y' (%) = —2cp sin (g) = V3¢ =0.

Thus, co = 0, ¢; = 0, and the solution of the boundary-value problem is y = 0.
42. From the boundary conditions y(0) = 1 and y/(7) = 5 we obtain
y(0)=c1 =1
y'(m) = 2¢9 = 5.
Thus, ¢c; =1, cag = g, and the solution of the boundary-value problem is y = cos 2z + g sin 2x.
43. From the boundary conditions y(0) = 0 and y(7) = 2 we obtain
y(0)=c1 =0
y(m) =c1 = 2.
Since 0 # 2, this is not possible and there is no solution.

44. From the boundary conditions y' = (g) =1 and y'(7) = 0 we obtain

Since 0 # —1, this is not possible and there is no solution.
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Discussion Problems

45.

46.

47.

48.

49.

50.

51.

Integrating 3’ = 8e%* 4 6z we obtain
Y= /(86296 + 6x)dx = 4** 4 322 + c.
Setting = 0 and y = 9 we have 9 =4 + ¢ so ¢ = 5 and y = 4e*® 4 322 + 5.
Integrating ¢y’ = 12z — 2 we obtain
y = /(123: — 2)dx = 62° — 2z + c1.
Then, integrating v’ we obtain
Yy = /(6.%'2 — 2z + ¢)dx = 22° — 2% + ez + co.

At x = 1 the y-coordinate of the point of tangency is y = —1 + 5 = 4. This gives the initial
condition y(1) = 4. The slope of the tangent line at = 1 is y/(1) = —1. From the initial

conditions we obtain

2—14+c1+cp=4 or ci+c=3
and 6—24+c =-1 or c] = —b.
Thus, ¢; = —5 and ¢ = 8, so y = 223 — 22 — 5z + 8.

Whenx:Oandy:%
slope at (0, 3 ), or the red curve.

, 4’ = —1, so the only plausible solution curve is the one with negative

If the solution is tangent to the x-axis at (x0,0), then ' = 0 when z = z9 and y = 0.
Substituting these values into 3y’ + 2y = 3z — 6 we get 0+ 0 = 3x9 — 6 or xg = 2.

The theorem guarantees a unique (meaning single) solution through any point. Thus, there
cannot be two distinct solutions through any point.

When y = %6334, y =123 =2(32?) = zy'/?, and y(2) = 1—16(16) = 1. When
40, z <0
Y %Gx‘l, z>0

/ O, -’r<0 O, x<0 1/2
¥Y=931.3 =TY1.2 =Ty
7%, >0 7%, >0

we have

and y(2) = 7-(16) = 1. The two different solutions are the same on the interval (0, c0), which
is all that is required by Theorem 1.2.1.

At t =0, dP/dt = 0.15P(0) + 20 = 0.15(100) + 20 = 35. Thus, the population is increasing at
a rate of 3,500 individuals per year. If the population is 500 at time ¢t = T" then

dP

— | =015P(T) +20 = 0.15(500) + 20 = 95.

t=T
Thus, at this time, the population is increasing at a rate of 9,500 individuals per year.
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1.3 Differential Equations as Mathematical Models 17

1.3 | Differential Equations as Mathematical Models

Population Dynamics

dP dP
1.E—k¢P+T, ﬁ—kp—r
2. Let b be the rate of births and d the rate of deaths. Then b = k1P and d = koP. Since

dP/dt = b — d, the differential equation is dP/dt = k1 P — ko P.

3. Let b be the rate of births and d the rate of deaths. Then b = k; P and d = koP?. Since
dP/dt = b — d, the differential equation is dP/dt = ki P — ko P2.

P
4. %:klp—/@]ﬂ—h, h>0

Newton’s Law of cooling/Warming
5. From the graph in the text we estimate Ty = 180° and T;, = 75°. We observe that when
T =85, dT'/dt ~ —1. From the differential equation we then have
dT/dt -1
k= /dt _

= = =—0.1.
T-T, 8 -7

6. By inspecting the graph in the text we take T}, to be T,,(t) = 80 — 30cos7t/12. Then the
temperature of the body at time ¢ is determined by the differential equation

dr 0
=k [T— (SO—SOCOSEIS)] . t>0.
Spread of a Disease/Technology
7. The number of students with the flu is # and the number not infected is 1000 — z, so dx/dt =
kx(1000 — z).

8. By analogy, with the differential equation modeling the spread of a disease, we assume that the
rate at which the technological innovation is adopted is proportional to the number of people
who have adopted the innovation and also to the number of people, y(t), who have not yet
adopted it. Then x4y = n, and assuming that initially one person has adopted the innovation,

we have d
d—f =kx(n—2x), z(0)=1.
Mixtures
9. The rate at which salt is leaving the tank is

A A

Thus dA/dt = —A/100 (where the minus sign is used since the amount of salt is decreasing).
The initial amount is A(0) = 50.
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18 CHAPTER 1  INTRODUCTION TO DIFFERENTIAL EQUATIONS

10. The rate at which salt is entering the tank is
R = (3 gal/min) - (2 1b/gal) = 6 Ib/min.

Since the solution is pumped out at a slower rate, it is accumulating at the rate of
(3 — 2)gal/min = 1 gal/min. After ¢ minutes there are 300 + ¢ gallons of brine in the tank.

The rate at which salt is leaving is

24
300+ ¢

Rout = (2 gal/min) - ( lb/gal> 1b/min.

300 +1¢

The differential equation is

dA 24
dt 300+t

11. The rate at which salt is entering the tank is
Rin = (3 gal/min)(2 Ib/gal) = 6 1b/min.

Since the tank loses liquid at the net rate of
3 gal/min — 3.5 gal/min = —0.5 gal/min,

after ¢ minutes the number of gallons of brine in the tank is 300 — %t gallons. Thus the rate at

which salt is leaving is

A 3.5A TA
out = | 5= 1b/gal | (3. l/min) = ———— 1b/min = ——— Ib/min.
Rout <300—t/2 /ga>(35ga/m1n) 300 — 12 /min 500 —1 /min
The differential equation is
dA TA dA 7
@ ST so—¢ " @ Teoo—¢" 0

12. The rate at which salt is entering the tank is
Rin = (cin Ib/gal) (14, gal/min) = ¢;7, 1b/min.

Now let A(t) denote the number of pounds of salt and N(t) the number of gallons of brine
in the tank at time ¢. The concentration of salt in the tank as well as in the outflow is
c(t) = z(t)/N(t). But the number of gallons of brine in the tank remains steady, is increased,
or is decreased depending on whether r;, = rout, Tin > Tout, O Tin < Tout- In any case, the
number of gallons of brine in the tank at time ¢ is N(t) = No + (74 — rout)t. The output rate
of salt is then
A

Bour = (No + (Tin — Tout)t

The differential equation for the amount of salt, dA/dt = R;, — Rout, is

dA A dA Tout

—_— = CinTin — T or P
dt niin T Tout N+ (Tin — Tout)t dt - No+ (rin = Tout)t

A
No + (rin - 7nout)t

b/ gal) (Four gal/min) = 7oyt 1b/min.

A = CinTin-
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1.3 Differential Equations as Mathematical Models

Draining a Tank

13. The volume of water in the tank at time ¢ is V = A,h. The differential equation is then

dh 1 dV 1 A
@ = (Cemn/2en) = T /agh.

9\ 2
Using Ap, =7 <12> = % , Ay = 10?2 = 100, and g = 32, this becomes

dh cm /36 cm
—_— =— V64h = ———Vh.
dt 100 450

14. The volume of water in the tank at time ¢ is V = émﬁh where r is the radius of the tank
at height h. From the figure in the text we see that r/h = 8/20 so that r = 2k and V =
im (%h)2 h = Z£mh3. Differentiating with respect to ¢ we have dV/dt = semh?dh/dt or

dh_ 25 _dv
dt — 4rwh? dt

From Problem 13 we have dV/dt = —cAp\/2gh where ¢ = 0.6, A, = (%)2, and g = 32. Thus
dV/dt = —2m+v/h/15 and

dh 25 [ 2xvh\ 5
dt — 4rh? 15 ) 6h3/2°
Series Circuits
15. Since i = dg/dt and Ld*q/dt* + Rdq/dt = E(t), we obtain Ldi/dt + Ri = E(t).

d 1
16. By Kirchhoft’s second law we obtain Rd—z + ci= E(t).

Falling Bodies and Air Resistance

d
17. From Newton’s second law we obtain md—;} = —kv? +mg.

Newton’s Second Law and Archimedes’ Principle

18. Since the barrel in Figure 1.3.17(b) in the text is submerged an additional y feet below its
equilibrium position the number of cubic feet in the additional submerged portion is the volume
of the circular cylinder: x (radius)?xheight or 7(s/2)%y. Then we have from Archimedes’

principle

upward force of water on barrel = weight of water displaced
= (62.4) x (volume of water displaced)
= (62.4)7(s/2)%y = 15.67ms%y.
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20 CHAPTER 1  INTRODUCTION TO DIFFERENTIAL EQUATIONS

It then follows from Newton’s second law that

% ng = —15.67r52y or (Zg 156u7?929 y =0,
where g = 32 and w is the weight of the barrel in pounds.
Newton’s Second Law and Hooke’s Law
19. The net force acting on the mass is
F:ma:m(j;tf = —k(s+z)+mg = —kx +mg — ks.

Since the condition of equilibrium is mg = ks, the differential equation is

d?x

20. From Problem 19, without a damping force, the differential equation is m d?z/dt? = —kx.
With a damping force proportional to velocity, the differential equation becomes

e
dt?

Az

dx dx

Newton’s Second Law and Rocket Motion

21. Since the positive direction is taken to be upward, and the acceleration due to gravity g is

positive, (14) in Section 1.3 becomes

m%:fmgfkv+R.

This equation, however, only applies if m is constant. Since in this case m includes the variable

amount of fuel we must use (17) in Exercises 1.3:

d d d
F:%(mv):mfv—i-vfm-

Thus, replacing mdv/dt with mdv/dt +vdm/dt, we have

d d d d
md—zqtvd—zl:fmgfkquR or md—:qud—Tquv:fmquR.
22. Here we are given that the variable mass of the rocket is m(t) = my + m, + m¢(t), where
myp and m,, are the constant masses of the payload and vehicle, respectively, and m¢(t) is the

variable mass of the fuel.

(a) Since
d d d
M) = (mp +my +my(t)) = 2 (),

the rates at which the mass of the rocket and the mass of the fuel change are the same.
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1.3 Differential Equations as Mathematical Models

(b) If the rocket loses fuel at a constant rate A then we take dm/dt = —\. We use —\ instead
of A because the fuel is decreasing over time. We next divide the resulting differential

equation in Problem 21 by m, obtaining

Wov gk R v kAR
dt  m ™ dt m m’

Integrating dm/dt = —\ with respect to ¢t we have m(t) = —A + C. Since m(0) = my,

C = mgy and m(t) = —At + mg. The differential equation then may be written as
dv N k—x n R
dt T — . T e =N
(c) We integrate dmy/dt = —\ to obtain my(t) = —At + C. Since ms(0) = C we have

myg(t — At +my(0). At burnout mys(ty) = =My +mys(0) = 0, so t, = my(0)/A.

Newton’s Second Law and the Law of Universal Gravitation

23. From g = k/R? we find k = gR?. Using a = d?r/dt? and the fact that the positive direction is

upward we get
d?r k gR? d*>r  gR? 0
—_— =g =—— = - or — 4+ = =0.
dt? r2 72 dt? r2

24. The gravitational force on m is F = —kM,m/r?. Since M, = 4wdr3/3 and M = 475R3/3 we
have M, = r3M/R3 and

M,m r3Mm/R3 mM
F=—k 3 =—k 3 =—k 73

T.

Now from F = ma = d?r/dt*> we have

T mM kM
2 R3 a2 R3

Additional Mathematical Models

dA
25. The differential equation is i k(M — A) where k > 0.

A (M= A) — kA,

26. The differential equation is 7

27. The differential equation is /(t) = r — ka(t) where k > 0.

Y
2_y2'

28. By the Pythagorean Theorem the slope of the tangent line is ¢’ =
s
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29.

CHAPTER 1  INTRODUCTION TO DIFFERENTIAL EQUATIONS

We see from the figure that 20 + o = w. Thus

2tan 6
—%; = tana = tan(r — 20) = —tan 260 = _%’

Since the slope of the tangent line is 1y = tanf we have

y/z = 2y'/[1 — (y)?] or y — y(y')? = 2xy’, which is the (xnll o
quadratic equation y(y')? 4+ 2zy’ —y = 0 in ¢/. Using the

e

quadratic formula, we get b

N
]
=Y

) = —2x & \/4x? +4y?  —xd 2?42
2y Yy

Since dy/dx > 0, the differential equation is

d - 2492 d
e i o yL @t +z=0.
dx Y dx

Discussion Problems

30.

31.

32.

33.

34.

The differential equation is dP/dt = kP, so from Problem 41 in Exercises 1.1, P = eft. and a

one-parameter family of solutions is P = ce*t.

The differential equation in (3) is d1'/dt = k(T — T;5,). When the body is cooling, T' > T, so
T —T,, > 0. Since T is decreasing, dT'/dt < 0 and k < 0. When the body is warming, T' < T,,,
so T —T,, <0. Since T is increasing, dT'/dt > 0 and k < 0.

The differential equation in (8) is dA/dt = 6 — A/100. If A(t) attains a maximum, then
dA/dt = 0 at this time and A = 600. If A(¢) continues to increase without reaching a maximum,
then A’(t) > 0 for t > 0 and A cannot exceed 600. In this case, if A’(t) approaches 0 as ¢

increases to infinity, we see that A(t) approaches 600 as t increases to infinity.
This differential equation could describe a population that undergoes periodic fluctuations.

(a) As shown in Figure 1.3.24(b) in the text, the resultant of the reaction force of magnitude

F' and the weight of magnitude mg of the particle is the centripetal force of magnitude

mw?z. The centripetal force points to the center of the circle of radius & on which the

particle rotates about the y-axis. Comparing parts of similar triangles gives

Fcosf =mg and Fsinf = mw’z.

(b) Using the equations in part (a) we find

Fsing mw?z Wz o dy Wz
= = T —_— = —
Fcos6 mg g dx g

tand =
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35.

36.

37.

1.3 Differential Equations as Mathematical Models

From Problem 23, d?r/dt? = —gR?/r?. Since R is a constant, if r = R + s, then d?r/dt? =
d%s/dt? and, using a Taylor series, we get

d?s R?

— =g 2gs
a2~ I (R+s)?

:79R2(R+5)_2%79R2[R_2728R_3+"'] =—g+ 73 4o

Thus, for R much larger than s, the differential equation is approximated by d%s/dt? = —g.

(a) If p is the mass density of the raindrop, then m = pV and
dm  dV  d14 31 odrN L dr
Tl = e ) = s
If dr/dt is a constant, then dm/dt = kS where pdr/dt = k or dr/dt = k/p. Since the

radius is decreasing, k < 0. Solving dr/dt = k/p we get r = (k/p)t + co. Since r(0) = o,
co =19 and r = kt/p + ro.

d
(b) From Newton’s second law, — [muv] = mg, where v is the velocity of the raindrop. Then

dt
4 4
m % + v Z—T =mg or p<§7rr3) % + v(kdmr?) = p(§7TT3)g.
Dividing by 4p7nr3/3 we get
dv 3k dv 3k/p
L= — 4+ —""wv=g, k<O.
dt+prv g o dt+kt/,0—|—7“ov g <

We assume that the plow clears snow at a constant rate of k cubic miles per hour. Let ¢ be the
time in hours after noon, z(t) the depth in miles of the snow at time ¢, and y(¢) the distance
the plow has moved in ¢ hours. Then dy/dt is the velocity of the plow and the assumption
gives

dy

Yok
’lU.fL'dt s

where w is the width of the plow. Each side of this equation simply represents the volume
of snow plowed in one hour. Now let ¢y be the number of hours before noon when it started
snowing and let s be the constant rate in miles per hour at which x increases. Then for ¢ > —tg,

x = s(t + t9). The differential equation then becomes

ay _ k1
dt  wst+ty

Integrating, we obtain

k
=—[In(t+¢
y= - [In(t+t0) +c],

where ¢ is a constant. Now when t =0, y = 0 so ¢ = —Inty and

k
yzln(l—i—t).
WS to
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Finally, from the fact that when t = 1, y = 2 and when t = 2, y = 3, we obtain

2\? 1)°
(1+2) =(1+4) -
to to
Expanding and simplifying gives tg +t9— 1 = 0. Since ty > 0, we find g ~ 0.618 hours ~ 37

minutes. Thus it started snowing at about 11:23 in the morning.

dP dA

38. (1): o = kP is linear (2): i kA is linear
ar d
(3): i k(T —T,,) is linear (5): d:;: = kx(n+1—z) is nonlinear
(6): % =k(a—X)(B—X) is nonlinear (8): % =6— 1610 is linear
dh d? d 1
(10): i \/QQh is nonlinear (11): ng + Rd—z + cl= E(t) is linear
' d?%s o ' dv
(12): =g s linear (14): m—y =mg — kv is linear
d? d
(15): md—tj + kd—j =myg is linear
dy W
(16): T linearity or nonlinearity is determined by the manner in which W and T} involve z.
1
1.R | Chapter 1 in Review
d d
1. e = 10cie ' ﬁ — 10y
d —2x\ _ —2x __ —2x . dy _ dy —
2. %(5-}-616 )= —2c1e” % = =2(5+ cqe 5); = 2(y—5) or e 2y +10
3. @(cl cos kx + cosinkx) = —key sinkx + keg cos kx;
d2
pr) (c1coskx + cosinkzx) = k201 coskx — k:202 sinkz = —kQ(cl cos kx + co sin kx);
d*y 2 d’y 2
d . :
4. d—(cl cosh kx + cg sinh kx) = key sinh kz + ke cosh ka;
x

2

W(Cl cosh kx + cg sinh kx) = k?cq cosh kx + k%cq sinh kz = k(1 cosh kx + ¢ sinh kx);
T

d2y 2 inU 2

@ =k Yy or @ -k Yy = 0

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed

with a certain product or service or otherwise on a password-protected website for classroom use.

© Cengage Learning. All rights reserved. No distribution allowed without express authorization.



© Cengage Learning. All rights reserved. No distribution allowed without express authorization.

13.

14.

15.

16.

17.

18.

19.

1.R Chapter 1in Review

.y = c1e® + coxe”; Yy = c1e® + coxe® + coe”; Yy = c1e® + coze® + 2c9e”;

Yy 4y =2(c1€” + cowe®) + 2c9e” = 2(c1€” + coze” + coe®) = 2y; y' =2y +y=0

Yy = —cie¥sinx + c1e® cos T + coe® cos T + coe” sinx;

Yy’ = —c1e® cosx—cie® sin z—cye® sin w+c1e® cos x—coe” sin r+coe® cos x+coe” cos r+coe sinx
= —2c1e”sinx + 2cqe” cos x;

y' — 2y = —2c1e® cosx — 2c9e” sinx = —2y; y' =2y +2y =0

a, d (8.) ¢ (9.) b (10.) a, c (11.) b (12.) a, b, d

A few solutions are y = 0, y = ¢, and y = e*. In general, y = ¢1 + coe” is a solution for any
constants ¢; and co.

When v is a constant, then 3y = 0. Thus, easy solutions to see are y = 0 and y = 3.
The slope of the tangent line at (x,%) is ¥/, so the differential equation is 3’ = 2% + 3.

The rate at which the slope changes is dy’/dx = 3", so the differential equation is y” = —y’ or
y// + y/ — O

(a) The domain is all real numbers.

(b) Since 3’ = 2/3z'/3, the solution y = /3 is undefined at z = 0. This function is a solution
of the differential equation on (—o0,0) and also on (0, c0).

(a) Differentiating y? — 2y = 22 — 2 + ¢ we obtain 2yy’ — 2y’ = 2z — 1 or (2y — 2)y’ =22 — 1.

(b) Setting x = 0 and y = 1 in the solution we have 1 =2 =0— 0+ c or ¢ = —1. Thus, a

2

solution of the initial-value problem is 4% — 2y = 2% — z — 1.

(c) Solving y? — 2y — (2 — z — 1) = 0 by the quadratic formula we get

244+ 422 -z 1)
B 2

y =ltva2—-z=1+xz(x-1).

Since x(x — 1) > 0 for z < 0 or x > 1, we see that neither y = 1 4+ y/z(z — 1) nor
y=1—+/z(x — 1) is differentiable at x = 0. Thus, both functions are solutions of the

differential equation, but neither is a solution of the initial-value problem.
Setting x = xp and y = 1 in y = —2/x + z, we get
2
l=——+4ux or x2 — 29— 2= (x0 —2)(20+ 1) = 0.
Zo

Thus, g =2 or 29 = —1. Since z # 0 in y = —2/x + x, we see that y = —2/x + z is a solution
of the initial-value problem zy’ +y = 2z, y(—1) = 1 on the interval (—o00,0) (=1 < 0), and
y = —2/x + x is a solution of the initial-value problem zy’ + y = 2z, y(2) = 1, on the interval
(0,00) (2 > 0).
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20. From the differential equation, y'(1) = 12+ [y(1)]> = 1+ (—1)? = 2 > 0, so y(z) is increasing in

21.

22,

23.

CHAPTER 1  INTRODUCTION TO DIFFERENTIAL EQUATIONS

some neighborhood of z = 1. From 3" = 2z + 2yy’ we have 3" (1) = 2(1) +2(-1)(2) = -2 < 0,

so y(z) is concave down in some neighborhood of = = 1.

(a) v »

v A

4L

y=2ax2+c y=—22+co
(b) When y = 22+¢1, 3 = 22 and (y)? = 42%. When y = —22+co, v = —27 and (¢')? = 422

(c) Pasting together 22, z > 0, and —22, z < 0, we get

—.’Ez x
f(w)={ S

x, x> 0.

The slope of the tangent line is 3/ ‘(_1 5= 6v4+5(—1)3=7.
Differentiating y = xsinx 4 x cos ¢ we get

Yy =xcosx+sinr —xrsinx + coszx

! . . .
and Y = —xsinx +CoOSx + COST — T COST — SINT — SInx

= —xsinx —xrcosx + 2cosx — 2sinx.
Thus
" . . . .
Yy +y=—xrsinx —xcosx+ 2cosx —2sinx +xsinx + rcosx = 2cosx — 2sin x.

An interval of definition for the solution is (—o0, c0).

24. Differentiating y = zsinz + (cos z) In(cos x) we get

—sinx

/ .
Y :mcos:z—i-smx—i-cosx(

) — (sinz) In(cos z)

=xcosz +sinz —sinz — (sinx) In(cos )

COS T

=z cosz — (sinz)In(cos x)
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1.R Chapter 1 in Review 27

" . ) —sinx
and, y' = —xsinz + cosx —sinx

COS T

> — (cosz) In(cos z)

sin?

= —zsinz + cosz + — (cos z) In(cos x)

1—cos®x

= —zsinx + cosx + ———— — (cos z) In(cos x)
cos

= —xsinz + cosx + secx — cosx — (cos ) In(cos z)

= —xsinz + secx — (cosz) In(cos z).
Thus
y" +y = —zsinz +secx — (cos ) In(cosx) + zsinz + (cosz) In(cos z) = sec .

To obtain an interval of definition we note that the domain of Inz is (0, 00), so we must have
cosx > 0. Thus, an interval of definition is (—n/2,7/2).

25. Differentiating y = sin(Inz) we obtain y' = cos(Inz)/z and y” = —[sin(lnz) + cos(Ilnz)]/z>.
Then
in(l 1 1
Py 4wy = 2 (_sm( nx) J;cos( nx)) N xCOS( nx) + sin(ln) = 0.
x x

An interval of definition for the solution is (0, 00).

26. Differentiating y = cos(Inz) In(cos(Inx)) + (Inz) sin(ln x) we obtain

L (30 s

cos(Inx) x

in(l | in(l
y' = cos(Inx) _Sm<nfv>> 008 ) | sin(n)
X

T x

_ In(cos(Inz)) sin(In z) n (Inz) cos(lnx)

and
y'=—x [ln(cos(ln x))cos(xhlx) + sin(ln z) cos(in:z;) (Sin(;nx))] %
+ In(cos(In z)) sin(In m)% +x [(ln x) (_sin(;n :z:)) + COS(;H Jj)] % — (Inz) cos(In x)%
sin?(In
= % {— In(cos(Inz)) cos(Inz) + cos((llnx)) + In(cos(Inz)) sin(In z)
— (Inz)sin(lnz) 4+ cos(lnz) — (Inzx) cos(lnx) |.
Then

9 sin?(In )

2°y" + zy’ +y = —In(cos(Inx)) cos(lnz) + + In(cos(Inz)) sin(In z)

cos(Inx)
— (Inz)sin(lnz) 4+ cos(Inz) — (Inx) cos(Inz) — In(cos(Inz)) sin(ln z)
+ (Inz) cos(Inz) + cos(lnz) In(cos(Inz)) + (Inz) sin(ln x)
sin?(In ) sin?(In x) + cos?(Inz) 1

cos(In z) + cos(inz) cos(In x) cos(In x) sec(lnz)
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To obtain an interval of definition, we note that the domain of Inz is (0, c0), so we must have
cos(lnx) > 0. Since cosx > 0 when —7/2 < x < 7/2, we require —7/2 < Inz < 7/2. Since €*
is an increasing function, this is equivalent to e~ ™? < x < ™2, Thus, an interval of definition
is (e‘“/ 2 e/ 2). Much of this problem is more easily done using a computer algebra system

such as Mathematica or Maple.
27. Using implicit differentiation on 23y = 23 4+ 1 we have
32392y + 32%y® = 322
ayty +yP =1
1

2y +y= 3
Y

28. Using implicit differentiation on (z — 5)? + y? = 1 we have

2(z—5)+2yy =0

r—5+yy =0
y,:_ac—5
y
o (x—=5)? 1—¢> 1
W=t oL
y y y
2 1
(?//)Jrl:?‘

29. Using implicit differentiation on 3> + 3y = 1 — 32 we have

3%y + 3y = -3
vy +y =1

Again, using implicit differentiation, we have

n_ —2yy’ — ) 1 2_2 o 1 2_2 /(_ /)2_2(/)3
y—m—yym—yy m—yy y) =2y\y ).

30. Using implicit differentiation on y = ¢*¥ we have
y =" (zy +y)
(1 —zey)y = ye™.
Since y = e*¥ we have

(I-—zy)y =y-y or (1—ay)y =y
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In Problems 31-34 we have 3y’ = 3c163% — coe® — 2.

31.

32.

33.

34.

35.

36.

37.

38.

The initial conditions imply

c1+c=0
3c1 —cp—2=0,
SO ¢1 = % and 02:—%. Thus y = %63$—%6_x—21‘.

The initial conditions imply

c1+ec=1

361—02—2:—3,
soci =0and cog =1. Thus y =e % — 2zx.
The initial conditions imply

6163 + 026_1 —2=4

30163 — cze_l —2=-=2,
So ] = 36*3 and ¢g = %e. Thus y = %egm*g’ + %e*xﬂ — 2.
The initial conditions imply

616_3 +ce+2=0

3cie ™ —cpe—2=1,
soc; = €3 and o = —Je~!. Thus y = €373 — Je7271 — 2z,
From the graph we see that estimates for yg and y; are yg = —3 and y; = 0.

Figure 1.3.3 in the text can be used for reference in this problem. The differential equation is

dh CAO
— = ———1/2gh.
at ~ A, VY
Using Ay = 7(1/24)? = 7/576, A, = 7(2)? = 47, and g = 32, this becomes

dh cm /576 c
L V64h = = /h.
dt 4 64n 288 vh

Let P(t) be the number of owls present at time ¢. Then dP/dt = k(P — 200 + 10¢).
Setting A’(t) = —0.002 and solving A’(t) = —0.0004332A(t) for A(t), we obtain

Alt) = Aty  —0.002
~—0.0004332  —0.0004332

=~ 4.6 grams.
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is blue. The pictures are obtain using Mathematica, as mentioned before Problem 1.
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

15. (a) The isoclines have the form y = —x + ¢, which are

straight lines with slope —1.

(b) The isoclines have the form x? + y? = ¢, which are

circles centered at the origin.

Discussion Problems

16. (a) When x = 0 or y = 4, dy/dx = —2 so the lineal elements have slope —2. When y = 3 or
y =5, dy/dr = x — 2, so the lineal elements at (z, 3) and (z, 5) have slopes x — 2.

(b) At (0, yo) the solution curve is headed down. If y — oo as = increases, the graph must
eventually turn around and head up, but while heading up it can never cross y = 4 where
a tangent line to a solution curve must have slope —2. Thus, y cannot approach oo as x

approaches oo.

y
17. When y < %xQ, y = x? — 2y is positive and the portions of ATV
e SRR
solution curves “outside” the nullcline parabola are increas- LRI g
. . . . [ WA 4
ing. When y > %13, y' = 2% — 2y is negative and the portions Y% NN /
1 1017 2N N\N\ /
of the solution curves “inside” the nullcline parabola are de- NN !
. O—+——+ -+ X
CreaSIHg. [N (] d VNN
e /7 70
=1; 1|11 !/ A
e R |
e I
=2t 11 L
| [ [ A A |
[ e
-3 [N Lfrrr
-3 -2 o 1 2 3

18. (a) Any horizontal lineal element should be at a point on a nullcline. In Problem 1 the

nullclines are 22

— 92 =0 or y = £z. In Problem 3 the nullclines are 1 — zy = 0 or
y = 1/x. In Problem 4 the nullclines are (sinz)cosy = 0 or x = nm and y = 7/2 + nm,
where n is an integer. The graphs on the next page show the nullclines for the differential

equations in Problems 1, 3, and 4 superimposed on the corresponding direction field.
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2.1 Solution Curves Without a Solution 33

0 2 4
Problem 4

-4 -2 0
Problem 1 Problem

Lo |
'~
1
'~
1
IN)

(b) An autonomous first-order differential equation has the form y’ = f(y). Nullclines have
the form y = ¢ where f(¢) = 0. These are the equilibrium solutions of the differential

equation.

2.1.2 AUTONOMOVUS FIRST-ORDER DEs

19. Writing the differential equation in the form dy/dz = y(1 — y)(1 + y) we see that
critical points are located at y = —1, y = 0, and y = 1. The phase portrait is shown
at the right.

(a) (b) v °

517 -1

ok

(c) y (d)

20. Writing the differential equation in the form dy/dx = y?(1 — y)(1 + y) we see that
critical points are located at y = —1, y = 0, and y = 1. The phase portrait is shown 1

at the right, and the graphs of the typical solutions are shown on the next page.
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(@ v (b) v

(c) y (d) y

-5

In Problems 21-28 graphs of typical solutions are shown. However, in some of the solutions, even
though the upper and lower graphs either actually bend up or down, they display as straight line
segments. This is a peculiarity of the Mathematica graphing routine and may be due to the fact that
the NDSolve function was used rather than DSolve. NDSolve uses a numerical routine (see
Section 2.6 in the text), and involves sampling x-coordinates where the corresponding y-coordinates
are approrimated. It may be that the routine involved breaks down as the graph becomes nearly
vertical, forcing the x-coordinates on the graph to becomes closer and closer together.

21. Solving y? — 3y = y(y — 3) = 0 we obtain the critical points 0 and 3. From the
phase portrait we see that 0 is asymptotically stable (attractor) and 3 is unstable
(repeller). y

6l

4 2 4 ¥
)

22. Solving y*> —y> = y*(1 —y) = 0 we obtain the critical points 0 and 1. From the phase

portrait we see that 1 is asymptotically stable (attractor) and 0 is semi-stable.

y

X

N
-4 -2 F?—'T
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2.1 Solution Curves Without a Solution

23. Solving (y — 2)* = 0 we obtain the critical point 2. From the phase portrait we see

that 2 is semi-stable.

24. Solving 10 + 3y — y* = (5 — y)(2 + y) = 0 we obtain the critical points —2 and 5.
From the phase portrait we see that 5 is asymptotically stable (attractor) and —2
is unstable (repeller). y

o\

41

25. Solving y*(4 — 3?) = %(2 — y)(2 + y) = 0 we obtain the critical points —2, 0, and
2. From the phase portrait we see that 2 is asymptotically stable (attractor), 0 is

semi-stable, and —2 is unstable (repeller).

Y

r3 ”y ) f’T T e
/

4L

26. Solving y(2 —y)(4—y) = 0 we obtain the critical points 0, 2, and 4. From the phase
portrait we see that 2 is asymptotically stable (attractor) and 0 and 4 are unstable
(repellers). y

6l

o}

/
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

27. Solving yIn(y + 2) = 0 we obtain the critical points —1 and 0. From the phase por-

trait we see that —1 is asymptotically stable (attractor) and 0 is unstable (repeller).

Y

.

4 = 2 4

—

28. Solving ye¥ — 9y = y(e¥ —9) = 0 (since €Y is always positive) we obtain the critical
points 0 and In9. From the phase portrait we see that 0 is asymptotically stable

(attractor) and In9 is unstable (repeller). In 9

29. The critical points are 0 and ¢ because the
graph of f(y) is 0 at these points. Since
f(y) > 0 for y < 0 and y > ¢, the graph J
of the solution is increasing on (—oo, 0) and
(¢, 00). Since f(y) < 0 for 0 < y < ¢, the

graph of the solution is decreasing on (0, ¢). 0 ﬁ x
30. The critical points are approximately at —2, \Zy
2, 0.5, and 1.7. Since f(y) > 0 for y < —2.2 1.7

and 0.5 < y < 1.7, the graph of the solution

is increasing on (—oo, —2.2) and (0.5, 1.7). R 5 X

Since f(y) < 0 for —2.2 < y < 0.5 and _lk

y > 1.7, the graph is decreasing on
(—2.2,0.5) and (1.7, c0).
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2.1 Solution Curves Without a Solution

Discussion Problems

31.

32.

33.

34.

35.

From the graphs of z = (7/2)y and z = siny we see that 1

(m/2)y —siny = 0 has only three solutions. By inspection

[N
S

we see that the critical points are —m /2, 0, and 7 /2. From

the graph at the right we see that

2 . <0 for y<-m/2
~y —siny
™ >0 for y>mn/2 \

(NI

NI

—y —sin
Y Y <0 for O<y<m/2

2 {>0 for —7w/2<y<0 .

This enables us to construct the phase portrait shown at the right. From this portrait we see

that 7/2 and —7/2 are unstable (repellers), and 0 is asymptotically stable (attractor).
For dy/dx = 0 every real number is a critical point, and hence all critical points are nonisolated.

Recall that for dy/dx = f(y) we are assuming that f and f’ are continuous functions of y
on some interval I. Now suppose that the graph of a nonconstant solution of the differential
equation crosses the line y = ¢. If the point of intersection is taken as an initial condition we
have two distinct solutions of the initial-value problem. This violates uniqueness, so the graph
of any nonconstant solution must lie entirely on one side of any equilibrium solution. Since f is
continuous it can only change signs at a point where it is 0. But this is a critical point. Thus,
f(y) is completely positive or completely negative in each region R;. If y(z) is oscillatory or
has a relative extremum, then it must have a horizontal tangent line at some point (zg, yo).
In this case yg would be a critical point of the differential equation, but we saw above that the

graph of a nonconstant solution cannot intersect the graph of the equilibrium solution y = yp.

By Problem 33, a solution y(z) of dy/dx = f(y) cannot have relative extrema and hence must
be monotone. Since y'(z) = f(y) > 0, y(x) is monotone increasing, and since y(z) is bounded
above by cg, lim, ,o y(x) = L, where L < ¢o. We want to show that L = co. Since L is a
horizontal asymptote of y(z), lim, o v'(2) = 0. Using the fact that f(y) is continuous we

have
F(L) = f(lim y(2)) = lim f(y(x)) = lim y(z) = 0.

T—r00 Tr—r00 T—r00
But then L is a critical point of f. Since ¢; < L < ¢o, and f has no critical points between ¢

and co, L = co.

Assuming the existence of the second derivative, points of inflection of y(z) occur where 3/ () =
0. From dy/dx = f(y) we have d*y/dz?® = f'(y)dy/dz. Thus, the y-coordinate of a point of
inflection can be located by solving f’(y) = 0. Points where dy/dx = 0 correspond to constant

solutions of the differential equation.
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36.
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

olving y* —y — 6 = (y — 3)(y + 2) = 0 we see that 3 and — _
Solving y? 6 3 2) =0 hat 3 and —2 ]

are critical points. Now

d*y/da® = (2y — 1) dy/dx = (2y — 1)(y — 3)(y +2), o \ \ L
so the only possible point of inflection is at y = %, although
the concavity of solutions can be different on either side of -
y=—2and y = 3. Since y’(z) <0 for y < —2 and £ < y < 3, s 1
and y”(z) > 0 for —2 < y < 3 and y > 3, we see that solution
curves are concave down for y < —2 and % < y < 3 and concave up for -2 < y < % and
y > 3. Points of inflection of solutions of autonomous differential equations will have the same
y-coordinates because between critical points they are horizontal translates of each other.

If (1) in the text has no critical points it has no constant solutions. The solutions have neither
an upper nor lower bound. Since solutions are monotonic, every solution assumes all real

values.

Mathematical Models

38.

39.

40.

The critical points are 0 and b/a. From the phase portrait we see that 0 is an

attractor and b/a is a repeller. Thus, if an initial population satisfies Py > b/a,

oo

the population becomes unbounded as ¢ increases, most probably in finite time,
ie. P(t) > o0 ast — T. If 0 < Py < b/a, then the population eventually dies out,
that is, P(t) — 0 as ¢ — oo. Since population P > 0 we do not consider the case
Py <0.

The only critical point of the autonomous differential equation is the positive number h/k. A
phase portrait shows that this point is unstable, so h/k is a repeller. For any initial condition
P(0) = Py < h/k,dP/dt < 0, which means P(t) is monotonic decreasing and so the graph of
P(t) must cross the t-axis or the line P = 0 at some time ¢; > 0. But P(¢;) = 0 means the

population is extinct at time ;.

Writing the differential equation in the form

it m\k "

dv k (mg ) Y
k

we see that a critical point is mg/k. From the phase portrait we see that mg/k is

an asymptotically stable critical point. Thus, lim; - v = mg/k. A
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41. Writing the differential equation in the form

dat m

k

m

dv k:(mg 02>:/€< 77;9

phase portrait we see that y/mg/k is an asymptotically stable critical point. Thus,

limy o0 v = y/myg/k.

2.1 Solution Curves Without a Solution 39

) (7

we see that the only physically meaningful critical point is \/mg/k. From the

+0)

Y

mg |

42. (a) From the phase portrait we see that critical points are o and . Let X (0) = Xj.

o If Xy < «, we see that X — a as t — oo.

o If o < Xy < B, we see that X — « as t — oo.

o If Xy > 3, we see that X(t) increases in an unbounded manner, but more specific

behavior of X (t) as t — oo is not known.

(b) When « = § the phase portrait is as shown.

o If Xy < o, then X(t) = « as t — oc.

o If Xy > «, then X (¢) increases in an unbounded manner. This could happen in a

finite amount of time. That is, the phase portrait does not indicate that X becomes

unbounded as t — oo.

(c) When k = 1 and o = B the differential equation is dX/dt = (o — X)2. For X(t) =

a—1/(t +c¢) we have dX/dt = 1/(t + ¢)? and

(a—X)*= [a—<a—

For X (0) = a/2 we obtain

For X (0) = 2a we obtain

Q

=2/

o1 _dx
c)|  (t+e)?2  dt
1
t+2/a
1
t—1/a’
X
20,
__—]
Va t
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For Xo > «a, X (t) increases without bound up to t = 1/a. For t > 1/a, X(t) increases

but X - aast— oo

2.2 | Separable Equations

In this section and ones following we will encounter an expression of the form In|g(y)| = f(x) + c.
To solve for g(y) we exponentiate both sides of the equation. This yields |g(y)| = el @)te = geef (@)
which implies g(y) = +ece/ @), Letting ¢; = +e® we obtain g(y) = crel @,
1. From dy = sin bx dx we obtain y = —% cos bz + c.
2. From dy = (z + 1)? dx we obtain y = %(.7} +1)3 +ec.
3. From dy = —e 3% dx we obtain y = %6_31 +c.
1 ) 1 1
4. From —— dy = dx we obtain ———— =x+4+cory=1— .
(y —1)2 y—1 T+c
5. From — dy = — dx we obtain In |y| = 4In|z| 4+ c or y = c12*.
Yy x
1 1 ) 1
6. From — dy = —2x dx we obtain —— = —z“4+cory= ———.
y? Y 24 ¢
7. From e 2Ydy = e3*dx we obtain 3e 2 + 2¢3% = ¢.
1
8. From ye¥dy = (e‘x + e_?’x) dx we obtain ye¥ —e¥ +e % + ge_?“ =c
1 9 P a? L 3
9. From (y+2+ — ) dy = 2° Inz dx we obtain 5 +2y+Injy| = §IH‘$| 3¢ +c.
Yy
10. F d L d btai 2 ! +
. From ———— dy = ————— dx we obtain = c.
2y 132" 4z 152 2 +3 4r+5
1
11. From ——dy = ———5—dz or sinydy = — cos’zdr = —%(1 + cos 2z) dz we obtain
cscy sec?
—cosy = —%x — %Sin2x +c or 4cosy=2x+sin2zx + c;.
sin 3z 9 .9 1 9
12. From 2ydy = ————_—dx or 2ydy = — tan 3w sec” 3z dz we obtain y° = —& sec” 3z + c.
cos® 3z
13. From e dy = e dx we obtain — (¥ +1) ' =1 (e" +1) 2 +¢
(ev+1)* 7 (er+1)° ’
14. From S dy = S dx we obtain (1 + y2)1/2 = (1 + x2)1/2 + c.

y
(1+y2)"? (14 22)/?

1
15. From 5 dS = k dr we obtain S = ce".
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16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

2.2 Separable Equations

From 0 _1 70 dQ = kdt we obtain In|Q — 70| = kt + c or Q — 70 = ¢ e,
1 1 1 .
From mdp = (P +1—P> dP = dt we obtain In|P| —In|l — P| = t + ¢ so that
t . clet
In 1_P‘:t—i—cor T p = ae- SolvmgfoerehaveP:Tcwt.

t+2_t+2_y

1
From N dN = (te'*? — 1) dt we obtain In|N| = te!*? — e!*2 —t +cor N = cre’®

-2 —1 5 5
From 3;4_3dy: §+4dx or <1—y+3) dy = <1—M)dmweobtainy—51n|y+3|:

A\ ?
x—>5n|z+4|+c or rte =Y.
y+3

1 2 2
From yt dy:x+3dx or <1+1>dy:<1+

5
>d:c we obtain y +2Injy — 1| =
y—1 T — Yy — 3

€T —

x+5ln|z—3|+c¢ or u:clem_y
(z —3)°
1 i 1,2 -1 s
Fromxdx:ﬁdywe obtain 5x“ =sin"" y + ¢ or y = sin ?—i—cl .
-y
1 1 v 1 1
From — dy = dx = ° dx we obtain —— = tan" ! e4¢ or y = ——
Y2 et +e 7 (e*)2 +1 y tan™'e? +c

1
From oY dx = 4dt we obtain tan~'z = 4t + c. Using z(7/4) = 1 we find ¢ = —37/4. The
T

3 3
solution of the initial-value problem is tan™' z = 4t — Zﬂ or x = tan <4t — I)
1 1 1 1 1 1 1 1
F dy = d | ————|dy== — d btai
T R G g x0r2<y—1 y+1> Y 2<x—1 x+1> e obtamm
Inly—1]—Injy+1] =In|z— 1| —In|z+1|+1 y=1_ =D gng y(2) = 2 we find
nly—1|—1In =In|z—1]—In|z nc or = . Usin, = 2 we fin
Y Y yr1l  a+1l &y
. o y—1 -1
¢ =1. A solution of the initial-value problem is = ory=ue.
y+1 x+1
1 1-— 1 1 1
From —dy = iz = (= — =) dz we obtain Inly| = —= —Injz| = ¢ or zy = cre” V=,
Yy x2 2 T
Using y(—1) = —1 we find ¢; = e~!. The solution of the initial-value problem is zy = e~ 11z

ory = e (F1/2) /g,

From dy = dt we obtain —%ln |1 —2y| =t+corl—2y=cre 2. Using y(0) = 5/2 we

1—-2y

find ¢; = —4. The solution of the initial-value problem is 1 — 2y = —4e™% or y = 272! + 1.
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27. Separating variables and integrating we obtain

dx _ dy
Vi—a?2 /1 —y?

=0 and sinlz—sin"ly=ec

Setting 2 = 0 and y = v/3/2 we obtain ¢ = —x/3. Thus, an implicit solution of the initial-

1

value problem is sin~'2 — sin~!y = —7/3. Solving for y and using an addition formula from

trigonometry, we get

3vV1 — 2
y:sin(sinflx—kg) ::zrcosg+ 1—x25in§:;+\f2$.

=—> dx we obtain
1+ (z2?)

1
28. From ——d
1+ (292 Y

1
—tan 12y =—=tan t2%?+c¢ or tan'2y+tanlaz? =¢;.

2

Using y(1) = 0 we find ¢; = w/4. Thus, an implicit solution of the initial-value problem is

2

tan~! 2y + tan "t 2% = /4. Solving for y and using a trigonometric identity we get

2y = tan (E —tan~! a;2>
4
m
¢ (7_,5 -1 2)
an | o an~

tan(m/4) — tan(tan—! 22)
( )

1 + tan(m/4) tan(tan—! 22)
1 (1—2a?
2 \1+22)°
29. Separating variables, integrating from 4 to x, and using ¢ as a dummy variable of integration
/ ydt:/ et dt
4y dt 4
T X
In y(t)‘ = / e Pt
4 4

Iny(z) —Iny(4) = A e Pat,

y:

gives

Using the initial condition we have

T T .
lny(.%') = lny(4) + A e_tht = ln 1 + A €_t2dt = A e_t2dt.

Thus,
* e’t2 dt

y(x) = el
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2.2 Separable Equations

30. Separating variables, integrating from —2 to x, and using ¢ as a dummy variable of integration

gives
/ det:/ sin ¢2dt
oyt dl —2
T x
—y(t)~! :/ sin t2dt
—9 9
x
—y(z) P+ y(=2)7! :/ sin t2dt
-2
xX
—y(z)™t = —y(-2)71 -l—/ sin t2dt
-2
xX
y(z)"1 =3 —/ sin t2dt.
-2
Thus

1

y(@) = 3— %, sint?dt”

31. Separating variables we have 2y dy = (2o + 1)dx. Integrating
gives 2 = 22 + £ + ¢. When y(—2) = —1 we find ¢ = —1,
soy? =a2>+2—1landy = —vVz2+2—1. The negative
square root is chosen because of the initial condition.

To obtain the exact interval of definition we want 22 +z—1 >
0. Since y = 22 4+ — 1 = 0 is a parabola opening up and
224+2—1=0when z = —%j:%\/g, we use (—oo, —%—%\/5)

(because of the initial condition).

32. The problem should read

d
(2y — 2)% =322 +4z+2, y(-2)=1.

Separating variables we have (2y — 2)dy = (322 + 4x + 2)dx.
Integrating gives y2 — 2y = 3 + 222 4+ 2z + ¢. We complete
the square by adding 1 to the left-hand side and absorbing
the 1 into the constant on the right-hand side. This gives
(y — 1)2 = 23 + 222 + 22 + ¢;. From the initial condition we
find that ¢; = 4, so the solution of the initial-value problem

18

y=1— a3 +222+22 +4,

where the minus sign is determined by the initial condition.

4|

41
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To obtain the exact interval of definition of the solution we want
2342t 20 4+4= (2 +2)(z+2)>0 or x> —2.

Thus, the interval of definition of the solution is (—2, c0).

33. Writing the differential equation as e*dr = e Ydy and inte- Y

grating we have e = —e™¥ + ¢. Using y(0) = 0 we find that )

¢ =2so that y = —In(2 — ¢%).

To find the interval of definition of this solution we note that 2t

2 — € > 0 so x must be in (—oo, In2).

4 2 *

34. Integrating the differential equation we have — cosz + %yz = Y

c. Then y(0) = 1 implies that ¢ = —%, and so y =

v2cosx —1. We choose the positive square root because

of the initial condition. 4 4 x

To find the interval of definition of the solution we note that

1 T T
2cosz—1>0 or cosT > —, SO ——<zr< o,
2 3 3
and x must be in (—E, E).
3°3
35. (a) The equilibrium solutions y(x) = 2 and y(z) = —2 satisfy the initial conditions y(0) = 2
and y(0) = —2, respectively. Setting x = i and y = 1 in y = 2(1 + ce*®) /(1 — ce®) we
obtain ) .
1=2 +Ce, l—ce=2+2ce, —1=3ce, and c=——.
1—ce 3e

The solution of the corresponding initial-value problem is
1 — lete—1 3 _ eda—1
y=2(—3" ) =22 — |-
1 + §€4$_1 3 + e* %~
(b) Separating variables and integrating yields

1 1
Zln|y—2]—11n]y+2\+lnc1:x
Inly—2|—In|y+ 2|+ Inc =4z

! ‘C(y—2) (_49[;
Y+ 2
Z/—2: 4x
Y+ 2

Solving for y we get y = 2(c + €*®)/(c — €?®). The initial condition y(0) = —2 implies
2(c+1)/(c — 1) = —2 which yields ¢ = 0 and y(z) = —2. The initial condition y(0) = 2
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36.

37.

38.

2.2 Separable Equations

does not correspond to a value of ¢, and it must simply be recognized that y(z) =2 is a

solution of the initial-value problem. Setting z = 1 and y = 1 in y = 2(c + €*®)/(c — e*)

leads to ¢ = —3e. Thus, a solution of the initial-value problem is
—3e + et? 3 —ele—l
Yy =2 =2 .
—3e — et 3+ edr—1

Separating variables, we have
d d d
2y :j or /y :ln‘.’]f|+c
-y oz y(y—1)

Using partial fractions, we obtain

1 1
/()dy:1n|x|+c
y—1 'y

Inly—1|—In|y|=Inlz|+ ¢

yl‘
Ty
y-1 =e%=cy.
Ty

In

Solving for y we get y = 1/(1 — ¢1x). We note by inspection that y = 0 is a singular solution
of the differential equation.

(a) Setting x = 0 and y = 1 we have 1 = 1/(1 — 0), which is true for all values of ¢;. Thus,
solutions passing through (0,1) are y = 1/(1 — c12).

(b) Settingz=0and y =01iny = 1/(1 — c1x) we get 0 = 1. Thus, the only solution passing
through (0, 0) is y = 0.

(c) Settingz =3 and y = wehave 1 =1/(1—1¢1),50 1 = —2 and y = 1/(1 + 22).

(d) Setting x =2 and y = 7 we have T = 1/(1 —2¢1), 80 ¢ = —5 and y = 1/(1 + 32) =
2/(2 + 3x).

Singular solutions of dy/dx = xy/1 —y? are y = —1 and y = 1. A singular solution of

(e® + e ®)dy/dr = y? is y = 0.

Differentiating In(z? + 10) + cscy = ¢ we get

2x ¢ dy 0
———— —cscy coty — =
22+ 10 Y Y e ’

2z 1 cosydy

_ 0,
22+10 siny siny dx

or

2z sin? y dx — (2% 4 10) cosy dy = 0.
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39.

40.

41.

CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

Writing the differential equation in the form

dy 2z sin?y
dr (22 +10)cosy

we see that singular solutions occur when sin?y = 0, or y = k7, where k is an integer.

The singular solution y = 1 satisfies the initial-value
problem.

d
Separating variables we obtain ﬁ = dx. Then
y —_—
1 r+c—1
———=2+c¢ and y=-——.
y—1 r+c

Setting x = 0 and y = 1.01 we obtain ¢ = —100. The
solution is

2101
Y= 2100

d
Separating variables we obtain m = dx.
Then
_ 1 T +c
1 — = — -
10tan™ " 10(y—1) = z+c¢ and y 1+10 tan 10

Setting x+ = 0 and y = 1 we obtain ¢ = 0. The
solution is

1+t ®
= — tan — .
y 10 ™10

-0.004-0.002

0.002 0.004 X

-0.004-0.002

1.0004

1.0002

0.002 0.004 X

0.9998

0.9996

0.002 0.004 *
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42.

43.

2.2 Separable Equations 47

d
Separating variables we obtain m = dr. 1 000:
Then )
1 x+c 1.0002
10tan~ ' 10(y—1) = d y=14+—1t
an (y—1) =z+c and vy —1—10 an —
Setting = 0 and y = 1 we obtain ¢ = 0. The -0.004-0.002
solution is ) 0.9998
y=1+ —tan i .
10 10 0.9996
Alternatively, we can use the fact that
dy 1 4 y—1 1
——— - =——tanh™ ——— = —10tanh™ " 10(y — 1).
/ (y—12-001 o1 ™ 701 an (=1

We use the inverse hyperbolic tangent because |y—1| < 0.1 or 0.9 < y < 1.1. This follows from
the initial condition y(0) = 1. Solving the above equation for y we get y = 1+ 0.1 tanh(x/10).

Separating variables, we have

dy dy (i, Y2 2N
y—y3_y0—yﬂl+w__< * >dy -

y l-y 1l+y
Integrating, we get

1 1
1n\y|—§ln|1—yl—§ln\1+y\:x+c,

When y > 1, this becomes

1 1 Y
Letting = 0 and y = 2 we find ¢ = In(2/v/3). Solving for y we get y1(r) = 2e*/v/4e2* — 3,
where z > In(v/3/2).

When 0 < y < 1 we have

1 1
1ny—21n(1—y)—21n(1+y):ln1y_y2:az—i—c.
Letting z = 0 and y = 1 we find ¢ = In(1/v/3). Solving for y we get ya(z) = €*/Ve?* + 3,

where —oo < x < 00.
When —1 < y < 0 we have

1 1 —
ln(—y)—gln(l—y)—iln(l-ky) :lnlinQ =z +c.
Letting z = 0 and y = —3 we find ¢ = In(1/+/3). Solving for y we get y3(z) = —e*/Ve2* + 3,

where —oco < x < 00.
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48 CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

When y < —1 we have

1 1 -
ln(—y)—iln(l—y)—fln(—l—y):lniy=a:+c.

2 1/y2_1

Letting = 0 and y = —2 we find ¢ = In(2/v/3). Solving for y we get y4(z) = —2¢*/v/4e2* — 3,

where = > In(v/3/2).

Y Y Y Y

4\ 4 4 4

2\ 2 2 2

L
1 2 3 4 5% —1 2 2 4 X T -2 1 % 1 2 3 4 5%
—

-2 -2 -2 -
-4 -4 -4 -

.. . y

44. (a) The second derivative of y is 8

The solution curve is concave down when
d*y/dz® < 0 or y > 3, and concave up when
d*y/dz? > 0 or y < 3. From the phase portrait
we see that the solution curve is decreasing when
y < 3 and increasing when y > 3.

Py dy/de  1Jy-3) 1 6 ———

@ -3 =3P -9 ﬁ%
2

-Z\Q 4

-2\

(b) Separating variables and integrating we obtain

(31—23)dy:dx /6/
i\

—y'—3y=x+c

2
Yy —6y+9=2x+c
— 2:
(y—3) 2z + -1 i 2 3 1 5%
y=3Ltv2xr+c. 5

The initial condition dictates whether to use the plus or minus sign.
When y1(0) = 4 we have ¢; = 1 and y1(z) =3+ V2z + 1.

When 12(0) = 2 we have ¢; = 1 and yo(z) =3 — V22 + 1.
r)=3—2x—1.

) =3++2x+3.

45. We separate variable and rationalize the denominator:

(
When y3(1) = 2 we have ¢; = —1 and y3(
( (

When y4(—1) = 4 we have ¢; = 3 and y4

1 1—sinx 1—sinz 1—sinz

dy

1+sinz 1—sinz 1 —sin?zx cos?x

= (sec? z — tan z sec ) dz.

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed
with a certain product or service or otherwise on a password-protected website for classroom use.

© Cengage Learning. All rights reserved. No distribution allowed without express authorization.



© Cengage Learning. All rights reserved. No distribution allowed without express authorization.

2.2 Separable Equations

Integrating, we have y =tanx —secx 4+ C.

46. Separating variables we have /ydy = sin/z dz. Then

2
/\/gjdy:/sinﬁdx and 3y3/2:/sin\/5dx.

1 1
To integrate sin \/z we first make the substitution u = v/z. then du = ——= dx = — du and

SN
/sin JEds = /(sin ) (2u)du = 2/ wsinu du.

Using integration by parts we find

/usinudu:—ucosu+sinu:— x cos \/T + sin /.
Thus
2
3y:/sin\/§da§:—2\/5008\/5+2sin\/5—|—0
and y = 3%/3 (—Vxzcos vz +sinyvz + C).

47. Separating variables we have dy/(\/y +y) = dz/(\/x + ). To integrate [dx/(y/x + x) we

substitute u? = z and get

2 2
/u—i—uu2 du:/1+udu:2ln\1+u|+c:21n(l—|—\/5)4—0.
Integrating the separated differential equation we have
2In(1+y)=2In(1++vz)+c or In(l+y)=Ih(l+vVz)+Inc.
Solving for y we get y = [c1(1 + /x ) — 1]2.

48. Separating variables and integrating we have

dy (4
-y )

y2/3
/1_y1/3dy = .fU“‘Cl

—31n‘1—y1/3} =x+c

In|l—y'/3| = —g + co
1= yM3] = cye/?
1 o y1/3 — C4€7$/3

y1/3 =1+ cye /3

y= (1 + 056_1/3)3.
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50 CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

49. Separating variables we have ydy = eV¥dx. If u = Vz, then v? = 2z and 2udu = dx. Thus,
[ eV dr = [2ue" du and, using integration by parts, we find

1
/ydy—/eﬁdw SO 2y2—/2ue“du——26“—1—(7—2\/56‘/5—26\/54—0,

and y:2\/\/§e\/5—e\/5+0.

To find C' we solve y(1) = 4.

y(1):2\/\f1eﬁ—eﬁ+0:2\@:4 so C =4,

and the solution of the initial-value problem is y = 2\/ VT eVT — eV 44,

50. Separating variables we have ydy = xtan~! x dz. Integrating both sides and using integration

by parts with « = tan™' 2 and dv = z dz we have

/ydy:xtan_lzrdx

L1 1

2 az—gaz—i—itan*lx—kC

= - an
¥y =3

N =

P =x?tan te —x +tan x4+ O

y=+vVa2tan 'z —x +tanlx + C4

To find Cy we solve y(0) = 3.

y(O):\/O2tan_10—0+tan_10+01:\/01:3 SO C1 =9,

and the solution of the initial-value problem is y = \/ r2tan~'z — x4+ tan"lx + 9.

Discussion Problems

51. (a) While ya(z) = —v/25 — 22 is defined at © = —5 and = = 5, y)(x) is not defined at these

values, and so the interval of definition is the open interval (-5, 5).

(b) At any point on the z-axis the derivative of y(z) is undefined, so no solution curve can
cross the z-axis. Since —xz/y is not defined when y = 0, the initial-value problem has no

solution.

52. (a) Separating variables and integrating we obtain z? — y?> = c¢. For ¢ # 0 the graph is a
hyperbola centered at the origin. All four initial conditions imply ¢ = 0 and y = +=.
Since the differential equation is not defined for y = 0, solutions are y = £z, * < 0 and
y = 2, £ > 0. The solution for y(a) = ais y =z, z > 0; for y(a) = —a is y = —x; for
y(—a)=aisy = —x, x < 0; and for y(—a) = —aisy =z, x < 0.
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53.

54.

55.

2.2 Separable Equations

(b) Since z/y is not defined when y = 0, the initial-value problem has no solution.

(c) Settingz =1andy =2in 2% —y? =cwe get c = —3,s0 y> = 22 +3 and y(x) = V2 + 3,
where the positive square root is chosen because of the initial condition. The domain is

all real numbers since 2 + 3 > 0 for all z.

Separating variables we have dy/ (w sin? y) = 3.
dz which is not readily integrated (even by a CAS).
We note that dy/dx > 0 for all values of z and y and
that dy/dx = 0 when y = 0 and y = m, which are
equilibrium solutions.  us

26 -2 -2 2 4 6 8

N
. .
B UuN U Wy
<

(a) The solution of ¢’ =y, y(0) = 1, is y = e*. Using separation of variables we find that the
solution of 3 = y[1 4+ 1/(zInz)], y(e) = 1, is y = e* “Inz. Solving the two solutions

simultaneously we obtain

T e

e =e" “lnx, SO e =Inx and xr=e°

(b) Since y = )~ 2.33 x 10%:656:520 " the y-coordinate of the point of intersection of the

two solution curves has over 1.65 million digits.

We are looking for a function y(z) such that

dy 2

2

) =1
o+ ()

Using the positive square root gives

snty=z+c

Thus a solution is y = sin(z + ¢). If we use the negative square root we obtain

y =sin(c — z) = —sin(z — ¢) = —sin(z + ¢1).
Note that when ¢ = ¢; = 0 and when ¢ = ¢; = 7/2 we obtain the well known particular
solutions y = sinx, y = —sinx, y = cosx, and y = —cosx. Note also that y =1 and y = —1

are singular solutions.
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

56. (a) y

(b) For |z| > 1 and |y| > 1 the differential equation is dy/dz = \/y% — 1 /v/2% — 1. Separating
variables and integrating, we obtain
dy ~ dx

V-1 Va?-1

and cosh 'y =cosh 'z +ec.

Setting # = 2 and y = 2 we find ¢ = cosh™! 2 —cosh™' 2 = 0 and cosh™!y = cosh™ ' z. An

explicit solution is y = .

Mathematical Model

57. Since the tension 77 (or magnitude T7) acts at the lowest point of the cable, we use symmetry
to solve the problem on the interval [0, L/2]. The assumption that the roadbed is uniform (that
is, weighs a constant p pounds per horizontal foot) implies W = pzx, where z is measured in feet
and 0 < z < L/2. Therefore (10) in the text becomes dy/dx = (p/T1)x. This last equation is a
separable equation of the form given in (1) of Section 2.2 in the text. Integrating and using the
initial condition y(0) = a shows that the shape of the cable is a parabola: y(z) = (p/211)2>+a.
In terms of the sag h of the cable and the span L, we see from Figure 2.2.5 in the text that
y(L/2) = h + a. By applying this last condition to y(x) = (p/2T})z? + a enables us to express
p/2T1 in terms of h and L: y(x) = (4h/L*)2? + a. Since y(z) is an even function of x, the
solution is valid on —L/2 < x < L/2.

Computer Lab Assignments

58. (a) Separating variables and integrating, we have

4 /
(3y* + 1)dy = —(8x + 5)dx ﬁ
2
3 2 0 b4
Yy’ +y=—4z" —bx +c.
Using a CAS we show various contours of f(z,y) = -2
y®+y+4x?+52. The plots, shown on [—5, 5] x[5, 5], -4 %\x
correspond to c-values of 0, £5, £20, £40, +80, and 4 -2 0 2 14
+125.

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed
with a certain product or service or otherwise on a password-protected website for classroom use.

© Cengage Learning. All rights reserved. No distribution allowed without express authorization.



© Cengage Learning. All rights reserved. No distribution allowed without express authorization.

2.2 Separable Equations

(b) The value of ¢ corresponding to y(0) = —1 is Y
f(0, —=1) = —=2; to y(0) = 2 is f(0,2) = 10; to 4
y(—1)=41is f(—1,4) = 67; and to y(—1) = =3 is 2
S
X

N\

-4 -2 0 2 4

59. (a) An implicit solution of the differential equation (2y + 2)dy — (423 + 6x)dx = 0 is
42y —at—322+c=0.

The condition y(0) = —3 implies that ¢ = —3. Therefore y? + 2y — 2* — 322 —3 = 0.

(b) Using the quadratic formula we can solve for y in terms of x:

—2 4 /4 + 4(x* + 322 + 3)
y:
2

The explicit solution that satisfies the initial condition is then

y=—1—+vat+3z3+4.

(c) From the graph of f(z) = z* + 323 + 4 below we see that f(x) < 0 on the approximate

interval —2.8 < x < —1.3. Thus the approximate domain of the function
y=—1—vat+33+4=-1—/f(x)

isx < —2.8 or x> —1.3. The graph of this function is shown below.

-1-£ (%)
-z -2 2 X
\z
-4
-6
-8
-10
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(d)

60. (a)

(b)

Using the root finding capabilities of a CAS, the zeros of f are found ~1-VE (x)
to be —2.82202 and —1.3409. The domain of definition of the solution I A
y(x) is then x > —1.3409. The equality has been removed since the &
derivative dy/dz does not exist at the points where f(x) = 0. The ¥
graph of the solution y = ¢(x) is given on the right.

-6

-8

-10

Separating variables and integrating, we
have

[~

N

(—2y +y*)dy = (x — 2?)dz

(=]

Y
and
1 1 1
4oyt =2 - St 4

» N
Using a CAS we show some contours of ~

6 -4 -2 0 2 4 6

f(z, y) = 2y> — 6y + 223 — 322. The plots

shown on [—7, 7] x [=5, 5] correspond to c-values of —450, —300, —200, —120, —60, —20,
~10, —8.1, —5, —0.8, 20, 60, and 120.

N

~

The value of ¢ corresponding to y(0) = 3 is

f(O, %) = —%. The portion of the graph

between the dots corresponds to the solution

[/

curve satisfying the initial condition. To deter- 0
mine the interval of definition we find dy/dx for -2
2y% — 6y® + 22 — 322 = —Z. Using implicit "
differentiation we get y' = (z — 22)/(y> — 2y), -2

o
N
'S
o

which is infinite when y = 0 and y = 2. Letting

y = 0 in 2y3 — 692 + 223 — 322 = —% and using a CAS to solve for x we get x =

—1.13232. Similarly, letting y = 2, we find x = 1.71299. The largest interval of definition
is approximately (—1.13232, 1.71299).

The value of ¢ corresponding to y(0) = —2 is T
4

f(0, =2) = —40. The portion of the graph to ) w

the right of the dot corresponds to the solution 0

curve satisfying the initial condition. To deter-
mine the interval of definition we find dy/dz for
293 —6y?+223 — 322 = —40. Using implicit differ-

entiation we get 3 = (z — x?)/(y? — 2y), which -4 -2 0 2z 4 6 8 10

is infinite when y = 0 and y = 2. Letting
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2.3 Linear Equations

y = 0 in 293 — 6y + 223 — 322 = —40 and using a CAS to solve for x we get x = —2.29551.
The largest interval of definition is approximately (—2.29551, o).

2.3 | Linear Equations

10.

11.

d
. For 4/ — 5y = 0 an integrating factor is e JBdr — =57 g4 that . [e‘5my] =0and y = ce

d
. For i/ +y = 3% an integrating factor is e/ 9 = e so that . [e“y] =e
x

d
. Fory/+4y = % an integrating factor is el 4de — 4 g6 that T [e“y] = %e‘lx and y = %+ce‘4
x

bx

T
for —oo < x < 0o. There is no transient term.

d
. For ¢/ + 2y = 0 an integrating factor is el 2dr — o270 g4 that — [eQxy] =0 and y = ce 2" for

dx
—00 < & < 00. The transient term is ce 2%,

4 and y = %631 +ce ®

for —oo < £ < o0o. The transient term is ce™%.

T

for —0o < x < co. The transient term is ce 4®.

d
. For v + 322y = 22 an integrating factor is e/ 3e?dr — o7 go that . [exsy] = 22¢*" and
T

3 . LB
Yy = % + ce™™ for —oo < x < 0o0. The transient term is ce™™" .

. For v/ + 2zy = 2% an integrating factor is e/ 274 — e® so that — [e y} = 3¢ and

1.2

2 . N
Y= 51°— % 4+ ce™ for —oo < & < 0co. The transient term is ce™" .

1 1 d 1 1
. For y/ + ~Y=—gan integrating factor is e/ (/)4 — 2 5o that . [xy] = - and y = lnm—i—g

T
for 0 < z < oco. The entire solution is transient.

d
. For y/ —2y = 22+5 an integrating factor is e/ 2% = ¢=2% g0 that e [e_QIy] = z?e 2 £ 572
x

and y = —%xQ — %x — % + ce?® for —oo < & < 0o. There is no transient term.

1 1 1
. For ¢/ — _y= rsinz an integrating factor is e~ JQ/z)de — ~ g4 that = [ y} = sinz and

X r |X

y=cx —xcosz for 0 < x < co. There is no transient term.

2 3 d
For ¢/ + =y = = an integrating factor is el @/z)de — 32 g6 that o [a;Zy] =3z and y = %—i—cx_Q
T T x

for 0 < £ < co. The transient term is cz 2.

4 d
For y/ + o y = 22 — 1 an integrating factor is el (/o)de — 24 g6 that e [w4y] =25 — 2% and

4

3 %l’ + ez~ for 0 < x < oo. The transient term is cx 2.

_ 1
Yy==T
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12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

d
For y'— a j_ ) y = x an integrating factor is e~ /1#/(H2)ldr — (34 1)e~% 50 that o [(z +1)e "y
2 3 r
z(zx+1e *and y=—x — T + % for -1 < < 0. There is no transient term.
z+1 z+1

2z
e
x? dz
ce—x —XT

e’
and y = 5 — + —5 for 0 <z < oco. The transient term is
x?

e’ d
For ¢/ + ( ) y = — an integrating factor is e/ 1+@/@)dr — 3202 g5 that — [z%e"y] =
1
2 x x2

1 1 d
For 3/ + (1 + a:) Y= ;e*‘” sin 2z an integrating factor is e/ 1 T(1/2)ldz — 2% 56 that . [xe®y] =

1 ce™®
sin2z and y = —Q—e_x cos 2x + for 0 < x < oo. The entire solution is transient.
x x
d 4 - d
For d—x — —z = 4y® an integrating factor is e~ J@/y)dy = ny™ — y~* so that T [y_4:13] =4y
Yy oy Y

and = = 2y% + ¢y* for 0 < y < co. There is no transient term.

d 2 d
For °¥ + 22 = €Y an integrating factor is e/ 2/ = y2 5o that — [ny] = y%e¥ and

ay " dy

2 2 & . .. C
z=¢e’—-e'+ e+ — for 0 <y < oco. The transient term is — .
Y Y Y Y

/ : : o o tanz dz d 2

For y' 4 (tan z)y = sec z an integrating factor is e = sec z so that e [(secx)y] = sec” x
x
and y = sinx + ccosz for —w/2 < x < w/2. There is no transient term.
For 3 + (cotz)y = sec? rcscx an integrating factor is el cotzdr — clnfsinz| — gin gy 5o that
o [(sinz)y] = sec? z and y = secx 4 cescx for 0 < # < /2. There is no transient term.
x
2 2ze™" d
For y’—l—z i Ty= ;Ui T an integrating factor is e/ (#+2)/(@+Dldr — (11 1)e% g0 . [(z 4 1)e"y] =
2
2z and y = T e + e ¥ for —1 < x < co. The entire solution is transient.
z+1 z+1

;4 14/ (z+2))da 4 d 4

For y'+ an integrating factor is e = (z+2)* so that — [(z +2)%y]| =

x+2y:(x+2) dx

5)
5(x+2)% and y = g(x+2)_1 +c(x+2)"* for —2 < 2 < co. The entire solution is transient.
For d—g +rsecf = cosf an integrating factor is el sec0dd — gln|secattanz| — goc g 4 tanf so that
d
0 [(sec@ + tanf)r] = 1 +sinf and (sec + tanf)r =0 — cos + ¢ for —w/2 < 0 < 7w/2 .

dP d
For -+ (2t — 1)P = 4t — 2 an integrating factor is e/ (=D dt = ¢#*~t 5o that pr [etQ_tP} =

(4t — 2)e”" " and P = 2 + ce!** for —00 < t < co. The transient term is ce! =",
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23.

24.

25.

26.

27.

28.

29.

30.

2.3 Linear Equations

-3z

1 d
For 3/ + <3 + x) y =S an integrating factor is e/B+(1/2)de — 2637 5o that Az [ze’y] =1

—3x
and y = e 3% + e for 0 < & < 0co. The entire solution is transient.
2 z+1 2 rz—1 d [x—1
For ¢/ = int tine factor is eJ[2/(@*=Dldz — = = ¢ that — =
0ry+$2_1y 7 2n integrating factor is e :U_{_lso at - :n—{—ly
land (z—1)y=z(x+1)+c(x+1) for -1 <z < 1.
d
For y' — by = x an integrating factor is e/ ~29¢ = ¢=5% 5o that d—[e_5xy] = 2¢7% and
x
1 1 1 1
5x —5x S5z —5x —5x S5x
= d = —_— —_—— —_ —— _
y==e /xe T =e ( 5936 256 —l—c) 533 25+ce

If y(0) = 3 then ¢ = 5= and y = —fz — 5 + 22 €5*. The solution is defined on I = (—o0, ).

d
For ¢/ + 3y = 2z an integrating factor is e/ 397 = ¢3% so that %[63’”3/] = 22¢® and

2 2 2 2
y=e 3 / 2xetdr = e (:ce?"” — §63x + c> =373 + ce 3%,

If y(0) = % then ¢ = 3 and y = 32 — 2 + 2737, The solution is defined on I = (—o0, co).
1 1 d 1
For ¢+ —y = — €" an integrating factor is el M/o)de — 1 56 that — [zy] = " and y = —e” + ¢
x x dz x x
1 2—
for 0 <z <oo. Ify(l) =2thenc=2—-cand y = —e* + =~ % The solution is defined on
x x

I = (0, c0).

de 1 1 d |1
For & —x = 2y an integrating factor is e~ JQ/wdy — Z 6 that — [ x} =2and z = 2y%+cy
dy y y dy Ly

49 49
for 0 <y < oo. If y(1) = 5 then ¢ = 5 and z = 2y? — Y The solution is defined on
I = (0, c0).
di R E d E
For d—z +—i= 7 an integrating factor is e/ (B/L)dt — ¢Rt/L g6 that T [eRt/L z} = ZeRt/L and

E 5 -
i = E%—ce*Rt/L for —oo < t < 0o. Ifi(0) =ig then ¢ = ip—E/Rand i = R+<i0 — R> o~ Rt/L

The solution is defined on I = (—o0, 00).

ar d
For i kT = —T,,k an integrating factor is e/ ("M% = ¢~ g5 that pn [e KT = — T ke

and T = T, + cek for —oo < t < 00 If T(0) = Tp then ¢ = Ty — Ty, and T = Ty, + (To — T ) €.

The solution is defined on I = (—o0, 00).
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31.

32.

33.

34.

35.

36.

CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

d
1/z)dz _ x so that d—[xy] =4x +1 and
xr

1 1
For yy + —y = 4 + — an integrating factor is el
x x
1 1 9 c
y=—[(@dz+1)de=—(2s"+2+c)=22+1+—.
x x x
) L
If y(1) = 8 then ¢ =5 and y = 2z + 1 + —. The solution is defined on I = (0, c0).
x

d
For y + 4zy = 23¢® an integrating factor is e = ¢22” g0 that d—[e%
x

_ 92 2 o2 (1 2 1 2 1 2 1 2 _9p2
y=e 2z /$3631d$:€ 2z <$2€3x _76393 +C>:6$26w — e fce 21‘

6 18 18
If y(0) = —1 then ¢ = —% and y = éx26$2 - 1—186”2 — %6_2””2. The solution is defined on

I = (—00, 0).

1 1 d
For ' + Pl :ci-xl an integrating factor is e/ 1/ (@+Dldr — 4 1 5o that @[(:H—l)y] =Inz
and
T z_, ¢
= nx —
4 z+1 z+1 z+41

21
for 0 < x < oo. If y(1) = 10 then ¢ =21 and y = i “ . The solution is
x

e TS|

defined on I = (0, 00).

For y’+x —11- Ty = x(a:l—i— 0 an integrating factor is e/ /(@ +Dldr — 241 50 that %[(ﬂc—i—l)y] = %
and
y= m—ll—l/;;dx: x—li—l(lnx—i_c): xh—ll—xl +xj—1'
If yle)=1then c=eand y = I + —5 . The solution is defined on I = (0, 00).
z+1 x+1
For i — (sinz)y = 2sinz an integrating factor is ef(~sin@)de — ccosz o that %[e“’”y] =
2(sinx)e“®* and
y=-e" Cosx/Q(sin:U)ecosxda: =e T (—2e®T +¢) = -2+ ce” 7.
If y(7/2) =1 then ¢ = 3 and y = —2 4 3¢~ “***. The solution is defined on I = (—o0, o).
For 3 + (tanz)y = cos’x an integrating factor is ef tanwde — clnfsecal — gocn 50 that
% [(secz)y] = cosz and y = sinxcosz + ccosz for —7m/2 < x < w/2. If y(0) = —1 then
¢ = —1 and y = sinx cos x — cos x. The solution is defined on I = (—7/2, 7/2).
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2.3 Linear Equations

37. For ¢/ + 2y = f(z) an integrating factor is e?* so that

1”
ye%: %6236—1—01, 0<x<3
c2, T > 3.
If y(0) = 0 then ¢; = —1/2 and for continuity we must
have ¢y = %66 — % so that
%(1—6*2"’3), 0<x<3
y =
3(eb —1)e~22, x> 3.
38. For ¢ + y = f(x) an integrating factor is e” so that 1y“
e’ + ¢, 0<zx<1 - \
ye' = —~—t—+—
—e% + ¢a, x> 1. | 5 x
If y(0) =1 then ¢; = 0 and for continuity we must have -1
co = 2e so that
1, 0<x<1
Y= 1—
2e 7% — 1, x> 1.
39. For ¢y + 22y = f(z) an integrating factor is ¢ so that .7\
e 4o, 0<z<1
x2 2 1, ST <
ye =
{02, x> 1. T
If y(0) = 2 then ¢; = 3/2 and for continuity we must have | L
@z%e—i—%sothat I 3x
, 148e ™, 0<z<1
(%e + %) e‘xz, x> 1.
40. For . y
—, 0<z<1 1
2x 14 22

Y +

11

N+

1+2277) -z 1 Nttt
T x> 1, j;

an integrating factor is 1 4+ 22 so that

1

51:2—1—01, 0<z<1

(1+2%)y= .
—§x2+02, x> 1.
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41.

42.

CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

If y(0) = 0 then ¢; = 0 and for continuity we must have cg = 1 so that

1 1
- — , <zx<l1
2 2(1+22)

- > = >1
2(1+a2) 2’ v

We first solve the initial-value problem vy’ 4+ 2y = 4z, y(0) = 3 on the

2z
b

interval [0, 1]. The integrating factor is e/ 24 = ¢2 5o

d
%[ Qxy] :4l‘€2x

ey = /4$62xd$ = 2xe®® —e* 4 ¢

y=2x—1+ce 2.

T I é ;

Using the initial condition, we find y(0) = =1+ ¢; = 3, s0 ¢; = 4
and y = 2r — 1 +4e72*, 0 < 2 < 1. Now, since y(1) =2 — 1 +4e~2 = 1 + 4e~2, we solve the
initial-value problem y’ — (2/x)y = 4x, y(1) = 1 +4e~? on the interval (1, oo). The integrating

factor is e/ (—2/x)dz — —2Inz 9

=x “, S0
d 4
a[azdy] = dgz~% = .

4
:1:’2y :/dx =4lnz + ¢
x
y = 4z* Inz + ez’

(We use Inz instead of In |z| because z > 1.) Using the initial condition we find y(1) = ¢y =
1+4e 2, 50y =4x?Inx + (14 4e~2)2?, £ > 1. Thus, the solution of the original initial-value

problem is
{2x—1+4e—2$, 0<z<l1
y =

4z Inz + (1 + 4e=2)z?, x> 1.
See Problem 48 in this section.

For 4/ + e®y = 1 an integrating factor is e®". Thus

d T x xT z
—[ey]:ee and eey—/ e dt + c.
dx 0

From 5(0) =1 we get c =e, 50y = e~ ¢ Oxeetdt + el

When 3’ + e®y = 0 we can separate variables and integrate:
d
Yo _®dr and In ly| = —e® +c.
Y

Thus y = c1e~¢". From y(0) =1 we get ¢c; = e, so y = e!~¢".

When 3/ + ey = e® we can see by inspection that y = 1 is a solution.
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2.3 Linear Equations 61

43. An integrating factor for ¢y — 2zxy = 1 is e~ Thus

d 2

—z 2
@l

—x

yl=e

ey = / e dt = \g? erf(z) + ¢
0

y = \g%emgerf(:v) +ce”.
From y(1) = \/Q%eerf(l) +ce=1wegetc=e!— \/27? erf(1). The solution of the initial-value
problem is

2

b= \f e erf(x) + (e—l — \f erf(1)>er

VE

— x2—1
e + 5

(erf(z) — erf(1)).

Discussion Problems
44. We want 4 to be a critical point, so we use vy = 4 — .

45. (a) All solutions of the form y = z°e® — x*e® 4 ca? satisfy the initial condition. In this case,
since 4/z is discontinuous at z = 0, the hypotheses of Theorem 1.2.1 are not satisfied and

the initial-value problem does not have a unique solution.
(b) The differential equation has no solution satisfying y(0) = yo, yo > 0.

(c) In this case, since zg > 0, Theorem 1.2.1 applies and the initial-value problem has a unique

solution given by y = z%e¢* — z%e® + ca* where ¢ = yg/xg — xe®0 4 e™0,

46. On the interval (—3, 3) the integrating factor is
efacdz/(a:QfQ) _ effmd:r/(gfzg) _ 6%111(9722) _ \/9_71,2’

and so
%[ 9—x2y}:0 and y=

c
V9 — 22’

(Rather than e~ any function that

T

47. We want the general solution to be y = 3x — 54 ce™*.

approaches 0 as  — oo could be used.) Differentiating we get
Y =3—ce"=3—(y—3x+5)=—y+3x—2,
so the differential equation y’ + y = 32 — 2 has solutions asymptotic to the line y = 3z — 5.

48. The left-hand derivative of the function at x = 1 is 1/e and the right-hand derivative at z =1
is 1 — 1/e. Thus, y is not differentiable at = = 1.
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

49. (a) Differentiating y. = c/x3 we get

, 3¢ 3 c 3

y :——:——7:_7:[/
¢ xd x 3 x ¢

so a differential equation with general solution y. = ¢/3 is 23/ + 3y = 0. Now
zy, + 3yp = z(32%) + 3(2*) = 627,

so a differential equation with general solution y = ¢/x3 + 23 is 29/ + 3y = 623. This will

be a general solution on (0, co).

(b) Since y(1) = 13—1/13 = 0, an initial condition is y(1) = 0. y
Since y(1) = 13+2/1% = 3, an initial condition is y(1) = 3. >
In each case the interval of definition is (0, co). The initial- T
value problem x7'+3y = 623, y(0) = 0 has solution y = 2° T
for —co < & < oco. In the figure the lower curve is the =
graph of y(x) = 23 — 1/23, while the upper curve is the T
graph of y = 23 — 2/23, T
3L

(c¢) The first two initial-value problems in part (b) are not unique. For example, setting
y(2) = 23 — 1/23 = 63/8, we see that y(2) = 63/8 is also an initial condition leading to
the solution y = 2% — 1/23.

50. Since ef P@dete — gcof Pl@)de — ¢ of P@)dz e would have
clef P(x)dxy _ 62+/ clef P(x)dxf(x) dr and y= cgefP(x)dx+efP(x)dx/ef P(x)dxf(x) dz,
which is the same as (4) in the text.

51. We see by inspection that y = 0 is a solution.

Mathematical Models

52. The solution of the first equation is z = cje . From z(0) = zo we obtain ¢; = x¢ and so

x = zoe~M*. The second equation then becomes

d
di; = 2o M — Ny or

dy

at + oy = xo)\le_ht,

which is linear. An integrating factor is e*2*. Thus

d
& [ekzty] — xo)\le—)qte)@t _ l‘o)\le()‘z_kl)t
Nat, _ AL (gt
€ =5 _ . € +c
Y )\2 - )\1 2
ToA
W 0_ 1)\1 e M 4 cpe
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2.3 Linear Equations 63

From y(0) = yo we obtain ¢z = (yoA2 — yoA1 — 2oA1)/(A2 — A1). The solution is

ToA| ot YoA2 — YoA1 — ToAs oot

YT N a X2 — M
. . . . dr 1 . . .. t/RC
53. Writing the differential equation as g + RO FE = 0 we see that an integrating factor is e .
Then
d
[ MCE =0
/RCE = ¢
E = ce WEC,

From E(4) = ce B¢ = Ey we find ¢ = Fpe*FC. Thus, the solution of the initial-value

problem is
E = E064/R067t/RC — Eoe*(tfﬁl)/RC.

Computer Lab Assignments

54. (a) An integrating factor for y' — 2xy = —1 is e~®*. Thus
d, _.2 _
%[8 Tyl =—e
X
ey = —/ e dt = —\é% erf(z) + c.
0

From y(0) = y/7/2, and noting that erf(0) = 0, we get ¢ = y/m/2. Thus

y=e" (—\g? erf(z) + f) = \/27? exg(l —erf(x)) = \27? eJCQerfc(:J:).

(b) Using a CAS we find y(2) ~ 0.226339.

55. (a) An integrating factor for

is z2. Thus

d . o
7o Tyl =10

T
o .
iy = 10/ smi dt +c
o ¢t
y = 1Ox_281($) + ez
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64 CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

From y(1) = 0 we get ¢ = —108Si(1). Thus

y = 1022 Si(x) — 1027 2Si(1) = 102~ 2(Si(z) — Si(1)).

(c) From the graph in part (b) we see that the absolute maximum occurs around = = 1.7.
Using the root-finding capability of a CAS and solving ¢'(z) = 0 for 2 we see that the
absolute maximum is (1.688, 1.742).

56. (a) The integrating factor for 3/ — (sina?)y = 0is e~ Jo sint?df - Thep
d @
“ [6_ I sthdty] -0

dx

T g2
e Jo sint dty:cl

y = Clefoz sint2dt

Letting t = y/7/2u we have dt = \/7/2du and

x \V2/mx 2
2 — T (T2 _ /T 2
/Osmt dt_\/g/o sm(2u>du \/;S< 7Ta:)

soy = c1eV™/29W2/72)  Using §(0) = 0 and y(0) = ¢; = 5 we have y = 5eV7™/25(/2/72)

(b)

<
>

=
=]

i

(c) From the graph we see that as x — oo, y(z) oscillates with decreasing amplitudes ap-
proaching 9.35672. Since lim,_, 5S(x) = %, lim, 0 y(z) = He ™/8 ~ 9.357, and since
lim, o S(x) = f% ,imy o y(z) = He™V /8~ 2.672.
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2.4 Exact Equations

(d) From the graph in part (b) we see that the absolute maximum occurs around z = 1.7 and
the absolute minimum occurs around x = —1.8. Using the root-finding capability of a
CAS and solving y/(z) = 0 for x, we see that the absolute maximum is (1.772, 12.235)
and the absolute minimum is (—1.772, 2.044).

2.4 | Exact Equations

10.

11.

12.

.Let M = 2x —1and N = 3y + 7 so that M, = 0 = N,. From f, = 2z — 1 we obtain

f=2>—x+h(y), W(y) =3y+T7, and h(y) = %yQ + 7y. A solution is 2 — z + %yQ + 7y =c.

. Let M =2z +y and N = —x — 6y. Then M, =1 and N, = —1, so the equation is not exact.

. Let M = 52 + 4y and N = 4z — 8y so that M, = 4 = N,. From f, = 5z + 4y we obtain

f= %:172 +4xy + h(y), M (y) = =8>, and h(y) = —2y*. A solution is %3:2 +dxy — 2yt = c.

. Let M = siny — ysinx and N = cosx + xcosy — y so that M, = cosy — sinz = N,. From

fo = siny — ysinz we obtain f = zsiny + ycosz + h(y), K'(y) = —y, and h(y) = —1y2. A

N : 1,2 _
solution is zsiny + ycosx — 5y* = c.

. Let M = 2y?x — 3 and N = 2y2? + 4 so that M, = 4xy = N;. From f, = 2y%x — 3 we obtain

f=2%y* — 3z + h(y), ' (y) = 4, and h(y) = 4y. A solution is z%y? — 3z + 4y = c.

. Let M = 42 — 3ysin3z —y/2% and N = 2y — 1/ + cos 3z so that M, = —3sin3z — 1/2? and

N, = 1/2? — 3sin3z. The equation is not exact.

. Let M = 2% —y? and N = 22 — 2zy so that M, = —2y and N, = 2z — 2y. The equation is not

exact.

. Let M = 1+Inz+y/z and N = —1+Inz so that M, = 1/x = N,. From f, = —1+Inz we obtain

f=—-y+ylmz+h(y), M(z) =1+4Inz, and h(y) = xInz. A solution is —y+ylnz+zlnz = c.

. Let M =1? —y?sinz — z and N = 3zy? + 2ycosz so that M, = 3y? — 2ysinz = N,. From

fr =y> —y?sinz —  we obtain f = 2y3 + y?cosx — %mz + h(y), h'(y) =0, and h(y) =0. A

solution is zy> + y? cosx — %xQ =c.

Let M = 2% + 43 and N = 3232 so that M, = 3y2 = N,. From f, = 2% 4+ 4> we obtain
f=1x*+2y® + h(y), W (y) =0, and h(y) = 0. A solution is 32 + 23° = c.

Let M =ylny—e ™ and N =1/y+xIny so that M, =1+Iny+ze * and N, = Iny. The

equation is not exact.

Let M = 322y +¢e¥ and N = 23 4+ ze¥ — 2y so that M, = 322+ ¢e¥ = N,. From f, = 32%y + ¢¥
we obtain f = 23y +xe¥ +h(y), h'(y) = —2y, and h(y) = —y%. A solution is 23y +ze¥ —y? = c.
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13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

Let M =y — 622 —2xe® and N = x so that My, =1= N,. From f, = y — 622 — 22e” we obtain

f = wy—2x3—22e+2e"+h(y), ' (y) = 0, and h(y) = 0. A solution is zy—21> —2ze”+2¢% = c.

Let M =1-3/x+yand N =1—-3/y+xsothat My =1= N,. From f, =1-3/z+vy
3

we obtain f = x — 3In|z| + xy + h(y), K'(y) =1 — =, and h(y) = y — 3In|y|. A solution is
Y

r+y+ay—3njzyl =c.

Let M = 2% —1/(1+92%) and N = 23y*> so that M, = 32%y* = N,. From

fo =23 -1/ (1+92%) weobtain f = fz3y3— 1 arctan(3z)+h(y), h'(y) =0, and h(y) = 0.

A solution is x3y? — arctan(3z) = c.

Let M = —2y and N = 5y — 2z so that M, = —2 = N,. From f, = —2y we obtain
f=—2xy+ h(y), K (y) = by, and h(y) = %yQ. A solution is —2zy + %yQ =c.

Let M = tanx —sinzsiny and N = coszcosy so that M, = —sinzcosy = N,. From
fz = tanz — sinx siny we obtain f = In|secz| 4 cosxsiny + h(y), h'(y) =0, and h(y) = 0. A

solution is In | sec x| + coszsiny = c.
Let M =2ysinxcosx —y + 2y26xy2 and N = —x +sin®x + 4:L‘ye’“”y2 so that
M, =2sinzcosz — 1+ 4:cy3ezy2 + 4ye’5y2 = N,.

From f, = 2ysinzcosz — y + 2y2e™” we obtain f = ysin?z — 2y + 26" + h(y), h'(y) = 0,
and h(y) = 0. A solution is ysin?z — zy + 267" = c.

Let M = 4t3y—15t>—y and N = t*+3y?—t so that M, = 4t3—1 = N;. From f; = 4t3y—15t>—y
we obtain f = t*y—5t3—ty+h(y), ' (y) = 3y%, and h(y) = y>. A solution is t*y—5t3—ty+y® = c.

Let M = 1/t+1/t?>—y/ (t2 + y2) and N = ye¥+t/ (t2 + y2) so that M, = (y2 - t2) / (t2 + y2)2 =

1 t
N;. From fy = 1/t+1/t*—y/ (t* 4+ y*) we obtain f = ln|t\—¥—arctan <y> +h(y), ' (y) = ye?,

and h(y) = ye¥ — e¥. A solution is
1 t
In |¢| — e arctan () +ye? —e¥ =c.
Y

Let M = 2% + 22y + y* and N = 2zy + 22 — 1 so that M, = 2(z +y) = N,. From f, =
x% 4 2zy + y? we obtain f = %wg + 22y + 2y + h(y), W' (y) = —1, and h(y) = —y. The solution
is %x?’ + 22y +axy? —y =c. If y(1) = 1 then ¢ = 4/3 and a solution of the initial-value problem

is %x3+x2y+xy2fy:%.

Let M = e¢* +y and N = 2+ o + ye¥ so that M, = 1 = N,. From f, = e* +y we
obtain f = e* + zy + h(y), hW(y) = 2 + ye¥, and h(y) = 2y + ye¥ — y. The solution is
e’ +axy+2y+ye¥ —e¥ =c. If y(0) =1 then ¢ = 3 and a solution of the initial-value problem
ise” +xzy+ 2y + ye¥ —e¥ = 3.
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Let M = 4y + 2t —5 and N = 6y + 4t — 1 so that M, = 4 = N;. From f; = 4y +2t -5
we obtain f = 4ty + 2 — 5t + h(y), h'(y) = 6y — 1, and h(y) = 3y?> —y. The solution is
4ty +t? — 5t +3y> —y = c. If y(—1) = 2 then ¢ = 8 and a solution of the initial-value problem
is 4ty +t> — 5t +3y%> —y = 8.

Let M = t/2y* and N = (3y* — t?) /y° so that M, = —2t/y> = N;. From f; = t/2y* we obtain

12 , 3 3 R 3
[ = 1 + h(y), h'(y) = e and h(y) = e The solution is ik ce. fy(l)=1
t* 3 5
then ¢ = —5/4 and a solution of the initial-value problem is — — — = ——.

4yt 292 4
Let M = y?cosz — 322y — 2z and N = 2ysinz — 23 + Iny so that M, = 2ycosx — 322 = N,.
From f, = y?cosz — 32%y — 2z we obtain f = y?sinz — 23y — 2% + h(y), ' (y) = Iny, and
h(y) = yIny —y. The solution is y?sinz — 23y — 22 + ylny —y = c. If y(0) = e then ¢ = 0
and a solution of the initial-value problem is y?sinx — 23y — 22 + ylny —y = 0.

Let M = y? + ysinxz and N = 22y — cosz — 1/ (1 +y2) so that M, = 2y +sinz = N,. From
fe =32 +ysinz we obtain f = zy? —ycosz+h(y), k' (y) = —1/(14+%?), and h(y) = —tan~' 3.
The solution is 2y? — ycosz — tan~ty = c. If y(0) = 1 then ¢ = —1 — /4 and a solution of

the initial-value problem is zy? — ycosz —tan ty = —1 — /4.
Equating M, = 3y? + 4kxy> and N, = 3y* + 40xy> we obtain k = 10.
Equating M, = 18zy? — siny and N, = 4kzy* — siny we obtain k = 9/2.

Let M = —z2y?sinx + 2zy? cosz and N = 222y cosz so that M, = —2z%ysinz + 4dzycosz =
N,. From f, = 22%ycosz we obtain f = 2?y? cosz + h(y), h'(y) = 0, and h(y) = 0. A solution

of the differential equation is z%y? cosz = c.

Let M = (2*+2zy —y*)/ (2* + 22y + y?) and N = (y* + 22y — 2?) / (v* + 22y + 2?) so
that M, = 2—4xy/(x +194)3 = N,. From f, = ($2 + 22y + y? — 2y2) /(x + y)? we obtain
2y

= —|—
f P
22 +y? =clr+y).

+ h(y), W (y) = —1, and h(y) = —y. A solution of the differential equation is

We note that (M, — N,)/N = 1/xz, so an integrating factor is el dr/r — g Let M = 2ay? + 322
and N = 2z%y so that M, = 4xy = N,. From f, = 2zy*+ 3z? we obtain f = z%y? + 23 + h(y),
h'(y) =0, and h(y) = 0. A solution of the differential equation is 2%y? + 2% = c.

We note that (M,—N,)/N = 1, so an integrating factor is el 4o = e Let M = zye®+y2e”+ye”
and N = xe® + 2ye” so that M, = ze” 4 2ye® + e = N,. From f, = xe® + 2ye” we obtain
f = xye® + y%e® + h(x), h'(y) = 0, and h(y) = 0. A solution of the differential equation is
zye® + y?et =

We note that (N, — M,)/M = 2/y, so an integrating factor is el 2dy/y — y?. Let M = 6xy>
and N = 4y3 4 92%y? so that M, = 18xy? = N,. From f, = 6zy® we obtain f = 3z%y* + h(y),
h'(y) = 4y3, and h(y) = y*. A solution of the differential equation is 32%y% + y* = c.
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We note that (M, — N,;)/N = —cotx, so an integrating factor is e~ Jeotwdr — ¢eq Let
M = coszcscx = cotx and N = (14 2/y)sinxzcscx = 1+ 2/y, so that M, =0 = N,. From
fz = cotz we obtain f = In(sinz) + h(y), h'(y) = 1 +2/y, and h(y) = y + Iny?. A solution of
the differential equation is In(sinz) + y + Iny? = c.

We note that (M, — N,)/N = 3, so an integrating factor is e 3dr — 37 et
M = (10 — 6y + e73%)e?” = 10e3* — 6ye3® + 1 and N = —2¢%,

so that M, = —6e3* = N,. From f, = 10e3® —6ye3” + 1 we obtain f = %e?“ —2ye3® +x+ h(y),
R (y) =0, and h(y) = 0. A solution of the differential equation is %63:6 — e’ 4z =c.

We note that (N, — M,)/M = —3/y, so an integrating factor is e =3/ ®/¥ = 1/y3. Let
M= +a2y°) )y’ =1/y+a and N =(5y —ay+y’siny)/y’ =5/y — x/y* +siny,

so that M, = —1/y> = N,. From f, = 1/y + z we obtain f = z/y + %ZE2 + h(y),
h'(y) = 5/y + siny, and h(y) = 5ln|y| — cosy. A solution of the differential equation is
z/y+ 32> +5Iny| — cosy = c.

We note that (M, — N,)/N = 2z/(4 + z?), so an integrating factor is g2 zda/(4+a?) —
1/(4+2%). Let M = /(4 +2?) and N = (2%y + 4y)/(4 + 2?) = y, so that M, = 0 = N,.
From f, = z(4 + 2%) we obtain f = $In(4 + 22) + h(y), ' (y) = y, and h(y) = 1y>. A solution
of the differential equation is %ln(4 + z%) + %yQ = c¢. Multiplying both sides by 2 and then
exponentiating we find ¥’ (4 + 2%) = c;. Using the initial condition y(4) = 0 we see that

¢1 = 20 and the solution of the initial-value problem is e¥” (4 + 22) = 20.

We note that (M, — N,)/N = —3/(1 4+ z), so an integrating factor is e~3/d/(0+2) —
1/(1+2)3 Let M = (22 +4? -5)/(1+ ) and N = —(y +2y)/(1 + 2)® = —y/(1 + 2)?, so
that M, = 2y/(1 + 2)® = N,. From f, = —y/(1 + 2)* we obtain f = —3y%/(1 + 2)? + h(z),
R'(z) = (2% = 5)/(1 + x)?, and h(z) = 2/(1 + 2)2 + 2/(1 + ) + In|1 + z|. A solution of the

differential equation is

2
Y 2
_ In|1 =c.
T+a)? T U xar g T Fal=e
Using the initial condition y(0) = 1 we see that ¢ = % and the solution of the initial-value
problem is
2
Y 2 2 7
— In (1 = —.
Sa+2E  (gar  (ga TREFE=3

(a) Implicitly differentiating 2 + 222y + y? = ¢ and solving for dy/dx we obtain

dy dy dy 322 + day
32?2 + 222 =2 + 4 20— =0 d —=—75-—7->"".
S dm+ Y+ Yz e 202 + 2y

By writing the last equation in differential form we get (4zy + 322)dz + (2y + 22%)dy = 0.
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(b) Setting x = 0 and y = —2 in 2 + 222y + y? = ¢ we find ¢ = 4, and setting v =y = 1 we

also find ¢ = 4. Thus, both initial conditions determine the same implicit solution.

(c) Solving 2 + 222y + y? = 4 for y we get z

y(z) = —2% — VA — a3+ 2t \/2

y2

yo(z) = —2® + /4 — a3 + 24, -4 -2 \\4x
Y 1

Observe in the figure that y;(0) = —2 and y2(1) = 1. o

and

-4
-6

Discussion Problems

40. To see that the equations are not equivalent consider dx = —(x/y)dy. An integrating factor is

wu(z,y) = y resulting in ydz + x dy = 0. A solution of the latter equation is y = 0, but this is

not a solution of the original equation.

41. The explicit solution is y = /(3 + cos?z)/(1 — 22). Since 3 + cos?z > 0 for all  we must
have 1 — 22 > 0 or —1 < o < 1. Thus, the interval of definition is (-1, 1).
1
42. (a) Since f, = N(z,y) = ze™ + 2xy + — we obtain f = €™ + xy® + LA h(z) so that
T x

fo=ye™ +y° - % + 1'(z). Let M(z,y) = ye®™ +y° — % .

(b) Since f, = M(z,y) = y'/22= %4z (2% + y)fl we obtain f = 2y1/2x1/2+% In ‘xz + y‘+g(y)

so that f, = y~1/221/2 + 3 (22 + y)_l + ¢'(x). Let N(z,y) =y~ /22/? + 3 (22 + y)_l.

43. First note that
€T Y
d(\/x2+y2) = —dr + ———dy.
/1.2 + yQ /3:2 + y2
Then zdx +ydy = /22 + y2 dz becomes
L Y
———dx + 7dy:d(\/x2+y2) =dx.
/2 + y2 /12 + yQ

The left side is the total differential of y/x2 + y2 and the right side is the total differential of
x + c. Thus /22 + y2 = x + ¢ is a solution of the differential equation.

44. To see that the statement is true, write the separable equation as —g(x)dz + dy/h(y) = 0.
Identifying M = —g(x) and N = 1/h(y), we see that M, = 0 = N,, so the differential equation

s exact.
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Mathematical Model

45. (a) In differential form we have (v2—32z)dx+zv dv = 0. This is not an exact form, but u(x) =
7 is an integrating factor. Multiplying by x we get (xv? —3222)dx +x?v dv = 0. This form

is the total differential of u = %xzvz — 3—32933, so an implicit solution is %ﬂ:zy? — %x?’ =c.
Letting x = 3 and v = 0 we find ¢ = —288. Solving for v we get
z 9
=85~ -
! 3 a2
(b) The chain leaves the platform when x = 8, so the velocity at this time is
8 9
8) =8y/= — — ~ 12.7 ft/s.
v() 3 64 /s
Computer Lab Assignments
46. (a) Letting
2xy y? — a2
M (x, and N(z,y) =14+ 55—
we compute
223 — 8xy?
YT (2 2y3 = Na,
(2% +y?)
so the differential equation is exact. Then we have
of 2xy 2 2\—2
o (z,y) @1 zy(z” +y°)
= —y(@ + ") 9) = — 57— +9(v)
flzy) = —y(z”+y 9W) = =7z Tl
8f l/2 - $2 / y2 — .%'2
- 7 v =N =14+ -
TRRCETE +4'(y) (z,y) =1+ W2+ g2
Thus, ¢'(y) =1 and g(y) = y. The solution is y — % = ¢. When ¢ = 0 the solution
L Yy

is 22 +y2=1.

(b) The first graph below is obtained in Mathematica using f(z,y) =y — y/(z* + y?) and

ContourPlot|[f[x, y], { x, -3, 3}, { ¥, -3, 3},
Axes—>True, AxesOrigin—>{0, 0}, AxesLabel—>{ x, y},
Frame—>False, PlotPoints—>100, ContourShading—>False,
Contours—>{ 0, -0.2, 0.2, -0.4, 0.4, -0.6, 0.6, -0.8, 0.8} ]

The second graph uses

I A it P -y
r=— and T = .
c—y c—y
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2.5 Solutions by Substitutions 71

In this case the z-axis is vertical and the y-axis is horizontal. To obtain the third graph,
we solve y —y/ (22 +y?) = c for y in a CAS. This appears to give one real and two complex
solutions. When graphed in Mathematica however, all three solutions contribute to the
graph. This is because the solutions involve the square root of expressions containing c.

For some values of ¢ the expression is negative, causing an apparent complex solution to

L

actually be real.

2.5 | Solutions by Substitutions

1. Letting y = ux we have

(x —ux)dr + z(udr +xdu) =0

der+xzdu=0
d—erdu:O
T

In|z|+u=c

zln|z| +y = cx.

2. Letting y = uxz we have

(x +ux)de + z(udr + xdu) =0

(1+2u)de+xdu=0
dﬁ—i— du
T 14+ 2u

=0
1
ln|x]+§ln\1—|—2u|:c
1'2 (1—1—2g) =C
x
332—|—293y:cl.
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3. Letting x = vy we have

vy(vdy +ydv) + (y — 2vy)dy =0

vy dv+y (vV =20+ 1) dy =0
vdv @_
(v=12  y

1
ln]v—l\—m—i—ln]m:c

0

y ’_w/y—l
(z—y)Infz -yl -y =c(z —y).

In +Ilny=c

4. Letting x = vy we have

y(vdy +ydv) —2(vy +y)dy =0

ydv— (v+2)dy =0
d d
v _dy _
v+2 Y
Injv+2|—Inly|=c

In

x+2‘—ln\y|:c
)

T+ 2y = 1y

5. Letting y = ux we have

(v?z? + uz?) dv — 2*(udx + x du) =0
w?dr —xdu=0

d d
ar Ay

x  u?
1
Injz|+—=c¢
u
1n]m|+£:c
Y
yln|z| 4+ z = cy.
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6. Letting y = ux and using partial fractions, we have

(u29:2 + um2) dz + 2*(udx + x du) = 0

x> (u2+2u) de + 22 du =0
di du

x +u(u+2) =0

1 1
1n|x]—|—§ln\u\—§ln|u+2|:c

ZL‘2’LL

u +
2

g =
g:C1<g—i-2>
X X

22y = c1(y + 2z).

7. Letting y = uxz we have

(ur — x)dx — (ux + z)(ude + x du) =0

(u2—|-1)dx+x(u+1)du:0
1
CL&UQLM:O
T us 41

1
1n|ac]+§ln(u2+1)+tan*1u:c

2
In 22 <y2+1>+2tan1y201
x x
In (:):2 + y2) + 2tan ! LA .
x
8. Letting y = ux we have
(x 4 3uzx)dr — 3z + uz)(udr + xdu) =0
(v —1)dz+z(u+3)du=0
dx u+3
—+—————du=0
x +(u—l)(u—l—l) "
In|jz|+2nju—1—Inju+1|=c¢
_1)2
x(u—1) — e
u+1
2
(1) a2
x x
(y—2)* = 1y +2).
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9. Letting y = ux we have

—uxdr + (z + Vuzx)(udr +zdu) =0
(22 4 2%/u) du + 2u®/? dz = 0

1
(u_3/2+> du+dﬁ:O
u T
—2u™2 4 Inful +In|z| = ¢
In|y/z|+In|x| =2v/z/y+c

y(ln |y| — 0)2 = 4z.

10. Letting y = ux we have

(u:r:+ x? — (ua:)2) dz — z(udx + xdu) du = 0
Va? —u2z?dr — 2° du = 0
V1 —u2dr —2®du=0, (z>0)

dx du _0
z J1-u?
Inz —sin"tu=c

sintu=Inz+c

sin~! ¥_ Inz + ¢

8

SHES

=sin(lnz + ¢2)

y =xsin(lnz + c2).
See Problem 33 in this section for an analysis of the solution.
11. Letting y = uxz we have

(:c3 - u3x3) dz + v’z (udx + x du) = 0

dr + vz du=0
d
ot du=0
x
1
ln|x|—|—§u3:c

323 1In || + ¢ = e12®.

Using y(1) = 2 we find ¢; = 8. The solution of the initial-value problem is 323 In |z| + 3 = 8z3.
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12. Letting y = uxr we have

(2 + 2u*2?)dx — uz?(udz + x du) = 0
22(1 + u?)dr — ua du = 0

dr  udu
r  1+u?

1
In |z| — iln(l +u?)=c

.%'2

14+ u?

ot = ey (2 + ).

:Cl

Using y(—1) = 1 we find ¢; = 1/2. The solution of the initial-value problem is 22* = y? 4 2.

13. Letting y = uxz we have

(x + uze")dr — ze"(udr + xdu) =0
dx —ze" du =0

d
—x—e“du:()
z

Injz| —e"=c

In|z| — e¥/® = c.

Using y(1) = 0 we find ¢ = —1. The solution of the initial-value problem is In |z| = e¥/* — 1.

14. Letting x = vy we have

y(vdy +ydv) +vy(lnvy —Iny — 1) dy = 0
ydv+vinvdy =0

d d
v+7y:

0
vinv Y

In|lnjv||+1n|y| =c

x
yln ‘ =cj.
Y
Using y(1) = e we find ¢; = —e. The solution of the initial-value problem is yIn x‘ = —e.
1 1 d 3 3
15. From y/ + —y = —y 2 and w = y* we obtain o + “w = =. An integrating factor is 3
T x de x x
that 23w =23 +cor 2 = 1+ co™3.
d
16. From ¢/ —y = €®y? and w = y~! we obtain d—w +w = —e”. An integrating factor is e* so that
T
efw = f%e% +cor y_1 = *%BI + ce™ %,
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dw
From ¢ +y = xy* and w = y~3 we obtain P 3w = —3z. An integrating factor is e 3% so
x
that e 3%w = ze 3% 4 1 6733”+cory —.1‘—1—%4—0631

1 d 1
From 7/ — <1 + :c) y =y% and w = y~! we obtain d—w + <1 + x> w = —1. An integrating

x
factor is ze® so that ze*w = —ze* + e +cory ' = -1+ = + Cemo.
T
1 1 dw 1 1

From ¢ — ;y = ——y and w = y~! we obtain ' + w =a- An integrating factor is t so
t

that tw =Int+cory ! = n lnt + E Writing this in the form — = 1Int + ¢, we see that the
Yy

solution can also be expressed in the form /¥ = ¢;t.

From 3’ + 501 +t2>y = 3(12_7_ t2)y4 and w = y~3 we obtain % — 71 itth = 1;2; . An
integrating factor is P so that 1 $t2 =1 i 2 +coryd=1+c¢ (1 + t2).

From 3/ — %y = %1/1 and w = y~3 we obtain Z—: + gw = —% . An integrating factor is 25 so
that 26w = —2a5+cory™3 = — 227 14ca 6. Ify(1) =  thenc = Pand y =2 = — 227142276,

d 3
From ¢ +y = y~/2 and w = y3/? we obtain —— + “w = - . An integrating factor is 3/2 so

3w
dx 2 2"
that e3/2w = 3%/2 4 ¢ or y3/2 = 1 + ce=3%/2. If y(0) = 4 then ¢ = 7 and y3/2 = 1 + Te~3%/2,

d 1
Let w = x +y + 1 so that du/dz = 1 + dy/dx. Then M1 —w?or — du = dr. Thus
dx 14 u?

lu=a2+coru=tan(z+c),and z+y+ 1 =tan(x +¢c) or y = tan(x +¢) —x — 1.

tan—

d 1-—
Let u = 4y so that du/dx = 1+dy/dx. Then d—u—l =
x

or u? = 2x + ¢1, and (z +y)? = 2z + 1.

u
or udu = dx. Thus %uQ =x+c
u

d
Let w = = + y so that du/dx = 1+ dy/dz. Then d—u — 1 = tan®u or cos>udu = dx. Thus
x
%u—i— %sinQu =2z +cor 2u+sin2u = 4z + ¢, and 2(x + y) +sin2(z + y) = 4 + ¢1 or
2y +sin2(z +y) =2z + 1.

d 1
Let uw = x+y so that du/dx = 14+dy/dx. Then 1 —sinuor ———— du = dx. Multiplying
dx 1+sinu
1 s
7O gy = dr or (sec?

by (1 —sinu)/(1 — sinu) we have u — secutanu)du = dx. Thus

cos2 u

tanu — secu = x + c or tan(z + y) —sec(x +y) = x + c.

d |
Let u =y — 22 + 3 so that du/dz = dy/dx — 2. Thend—u+2:2+\/ﬂor7du:dx. Thus

X u
2yu=z+cand 2\/y —2x+3 =z +c.
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d
28. Let u =y — x + 5 so that du/dx = dy/dx — 1. Then d—u +1=1+¢"or e *du = dx. Thus
x

—e =g+ cand —e¥ T =gz + .

d 1
29. Let u = x 4+ y so that du/dx = 1+ dy/dz. Then M1 = cosuand ——— du = dz. Now
dx 1+ cosu
1 l1—cosu 1—-cosu 9
= = — = ¢sc” u — ¢scu cot u,
1+cosu 1—cos?u sin? u

so we have [(csc?u — cscucotu)du = [dr and —cotu + cscu = z + c. Thus — cot(z + y) +

csc(x +y) = x + c. Setting x = 0 and y = m/4 we obtain ¢ = v/2 — 1. The solution is

esc(z +y) —cot(x +y) =z + V2 — 1.

d 2 ) 6 2
30. Let u = 3z+2y so that du/dx = 3+2dy/dx. Then ﬁ = 3+u f2 = 5:_2 and 51;—: 5 du =
dx. Now by long division
u+2 1 4

S5u+6 5+25u—|—30

so we have

1 4
/(5+25u+30> du = de

and fu+ 5 In|25u + 30| = x + ¢. Thus

1 4
5(3x+2y)+%ln|75x+50y+30| =z+ec
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Setting x = —1 and y = —1 we obtain ¢ = 24—5 In95. The solution is

1 4 4
g(3x+2y) + 2—5ln\75x+50y+30\ =+ 2—51n95

or b5y — bz +2In|75z + 50y + 30| = 2In 95.

Discussion Problems

31. We write the differential equation M (x, y)dx + N(z, y)dy = 0 as dy/dz = f(z, y) where

[, y) = =<7+

The function f(z, y) must necessarily be homogeneous of degree 0 when M and N are homo-
geneous of degree «. Since M is homogeneous of degree o, M(tx, ty) = t*M(z, y), and letting

t =1/x we have
1
M(Q,y/z) =5 M(z,y) or Mz, y)=2"M(1, y/z).

Thus

dy _ __x*M(,y/x) M@, y/r) oy
de fw,y) = ~2oN(1,y/z)  N(1,y/z) E (7) '

32. Rewrite (522 — 2y?)dx — xydy = 0 as

d
xyﬁ = bax? — 29>

and divide by xy, so that

dy T _ oY
dx Y T

(=5 -2(3)

33. (a) By inspection y = x and y = —x are solutions of the differential equation and not members

We then identify

of the family y = zsin(lnz + c2).

etting z = 5 and y = 0 In sin™ " (y/x) = Inx + co we y
b) Letti 5 and 0 in sin~! 1
get sin~!0 = In5 +cor ¢ = —In5. Then sin~!(y/z) =
Inx —In5 = In(x/5). Because the range of the arcsine 20
function is [—7/2, 7/2] we must have 15
T xr 10
—T <<t
2 5 2 5
e—”/2§§§e”/2 % 10 15 20 %

The interval of definition of the solution is approximately [1.04, 24.05].

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed
with a certain product or service or otherwise on a password-protected website for classroom use.

© Cengage Learning. All rights reserved. No distribution allowed without express authorization.



© Cengage Learning. All rights reserved. No distribution allowed without express authorization.

2.5 Solutions by Substitutions 79

34. Asx — —00, €% — 0 and y — 22+ 3. Now write (1+ce%)/(1—ceb%) as (e 0% +¢)/(e7% —¢).
Then, as © — 00, e % — 0 and y — 2z — 3.

35. (a) The substitutions

dy dy1 du
= d —_— = = _
y=titu an de dr dx
lead to
dy;  du 2
—+—=P R
Tt + Qy1 +u) + R(y1 + u)
= P+ Qu + Ry? + Qu + 2y Ru + Ru?
or p
ﬁ —(Q + 251 R)u = Ru®.
This is a Bernoulli equation with n = 2 which can be reduced to the linear equation
M @+ 2Ryw =R
- w = —
dr Y1
by the substitution w = u~".
(b) Identify P(z) = —4/z%, Q(z) = —1/z, and R(x) = 1. Then d——f— ——+—)Jw=-1. An
x x  x
_ 2
integrating factor is 23 so that 23w = —%az4+c or u = (— %ercx_g) ' Thus, y = — +u.
x

36. Write the differential equation in the form x(y'/y) = Inz + Iny and let v = Iny. Then
du/dx = y'/y and the differential equation becomes z(du/dx) = Inxz + u or du/dx —u/x =
(In z)/z, which is first-order and linear. An integrating factor is e~/ 4/% = 1/z, so that (using

integration by parts)

drl Inx U 1 Inz
—[—u} =— and —=—-——-—+c
dr Lz x? x x x
The solution is
ecz—l
Iny=—-1—-Ilnx+cx or y=
x
Mathematical Models
37. Write the differential equation as
d 1
@ + —v= 321)_1,
dr «x
and let u = v? or v = u!/2. Then
dv 1 _y)pdu
==y -
dr 2 dx
and substituting into the differential equation, we have
1 d 1 d 2
fufl/z—u+—ul/2:32u’l/2 or —u+—u:64.
2 dr «x dr =x
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The latter differential equation is linear with integrating factor el 2/x)de 2

= I, SO
d
%[$2u]:64:z2
and
xzu—%x?’—i—c or UQ—%x—ki
3 3 x?’

38. Write the differential equation as dP/dt — aP = —bP? and let u = P! or P = u~!. Then
dp _o du
B At
dt dt’
and substituting into the differential equation, we have

du du
— -2 _— = -1 = — -2 _ =
U 7 au bu or 7 + au = b.

The latter differential equation is linear with integrating factor e adt = e, so

d
7 [e™u] = be™

and

eu=—e" +c
a

_ b
€atP1:*6at—|-C
a

b
Pl= " e
a

1 a

P = = .
b/a+ce=® b+ cre”

2.6 | A Numerical Method

1. We identify f(z,y) =2z — 3y + 1. Then, for h = 0.1,
Yn+1 = Yn + 0.1(22,, — 3y, + 1) = 0.2z, + 0.7y, + 0.1,
and

y(1.1) ~ y; = 0.2(1) 4+ 0.7(5) + 0.1 = 3.8
y(1.2) = yy = 0.2(1.1) + 0.7(3.8) 4+ 0.1 = 2.98.
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2.6 A Numerical Method 81

For h = 0.05,

Yni1 = Yn + 0.05(2zy, — 3y, + 1) = 0.12,, + 0.85y, + 0.05,

and

y(1.05) ~ yy = 0.1(1) 4 0.85(5) + 0.05 = 4.4

y(1.1) ~ yo = 0.1(1.05) + 0.85(4.4) + 0.05 = 3.895
y(1.15) ~ y3 = 0.1(1.1) 4 0.85(3.895) + 0.05 = 3.47075
y(1.2) ~ y4 = 0.1(1.15) + 0.85(3.47075) + 0.05 = 3.11514.

2. We identify f(z,y) = = + y%. Then, for h = 0.1,

Yni1 = Yn + 0.1(zy, + 32) = 0.1z, + yp, + 0.192,

and
y(0.1) ~ y; = 0.1(0) + 0+ 0.1(0)* = 0
y(0.2) ~ yo = 0.1(0.1) + 0 4 0.1(0)* = 0.01.
For h = 0.05,
Ynt1 = Yo + 0.05(zp +y72) = 0.052, +y, + 0.05y;,
and

(0.05) ~ y; = 0.05(0) 4 0 + 0.05(0)? = 0
y(0.1) = y2 = 0.05(0.05) 4+ 0 + 0.05(0)? = 0.0025

1(0.15) ~ y3 = 0.05(0.1) + 0.0025 + 0.05(0.0025)% = 0.0075
y(0.2) = y4 = 0.05(0.15) 4+ 0.0075 + 0.05(0.0075)2 = 0.0150.

3. Separating variables and integrating, we have

d
Y g and Inlyl=z+c.
Y

Thus y = c1e” and, using y(0) = 1, we find ¢ = 1, so y = e” is the solution of the initial-value

problem.
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h=0.1 h=0.05

X, Vi Actual Abs. % Rel. X, Vi Actual Abs. % Rel .
Value Error Error Value Error Error

0.00 1.0000 1.0000 0.0000 0.00 0.00 1.0000 1.0000 0.0000 0.00
0.10 1.1000 1.1052 0.0052 0.47 0.05 1.0500 1.0513 0.0013 0.12
0.20 1.2100 1.2214 0.0114 0.93 0.10 1.1025 1.1052 0.0027 0.24
0.30 1.3310 1.3499 0.0189 1.40 0.15 1.1576 1.1618 0.0042 0.36
0.40 1.4641 1.4918 0.0277 1.86 0.20 1.2155 1.2214 0.0059 0.48
0.50 1.6105 1.6487 0.0382 2.32 0.25 1.2763 1.2840 0.0077 0.60
0.60 1.7716 1.8221 0.0506 2.77 0.30 1.3401 1.3499 0.0098 0.72
0.70 1.9487 2.0138 0.0650 3.23 0.35 1.4071 1.4191 0.0120 0.84
0.80 2.1436 2.2255 0.0820 3.68 0.40 1.4775 1.4918 0.0144 0.96
0.90 2.3579 2.4596 0.1017 4.13 0.45 1.5513 1.5683 0.0170 1.08
1.00 2.5937 2.7183 0.1245 4.58 0.50 1.6289 1.6487 0.0198 1.20
0.55 1.7103 1.7333 0.0229 1.32

0.60 1.7959 1.8221 0.0263 1.44

0.65 1.8856 1.9155 0.0299 1.56

0.70 1.9799 2.0138 0.0338 1.68

0.75 2.0789 2.1170 0.0381 1.80

0.80 2.1829 2.2255 0.0427 1.92

0.85 2.2920 2.3396 0.0476 2.04

0.90 2.4066 2.4596 0.0530 2.15

0.95 2.5270 2.5857 0.0588 2.27

1.00 2.6533 2.7183 0.0650 2.39

4. Separating variables and integrating, we have
c;y =2z dx and Inly| = 2% +c.

Thus y = cre®” and, using y(1) = 1, we find ¢ = e~

initial-value problem.

h=0.1
Xn Vi Actual Abs. % Rel.
Value Error Error
1.00 1.0000 1.0000 0.0000 0.00
1.10 1.2000 1.2337 0.0337 2.73
1.20 1.4640 1.5527 0.0887 5.71
1.30 1.8154 1.9937 0.1784 8.95
1.40 2.2874 2.6117 0.3243 12.42
1.50 2.9278 3.4903 0.5625 16.12
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, S0 Y = e®*~1 is the solution of the

h=0.05
xn Vi Actual Abs. % Rel.
Value Error Error
1.00 1.0000 1.0000 0.0000 0.00
1.05 1.1000 1.1079 0.0079 0.72
1.10 1.2155 1.2337 0.0182 1.47
1.15 1.3492 1.3806 0.0314 2.27
1.20 1.5044 1.5527 0.0483 3.11
1.25 1.6849 1.7551 0.0702 4.00
1.30 1.8955 1.9937 0.0982 4.93
1.35 2.1419 2.2762 0.1343 5.90
1.40 2.4311 2.6117 0.1806 6.92
1.45 2.7714 3.0117 0.2403 7.98
1.50 3.1733 3.4903 0.3171 9.08
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5. h=0.1 h=0.05
Xn Yn Xn In
0.00 0.0000 0.00 0.0000
0.10 0.1000 0.05 0.0500
0.20 0.1905 0.10 0.0976
0.30 0.2731 0.15 0.1429
0.40 0.3492 0.20 0.1863
0.50 0.4198 0.25 0.2278
0.30 0.2676
0.35 0.3058
0.40 0.3427
0.45 0.3782
0.50 0.4124
7. h=0.1 h=0.05
Xn Yn Xn Yn
0.00 0.5000 0.00 0.5000
0.10 0.5250 0.05 0.5125
0.20 0.5431 0.10 0.5232
0.30 0.5548 0.15 0.5322
0.40 0.5613 0.20 0.5395
0.50 0.5639 0.25 0.5452
0.30 0.5496
0.35 0.5527
0.40 0.5547
0.45 0.5559
0.50 0.5565
9. h=01 h=0.05
Xn Yn Xn Yn
1.00 1.0000 1.00 1.0000
1.10 1.0000 1.05 1.0000
1.20 1.0191 1.10 1.0049
1.30 1.0588 1.15 1.0147
1.40 1.1231 1.20 1.0298
1.50 1.2194 1.25 1.0506
1.30 1.0775
1.35 1.1115
1.40 1.1538
1.45 1.2057
1.50 1.2696

2.6 A Numerical Method

6. h=0.1 h=0.05
xn yn xn J’n
0.00 1.0000 0.00 1.0000
0.10 1.1000 0.05 1.0500
0.20 1.2220 0.10 1.1053
0.30 1.3753 0.15 1.1668
0.40 1.5735 0.20 1.2360
0.50 1.8371 0.25 1.3144
0.30 1.4039
0.35 1.5070
0.40 1.6267
0.45 1.7670
0.50 1.9332
8. k=01 h=0.05
xn yn xn yn
0.00 1.0000 0.00 1.0000
0.10 1.1000 0.05 1.0500
0.20 1.2159 0.10 1.1039
0.30 1.3505 0.15 1.1619
0.40 1.5072 0.20 1.2245
0.50 1.6902 0.25 1.2921
0.30 1.3651
0.35 1.4440
0.40 1.5293
0.45 1.6217
0.50 1.7219
10. h=01 h=0.05
Xn Yn Xn In
0.00 0.5000 0.00 0.5000
0.10 0.5250 0.05 0.5125
0.20 0.5499 0.10 0.5250
0.30 0.5747 0.15 0.5375
0.40 0.5991 0.20 0.5499
0.50 0.6231 0.25 0.5623
0.30 0.5746
0.35 0.5868
0.40 0.5989
0.45 0.6109
0.50 0.6228

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed

with a certain product or service or otherwise on a password-protected website for classroom use.

83



84

11.

12.

13.

CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

Tables of values were computed using the Euler and RK4 methods. The resulting points were

plotted and joined using ListPlot in Mathematica.

h=0.25 h=0.1 h=0.05

¥y y y

7 RK4 7 RK4 7 RK4

6 6 6 r
5 5 5

4 4 4

3 3 3

2 Euler 2 2

1 1 1

2 4 6 8 10 * ‘ 2 4 6 8 10 * ‘ 2 4 6 8 10 ¥

Tables of values were computed using the Euler and RK4 methods. The resulting points were

plotted and joined using ListPlot in Mathematica.

h=0.25 h=0.1 h=0.05
y ¥y y
6 6 6

RI RK4 RK4

5 5 Euler 5 Euler
4 4 4

Eule:
3 3 3
2 2 2
1 1 1

1 2 3 4 5 1 2 3 4 5 i 2 3 4 5 %

Discussion Problems

Tables of values, shown below, were first computed using Euler’s method with A~ = 0.1 and
h = 0.05, and then using the RK4 method with the same values of h. Using separation of
variables we find that the solution of the differential equation is y = 1/(1 — %), which is
undefined at x = 1, where the graph has a vertical asymptote. Because the actual solution
of the differential equation becomes unbounded at = approaches 1, very small changes in the
inputs = will result in large changes in the corresponding outputs y. This can be expected to

have a serious effect on numerical procedures.
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2.6 A Numerical Method

h=0.1 (Euler) h=0.05 (Euler) h=0.1 (RK4) h=0.05 (RK4)
x'l yn xn yn xﬂ yll xn yn
0.00 1.0000 0.00 1.0000 0.00 1.0000 0.00 1.0000
0.10 1.0000 0.05 1.0000 0.10 1.0101 0.05 1.0025
0.20 1.0200 0.10 1.0050 0.20 1.0417 0.10 1.0101
0.30 1.0616 0.15 1.0151 0.30 1.0989 0.15 1.0230
0.40 1.1292 0.20 1.0306 0.40 1.1905 0.20 1.0417
0.50 1.2313 0.25 1.0518 0.50 1.3333 0.25 1.0667
0.60 1.3829 0.30 1.0795 0.60 1.5625 0.30 1.0989
0.70 1.6123 0.35 1.1144 0.70 1.9607 0.35 1.1396
0.80 1.9763 0.40 1.1579 0.80 2.7771 0.40 1.1905
0.90 2.6012 0.45 1.2115 0.90 5.2388 0.45 1.2539
1.00 3.8191 0.50 1.2776 1.00 42.9931 0.50 1.3333
0.55 1.3592 0.55 1.4337
0.60 1.4608 0.60 1.5625
0.65 1.5888 0.65 1.7316
0.70 1.7529 0.70 1.9608
0.75 1.9679 0.75 2.2857
0.80 2.2584 0.80 2.7771
0.85 2.6664 0.85 3.6034
0.90 3.2708 0.90 5.2609
0.95 4.2336 0.95 10.1973
1.00 5.9363 1.00 84.0132

The points in the tables above were plotted and joined using ListPlot in Mathematica.

h=0.1 h=0.05
y y
10 10
8 RK4 8 RK4
6 6
4 4
ler, Eul®r,
2 2
0.2 0.4 0.6 0.8 1 ¥ 0.2 0.4 0.6 0.8 1"

Computer Lab Assignments

14. (a) The graph to the right was obtained using RK4 and
ListPlot in Mathematica with h = 0.1. 0-3
0.4
0.3
0.2
0.1

(b) Writing the differential equation in the form y’ 4+ 2zy = 1 we see that an integrating factor
is e 2wde — e”‘z, SO
d 2 2
%[em yl=e"
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and N
Y= e e / e’ dt + ce™ .
0

This solution can also be expressed in terms of the inverse error function as

(x) + ce .

y= \2% e~ erfi

Letting x = 0 and y(0) = 0 we find ¢ = 0, so the solution of the initial-value problem is
x
Yy = e’ / e’ dt = vr efxzerﬁ(a:).
0 2
(c) Using FindRoot in Mathematica we see that y/(z) = 0 when z = 0.924139. Since

4(0.924139) = 0.541044, we see from the graph in part (a) that (0.924139, 0.541044)

is a relative maximum. Now, using the substitution u = —t in the integral below, we have

y(—x) = 6(1)2/0 e’ dt = 6x2/0 e(*“)z(—du) = —emz/o e’ du = —y(z).

Thus, y(z) is an odd function and (—0.924139, —0.541044) is a relative minimum.

2.R  Chapter 2 in Review

1. Writing the differential equation in the form 3y’ = k(y + A/k) we see that the critical point
—A/Fk is a repeller for k£ > 0 and an attractor for k£ < 0.

2. Separating variables and integrating we have

d 4
W_Z e
y
Iny=4lnz+c=Inz*+c¢
y = ciz’t.

We see that when = 0, y = 0, so the initial-value problem has an infinite number of solutions
for £ = 0 and no solutions for k # 0.

3. True; y = ko /k; is always a solution for k; # 0.

4. True; writing the differential equation as a1(z)dy + as(z)ydx = 0 and separating variables

yields
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10.

11.

12.

13.

2.R Chapter 2 in Review 87

3

. An example of a nonlinear third-order differential equation in normal form is d—g = xeV.
x
There are many possible answers.
. False, because rf +r+6 +1 = (r+1)(6 + 1) and the differential equation can be written as

dr
r+1

— (0 +1)d6.

d
. True, because the differential equation can be written as Y dx.

f()

. Since the differential equation is autonomous, 2 — |y| = 0 implies that y = 2 and y = —2 are
critical points and hence solutions of the differential equation.
. The differential equation is separable so

dy _

edx implies Inly| = e +e,
)

and thus y = ¢1e" is the general solution of the differential equation.

We have y

, —x, <0 . —12% 41, <0

y = |z| = implies y = 5

x, x>0 22+, x>0 [

The initial condition y(—1) = 2 implies that —3(—1)> + ¢; = 2 so
c = % Since y(z) is supposed to be continuous at = 0, the two

parts of the function must agree. That is, co must also be %, and

1,2 5 1 2
$224+5, >0 1(54+2%, x>0.

Differentiating we find

d x
d—y = P Tre” % + (—sinx) COS:E/ te” “Stdt = x — (sinz)y.
x 0

d
Thus the linear differential equation is d—y + (sinz)y = x.
x

An example of an autonomous linear first-order differential equation with a single critical point

dy
d;/* =y + 3, whereas an autonomous nonlinear first-order differential equation with

X

at —3 1is

d
a single critical point —3 is d—y = (y+3)~
x

Yty 13
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dy 2

= = -2 —4

7 Yy =27y —4)

When n is odd, £ < 0 for x < 0 and ™ > 0 for £ > 0. In this case 0 is unstable. When n is

even, ' > ( for x < 0 and for z > 0. In this case 0 is semi-stable. When n is odd, —2™ > 0 for
x < 0and —x™ < 0 for x > 0. In this case 0 is asymptotically stable. When n is even, —z™ < 0
for z < 0 and for 2 > 0. In this case 0 is semi-stable. Technically, 0° is an indeterminant form:;

however for all values of = except 0, 2° = 1. Thus, we define 0° to be 1 in this case.

Using a CAS we find that the zero of f occurs at approximately P = 1.3214. From the graph
we observe that dP/dt > 0 for P < 1.3214 and dP/dt < 0 for P > 1.3214, so P = 1.3214 is an
asymptotically stable critical point. Thus, lim; o, P(t) = 1.3214.

# 2= ANV ANN AN\ ey
Ll WA N L T N Y AR DR
AR R R R AR R T

=== NAVAVANNRANNNVNN N -
e=xs\VNNAANN ANV =e v

(a) linear in y, homogeneous, exact (b) linear in z
(c) separable, exact, linear in x and y (d) Bernoulli in x
(e) separable (f) separable, linear in x, Bernoulli
(g) linear in x (h) homogeneous
(i) Bernoulli (j) homogeneous, exact, Bernoulli
(k) linear in z and y, exact, separable, (1) exact, linear in y
homogeneous
(m) homogeneous (n) separable
Separating variables and using the identity cos® z = %(1 + cos 2x), we have

2 Yy
dr = ——d
cos“ xdx il Y,
1

1 1
§x+zsin2x:§1n(y2+1)+c,

and 2z +sin2z = 21n (y2—|—1) + c.
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20.

21.

22,

2.R Chapter 2 in Review

Write the differential equation in the form
ylnfdx = <:cln$ — y> dy.
Yy Y

This is a homogeneous equation, so let x = uy. Then dxr = udy + ydu and the differential

equation becomes
ylnu(udy + ydu) = (uylnu —y)dy or ylnudu = —dy.

Separating variables, we obtain

d
nuduy= -2
Y
uln|u| —u=—Inly|+¢
Y —fz—ln]y\—l—c
Y Y Y

z(lnz —Iny) — 2z = —yInl|y| + cy.

The differential equation
dy 2 32,

iz 6r+1Y " Grr1Y

is Bernoulli. Using w = >, we obtain the linear equation

dw 6 92

e i1V 6ral

An integrating factor is 6z + 1, so

d [(6z + 1)w] = —92°

— [(6x w] = -9z

dx ’
323 c

“6etl 6atl

and

(62 4+ 1)y® = —32° + .
Note: The differential equation is also exact.

Write the differential equation in the form (3y? + 2x)dx + (4y? + 6xy)dy = 0. Letting M =
3y? + 22 and N = 432 + 62y we see that M, = 6y = N, so the differential equation is exact.
From f, = 3y? + 2z we obtain f = 3zy? + 22 + h(y). Then f, = 6zy + h/(y) = 4y* + 62y and
h'(y) = 4y? so h(y) = %y3. A one-parameter family of solutions is

4
3xy? + 2% + gy‘?‘ =c.
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23. Write the equation in the form

— 4+ —-@Q =t’Int.
g Te=r
An integrating factor is e™! = ¢, so
d 4
—[tQ] =t"Int
Q) =1
L5, 15
tQ) = ——1 —t°Int
@=—ggt T giiintte
and
14 14 c
= ——t* 4+ Zt'Int 4 -.
@=—ggt Tttty
24. Letting u = 2z +y + 1 we have
@_2+@
de dx’

and so the given differential equation is transformed into

u<du—2>:1 or du_2u+1.

dzx dr~ u

Separating variables and integrating we get

Y du = dx
2u+1
1 1 1
- —= du = dx
2 22u+1
L M put =t
gU— g n|2u =xz+c

2u —In|2u+ 1] = 2x + ¢1.
Resubstituting for u gives the solution

dr +2y+2—Injde + 2y + 3| =2+ 1

or
20+ 2y +2 —Injdz + 2y + 3| = 1.

25. Write the equation in the form

@4_ x 2z
dx a:2—|—4y_x2+4'

An integrating factor is (;1:2 + 4)4, SO

% [(:z:2 +4)4y} = 2z (a2 +4)°

(x2+4)4y: (332—1—4)4—1—0

and y = +c(a:2+4)74.

e i S
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2.R Chapter 2 in Review

26. Letting M = 272 cos @ sin @+r cos § and N = 4r+sin —2r cos? § we see that M, = 4r cos @ sin O+
cosf = Ny, so the differential equation is exact. From fy = 2r2cos@sinf + rcosf we obtain
f=-r2cos?0+rsin@+ h(r). Then f, = —2rcos?§ +sinf + h/'(r) = 4r + sin 6 — 2r cos? § and
h'(r) = 4r so h(r) = 2r%. The solution is

—r2cos? 0 + rsinf + 2r° = c.

27. The differential equation has the form (d/dx) [(sinx)y] = 0. Integrating, we have (sinz)y = ¢
or y = ¢/sinz. The initial condition implies ¢ = —2sin(77/6) = 1. Thus, y = 1/sinz = cscx,
where the interval m# < z < 27 is chosen to include x = 77/6.

28. Separating variables and integrating we have

dy
Y
! (t+1)% +
- = C
Y
71 — letti
= etting —c=c¢
LR T 1
The initial condition y(0) = —% implies ¢; = —9, so a solution of the initial-value problem is
1 1
= —-———— or = -5 =
YS9 YT o3

where —4 < t < 2.

29. (a) For y <0, \/y is not a real number.
(b) Separating variables and integrating we have

dy
— =dx and 2y=x+c.
N VY

Letting y(zo) = yo we get ¢ = 2,/yg — g, so that
2y=x+2yyo—x0 and y= i(w+2\/%—xo)2.
Since /y > 0 for y # 0, we see that dy/dx = %(az + 2,/0 — xo) must be positive. Thus,
the interval on which the solution is defined is (zo — 2,/yo, 00).
30. (a) The differential equation is homogeneous and we let y = uxz. Then
(22 — ) dx + zydy =0
(2% — u’2?) dx + ua®(ude + x du) = 0

dr +uxdu =0
d
wdu = -2
x
1
§u2 =—Inlz|+¢
2
y—Q = —2In|z|+¢.
x
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The initial condition gives ¢; = 2, so an implicit solution is y? = 2%(2 — 21n |x]).

(b) Solving for y in part (a) and being sure that the initial con- Y
dition is still satisfied, we have y = —v/2 |z|(1 — In |z])/2, 2
where —e < z < e so that 1 — In|z| > 0. The graph of 1
this function indicates that the derivative is not defined -2 -1 i 2 | %
at r = 0 and x = e. Thus, the solution of the initial-value -1
problem is y = —v2x(1 — Inz)'/2, for 0 < z < e. -2

31. The graph of y;(x) is the portion of the closed blue curve lying in the fourth quadrant. Its
interval of definition is approximately (0.7, 4.3). The graph of y2(x) is the portion of the
left-hand blue curve lying in the third quadrant. Its interval of definition is (—oo, 0).

32. The first step of Euler’s method gives y(1.1) ~ 9 + 0.1(1 + 3) = 9.4. Applying Euler’s method
one more time gives y(1.2) ~ 9.4 4+ 0.1(1 + 1.1v/9.4 ) ~ 9.8373.

33. Since the differential equation is autonomous, all lineal

elements on a given horizontal line have the same slope.
The direction field is then as shown in the figure at the
right. It appears from the figure that the differential

equation has critical points at —2 (an attractor) and at 2

(a repeller). Thus, —2 is an asymptotically stable critical

point and 2 is an unstable critical point.

34. Since the differential equation is autonomous, all lineal y

. K . Y A A R R Y (R ]

elements on a given horizontal line have the same slope. R R SRR

The direction field is then as shown in the figure at the AR A

right. It appears from the figure that the differential L \\ S
equation has no critical points. ol . ‘\ “““ X

-2
AR 4 ‘ PR RV
—4 -2 0 2 4
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