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Chapter 1

Introduction to Differential Equations

1.1

10.

11.

12.

13.

Definitions and Terminology

. Second order; linear
. Third order; nonlinear because of (dy/dx)*

. Fourth order; linear

Second order; nonlinear because of cos(r + u)

. Second order; nonlinear because of (dy/dx)? or \/1 + (dy/dz)?
. Second order; nonlinear because of R?

. Third order; linear

. Second order; nonlinear because of 42

. Writing the differential equation in the form z(dy/dx) + y* = 1, we see that it is nonlinear

in y because of y2. However, writing it in the form (y? — 1)(dx/dy) + = = 0, we see that it is

linear in x.

Writing the differential equation in the form u(dv/du)+ (1+u)v = ue we see that it is linear
in v. However, writing it in the form (v+uv —ue")(du/dv)+u = 0, we see that it is nonlinear

in u.
From y = e /2 we obtain y’ = —%e‘w/z. Then 2y +y = —e %/2 + e=%/2 = .

From y = g — ge—zot we obtain dy/dt = 24e=2% so that

dy 20t 6 6 o0 _
7t + 20y = 24e + 20 5 56 = 24.

3

From y = 3% cos 2z we obtain ' = 3e3% cos 22 — 23 sin 2z and 3’ = 5e3* cos 22 —12¢3% sin 2z,

so that y” — 6y’ + 13y = 0.



CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

14. From y = — cos x In(sec z + tan x) we obtain ¥’ = —1 + sinx In(sec x + tan z) and

y" =tanz + cos x In(secx + tan z). Then y” + y = tan .

15. The domain of the function, found by solving z+2 > 0, is [~2,00). From 3/ = 1+2(z+42)~1/?

we have

(y—2)y = (y—2)[1 + 2(x +2)""/7
—y—x+2y—x)(x+2)"1/?
—y—a+42z+4x+2)"? - z)(z +2)" 12

—y—2+8x+2)2(x+2)" V2 =y—z+8

An interval of definition for the solution of the differential equation is (—2,00) because ¢’ is
not defined at z = —2.

16. Since tanx is not defined for x = 7/2 + n7, n an integer, the domain of y = 5tanbx is
{z |5z # /2 +nw}
or {z | x # n/10 + n7/5}. From y’ = 25sec? 5z we have

y' = 25(1 4 tan? 5z) = 25 4 25 tan® 5z = 25 4 2.

An interval of definition for the solution of the differential equation is (—/10,7/10). Another
interval is (7/10,37/10), and so on.

17. The domain of the function is {x ! 4 — 2240} or {x ! x # —2 and = # 2}. From

Y = 2z/(4 — 2%)? we have
1 \2
y = 2x <4—x2> :2xy2.

An interval of definition for the solution of the differential equation is (—2,2). Other intervals

are (—oo,—2) and (2, 00).

18. The function is y = 1/4/1 — sinx, whose domain is obtained from 1 —sinx # 0 or sinxz # 1.
Thus, the domain is {z | « # 7/2 + 2n7}. From ' = —3(1 — sin 2)~3/2(— cos x) we have

/

2 = (1 —sinz)3/2

~1/2)3

cosz = [(1 —sinx) cosz = y° cos .

An interval of definition for the solution of the differential equation is (7/2,57/2). Another

one is (57/2,97/2), and so on.



1.1 Definitions and Terminology

19. Writing In(2X — 1) — In(X — 1) = ¢ and differentiating N
implicitly we obtain 4
2 X 1 X z
2X -1 dt X—-1dt
2 1 ax 1 N s !
2X -1 X-—-1) dt \
-2
2X 22X +1dX 'l
22X -1)(X—1) dt .
aX
— =X - X -1 = (X -1 - 2X).

Exponentiating both sides of the implicit solution we obtain

2X —1
x-1 ¢

2X —1=Xet — ¢!

(' —1) = (e —2)X

el —1
et —2°

X =

Solving e! — 2 = 0 we get t = In 2. Thus, the solution is defined on (—oo,In2) or on (In2, c0).
The graph of the solution defined on (—oo,In2) is dashed, and the graph of the solution
defined on (In 2, c0) is solid.

20. Implicitly differentiating the solution, we obtain Y
4
dy dy
—222 2 — 4 2y —= =0
T dr Yy dx )
—2?dy — 2zydx +ydy =0
— — X
2zy dz + (z° — y)dy = 0. 2 NL 72 4
-2
Using the quadratic formula to solve y? — 222y —1 = 0
for y, we get y = (222 £ Vda? +4)/2 = 2 £ Va' +1. -4

Thus, two explicit solutions are y; = z? + Va% +1 and
yo = 22 — /2% + 1. Both solutions are defined on (—o0, 00).
The graph of y;(x) is solid and the graph of y, is dashed.



CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

21. Differentiating P = ce! / (1 + ¢ et) we obtain

dp (1+ cref) cret — cret - et GG [(1+cret) — cref]
dt (1+ clet)2 14 cpet 1+ cpet
¢ ¢
—_ae 9 1 _pa-p).
1+ cet 1+ cret

d
22. Differentiating y = 222 — 1 + 616_2902 we obtain d—y =4z — 4xc16_2x2, so that
x

d
d—y +4zy = 4a — 4xcle_2x2 + 823 — 4a + 4clxe_x2 = 822
T
d d2
23. From y = 162 + coxe®® we obtain d_y = (2¢1 + 62)62”” + 2c2xe2m and d—g = (4c1 + 4C2)62w +
T T

402336 , so that
dzy d 2z 2r
prch 4d— + 4y = (4dey +4eg — 8y — 4deg + 4eq)e™™ + (deg — 8eg + 4eg)ze™ = 0.

24. From y = ciz~! + cox + ez Inx + 422 we obtain

d
& _ —c1z7 % + g+ 3+ c3lna + 8z,
dx

d2

d—xg = 201x_3 + 03x_1 + 8,

and 3
d—;é = —60133_4 — 0333_2,
so that
5 3y 5 d%y dy 1
x° —=% 4 22° — —x—+y—( 6cy +4cy +c1+c)r” 4+ (—cg+2c3 —ca — 3+ co)x

dz3 dz? dx
4+ (—c3+ez)rnz + (16 — 8 4 4)a?

= 1227
In Problems 25-28, we use the Product Rule and the derivative of an integral ((12) of this section):

—/ t)dt = g(z).

) o - T e—3t ) dy - T e—3t 6—390 .
25. Differentiating y = e — dt we obtain —— = 3e — dt + -e”" or
1 1 x

dx
d z ,—3t 1
—y:3e3m/ e—dt+—,so that
dx 1t x

dy . x —3t
r———3zy =x | 3¢ dt+ —3x —dt
dx Tt
= 3ze’® / —dt+1—3xe / —dt—l




1.1 Definitions and Terminology

d 1 r t
26. Differentiating y = \/_/ — dt we obtain ﬁ = SNl Ci)/SZ dt + Ci)/S; v/ or
dy L [reost that
= cos x, so tha
dx 2\/_ \/_
d 1 t t
2xﬁ—y:2zp<2\/, Ci)/s_ dt—l—cos:n) \/_/ o8
t t
= \/_/ ﬂdt+2azcosaj \/_/ ﬂaHE 2z cos
t d t 10
27. Differentiating y = — —|— — / sint dt we obtain 2 = 2 _ —/ sint smaj or
x T
d 1 t 1
_y:_i__O/ sin dt + Osmx , so that
dx 2 x2 ), ot x2
dy 5 10 [*sint 10sin z smt
2 2
— = - - = dt
xdx+xyw<$2 :E2/1 t * 3:2> < / >
Teint sint
=-5-10 —dt+1081nw+5+10 —dt-lOsmw
. C — 2 . dy —z2 —z2 * +2 22 2
28. Differentiating y = e~ = te e” dt we obtain T —2ze” " —2xe e’ dt+e” -e
0 €L 0
d xr
or Y — _9pe _ g / e’ dt + 1, so that
dx 0

dy

xr xX
— + 2y = (—23:6_“"”2 — oze™® / e’ dt + 1> + 2x (e_IQ L / et’ dt)
dx 0 0

X X
— _9pe ™ — 2ze / et dt + 1+ oxe2 + ore % / e dt =1
0 0

—2%, <0
Yy=19 5

29. From

x“, z >0
;) 2z, <0
4 2x, x>0

The function y(z) is not continuous at = 0 since lim y(z) =5 and lim y(z) = —5. Thus,
z—0" z—071
y'(x) does not exist at x = 0.

we obtain

so that vy’ — 2y = 0.

30.

31. Substitute the function y = €™* into the equation y’ + 2y = 0 to get

(€Y +2(e™) =0
me™ +2e™ = ()
" (m+2)=0

Now since €™ > 0 for all values of x, we must have m = —2 and so y = =% is a solution.
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32. Substitute the function y = ¢™* into the equation 5y’ — 2y = 0 to get
5(e™) —2(e™) =0
5me™* — 2e™* =0

em*(bm —2) =0

2x/5

Now since ™ > 0 for all values of z, we must have m = 2/5 and so y = e is a solution.

33. Substitute the function y = €™ into the equation y” — 5y’ + 6y = 0 to get
(€)' —5(e™) +6(e™") =0
m2e™® — 5me™® + 6™ = 0
€™ (m? — 5m 4 6) =0

em™(m—2)(m—-3)=0

Now since ¢™* > 0 for all values of , we must have m = 2 or m = 3 therefore y = ¢?* and
y = €3 are solutions.
34. Substitute the function y = €™ into the equation 2y” + 7y’ — 4y = 0 to get
2™ +7(e™) — 4(e™) =0
2m2e™ + Tme™® — 4™ = ()
emm(2m2 +7Tm—4)=0
" (m+4)2m—1)=0
Now since e™® > 0 for all values of z , we must have m = —4 or m = 1/2 therefore y = e=4®

and y = /2 are solutions.
35. Substitute the function y = 2™ into the equation zy” + 2y’ = 0 to get
z-(@™) +2(2™) =0
z-m(m—1)2™ %+ 2ma™ "t =0
(m? —m)z™ ! 4+ 2ma™ ! =0
2™ Hm? +m] =0
2™ Hm(m+1)] =0

1

The last line implies that m = 0 or m = —1 therefore y = 2° = 1 and y = ! are solutions.



1.1 Definitions and Terminology

36. Substitute the function y = 2™ into the equation z?y” — Tzy’ + 15y = 0 to get
2 (™) — T2z (™) +15(2™) =0
22 -m(m —1)2™ % = Tx-ma™ ' +152™ =0
(m? —m)z™ — Tma™ + 152™ = 0
2™ m? — 8m + 15] = 0
z™[(m—3)(m—5)]=0

5

The last line implies that m = 3 or m = 5 therefore y = 2> and y = 2° are solutions.

In Problems 37-40, we substitute y = c into the differential equations and use y' =0 and y”’ =0

37. Solving 5¢ = 10 we see that y = 2 is a constant solution.
38. Solving ¢ +2c—3 = (c+3)(c—1) = 0 we see that y = —3 and y = 1 are constant solutions.
39. Since 1/(c — 1) = 0 has no solutions, the differential equation has no constant solutions.

40. Solving 6¢ = 10 we see that y = 5/3 is a constant solution.

41. From z = e % + 3¢5 and y = —e~ 2! 4 5e5 we obtain
d d
d—f = —2¢ 2 +18¢%  and d—i = 2e 2t 4 30e5¢.
Then J
z+3y = (e 4+ 3e8) + 3(—e 2 + 5e%) = 272 4 18e5 = d—f
and p
5z + 3y = 5(e 2 + 3e5) + 3(—e 2 4 5e%) = 27 4 30e% = d—i{ .
42. From x = cos 2t + sin 2t + %et and y = —cos 2t — sin 2t — éet we obtain
d 1 d 1
d—§:—2sin2t—|—20052t+5et and d—izZsinZt—2cos2t—get
and ) )
d 1 d 1
d—tf :—4cos2t—4sin2t+get and Eg :4cos2t+4sin2t—get.
Then
4y + €' = 4(— cos 2t — sin 2t 1et) + e = —4cos 2t — 4sin 2t + 1et _ &
yre = 5 - 5° T dr?
and
t . 1, t . 1, d*y
dx — €' = 4(cos 2t +sin 2t + € ) — e =4cos2t + 4sin 2t — €= g

7



43.

44.

45.

46.

47.

48.

49.

50.

CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

(y/)? +1 = 0 has no real solutions because (y')? + 1 is positive for all differentiable functions

y = ¢(z).
The only solution of (y/)% +y? =01is y = 0, since if y # 0, y*> > 0 and (y/)? + 3% > y? > 0.

The first derivative of f(x) = e® is e®. The first derivative of f(z) = € is keF*. The

differential equations are v’ = y and 3’ = ky, respectively.

Any function of the form y = ce” or y = ce™" is its own second derivative. The corresponding
differential equation is ¢y’ —y = 0. Functions of the form y = csinz or y = ccos x have second

derivatives that are the negatives of themselves. The differential equation is y” + y = 0.

We first note that /1 —y2 = \/1 —sin? x = Vcos?2x = | cosz|. This prompts us to consider

values of z for which cosz < 0, such as x = m. In this case

dy

Ir sin x)

:cosx‘ =cosm = —1,
T=Tr

:%(

T=T

T=T

but

V1—12per = V1 —sin?r =1 =1

Thus, y = sinz will only be a solution of 3’ = /1 —y2? when cosz > 0. An interval of
definition is then (—7n/2,7/2). Other intervals are (37/2,57/2), (77/2,97/2), and so on.

Since the first and second derivatives of sint and cost involve sint and cos t, it is plausible that
a linear combination of these functions, Asint+ B cost, could be a solution of the differential
equation. Using 3y’ = Acost — Bsint and y” = —Asint — Bcost and substituting into the

differential equation we get

y" +2y +4y = —Asint — Beost + 2Acost — 2Bsint + 4Asint 4 4B cost

= (3A —2B)sint + (2A + 3B) cost = 5sint

Thus 34 — 2B = 5 and 24 + 3B = 0. Solving these simultaneous equations we find A = }—g
15 10

and B = —% . A particular solution is y = {3 sint — {3 cost.

One solution is given by the upper portion of the graph with domain approximately (0, 2.6).
The other solution is given by the lower portion of the graph, also with domain approximately
(0,2.6).

One solution, with domain approximately (—oo, 1.6) is the portion of the graph in the second
quadrant together with the lower part of the graph in the first quadrant. A second solution,
with domain approximately (0,1.6) is the upper part of the graph in the first quadrant. The
third solution, with domain (0, c0), is the part of the graph in the fourth quadrant.



51.

52.

53.

54.

55.

56.

1.1 Definitions and Terminology

Differentiating (23 + y3)/zy = 3¢ we obtain

zy (322 + 3y%y) — (2° + ) (xy +y)

2242 =0

3:1332/ + 3xy3y/ _ x4y/ _ $3y _ xy3y/ _ y4 — 0
(Bzy® — 2t — xP)y = =323y + 23y + o

,_yt-2ty  y(y® - 227
2ry? —xt x(2y3 —23)

Y

A tangent line will be vertical where 3 is undefined, or in this case, where z(2y® — 23) = 0.

This gives = 0 or 2y® = x3. Substituting y> = 23/2 into 23 + y* = 3xy we get

1 1
2°+ =~ = 3z <Wx>

2

3 3 _ 3 2
5!17 —ﬁx
$3:22/3$2

2 (x—223) =o.

Thus, there are vertical tangent lines at = 0 and = = 2%/3, or at (0,0) and (2%/3,2/3).

Since 22/3 ~ 1.59, the estimates of the domains in Problem 50 were close.

The derivatives of the functions are ¢} (z) = —z/v25 — 22 and ¢4(x) = x/v/25 — 22, neither
of which is defined at z = +5.

To determine if a solution curve passes through (0,3) we let ¢ = 0 and P = 3 in the equation
P =cie' /(14 cie'). This gives 3 =c1/(1+¢1) or ¢; = —3 . Thus, the solution curve

(—=3/2)et =3¢l

P —
1—(3/2)et 2 —3et

passes through the point (0,3). Similarly, letting ¢ = 0 and P = 1 in the equation for the
one-parameter family of solutions gives 1 = ¢1/(1 4+ ¢1) or ¢4 = 1 + ¢;. Since this equation

has no solution, no solution curve passes through (0,1).

For the first-order differential equation integrate f(x). For the second-order differential equa-~

tion integrate twice. In the latter case we get y = [([ f(x)dz) dz + c12 + co.

Solving for ¢ using the quadratic formula we obtain the two differential equations

1 1
y/:—<2—|—2\/1+3:176) and ¢ = (2—2 1—|—3x6>,
x

xT

so the differential equation cannot be put in the form dy/dz = f(z,vy).
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57.

58.

59.

60.

61.

CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

The differential equation yy’ — xy = 0 has normal form dy/dx = x. These are not equivalent

because y = 0 is a solution of the first differential equation but not a solution of the second.

Differentiating we get ¢’ = ¢1 + 2cox and y” = 2¢5. Then ¢ =y’ /2 and ¢; =y — 29", so

- ! " y// 2 / 1 2.1
y—(y—xy )x+ 5 T —:Ey—izny

and the differential equation is z2y” — 2zy’ + 2y = 0.

(a) Since e~ is positive for all values of x, dy/dz > 0 for all z, and a solution, y(x), of the

differential equation must be increasing on any interval.

xT

(b) lim j—y = lim e® =0and lim dy _ lim e~ = 0. Since dy/dx approaches 0 as

r——00 AT T——00 r—00 AT T—00
x approaches —oo and oo, the solution curve has horizontal asymptotes to the left and

to the right.
(c) To test concavity we consider the second derivative

dz?  dx \dr) dx n '

Since the second derivative is positive for x < 0 and negative for x > 0, the solution

curve is concave up on (—o0,0) and concave down on (0, c0).

o

(a) The derivative of a constant solution y = ¢ is 0, so solving 5 — ¢ = 0 we see that ¢ = 5

and so y = 5 is a constant solution.

(b) A solution is increasing where dy/dx = 5 —y > 0 or y < 5. A solution is decreasing
where dy/dx =5 —y <0 or y > 5.

(a) The derivative of a constant solution is 0, so solving y(a — by) = 0 we see that y = 0 and

y = a/b are constant solutions.

(b) A solution is increasing where dy/dx = y(a — by) = by(a/b—y) >0o0r 0 <y < a/b. A
solution is decreasing where dy/dx = by(a/b—y) <0 ory <0 or y > a/b.
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(c) Using implicit differentiation we compute

d2y / / /
2 =y(=by') +y'(a —by) =y (a — 2by).

Thus d?y/dx? = 0 when y = a/2b. Since d?y/dx? > 0 for 0 < y < a/2b and d?y/dz* < 0
for a/2b < y < a/b, the graph of y = ¢(z) has a point of inflection at y = a/2b.

(d)

y=alb

\/
=

N

62. (a) If y = c is a constant solution then y' = 0, but ¢? + 4 is never 0 for any real value of c.

(b) Since y' = y*> +4 > 0 for all x where a solution y = ¢(x) is defined, any solution must

be increasing on any interval on which it is defined. Thus it cannot have any relative
extrema.

(c) Using implicit differentiation we compute d?y/dx?> = 2yy’ = 2y(y*> + 4). Setting

d*y/dx® = 0 we see that y = 0 corresponds to the only possible point of inflection.

Since d%y/dx? < 0 for y < 0 and d?y/dx? > 0 for y > 0, there is a point of inflection
where y = 0.

(d)
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63. In Mathematica use

Clear[y]

y[x]:= x Exp[5x] Cos[2x]

y[x]

y''''[x] = 20y''[x] + 158y [x] — 580y [x] +841y[x]//Simplify

5

The output will show y(z) = e°x cos 2x, which verifies that the correct function was entered,

and 0, which verifies that this function is a solution of the differential equation.

64. In Mathematica use

Clear[y]
y[x_]:= 20Cos[5Log[x]]/x — 3Sin[5Log[x]]/x
y[x]
x"3y'"'[x] + 2x"2 y'"'[x] + 20x y'[x] — T8y[x]//Simplify
The output will show y(x) = 20cos(5Inx)/x — 3sin(51n x)/x, which verifies that the correct

function was entered, and 0, which verifies that this function is a solution of the differential

equation.

1.2 Initial-Value Problems

1. Solving —1/3 =1/(1 + ¢1) we get ¢; = —4. The solution is y = 1/(1 — 4e™").
2. Solving 2 = 1/(1 + c1e) we get ¢; = —(1/2)e~!. The solution is y = 2/(2 — e~ @+1),

3. Letting = 2 and solving 1/3 = 1/(4 + ¢) we get ¢ = —1. The solution is y = 1/(x? — 1).

This solution is defined on the interval (1, 00).

4. Letting # = —2 and solving 1/2 = 1/(4 + ¢) we get ¢ = —2. The solution is y = 1/(z% — 2).
This solution is defined on the interval (—oo, —v/2).

5. Letting 2 = 0 and solving 1 = 1/c we get ¢ = 1. The solution is y = 1/(2% +1). This solution

is defined on the interval (—oo, 00).

6. Letting = 1/2 and solving —4 = 1/(1/4 + ¢) we get ¢ = —1/2. The solution is y =
1/(z% — 1/2) = 2/(22% — 1). This solution is defined on the interval (—1/v/2,1/v/2).

In Problems 7-10, we use v = ¢y cost + cagsint and ¥’ = —cysint + cocost to obtain a system of
two equations in the two unknowns ¢y and cs.
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. From the initial conditions we obtain the system

Ccl = —162 =38

The solution of the initial-value problem is © = — cost + 8sin¢t.

. From the initial conditions we obtain the system

62:0—61:1

The solution of the initial-value problem is = — cost.

. From the initial conditions we obtain

3 1 1 1
£C1-1-—62:———CQ—|-

=0
2 2 2 2

|5

Solving, we find ¢; = v/3/4 and ¢y = 1/4. The solution of the initial-value problem is

x = (V3/4)cost + (1/4)sint.

From the initial conditions we obtain

v2oV2 s

DAty es
2 2
[6pt] — £61 + £02 = 2V/2.
2 2
Solving, we find ¢y = —1 and ¢ = 3. The solution of the initial-value problem is z =

—cost+ 3sint.

In Problems 11-14, we use y = c1€®* + coe™® and y' = c1e% — cae™® to obtain a system of two
equations in the two unknowns c1 and cs.

From the initial conditions we obtain

c1t+c=1

Cl1 — Cy = 2.
Solving, we find ¢ = % and ¢ = —%. The solution of the initial-value problem is y =
3 x 1 —=z
56 — 56 .

From the initial conditions we obtain
1 o
eci +e co=0
_1 o
€C1 — € Cp = e€.

Solving, we find ¢; = % and ¢y = —%62. The solution of the initial-value problem is

13
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From the initial conditions we obtain

6_1(31 +ecy =5H

e_lcl —ecy = —b.

Solving, we find ¢; = 0 and ¢y = 5e~'. The solution of the initial-value problem is y =

Se~le™® = e 172,
From the initial conditions we obtain

c1+co=0

01—0220.

Solving, we find ¢; = ¢co = 0. The solution of the initial-value problem is y = 0.

Two solutions are y = 0 and y = 2.

Two solutions are y = 0 and y = 22. (Also, any constant multiple of 22 is a solution.)

0 2
For f(z,y) = y*/3 we have 8_f = —y_l/ 3. Thus, the differential equation will have a unique
Y

solution in any rectangular region of the plane where y # 0.

For f(z,y) = /ry we have 0f /0y = %\/:E/y. Thus, the differential equation will have a

unique solution in any region where z > 0 and y > 0 or where x < 0 and y < 0.

0 1
For f(z,y) = L4 we have —f = — . Thus, the differential equation will have a unique solution
x x

dy

in any region where x # 0.

0

For f(z,y) = = +y we have ol 1. Thus, the differential equation will have a unique
Y

solution in the entire plane.

For f(x,y) = 22/(4 — y?) we have 0f /0y = 22%y/(4 — y*)?. Thus the differential equation

will have a unique solution in any region where y < —2, =2 <y < 2, or y > 2.

2 9 32242
* 5 we have —f = % Thus, the differential equation will have a
l+y Ay  (1+13)

unique solution in any region where y # —1.

For f(z,y) =

2 o 2 2
Y we have —f -y Thus, the differential equation will have a

For f(xz,y) = 2+ Ay (a2 +y2)°

unique solution in any region not containing (0, 0).
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For f(z,y) = (y+)/(y — =) we have df /0y = —2z/(y — x)?. Thus the differential equation

will have a unique solution in any region where y < x or where y > .

In Problems 25-28, we identify f(z,y) = \/y?>—9 and 0f/0y =y//y?> — 9. We see that f and
Of /0y are both continuous in the regions of the plane determined by y < —3 and y > 3 with no

restrictions on x.

Since 4 > 3, (1,4) is in the region defined by y > 3 and the differential equation has a unique
solution through (1,4).

Since (5, 3) is not in either of the regions defined by y < —3 or y > 3, there is no guarantee
of a unique solution through (5, 3).

Since (2, —3) is not in either of the regions defined by y < —3 or y > 3, there is no guarantee

of a unique solution through (2, —3).

Since (—1,1) is not in either of the regions defined by y < —3 or y > 3, there is no guarantee

of a unique solution through (—1,1).

(a) A one-parameter family of solutions is y = cx. Since ' = ¢, zy’ = z¢ = y and y(0) =
c-0=0.

(b) Writing the equation in the form y’ = y/x, we see that R cannot contain any point on the
y-axis. Thus, any rectangular region disjoint from the y-axis and containing (xg, yo) will
determine an interval around zy and a unique solution through (¢, y0). Since g = 0 in

part (a), we are not guaranteed a unique solution through (0, 0).

(c) The piecewise-defined function which satisfies y(0) = 0 is not a solution since it is not
differentiable at x = 0.

d
(a) Since . tan (z + ¢) = sec? (x + ¢) = 1+tan? (x + ¢), we see that y = tan (z 4 c) satisfies
x
the differential equation.

(b) Solving y(0) = tanc = 0 we obtain ¢ = 0 and y = tanz. Since tanz is discontinuous at

x = +7/2, the solution is not defined on (—2,2) because it contains +m /2.

(¢) The largest interval on which the solution can exist is (—7/2,7/2).

_d 1 1 ) 1
(a) Since %(_x+c) BRCETE = y~, we see that y = 7

ential equation.

is a solution of the differ-
c

(b) Solving y(0) = —1/c =1 we obtain ¢ = —1l and y = 1/(1—=x). Solving y(0) = —1/c = —1
we obtain ¢ = 1 and y = —1/(1+x). Being sure to include z = 0, we see that the interval
of existence of y = 1/(1 —x) is (—o0, 1), while the interval of existence of y = —1/(1+x)

is (—1,00).
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(c) By inspection we see that y = 0 is a solution on (—o0, 00).

32. (a) Applying y(1) =1toy = —1/(x + c) gives

Thus ¢ = —2 and

(b) Applying y(3) = -1 toy = —1/ (x + ¢) gives

Thus ¢ = —2 and

(c) No, they are not the same solution. The interval I of definition for the solution in part
(a) is (—o0,2); whereas the interval I of definition for the solution in part (b) is (2, 00).

See the figure.
33. (a) Differentiating 322 — y? = ¢ we get 6z — 2yy’ = 0 or yy' = 3z.
(b) Solving 32% — y? = 3 for y we get
y=i(z) = V32 -1), 1<z < oo, 4
y=¢o(x) = —/3(x2 - 1), 1<z < oo,

y=¢3(x) = 3> -1), —oco <z <—1, -4 2 2 4

2t
y=¢s(x) =—/3(22-1), —co<z<-L
4
(¢) Only y = ¢3(x) satisfies y(—2) = 3.
34. (a) Setting z = 2 and y = —4 in 322 — y? = ¢ we get
y
12 — 16 = —4 = ¢, so the explicit solution is A

y=—V322+4, —oco<uz<o0. 2l
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(b) Setting ¢ = 0 we have y = v/3z and y = —v/3z, both defined on (—oc, c0).

In Problems 35-38, we consider the points on the graphs with x-coordinates xo = —1, xg = 0,
and xog = 1. The slopes of the tangent lines at these points are compared with the slopes given by

y'(xg) in (a) through (f).

The graph satisfies the conditions in (b) and (f).

The graph satisfies the conditions in (e).

The graph satisfies the conditions in (c) and (d).

The graph satisfies the conditions in (a).

In Problems 3944 y = c1 cos 2z + co sin 2x is a two parameter family of solutions of the second-
order differential equation y" + 4y = 0. In some of the problems we will use the fact that

y' = —2¢q sin 2x + 2¢9 cos 2.

From the boundary conditions y(0) = 0 and y (%) = 3 we obtain
y(0) =¢1 =0
(1) merem (3) +asin(5) =ca=3
Z) = — in(=)=c=3.
) 4 C1 COS 5 C2 S 5 (6))
Thus, ¢; = 0, co = 3, and the solution of the boundary-value problem is y = 3sin 2z.
From the boundary conditions y(0) = 0 and y(7) = 0 we obtain
y(0) =¢1 =0
y(m) =c1 = 0.

Thus, ¢; = 0, co is unrestricted, and the solution of the boundary-value problem is y =
co sin 2z, where ¢y is any real number.

From the boundary conditions 3'(0) = 0 and 4’ (§) = 0 we obtain
y’(O) =2c =0

Y (%) = —2c¢; sin (g) = —\/gcl = 0.

Thus, co = 0, ¢; = 0, and the solution of the boundary-value problem is y = 0.

From the boundary conditions y(0) = 1 and y/(7) = 5 we obtain
y(0) =c1 =1

Y (m) = 2co = 5.

5 5
Thus, ¢; =1, s = 2’ and the solution of the boundary-value problem is y = cos 2z + 3 sin 2.
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From the boundary conditions y(0) = 0 and y(7) = 2 we obtain
y(0) =¢1 =0
y(m) =c1 = 2.
Since 0 # 2, this is not possible and there is no solution.

From the boundary conditions y' (5) = 1 and /() = 0 we obtain

y'(m) = 2co = 0.
Since 0 # —1, this is not possible and there is no solution.

Integrating 3’ = 8e%* + 6z we obtain

y = / (8€%® + 6x) dr = 4e*® + 322 + c.

Setting # =0 and y = 9 we have 9 =4+ cso ¢ =5 and y = 4€%* + 322 + 5.

Integrating 1y’ = 12z — 2 we obtain

y’:/(12x—2)dx:6x2—2x+cl.

Then, integrating 1y we obtain

yz/(ﬁa:z—2x+cl)da::2x3—x2+c1x+62.

At x = 1 the y-coordinate of the point of tangency is y = —1 + 5 = 4. This gives the initial
condition y(1) = 4. The slope of the tangent line at = 1 is 3/(1) = —1. From the initial

conditions we obtain
2—1+4+c1+c=4 or c1+c =3

and
6—2+c=-1 or cy = —95.

Thus, ¢; = —5 and ¢ = 8, so y = 223 — 22 — 5z + 8.

When z =0 and y = % , ' = —1, so the only plausible solution curve is the one with negative

slope at (0, % ), or the red curve.



1.2

48. We note that the initial condition y(0) = 0,

Y 1
0:/ L
0o V31

is satisfied only when y = 0. For any y > 0, necessarily

Y 1
/7d/t>0
0 t34+1

Initial-Value Problems

because the integrand is positive on the interval of integration. Then from (12) of Section 1.1

and the Chain Rule we have:

d d (Y 1
—r=— dt _
dx de [y V3 +1 dx
and
1 dy

1= '0) =
P+ 1dz V0 =%

Computing the second derivative, we see that:

2
dy:i\/y?wrl:

dz?  da WP +1dr 2 /P11
d2y 3 9
_2:_y‘
dr 2
d%y

This is equivalent to 2—5 — 3y* = 0.

de?

/W0 +1=v0+1=1.

3y dy 3y 3 3
3 = —F—"VY +1—§y

49. If the solution is tangent to the z-axis at (z(,0), then y' = 0 when x = 27 and y = 0.

Substituting these values into y' + 2y = 3z — 6 we get 0 + 0 = 329 — 6 or z¢ = 2.

50. The theorem guarantees a unique (meaning single) solution through any point. Thus, there

cannot be two distinct solutions through any point.

= zy'/?,

51. When y = 1—163:4, y =12% = a(32?) = zy'/?, and y(2) = 1—16(16) = 1. When
0, xz <0
¥=911
1—6:134, x>0
we have
0, xz <0 0, z <0
y, = =
%a:?’, x>0 %a:z, z >0

and y(2) = 1—16(16) = 1. The two different solutions are the same on the interval (0, c0), which

is all that is required by Theorem 1.2.1.

19
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Differential Equations as Mathematical Models

dP dpP

. — =kP+r; — =kP—r

dt dt

. Let b be the rate of births and d the rate of deaths. Then b = k1P and d = koP. Since

dP/dt = b — d, the differential equation is dP/dt = k1P — ko P.

. Let b be the rate of births and d the rate of deaths. Then b = k1P and d = kyP?. Since

dP/dt = b — d, the differential equation is dP/dt = ki P — ko P2.

P
Cfi—t:klP—kgP2—h, h>0

. From the graph in the text we estimate Ty = 180° and T, = 75°. We observe that when

T =85, dT'/dt =~ —1. From the differential equation we then have

LV

= = = —0.1.
T-1T, 8 =175

. By inspecting the graph in the text we take T, to be T, (t) = 80 — 30 cos (7t/12). Then the

temperature of the body at time ¢ is determined by the differential equation

‘;—f —k [T— (80—30cos (%t))] . t>0.

. The number of students with the flu is z and the number not infected is 1000 — z, so dx/dt =

k(1000 — z).

. By analogy, with the differential equation modeling the spread of a disease, we assume that

the rate at which the technological innovation is adopted is proportional to the number of
people who have adopted the innovation and also to the number of people, y(t), who have
not yet adopted it. If one person who has adopted the innovation is introduced into the

population, then x +y =n + 1 and

Z—f =kzx(n+1—2z), =z(0)=1.

. The rate at which salt is leaving the tank is

A A
Rout (3 gal/min) - (ﬁ lb/gal> =700 1b/min.

Thus dA/dt = A/100. The initial amount is A(0) = 50.

The rate at which salt is entering the tank is

R;p, = (3 gal/min) - (2 1b/gal) = 6 1b/min.
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Since the solution is pumped out at a slower rate, it is accumulating at the rate of (3 —
2)gal/min = 1 gal/min. After ¢ minutes there are 300 + ¢ gallons of brine in the tank. The

rate at which salt is leaving is

. 24 .
Rout = (2 gal/min) - < lb/gal> = 30051 1b/min.

300 +1

The differential equation is
dA 2A
dt 300+t

The rate at which salt is entering the tank is

R;, = (3 gal/min) - (2 1b/gal) = 6 1b/min.
Since the tank loses liquid at the net rate of

3 gal/min — 3.5 gal/min = —0.5 gal/min,

after ¢ minutes the number of gallons of brine in the tank is 300 — %t gallons. Thus the rate

at which salt is leaving is

A 3.54 7A
out — Ib 1) - (3. 1 i =—1b in=——1b in.
Hout (300 —1/3 P/e ) (8:5 gal/min) = 5575 b/min = w55 1b/min

The differential equation is

dA 7A dA 7
2 %07 @ Teo 46

The rate at which salt is entering the tank is
R;y, = (cin Ib/gal) - (74, gal/min) = ¢;, 7, 1b/min.

Now let A(t) denote the number of pounds of salt and N(t) the number of gallons of brine
in the tank at time t. The concentration of salt in the tank as well as in the outflow is
c(t) = z(t)/N(t). But the number of gallons of brine in the tank remains steady, is increased,
or is decreased depending on whether r;, = rout, Tin > Tout, OF Tin < Tout. 1IN any case, the
number of gallons of brine in the tank at time ¢ is N(t) = No + (7 — rout)t. The output rate

of salt is then

A

A
Rou =
! <NO + (Tin - Tout)

NO + (Tin - Tout)t

t lb/gal> . (Tout gal/mln) = Tout lb/mln

The differential equation for the amount of salt, dA/dt = R;, — Rout, is

dA A dA n Tout A
— = CinTin — T or —- — finfin:
o7 inTin out No + (Tin — Tout)t dt No + (Tin — Tout)t -
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The volume of water in the tank at time ¢t is V' = A,,h. The differential equation is then

dh 1 dv 1 A
— = ———(—cAh\/2gh> :—Z—h v/ 2gh .

dt ~— A, dt Ay,

9\ 2
Using Ay, =7 <E> = ?:T_G’ A, = 10% = 100, and g = 32, this becomes

dh cm /36 cm
o V6ah = - V.
dt 100 0 450

The volume of water in the tank at time ¢ is V = %m“zh where 7 is the radius of the tank
at height h. From the figure in the text we see that r/h = 8/20 so that r = %h and
V=in (%h)2 h = =wh3. Differentiating with respect to ¢ we have dV/dt = semh?dh/dt or
dh_ 2 av
dt — 4wh? dt

From Problem 13 we have dV/dt = —cAp\/2gh where ¢ = 0.6, A, = 7 (12—2)2, and g = 32.
Thus dV/dt = —27v/h/15 and

dh 2 (_2m/ﬁ)_ 5

dt ~ 4xh? 5 ) em32’

Since i = dq/dt and L d%>q/dt?> + Rdq/dt = E(t), we obtain L di/dt + Ri = E(t).

1
By Kirchhoft’s second law we obtain R% + ol= E(t).

dv
From Newton’s second law we obtain ma = —kv?® +mg.

Since the barrel in Figure 1.3.17(b) in the text is submerged an additional y feet below
its equilibrium position the number of cubic feet in the additional submerged portion is
the volume of the circular cylinder: mx (radius)?xheight or 7(s/2)?y. Then we have from

Archimedes’ principle

upward force of water on barrel = weight of water displaced
= (62.4) x (volume of water displaced)

= (62.4)7(s/2)%*y = 15.6ms>y.

It then follows from Newton’s second law that

d’>y  15.6mws%g

w d2y d*y  15.6ms%g
dt? w y ’

P —15.6ms%y or
9

where g = 32 and w is the weight of the barrel in pounds.
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The net force acting on the mass is

d2
F:ma:mﬁf:—k:(s+:13)+mg:—k:x+mg—k:8.

Since the condition of equilibrium is mg = ks, the differential equation is

d’x
From Problem 19, without a damping force, the differential equation is m d%z/dt* = —kz.

With a damping force proportional to velocity, the differential equation becomes

i
dt?

d?x

m _
dt?

dx dx
= —kxr — [— or — + kx=0.
s dt +5 dt +
As the rocket climbs (in the positive direction), it spends its amount of fuel and therefore the
mass of the fuel changes with time. The air resistance acts in the opposite direction of the
motion and the upward thrust R works in the same direction. Using Newton’s second law we

get
9 ) kot R
—(mv) = —mg — kv
dt g
Now because the mass is variable, we must use the product rule to expand the left side of the

equation. Doing so gives us the following:

d

E(mv) =-mg—kv+R

dm dv
UXE—f—mX%——mg—kU‘FR

The last line is the differential equation we wanted to find.

(a) Since the mass of the rocket is m(t) = m, + m, + my(t), take the time rate-of-change

and get, by straight-forward calculation,

d d d
— = — v t = / = —
dtm(t) dt(mp—l—m +my(t) =0+ 0+ mi(t) dtmf(t)

Therefore the rate of change of the mass of the rocket is the same as the rate of change

of the mass of the fuel which is what we wanted to show.

(b) The fuel is decreasing at the constant rate of A and so from part (a) we have

d d
Zm(t) = Zm;(6) = —A

m(t) = =Xt +c
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Using the given condition to solve for ¢, m(0) = 0+ ¢ = mg and so m(t) = —At + my.

The differential equation in Problem 21 now becomes

dm dv
vﬁ—kma—kkv— —-mg+ R
dv
=0+ (=AMt + mO)E +kv=—mg+ R
dv
(=t + mO)E +(k—-XNv=—-mg+R
dv k— A —mg R
— + v= +
dt —At + myg — At + my —At + my
dv koA R
dt " X+mo 0T e+ mo
(c¢) From part (b) we have that %mf(t) = —X\ and so by integrating this result we get
mys(t) = —At+c. Now at time t = 0, m¢(0) = 04 ¢ = c therefore m¢(t) = —At+my(0) .
At some later time ¢, we then have my(t,) = —Aty+ms(0) = 0 and solving this equation

for that time we get t, = mf(0) /X which is what we wanted to show.

From g = k/R? we find k = gR?. Using a = d*r/dt*> and the fact that the positive direction
is upward we get
d*r k gR? d*r  gR?

= g0 == —— or —+—
dt? r2

ar — 0,
dt? r2 r2

The gravitational force on m is F = —kM,m/r%. Since M, = 476r3/3 and M = 475 R3 /3 we
have M, = r®M/R? and

M,m r3Mm/R3 mM
F=—k 2 :_kT:_k ik
Now from F = ma = d*r/dt* we have
m@——k‘mMT or ﬁ——wr
R 2 R
. . .. dA
The differential equation is e k(M — A).
. . .. dA
The differential equation is i ki(M — A) — ko A.

The differential equation is z'(t) = r — kxz(t) where k > 0.
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. . . . (0.a)

Consider the right triangle fromed by the waterskier (P), ) o i
the boat (B), and the point on the z-axis directly below waterskier

the waterskier. Using Pythagorean Theorem we have that
the base of the triangle on the z-axis has length /a? — 2.

Therefore the slope of the line tangent to curve C' is

val-y2 B
motorboat

y, — _L
a2_y2

Notice that the sign of the derivative is negative because as the boat proceeds along the

positive z-axis, the y-coordinate decreases.

We see from the figure that 20 + o = 7. Thus

2tan 6

=tana = tan(ﬂ — 29) = —tan26 = _m'

—x
Since the slope of the tangent line is ¥/ = tanf we have
y/z = 2y'[1—(y')? or y—y(y')? = 227/, which is the quadratic
equation y(y')? + 22y’ —y = 0 in 3. Using the quadratic @)
formula, we get

, 2ok A2+ 42—zt /a2ty / x %
; :

= %

]
A

Since dy/dx > 0, the differential equation is

d — 2 2 d
W _TrENVEY or y—y—\/x2+y2+:n:0.
dx Y dx

The differential equation is dP/dt = kP, so from Problem 41 in Exercises 1.1, a one-parameter
kt

family of solutions is P = ce™".

The differential equation in (3) is dT'/dt = k(T — T,,). When the body is cooling, T > T),,
so T —T,, > 0. Since T is decreasing, dT'/dt < 0 and k < 0. When the body is warming,
T < Ty, soT —T, <0. Since T is increasing, dT'/dt > 0 and k < 0.

The differential equation in (8) is dA/dt = 6 — A/100. If A(t) attains a maximum, then
dA/dt = 0 at this time and A = 600. If A(¢) continues to increase without reaching a
maximum, then A’(t) > 0 for ¢ > 0 and A cannot exceed 600. In this case, if A’(t) approaches

0 as t increases to infinity, we see that A(t) approaches 600 as ¢ increases to infinity.

This differential equation could describe a population that undergoes periodic fluctuations.
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(a) As shown in Figure 1.3.23(a) in the text, the resultant of the reaction force of magnitude
F and the weight of magnitude mg of the particle is the centripetal force of magnitude
mw?z. The centripetal force points to the center of the circle of radius « on which the

particle rotates about the y-axis. Comparing parts of similar triangles gives

Fcos® =mg and Fsinf = mw’z.

(b) Using the equations in part (a) we find

Fsing mw?cx Wz dy Wz

tanf = = = or = =
Fcost mg g dx g

From Problem 23, d?r/dt? = —gR?/r?. Since R is a constant, if r = R + s, then d*r/dt? =
d%s/dt? and, using a Taylor series, we get
d’s R? 2gs

2 —2 2[p—2 -3
e g(R+s)2 gR* (R + s) gR°|R sSR™2+ -] g+ 7 +

Thus, for R much larger than s, the differential equation is approximated by d%s/dt? = —g.

(a) If p is the mass density of the raindrop, then m = pV and

dm av di4 4 odr

at Pt pdt[:aﬂ] p(tar dt) Po o
If dr/dt is a constant, then dm/dt = kS where pdr/dt = k or dr/dt = k/p. Since the
radius is decreasing, k < 0. Solving dr/dt = k/p we get r = (k/p)t + co. Since r(0) = ro,
co =19 and r = kt/p + ro.

d
(b) From Newton’s second law, E[mv] = mg, where v is the velocity of the raindrop. Then

T T SR Ct

Dividing by 4p7mr3/3 we get

dv 3k dv 3k/p

T W

= = k .
i o v =g, <0

We assume that the plow clears snow at a constant rate of k cubic miles per hour. Let ¢ be the
time in hours after noon, z(t) the depth in miles of the snow at time ¢, and y(¢) the distance
the plow has moved in ¢ hours. Then dy/dt is the velocity of the plow and the assumption
gives
dy
wma =k,
where w is the width of the plow. Each side of this equation simply represents the volume

of snow plowed in one hour. Now let ¢35 be the number of hours before noon when it started
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snowing and let s be the constant rate in miles per hour at which z increases. Then for
t > —tog, x = s(t + tg). The differential equation then becomes

dy _ k1
dt  wst+ty

Integrating, we obtain

k
= —|In(t+1¢
y = - [t +to) +c]

where c is a constant. Now when ¢t =0, y = 0 so ¢ = —Inty and

yziln<1—|—i>.
ws to

Finally, from the fact that when t = 1, y = 2 and when t = 2, y = 3, we obtain

2\ 2 1\3
1+2) =(1+=) .
<+to> <+t0>

Expanding and simplifying gives t3 +to — 1 = 0. Since ¢y > 0, we find ¢y ~ 0.618 hours ~ 37
minutes. Thus it started snowing at about 11:23 in the morning.

At time ¢, when the population is 2 million cells, the differential equation P’(t) = 0.15P(t)
gives the rate of increase at time ¢. Thus, when P(t) = 2 (million cells), the rate of increase
is P'(t) = 0.15(2) = 0.3 million cells per hour or 300,000 cells per hour.

Setting A’(t) = —0.002 and solving A’(t) = —0.0004332A(t) for A(t), we obtain

A(t) ~0.002
At) = = ~ 4. .
()= ~5.0004332 ~ “0.0004332 ~ O grams
apP - dA -
(1) : o kP is linear (2) : o kA is linear
ar d
(3) : a =k(T —T,,) is linear (5) : d—j =kzr(n+1—x) isnonlinear
X A A
(6) : (fi_t =k(a—X)(B8—X) isnonlinear (8): Cil_t =6— 100 is linear
2
(10) : le}tl \/2gh is nonlinear (11) : L% + R% + % = E(t) is linear
d? d
(12) : Ej = —g¢ is linear (14) : md_qt) =mg — kv is linear
(15) : m@ + k‘ﬁ =myg is linear (16) : d2—$ — %w =0 is linear
Cae e T Cdt? L

(17) : linearity or nonlinearity is determined by the manner in which W and T} involve x.

27
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13.

14.

15.

16.

17.

y
s N d
— 1'% =10 ¢y €107, a4 10
dr
y
d ‘ N d d
. %(5 +c1e7 %) = —2¢1e7% = —2(5 + c1e 2 —5); % =—2(y—>5) or % = —2y+ 10
d ) .
. d—(q cos kx + cgsinkx) = —key sin kx + kcg cos kx;
z
2 A
ﬁ(cl cos kx + cosinkzx) = —k?ci coskx — K2eysinkx = —k‘2(61 cos kx + cg sin kx);
T
dzy 2 d2y 2

d
%(01 cosh kx + cg sinh kz) = kep sinh kx + kcg cosh kax;

9 Y

d
@(cl cosh kx + cosinh kz) = k%cy cosh kxz + k*cy sinh kx = k2 (c1 cosh kx + co sinh kx);

d?y d?y
—Z =k or — —k’y=0
dx? Y dx? Y
.y =c1e® + cowe®; Yy = c1e® + cowe® + cpe’; Yy’ = c1e® + cowe® + 2c9e”;

Y+ y=2(c1e” + cowe®) + 2c9e” = 2(c1e” + cowe® + c9e”) = 2y/; y' =2y +y=0

.y = —cie¥sinx + c1e¥ cos T + cge® cos T + coe” sin x;
y' = —cie®cost — cre¥sinx — cre¥sinx + cre¥ cos T — coe sinw + coe® cosx + cge® cos T +
coe’sinx

= —2ci1e”sinx + 2c9e” cos x;
Yy’ — 2y = —2c1e¥ cosx — 2c0e¥ sinx = —2y; y' =2y +2y=0

a, d 8. ¢ 9. b 10. a, c 11. b 12. a, b, d

A few solutions are y =0, y = ¢, and y = e”.
Easy solutions to see are y = 0 and y = 3.
The slope of the tangent line at (x,%) is ¥/, so the differential equation is 3/ = 2% + 3.

The rate at which the slope changes is dy’/dx = 3", so the differential equation is y”
ory" 4+ =0.

(a) The domain is all real numbers.
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(b) Since y = 2/3z'/3, the solution y = 2?/% is undefined at x = 0. This function is a

solution of the differential equation on (—o0,0) and also on (0, c0).
(a) Differentiating y? — 2y = 22 — x + ¢ we obtain 2yy’ — 2y’ = 22 — 1 or (2y —2)y’ = 22 — 1.

(b) Setting x = 0 and y = 1 in the solution we have 1 —2 =0—0+ c or ¢ = —1. Thus, a

2

solution of the initial-value problem is 3% — 2y = 2? — 2 — 1.

(c) Solving the equation y? — 2y — (2?2 — 2 — 1) = 0 by the quadratic formula we get
y=02+\4+4(2-2-1))/2 =1+Va2—2z =14+ /z(x—1). Since z(x —1) > 0
for x < 0 or z > 1, we see that neither y = 1+ \/z(z —1) nor y = 1 — /z(z — 1) is

differentiable at x = 0. Thus, both functions are solutions of the differential equation,

but neither is a solution of the initial-value problem.
Setting = zg and y = 1 in y = —2/x + x, we get

2
1l=——+4ux or a2 —xg— 2= (z0 — 2)(xo+1) = 0.
0
Thus, zg = 2 or g = —1. Since z # 0 in y = —2/x + =, we see that y = —2/x + x is a
solution of the initial-value problem zy’ +y = 2z, y(—1) = 1, on the interval (—o0,0) because
—1 <0, and y = —2/z + z is a solution of the initial-value problem zy’' +y = 2z, y(2) = 1,

on the interval (0, 00) because 2 > 0.

From the differential equation, 3/(1) = 12+[y(1)]? = 1+(—1)? = 2 > 0, so y(z) is increasing in
some neighborhood of = 1. From y"” = 2z 4 2yy’ we have y"(1) = 2(1)+2(-1)(2) = -2 < 0,

so y(x) is concave down in some neighborhood of = = 1.

(a)

VI A
N

1
y=x2+4¢ y=-x2+c,

—3—2%72 3"

-2
-3

(b) When y = 22 + ¢1, v/ = 2z and (y)?> = 422. When y = —2? + ¢2, ¥ = —22 and
(y')? = 4a?.

—2%, <0
(c) Pasting together 22, z > 0, and —2%, z < 0, we get y =
x2, xz>0.

The slope of the tangent line is y’|(_1 5= 6v4+5(—1)2 =7.

29
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23.

24.

25.
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Differentiating y = xsinx 4+ x cos z we get
/ . .
Y =xCcoSxT + ST — TSINT + COST
and

/ . . .
y/ = —xsinx +Ccosxr+Ccosr —xrcosxr —sSInT —sinx

= —zsinx —xcosx + 2cosx — 2sinx.
Thus
y'+y=—xsinx —xcosz +2cosx — 2sinx + xsinx + xcosx = 2cosx — 2sinz.
An interval of definition for the solution is (—o0, 00).

Differentiating y = z sinz + (cos z) In(cos z) we get

—sinx

) — (sinz)In (cosz)

/ .
Yy =xcosx +sinx + cosx
cos x

=xcosz +sinx —sinz — (sinx) In (cos x)
=z cosx — (sinz)In (cos )

and

" . . —sinx
Yy = —xsInT -+ CcosTr —SInx

> — (cos ) In (cos )

COST

sin? z

= —xsinz + cosz + — (cosx)In (cos x)

OS T

1 —cos?x

= —xsinx + cosz + ———  — (cos z) In (cos z)
cos x

= —xsinx + cosz + secx — cosx — (cos x) In (cos x)

= —xsinx + secx — (cosz) In (cos ).
Thus
y" +y = —zsinz + secx — (cos ) In(cos x) + zsinz + (cos z) In (cos z) = sec z.
To obtain an interval of definition we note that the domain of Inz is (0,00), so we must have
cosz > 0. Thus, an interval of definition is (—m/2,7/2).
Differentiating y = sin (In ) we obtain ¢’ = cos (Inx)/z and y” = —[sin (Inx) + cos (In z)] /z2.
Then

x2y”—|—xy’+y:x

2 <_Sm (Inz) + cos (In x)) TP (n2) +sin (Inx) = 0.

2 x

An interval of definition for the solution is (0, 00).
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26. Differentiating y = cos (Inz)In (cos (Inz)) + (Inx) sin (In ) we obtain

y/ = cos (Inz)— (ﬁnx) (—Sm (;”)> +In (cos (Inz)) <—Sm($ﬂ> +Ina ™ (;n 7)o (;”)

In (cos (Inx)) sin (In ) N (Inz)cos (Inx)

and
7 — 2 |t (cos (I 21 (Inz) sin (I 1 _sin(lnz)\] 1
v [l (cos (Inz)) PR ( )cos(lna:) ( x ﬂ x?
+ In (cos (Inx)) sin (In x)% +x [(ln x) (— sin (;n x)> i (;n x)} % — (Inx) cos (In ZE)%
sin? (In z
= % [— In (cos (Inx)) cos (Inx) + ﬁ +1In (cos (Inx)) sin (In z)
— (Inz)sin (Inz) + cos (Inz) — (Inz) cos (In a:)} .
Then

2,1 sin? (In )

2%y +xy +y = —In(cos(Inx)) cos (Inz) + + In (cos (Inx)) sin (Inz) — (Inx) sin (In x)

cos (In )
+ cos(Inz) — (Inz) cos (Inz) — In (cos (In z)) sin (In z)
+ (Inz)cos (Inz) + cos (Inx) In (cos (Inz)) + (Inz) sin (In z)

sin? (In z) sin? (Inz) + cos? (Inz) 1
cos (Inx) + cos (Inz) cos (Inx) cos (Inz) sec (In.z)

To obtain an interval of definition, we note that the domain of Inz is (0,00), so we must
have cos (Inz) > 0. Since cosxz > 0 when —7/2 < < 7/2, we require —7/2 < Inz < 7/2.

Since e® is an increasing function, this is equivalent to e ™2 < 2 < ¢™2. Thus, an interval

of definition is (e~™/2,e™?). (Much of this problem is more easily done using a computer

algebra system such as Mathematica or Maple.)
In Problems 27 - 30 we use (12) of Section 1.1 and the Product Rule.
27.

y = ecosx/x te_COStdt
0

dy

T
— gCosT ($€_ Cosx) — gin peos® 75e—cost dt
dx 0

d z T
d—y + (sinz) y = e“®Tre” “®F — sinze®®” / te” St dt + sinx <e°°5x / te™ cost dt>
x o ;

X X
=z —sin xec"”/ te™ St dt + sin xS ” / te St dt = x
0 0
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28.
P 12
y=e" / et dt
0
@ — % gra? + 2xe® /x L
da: 0
Y x? r—a? x? * t—12 T “ t—t2 T
— —2xy=-¢€" e + 2ze e dt —2z (e e dt ) =e
d 0 0
29.
xr —t
y:x/ €t
R
—x x —t r —t
y':xe——l-/ —dt:e_x+/ € at
Zz 1 1
—X
y”_—e_:”—i—e—
T
:E2y”—|—(:172—x) y+(1—x)y= (—:1726 Y+ ze x)
r —t xr —t
+<x2e x+az2/ € dt —ze x—m/ €
1t 1
x —t :ce—t
—|—<:17/ —dt—:p2/ —dt>:0
1 1t
30.

7

Y

A

V' ty=¢" —yty=e"



31. Using implicit differentiation we get
iyd =% 4+ 1

d
3z2 S+ a3 3y2—y = 322
dx
3z2y3 233y dy B 32
322y?  3x2y2dx 3x2y?

+ xdy _ 1
YT~ Y2
32. Using implicit differentiation we get

(x—52%+y*=1

Now from the original equation, isolating the first term leads to (z —5)? = 1 —%2. Continuing

from the last line of our proof we now have

<dy>2: (-5 1-y* 1

- - 1
dx 2 Y2 Y2
Adding 1 to both sides leads to the desired result.

33. Using implicit differentiation we get
v +3y=1-3x
3y*y + 3y = -3

y2y/ + y/ -1

Chapter 1 in Review
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Differentiating the last line and remembering to use the quotient rule on the right side leads
to

y// _ 2yy’
(y* +1)
Now since ¢/ = —1 / (y2 + 1) we can write the last equation as
2y 2y —1 —1\*
1 — / — — 2 — 2 N3
N O | EL N CER S VEN R ) y<y2+1> vw)

which is what we wanted to show.
34. Using implicit differentiation we get
y=ev
y' =e"(y+ay)
y = ye™ + xze™y
(1 —ze™)y = ye™

Now since y = e®¥, substitute this into the last line to get

(1 —ay)y' =yy
or (1 — 2y)y’ = y? which is what we wanted to show.

In Problem 35-38, y = c1€3* 4 coe™® — 2z is given as a two-parameter family of solutions of the
second-order differential equation y" — 2y’ — 3y = 6x + 4.

35. If y(0) = 0 and 3/(0) = 0, then

c1+co=0
361—62—2:0

s0¢1 = 3 and ¢ = —3. Thus y = ¥ — half e — 2z
36. If y(0) = 1 and y'(0) = —3, then

cpt+c=1
361—62—2:—3

soci =0and cg =1. Thus y =e % — 2z.
37. If y(1) =4 and y/(1) = —2, then

6163 + 626_1 —2=4

36163 — 626_1 —2=-2

SO ¢1 = %e_?’ and ¢y = %e. Thus y = %e?’x_?’ + %e‘x“ — 2.
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If y(—1) =0 and ¢/(—1) = 1, then

cre P+ e +2=0
-3

3cie " —ce—2=1
SO €] = %63 and ¢y = 4 . Thus y = 1 e3r 3 Ze‘””‘l — 2.
From the graph we see that estimates for yg and y; are yo = —3 and y; = 0.
The differential equation is

dh CA(]
ar V29h-

Using Ag = 7(1/24)? = 7/576, A, = m(2)% = 471, and g = 32, this becomes

dh e /576
g Vo= g Vi

35



