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Chapter 1

What Is Number Theory?

Exercises

1.1. The first two numbers that are both squares and triangles are 1 and 36. Find the
next one and, if possible, the one after that. Can you figure out an efficient way to find
triangular—square numbers? Do you think that there are infinitely many?

Solution to Exercise 1.1.

The first three triangular—square numbers are 36, 1225, and 41616. Triangular—square
numbers are given by pairs (m,n) satisfying m(m + 1)/2 = n?. The first few pairs are
(8,6), (49,35), (288,204), (1681,1189), and (9800, 6930). The pattern for generating
these pairs is quite subtle. We will give a complete description of all triangular—square
numbers in Chapter 28, but for now it would be impressive to merely notice empirically
that if (m, n) gives a triangular-square number, then so does (3m +4n+1,2m+3n+1).
Starting with (1, 1) and applying this rule repeatedly will actually give all triangular—square
numbers.

1.2. Try adding up the first few odd numbers and see if the numbers you get satisfy some
sort of pattern. Once you find the pattern, express it as a formula. Give a geometric
verification that your formula is correct.

Solution to Exercise 1.2.
The sum of the first n odd numbers is always a square. The formula is

1434547+ -+ (2n—1)=n’

The following pictures illustrate the first few cases, and they make it clear how the general
case works.

T T
3 3 ?,gg 5 5 5 7
1 3 1 3 5 3 3 5 7
1 3 5 7

1+3=4 1+3+5=9 1+3+54+7=16

1
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[Chap. 1] What Is Number Theory? 2

1.3. The consecutive odd numbers 3, 5, and 7 are all primes. Are there infinitely many
such “prime triplets”? That is, are there infinitely many prime numbers p such that p + 2
and p + 4 are also primes?

Solution to Exercise 1.3.

The only prime triplet is 3, 5, 7. The reason is that for any three odd numbers, at least one
of them must be divisible by 3. So in order for them all to be prime, one of them must
equal 3. It is conjectured that there are infinitely many primes p such that p + 2 and p + 6
are prime, but this has not been proved. Similarly, it is conjectured that there are infinitely
many primes p such that p 4+ 4 and p + 6 are prime, but again no one has a proof.

1.4. Tt is generally believed that infinitely many primes have the form N2 + 1, although
no one knows for sure.

(a) Do you think that there are infinitely many primes of the form N? — 1?

(b) Do you think that there are infinitely many primes of the form N? — 2?

(c¢) How about of the form N2 — 3? How about N2 — 47

(d) Which values of @ do you think give infinitely many primes of the form N? — a?

Solution to Exercise 1.4.

First we accumulate some data, which we list in a table. Looking at the table, we see that
N?% — 1 and N? — 4 are almost never equal to primes, while N2 — 2 and N2 — 3 seem to
be primes reasonably often.

N N2 -1 N2 -2 N2 -3 N2 -4

2 3 2 1 0

3 8§ =23 7 6=2-3 5

4] 15=3-5 4=2-7 13 12=22.3

5| 24=2%.3 23 22 =211 21=3-7

6| 35=5-7 [34=2-17| 33=3-11 32=2°

7| 48=2*-3 47 46 =2-23 45=3%-5

8| 63=3%-7 |62=2-31 61 60=2%2-3-5
9] 80=2*5 79 78=2-3-13| 77=7-11

10| 99=32-11 |98=2-72 97 96 =2°-3

11(120=2%-3-5[119=7-17| 118=2-59 | 117=3%-13
12] 143=11-13 [142=2-71| 141 =3-47 [140=22.5-7
13168 =2%-3.7 167 166 =2-83 |165=3-5-11
141195=3-5-13|194=2-97 193 192 =26.3
15| 224=2°.7 223 222=2-3-37| 221 =13-17

Looking at the even values of IV in the N? — 1 column, we might notice that 22 — 1
is a multiple of 3, that 42 —1lisa multiple of 5, that 62 —1lisa multiple of 7, and so on.
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[Chap. 1] What Is Number Theory? 3

Having observed this, we see that the same pattern holds for the odd N’s. Thus 32 — 1 is
a multiple of 4 and 52 — 1 is a multiple of 6 and so on. So we might guess that N2 — 1
is always a multiple of IV 4 1. This is indeed true, and it can be proved true by the well
known algebraic formula

N2 —1=(N—-1)(N+1).

So N2 — 1 will never be prime if N > 2.
The N2 — 4 column is similarly explained by the formula

N? —4=(N-2)(N +2).

More generally, if a is a perfect square, say a = b2, then there will not be infinitely many
primes of the form N2 — a, since

N? —a=N?—-b*>= (N —b)(N +b).

On the other hand, it is believed that there are infinitely many primes of the form
N? — 2 and infinitely many primes of the form N2 — 3. Generally, if a is not a perfect
square, it is believed that there are infinitely many primes of the form N2 — a. But no one
has yet proved any of these conjectures.

1.5. The following two lines indicate another way to derive the formula for the sum of the
first n integers by rearranging the terms in the sum. Fill in the details.

142434+ 4+n=0+n)+2+n-1)+B+n—-2))+---
=1+n)+Q+n)+1L+n)+---.
How many copies of n + 1 are in there in the second line? You may need to consider the

cases of odd n and even n separately. If that’s not clear, first try writing it out explicitly for
n==6andn =7.

Solution to Exercise 1.5.
Suppose first that n is even. Then we get n/2 copies of 1 + n, so the total is

n n®>+n
21 _
1+ 2

Next suppose that n is odd. Then we get ”7_1 copies of 1 4+ n and also the middle

term ”T“ which hasn’t yet been counted. To illustrate with n = 9, we group the terms as

1424 4+9=(14+9+2+8)+B+7)+(4+6)+5,

so there are 4 copies of 10, plus the extra 5 that’s left over. For general n, we get

n71(1+n)+n+1_n271+n+1_n2+n
2 2 2 2 2
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[Chap. 1] What Is Number Theory? 4

Another similar way to do this problem that doesn’t involve splitting into cases is to
simply take two copies of each term. Thus

20+24+--+n)=14+2+---4+n)+(1+24+---+n)
=(1+2+4-+n)+(n+-+2+1)
=(1+n)+2+n-1)+@B+n—-2)+ -+ (n+1)
=

1+n)+Q+n)+-+(1+n)

n copies of n + 1

=n(l+n)=n’+n
Thus the twice the sum 1+2+- - - 4+n equal n? +n, and now divide by 2 to get the answer.

1.6. For each of the following statements, fill in the blank with an easy-to-check crite-
rion:
(a) M is a triangular number if and only if is an odd square.
(b) N is an odd square if and only if is a triangular number.
(c) Prove that your criteria in (a) and (b) are correct.

Solution to Exercise 1.6.

(a) M is a triangular number if and only if 1 4+ 8/ is an odd square.

(b) N is an odd square if and only if (N — 1)/8 is a triangular number. (Note that if NV is
an odd square, then N2 —1 is divisible by 8, since (2k+1)? = 4k(k-+1)-+1, and 4k(k-+1)
is a multiple of 8.)

(¢) If M is triangular, then M = m(m+1)/2,s0 14+8M = 1+4m+4m? = (1+2m)2.
Conversely, if 1 + 8 M is an odd square, say 1 + 8M = (1 + 2k)?, then solving for M
gives M = (k + k?)/2, so M is triangular.

Next suppose N is an odd square, say N = (2k + 1)2. Then as noted above, (N —
1)/8 = k(k+1)/2,s0 (N —1)/8is triangular. Conversely, if (N —1)/8 is trianglular, then
(N—1)/8 = (m2-+m)/2 for some m, so solving for N we find that N = 144m+4m? =
(14 2m)?2, so N is a square.

© 2013, Pearson Education, Inc.



Chapter 2

Pythagorean Triples

Exercises

2.1. (a) We showed that in any primitive Pythagorean triple (a, b, c), either a or b is even.
Use the same sort of argument to show that either a or b must be a multiple of 3.
(b) By examining the above list of primitive Pythagorean triples, make a guess about
when a, b, or ¢ is a multiple of 5. Try to show that your guess is correct.

Solution to Exercise 2.1.

(a) If @ is not a multiple of 3, it must equal either 3= + 1 or 3 + 2. Similarly, if b is not
a multiple of 3, it must equal 3y + 1 or 3y + 2. There are four possibilities for a? + b2,
namely

a®+0* =Bz + 1)+ By+1)2 =92+ 6+ 1+ 9> +6y+1
= 3(32% + 22 + 3y + 2y) + 2,
a®+02 =B+ 1)+ By+2)? =92 +6x+1+9°> +12y +4
=33z% +22+ 3y  +4y+1)+2,
a®+0%=Br+2)?+By+1)? =92+ 120 +4+9y° + 6y + 1
=33z +4x+3y* +2y + 1)+ 2,
A+ =Br+2%+By+2)? =922+ 122 4+4+9y° + 12y + 4
=33z +4a+3y* +4y +2) +2.
So if @ and b are not multiples of 3, then ¢ = a2 + b? looks like 2 more than a multiple

of 3. But regardless of whether c is 3z or 3z+ 1 or 3z + 2, the numbers ¢ cannot be 2 more
than a multiple of 3. This is true because

(32)> =332,
(32 +1)* = 3(32% +22) + 1,
(324+2)? =332 +42+ 1)+ 1.
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[Chap. 2] Pythagorean Triples 6

(b) The table suggests that in every primitive Pythagorean triple, exactly one of a, b, or ¢
is a multiple of 5. To verify this, we use the Pythagorean Triples Theorem to write @ and b
asa = stand b = %(32 — t2). If either s or ¢ is a multiple of 5, then a is a multiple of 5
and we’re done. Otherwise s looks like s = 55 + 4 and ¢ looks like 57" + j with ¢ and j
being integers in the set {1, 2,3, 4}. Next we observe that

20 = 5% —t* = (568 +14)? — (5T + 5)* = 25(S? — T?) + 10(Si — Tj) + i* — j2.

If i2 — j2 is a multiple of 5, then b is a multiple of 5, and again we’re done. Looking at
the 16 possibilities for the pair (4, j), we see that this accounts for 8 of them, leaving the
possibilities

(747.7) = (1:2): (173)7 (27 1)7 (274)7 (37 1)7 (374)7 (47 2)7 or (473)'
Now for each of these remaining possibilities, we need to check that
2c = s+ 1% = (58 + )% + (5T + j)* = 25(5% + T?) + 10(Si + T) +i* + 52

is a multiple of 5, which means checking that i + j2 is a multiple of 5. This is easily
accomplished:
P+22=51"+3"=102"+1>=5 2> +4> =20 2.1
31 +1% = 103% + 4% = 254% + 2° = 204° 4 3% = 25, (2.2)

2.2. A nonzero integer d is said to divide an integer m if m = dk for some number k.
Show that if d divides both m and n, then d also divides m — n and m + n.

Solution to Exercise 2.2.
Both m and n are divisible by d, so m = dk and n = dk’. Thus m +n = dk + dk’ =
d(k £ k'), so m 4+ n and m — n are divisible by d.

2.3. For each of the following questions, begin by compiling some data; next examine the
data and formulate a conjecture; and finally try to prove that your conjecture is correct. (But
don’t worry if you can’t solve every part of this problem; some parts are quite difficult.)

(a) Which odd numbers a can appear in a primitive Pythagorean triple (a, b, ¢)?

(b) Which even numbers b can appear in a primitive Pythagorean triple (a, b, ¢)?

(c) Which numbers ¢ can appear in a primitive Pythagorean triple (a, b, ¢)?

Solution to Exercise 2.3.
(a) Any odd number can appear as the a in a primitive Pythagorean triple. To find such a
triple, we can just take £ = a and s = 1 in the Pythagorean Triples Theorem. This gives
the primitive Pythagorean triple (a, (a? — 1)/2, (a® + 1)/2).

(b) Looking at the table, it seems first that b must be a multiple of 4, and second that
every multiple of 4 seems to be possible. We know that b looks like b = (s — ¢2)/2 with

© 2013, Pearson Education, Inc.



[Chap. 2] Pythagorean Triples 7

s and t odd. This means we can write s = 2m + 1 and ¢ = 2n + 1. Multiplying things out
gives

(2m+1)2 - (2n+1)2

5 =2m%+2m—2n°—2n

b=

=2m(m+1) —2n(n+1).

Can you see that m(m + 1) and n(n + 1) must both be even, regardless of the value of m
and n? So b must be divisible by 4.

On the other hand, if b is divisible by 4, then we can write it as b = 2" B for some
odd number B and some r > 2. Then we can try to find values of s and ¢ such that
(s? —2)/2 = b. We factor this as

(s—t)(s+1t)=2b=2""'B.
Now both s — ¢ and s 4 ¢ must be even (since s and ¢ are odd), so we might try
s—t=2" and s+t=2B.

Solving for s and ¢ gives s = 2" ! + Band t = —2"~! 4 B. Notice that s and ¢ are odd,
since B is odd and » > 2. Then

a=st=RB?—-2%"2

2—t2

p=12 — 2B,
2

= 52 + ¢ — B2 4 922
5 .

This gives a primitive Pythagorean triple with the right value of b provided that B > 2"~
On the other hand, if B < 27—, then we can just take a = 22" ~2 — B? instead.

(c) This part is quite difficult to prove, and it’s not even that easy to make the correct
conjecture. It turns out that an odd number ¢ appears as the hypotenuse of a primitive
Pythagorean triple if and only if every prime dividing c leaves a remainder of 1 when
divided by 4. Thus c appears if it is divisible by the primes 5,13,17,29,37,..., but it
does not appear if it is divisible by any of the primes 3,7,11,19,23,.... We will prove
this in Chapter 25. Note that it is not enough that c itself leave a remainder of 1 when
divided by 4. For example, neither 9 nor 21 can appear as the hypotenuse of a primitive
Pythagorean triple.

2.4. In our list of examples are the two primitive Pythagorean triples
332 456> =65" and  16° + 63> = 65°.

Find at least one more example of two primitive Pythagorean triples with the same value
of c. Can you find three primitive Pythagorean triples with the same ¢? Can you find more
than three?

© 2013, Pearson Education, Inc.



[Chap. 2] Pythagorean Triples 8

Solution to Exercise 2.4.
The next example is ¢ = 5 - 17 = 85. Thus

852 = 132 + 842 = 362 + 772

A general rule is that if ¢ = pips - - - p,- is a product of r distinct odd primes which all leave
a remainder of 1 when divided by 4, then ¢ appears as the hypotenuse in 2"~! primitive
Pythagorean triples. (This is counting (a, b, ¢) and (b, a,c) as the same triple.) So for
example, c = 513 - 17 = 1105 appears in 4 triples,

11052 = 5762 + 9432 = 744% + 8172 = 264° + 1073% = 47% + 11042,

But it would be difficult to prove the general rule using only the material we have developed
so far.

2.5. In Chapter 1 we saw that the n'! triangular number 7}, is given by the formula

n(n—l—l).

To=142+43+ - +n=—"

The first few triangular numbers are 1, 3, 6, and 10. In the list of the first few Pythagorean
triples (a, b, ), we find (3,4, 5), (5,12, 13), (7,24, 25), and (9, 40, 41). Notice that in each
case, the value of b is four times a triangular number.
(a) Find a primitive Pythagorean triple (a, b, ¢) with b = 47T5. Do the same for b = 47}
and for b = 47%.
(b) Do you think that for every triangular number 7,,, there is a primitive Pythagorean
triple (a, b, ¢) with b = 4T,,? If you believe that this is true, then prove it. Otherwise,
find some triangular number for which it is not true.

Solution to Exercise 2.5.
(a) Ts = 15and (11,60,61). Tg = 21 and (13,84, 85). 77 = 28 and (15,112, 113).

(b) The primitive Pythagorean triples with b even are given by b = (s? — t2)/2, s >t >
1, s and ¢ odd integers, and ged(s,t) = 1. Since s is odd, we can write it as s = 2n + 1,
and we can take ¢ = 1. (The examples suggest that we want ¢ = b + 1, which means we
need to take ¢ = 1.) Then

2*t2 2 1271 2
s _@ntl) —om? o =4 g

2 2 2

h—
So for every triangular number T,,, there is a Pythagorean triple

(2n + 1,4T,,4T,, + 1).
(Thanks to Mike McConnell and his class for suggesting this problem.)

2.6. If you look at the table of primitive Pythagorean triples in this chapter, you will see
many triples in which ¢ is 2 greater than a. For example, the triples (3,4, 5), (15,8,17),
(35,12,37), and (63, 16, 65) all have this property.

(a) Find two more primitive Pythagorean triples (a, b, ¢) having ¢ = a + 2.

© 2013, Pearson Education, Inc.



[Chap. 2] Pythagorean Triples 9

(b) Find a primitive Pythagorean triple (a, b, ¢) having ¢ = a + 2 and ¢ > 1000.
(c) Try to find a formula that describes all primitive Pythagorean triples (a, b, ¢) having
c=a+2.

Solution to Exercise 2.6.
The next few primitive Pythagorean triples with ¢ = a + 2 are

(99,20,101), (143,24,145), (195,28,197),

(255,32,257), (323,36,325), (399,40,401).
One way to find them is to notice that the b values are going up by 4 each time. An
even better way is to use the Pythagorean Triples Theorem. This says that a = st and
c= (s +12)/2. We want ¢ — a = 2, so we set

5242
2

and try to solve for s and ¢. Multiplying by 2 gives

—st=2

s2 412 — 25t =4,
(S - t)g = 47
s—t =242
The Pythagorean Triples Theorem also says to take s > ¢, so we need to have s — ¢t = 2.

Further, s and ¢ are supposed to be odd. If we substitute s = ¢ + 2 into the formulas for
a, b, c, we get a general formula for all primitive Pythagorean triples with ¢ = a + 2. Thus

a=st=(t+2)t=1>+2t,

s2 -2 (t+2)2—+¢2
2 2 +4
2442 (t+2)2 412
:S;r —(+;+ =12+ 2t +2.

We will get all PPT’s with ¢ = a + 2 by taking ¢ = 1,3,5,7,... in these formulas. For
example, to get one with ¢ > 1000, we just need to choose t large enough to make 2 ++2¢ -+
2 > 1000. The least ¢ which will work is ¢ = 31, which gives the PPT (1023, 64, 1025).
The next few with ¢ > 1000 are (1155,68,1157), (1295,72,1297), (1443,76,1445),
obtained by setting ¢ = 33, 35, and 37 respectively.

2.7. For each primitive Pythagorean triple (a, b, ¢) in the table in this chapter, compute the
quantity 2¢ — 2a. Do these values seem to have some special form? Try to prove that your
observation is true for all primitive Pythagorean triples.

Solution to Exercise 2.7.
First we compute 2¢ — 2a for the PPT’s in the Chapter 2 table.

a 35 7 9 15 21 35 45 63
b 4 12 24 40 8 20 12 28 16
c 5 13 25 41 17 29 37 53 65

2c —2a 4 16 36 64 4 16 4 16 4

9
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[Chap. 2] Pythagorean Triples 10

all the differences 2c — 2a seem to be perfect squares. We can show that this is always
the case by using the Pythagorean Triples Theorem, which says that ¢ = st and ¢ =
(s2 +12)/2. Then

2c —2a = (52 +1%) — 25t = (s — )2,

so 2¢ — 2a is always a perfect square.

2.8. Let m and n be numbers that differ by 2, and write the sum % + % as a fraction in
1,1_3 1,1 _ 8
lowest terms. For example, 5 + 7 = Jand 5 + ¢z = %.
(a) Compute the next three examples.
(b) Examine the numerators and denominators of the fractions in (a) and compare them
with the table of Pythagorean triples on page 18. Formulate a conjecture about such
fractions.

(c) Prove that your conjecture is correct.

Solution to Exercise 2.8.

(a)

1 1 5 11 12 1 1 7

176712 57773 68 a4
(b) It appears that the numerator and denominator are always the sides of a (primitive)
Pythagorean triple.

(c) This is easy to prove. Thus
1 . 1 2N+2
N N+2 NZ42N'
The fraction is in lowest terms if /N is odd, otherwise we need to divide numerator and de-

nominator by 2. But in any case, the numerator and denominator are part of a Pythagorean
triple, since

(2N +2)* + (N2 +2N)? = N* + 4N3 + 8N? + 8N +4 = (N? + 2N +2)2

Once one suspects that N* + 4N3 + 8N? 4 8N + 4 should be a square, it’s not hard to
factor it. Thus if it’s a square, it must look like (N2 + AN = 2) for some value of A. Now
just multiply out and solve for A, then check that your answer works.

2.9. (a) Read about the Babylonian number system and write a short description, includ-
ing the symbols for the numbers 1 to 10 and the multiples of 10 from 20 to 50.

(b) Read about the Babylonian tablet called Plimpton 322 and write a brief report, in-
cluding its approximate date of origin.

(¢) The second and third columns of Plimpton 322 give pairs of integers (a, ¢) having
the property that ¢> — a? is a perfect square. Convert some of these pairs from Baby-
lonian numbers to decimal numbers and compute the value of b so that (a,b, c) is a
Pythagorean triple.

Solution to Exercise 2.9.

There is a good article in wikipedia on Plimpton 322. Another nice source for this material
is

www.math.ubc.ca/~cass/courses/m446-03/pl322/pl322.html

10
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