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CHAPTER 1

Introduction to Differential Equations

1.1 BASIC TERMINOLOGY
If students have seen an introduction to differential equations as part of the calculus sequence,
this section can be covered quickly. However, I’ve found that review is always helpful. In par-
ticular, students who have recently taken two or more semesters of calculus often have trouble
distinguishing dependent variables from independent variables in differentiation problems
and have trouble with dummy variables in integration. I want students to focus on the form
of a differential equation, not on the particular variables used or on the derivative notation
employed. Throughout the book, I have deliberately mixed the Leibniz (d/dx), Newton (dot),
and Lagrange (prime) notations for derivatives, although the dot notation becomes dominant
in later chapters as the dynamical systems interpretation becomes more pronounced.

Parameters in equations often cause difficulty, but the student should become more comfort-
able with this concept as the course progresses. Students will have trouble with the general
form(s) of an nth-order differential equation, especially if they are not familiar with functions
of several variables. Concrete examples are necessary. Many students need time to understand
the idea of a linear differential equation. Later discussions of linearity (in particular, the
Superposition Principle) should help.

The idea of a system of differential equations is introduced early because of its importance in
chapters 4–7, but sometimes I postpone any classroom mention of systems until Chapter 4.
If the students are reading the book (Ha!, you say), they’ll see this on their own.

The text is dedicated to the proposition that technology is a valuable tool that can aid a
student’s understanding and that may be essential in solving certain problems. The November,
1994 issue (Vol. 25, No. 5) of the College Mathematics Journal is devoted to the teaching of
differential equations. However, I don’t want to spend a great deal of valuable class time
teaching the intricacies of the syntax of any CAS or other software I may be using. For example,
in using Maple I’ve found that a few basic commands should be mastered and used over and
over again, making minimal changes to accommodate different problems. I’ve handed out
summaries of these commands and have encouraged students to use the “Help” facility.
Getting comfortable with the various options (numerical, graphical, and analytic) may take
some time, and I have learned to avoid embarrassment in class by preparing ahead of time,
saving examples on flash memory. I hand out hard copies of certain Maple worksheets for
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2 CHAPTER 1: Introduction to Differential Equations

the students to use as templates. Students sometimes make their own electronic copies of
worksheets that may be on a departmental server. There are many books dealing with ODEs
and various computer algebra systems.

Also, there is a wealth of ODE information on the Internet. See, for example, my article
(May/June, 2002; August/September, p. 24) in the MAA’s newsletter Focus. Some of the links
may no longer be viable, but there are still some good search tips in the article. It’s important
for students to realize that computers don’t have all the answers. I’ve found that showing
problems that the CAS can’t solve or can only solve incompletely is a sound pedagogical
technique.

A

1. (a) The independent variable is x and the dependent variable is y; (b) first-order;
(c) linear

2. (a) The independent variable is x and the dependent variable is y; (b) first-order;
(c) linear

3. (a) The independent variable is not indicated, but the dependent variable is x; (b) second-
order; (c) nonlinear because of the term exp(−x)—the equation cannot be written in the
form (1.1.1), where y is replaced by x and x is replaced by the independent variable.

4. (a) The independent variable is x and the dependent variable is y; (b) first-order;
(c) nonlinear because of the term (y′)2 = y′(x) · y′(x)—the equation cannot be written
in the form (1.1.1).

5. (a) The independent variable is x and the dependent variable is y; (b) first-order;
(c) nonlinear because you get the terms x2(y′)2 and x y′ y when you remove the
parentheses.

6. (a) The independent variable is t and the dependent variable is r; (b) second-order;
(c) linear

7. (a) The independent variable is x and the dependent variable is y; (b) fourth-order;
(c) linear

8. (a) The independent variable is t and the dependent variable is y; (b) second-order;
(c) nonlinear because of the term −y′(y2 − 1)

9. (a) The independent variable is t and the dependent variable is x; (b) third-order;
(c) linear

10. (a) The independent variable is t and the dependent variable is x; (b) seventh-order;
(c) linear

11. (a) The independent variable is x and the dependent variable is y; (b) first-order;
(c) nonlinear because of the term ey′

12. (a) The independent variable is t and the dependent variable is R; (b) third-order;
(c) linear



1.2 Solutions of Differential Equations 3

13. a. Nonlinear; the first equation is nonlinear because of the term 4xy = 4x(t)y(t).
b. Linear
c. Nonlinear; the first and second equations are nonlinear because each contains a

product of dependent variables.
d. Linear

B

1. The terms (a2 − a)x dx
dt and te(a−1)x make the equation nonlinear. If a2 − a = 0—that is,

if a = 0 or a = 1—then the first troublesome term disappears. However, only the value
a = 1 makes the second nonlinear term vanish as well. Thus a = 1 is the answer.

2. a. dx
dt = ln(2x) = x ln 2 = (ln 2)x, a linear equation

b. x′ =
{

x2−1
x−1 for x �= 1

2 for x = 1
=
{

x + 1 for x = 1

2 for x = 1
= x + 1 for all x, which is linear

c. x′ =
{

x4−1
x2−1 for x �= 1

2 for x = 1
=
{

x2 + 1 for x �= 1

2 for x = 1
= x2 + 1 for all x, which is nonlinear

1.2 SOLUTIONS OF DIFFERENTIAL EQUATIONS
If students have worked with differential equations before, much of this material can be
covered quickly, as a review. However, before the formal solution methods are discussed
in Chapter 2, I want the students to develop some facility in guessing and verifying solu-
tions of differential equations. Implicit solutions are important, and students usually need a
quick review of implicit differentiation. Also, you may want to introduce/review the use of
technology in plotting implicit functions.

A

1. y = sin x, y′ = cos x, y′′ = −sin x; thus y′′ + y = −sin x + sin x = 0.

2. x = −π e3t + 2
3 e2t , x′ = −3π e3t + 4

3 e2t , x′′ = −9π e3t + 8
3 e2t ; thus x′′ − 5x′ + 6x

= (−9π e3t + 8
3 e2t) − 5

(−3π e3t + 4
3 e2t) + 6

(−π e3t + 2
3 e2t)

= −9π e3t + 8
3 e2t + 15π e3t − 20

3 e2t − 6π e3t + 12
3 e2t = 0.

3. y = x2, dy/dx = 2x; thus (1/4)(dy/dx)2 − x(dy/dx) + y = (1/4)(2x)2 − x(2x) + x2 =
(1/4)(4x2) − 2x2 + x2 = x2 − 2x2 + x2 = 0.



4 CHAPTER 1: Introduction to Differential Equations

4. R = t(c − cos t), dR/dt = t(sin t) + (c − cos t); thus t(dR/dt) − R = t(t sin t + c − cos t) −
t(c − cos t) = t2 sin t + ct − t cos t − tc + t cos t = t2 sin t.

5. y = at3 + bt2 + ct + d, dy/dt + 3at2 + 2bt + c, d2y/dt2 = 6at + 2b, d3y/dt3 = 6a, d4y/dt4 = 0.

6. r = cebt − (a/b)t − a/b2, dr/dt = bcebt − a/b; thus at + br = at + b
(
cebt − (a/b)t − a/b2

)
= at + bcebt − at − a/b = bcebt − a/b = dr/dt.

7. y = ln x2, y′ = (
1/x2

)
(2x) = 2/x; thus xy′ − 2 = x(2/x) − 2 = 2 − 2 = 0.

8. y = (
eax + e−ax)/2a, y′ = (

aeax − ae−ax)/2a = (
eax − e−ax)/2,

y′′ = (
a2eax + a2e−ax)/2a = (

aeax + ae−ax)/2; thus a
√

1 + (y′)2

= a
√

1 + (
eax − e−ax

)2
/4 = a

√
4 + (

e2ax − 2 + e−2ax
)

4
= a

√
2 + (

e2ax + e−2ax
)

4

= a

√(
eax + e−ax

)2

4
= a

√√√√((
eax + e−ax

)
2

)2

= a

(
eax + e−ax

)
2

= (
aeax + ae−ax)/2 = y′′.

9. y = ∫ x
1

sin t
t dt; By the FTC, we have y′ = sin x

x , so that xy′ − sin x = x(sin x/x) − sin x =
sin x − sin x = 0. (See Appendix A.4, statement (B), for the FTC.)

10. y = ∫ x
3 e−t2

dt, so that y′ = e−x2
and y′′ = −2xe−x2

. Thus y′′ + 2xy′ = (−2xe−x2) +
2x
(
e−x2) = −2xe−x2 + 2xe−x2 = 0. (See Appendix A.4, statement (B), for the FTC.)

11. a. For example, y′ = 1/c, so that cy′ = 1 is a possible differential equation satisfied
by y.

b. Note that y′ = beax cos bx + aeax sin bx = beax cos bx + a y, so that y′ − ay =
beax cos bx.

c. We have y′ = (A + Bt) et + Bet = y + Bet , so that y′ − y = Bet .
Other possibilities are the equations y′′ − y = 2Bet and y′′ − y′ = Bet .

d. We have ẏ = −3 e−3t + t y(t), or ẏ − t y = −3 e−3t , for example. Other possibilities
include ÿ − t ẏ − y = 9 e−3t .

12. Differentiating implicitly, we find that xy′ + y − y′/y = 0, so that xyy′ + y2 − y′ =
(xy − 1)y′ + y2 = 0, a first-order nonlinear equation, is a possible answer.

13. We get y′ + y′/
(
1 + y2

) = 1 + 1/
(
1 + x2

)
, so that y′

(
y2+2
y2+1

)
= x2+2

x2+1 , or y′ =
(

y2+1
y2+2

)
(

x2+2
x2+1

)
, a first-order nonlinear equation.

14. We get 3y2y′ − 3 + 3y′ = 0, so y′ = 3/
(
3y2 + 3

)
is a possible answer.

15. We have x2y′ + 2xy + 4y′ = 0, or y′ = −2xy/
(
x2 + 4

)
, a linear equation.

16. Differentiating implicitly, we get 2x + 2yy′ − 6 + 10y′ = 0, 2yy′ + 10y′ = 6 − 2x,
2(y + 5)y′ = 2(3 − x), so y′ = (3 − x)/(y + 5) for those values of x for which y �= −5.
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B

1. y = x2/2 + (x/2)
√

x2 + 1 + ln

√
x +

√
x2 + 1, y′ = x + (x/2)(1/2)

(
2x
/√

x2 + 1
)

+ (1/2)
√

x2 + 1 + (1/2)
(

1 + x
/√

x2 + 1
)/(

x +
√

x2 + 1
)

= x +
√

x2 + 1; thus xy′ + ln(y′) =
(
x2 + x

√
x2 + 1

)
+ ln

(
x +

√
x2 + 1

)
=
(
x2 + x

√
x2 + 1

)
+ ln

(
x +

√
x2 + 1

)
=
(
x2 + x

√
x2 + 1

)
+ 2 ln

√
x +

√
x2 + 1

= 2
(

x2/2 + (x/2)
√

x2 + 1 + ln

√
x +

√
x2 + 1

)
= 2y.

2. If you differentiate a polynomial of degree n, you get a polynomial of degree n − 1, so that
the derivative can’t be a constant multiple of the original function. The derivative of any
basic trigonometric functions is another trigonometric function that is not a constant
multiple of the function you started with. Finally, if you differentiate the logarithm
function to any base, you’ll get a multiple of the reciprocal of the original function.

3. a. The given equation is equivalent to (y′)2 = −1. Since there is no real-valued function
y′ whose square is negative, there can be no real-valued function y satisfying the
equation.

b. The only way that two absolute values can have a sum equal to zero is if each absolute
value is itself zero. This says that y is identically equal to zero, so that the zero function
is the only solution. The graph of this solution is the x-axis (if the independent
variable is x).

4. If x(t) �= t, the expression −|x − t| is always negative, so that
√−|x − t| is not a real

number. If x(t) = t, then the equation becomes dx/dt = 0, which contradicts the fact
that dx/dt must equal 1 in this case.

5. If y = ±√
c2 − x2 = ± (

c2 − x2
)1/2, then dy/dx = ±1

2

(
c2 − x2

)−1/2 · (−2x) =
∓x

(
c2 − x2

)−1/2 and y dy/dx + x = ± (
c2 − x2

)1/2 · ∓x
(
c2 − x2

)1/2 + x = −x + x = 0.
If x > c or x < −c, then c2 − x2 < 0 and then the functions y = ± √

c2 − x2 do not exist
as real-valued functions. If x = ±c, then each function is the zero function, which is not
a solution of the differential equation.

6. a. If y = ln (|C1x|) + C2, then y′ = C1/C1x = 1/x for all values of C1 and C2 (with
C1 �= 0).

b. Note that y = ln (|C1x|)+C2 = ln (|C1|)+ ln (|x|)+C2 = ln (|x|)+(
ln (|C1|) + C2

) =
ln (|x|) + C, where C = ln (|C1|) + C2.

7. If y(x) = c1 sin x + c2 cos x, then dy/dx + y = (c1 cos x − c2 sin x) + (c1 sin x + c2 cos x) =
(c1 − c2) sin x+(c2 + c1) cos x. If this last expression must equal sin x, then we must have
c1 − c2 = 1 and c2 + c1 = 0. Adding these last equations, we find that c1 = 1/2 and
therefore c2 = −1/2. Therefore, the solution is y(x) = (1/2)(sin x − cos x).

8. Suppose the polynomial is y(x) = ax2 + bx + c, so that y′ = 2ax + b. Then 2y′ − y =
2(2ax + b)− (ax2 + bx + c) = −ax2 + (4a− b)x + (2b− c) = 3x2 −13x +7, which implies
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that a = −3, 4a − b = −13, and 2b − c = 7. Thus a = −3, b = 1, and c = −5, so that the
solution is y(x) = −3x2 + x − 5.

9. We have y = Cx ± √
C2 + 1, so that y′ = C. Then (xy′ − y)2 − (y′)2 − 1 = (Cx − Cx ∓√

C2 + 1)2 − C2 − 1 = (
C2 + 1

) − C2 − 1 = 0. But if we assume that a function y is
defined implicitly and we differentiate the relation x2 + y2 = 1 implicitly with respect
to x, we get 2x + 2yy′ = 0, or y′ = −x/y.

10. We have y(t) = cos t + ∫ t
0(t − u)y(u)du = cos t + t

∫ t
0 y(u)du − ∫ t

0 u y(u)du, so (using the
Product Rule and the FTC) y′(t) = −sin t + t y(t) + ∫ t

0 y(u)du − t y(t) = −sin t + ∫ t
0 y(u)du.

Differentiating again, we get y′′(t) = −cos t + y(t), or y′′ − y = −cos t. In this problem it
is important to distinguish between t and the “dummy variable” u.

C

1. a. We have y = ex = y′ = y′′. Therefore xy′′ − (x + n)y′ + ny = xy − (x + n)y + ny = 0.

b. We have y =
n∑

k=0

xk

k! , y′ =
n∑

k=0

k·xk−1

k! =
n∑

k=1

xk−1

(k−1)! = y − xn

n! , and y′′ = y′ − n xn−1

n!

= y′ − xn−1

(n−1)! . Therefore, xy′′ − (x + n)y′ + n y = x
[
y′ − xn−1

(n−1)!
]

− (x + n)y′ + ny

= xy′ − xn

(n−1)! − xy′ − ny′ + n y = − xn

(n−1)! − ny′ + ny = − xn

(n−1)! − n
[
y − xn

n!
]

+ ny

= − xn

(n−1)! − ny + xn

(n−1)! + ny = 0.

1.3 INITIAL-VALUE PROBLEMS AND BOUNDARY-VALUE
PROBLEMS

I emphasize the fact that an initial-value problem or a boundary-value problem may have no
solution, one solution, or many solutions, anticipating the formal discussion of existence and
uniqueness in Section 2.8.

A

1. R(t) = t(c −cos t), so that R(π) = π(c −cos π) = π(c +1) = 0 implies that c = −1. Thus
the solution of the IVP is R(t) = π(−1 − cos t) = −π(1 + cos t).

2. Since y = at3 + bt2 + ct + d, y(0) = 1 implies that d = 1, y′(0) = 0 implies that c = 0,
y′′(0) = 1 implies that 2b = 1, or b = 1/2, and y′′′(0) = 6 tells us that 6 a = 6,
or a = 1. Thus the solution of the IVP is y = t3 + (1/2) t2 + 1.

3. r(t) = cebt − (a/b)t − a/b2, so that r(0) = ce0 − (a/b)(0) − a/b2 = c − a/b2 = 0
implies that c = a/b2. Thus the solution of the IVP can be written as r(t) = (a/b2) ebt −
(a/b)t − a/b2 = (a/b)

(
ebt/b − t − 1/b

)
.

4. We have y = (eax +e−ax)/2a and y′ = (
aeax − ae−ax

)
/2a = (

eax − e−ax
)
/2, so that y(0) =(

e0 + e0
)
/2a = 1/a = 2 implies that a = 1/2 Noting that y′(0) = (

ae0 − ae0
)
/2 = 0 for
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all values of a, we conclude that y(x) = ex/2 + e−x/2 is the solution of the initial value
problem.

5. We have y′ = −1
4 + 66

296 e6x + 2Ax + B cos x − C sin x, y′′ = 396
296 e6x + 2A − B sin x −

C cos x, y′′′ = 6(396)
296 e6x − B cos x + C sin x. Substituting these derivatives in the original

differential equation and simplifying, we get (−B + 6C) cos x + (C + 6B) sin x − 12A =
3−cos x. Equating coefficients of like functions—a technique that will come in handy in
Chapter 4—we get the system {−B + 6C = −1, C + 6B = 0, −12A = 3}, which has the
solution A = −1/4, B = 1/37, C = −6/37. [Of course, the boundary conditions yield
the same result.]

B

1. As was illustrated in Example 1.3.1, the velocity function is the derivative of the position
function, so that we have dx

dt = 1
t2+1 . Integrating both sides, we get x(t) − x(0) = x(t) =∫ t

0
1

u2+1 du = arctan(t). (Also see equation (1.3.1).) For t ≥ 0, arctan(t) ≤ π/2, so that
x(t) ≤ π/2. (Look at the graph of the arctangent.)

2. If y1(x) ≡ 0, then dy1
dx = 0 = 3(0)2/3. Also, y1 (x0) = 0. If y2(x) = (x − x0)3, then

dy2
dx = 3(x − x0)2 = 3[(x − x0)3]2/3 = 3 y2/3

2 . Furthermore, y2(x0) = 3(x0 − x0)3 = 0.

3. We calculate that y′ = ex2( ∫ x
1 e−t2

dt
)′ + (

ex2)′ ∫ x
1 e−t2

dt = ex2(
e−x2)+ 2x ex2 ∫ x

1 e−t2
dt =

1 + 2x ex2 ∫ x
1 e−t2

dt = 1 + 2x
(
ex2 ∫ x

1 e−t2
dt
) = 1 + 2xy. Also, y(1) = e12 ∫ 1

1 e−t2
dt =

e (0) = 0.

4. a. Integrating successively, we see that y′′′ = −24 cos
(

π
2 x
) ⇒ y′′ = −48

π
sin

(
π
2 x
)+C1 ⇒

y′ = 96
π2 cos

(
π
2 x
) + C1 x + C2 ⇒ y = 192

π3 sin
(

π
2 x
) + C1

x2

2 + C2x + C3. There are 3
parameters involved.

b. Now y(0) = −4 implies that −4 = y(0) = 192
π3 sin(0) + C1

02

2 + C2(0) + C3 = C3 ;

and y(1) = 0 implies that 0 = y(1) = 192
π3 sin

(
π
2

) + C1
12

2 + C2(1) + C3 = 192
π3 +

C1
2 + C2 + C3, or 192

π2 + C1
2 + C2 = 4 . Also, y′(1) = 6 implies that 6 = y′(1) =

96
π2 cos

(
π
2

) + C1 + C2 = C1 + C2 . Solving the last two simultaneous equations, we
find that C1 = (

4π3 + 384
)
/π3 and C2 = (

2π3 − 384
)
/π3. Thus y = 192

π3 sin
(

π
2 x
)+(

2π3+192
π3

)
x2 +

(
2π3−384

π3

)
x − 4.

5. No. An equation of order n requires an n-parameter family of solutions. Essentially, to
solve a differential equation of order 4 requires 4 integrations, each of which introduces
a constant of integration (parameter).

6. Barry’s steady increase in speed implies that her acceleration was constant: a(t) = C. Then
v(t) = ∫

a(t)dt = ∫
Cdt = Ct + K and v(0) = 0 implies that K = 0. Thus we can write

v(t) = Ct. But 60 = v(3 1
3 ) = C(10/3) tells us that C = 18, so that v(t) = 18t. Finally,

distance equals
∫ t

0 v(u)du = ∫ t
0 18u du = 9t2, and after 3 1

3 hours Barry has traveled
9(10/3)2 = 100 miles.
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Alternatively, we can just draw the velocity curve (a straight line) and calculate the area
under the curve, which is the area of a right triangle:

Area = 1
2

(
10
3

hours
)

(60 miles/hour) = 100 miles.

7. The given information is that v(0) = 0, v(30 seconds) = v(30/3600 hours) = 200 mph,
and a(t) = C, a constant. Now a(t) = C ⇒ v(t) = ∫

a(t)dt = Ct + K . Then
v(0) = 0 ⇒ K = 0 ⇒ v(t) = C t. Therefore 200 = v(30/3600) =
v(1/120) = C(1/120) ⇒ C = 200(120) and v(t) = 200(120)t. Finally, distance
= s(1/120) = ∫ 1/120

0 v(u)du = ∫ 1/120
0 200(120)udu = 12000(1/120)2 = 5/6 mile.

Alternatively, we can just draw the velocity curve (a straight line) and calculate the area
under the curve, which is the area of a right triangle:

Area = 1
2

(
1

120
hours

)
(200 miles/hour) = 5/6 miles.

8. a. This is like Example 1.3.4. We are given that v(0) = 0, v(3.8 seconds) =
v(19/18000 hour) = 62 mph, and a(t) = C, a constant. Then v(t) = C t + K
and v(0) = 0 ⇒ K = 0, so that v(t) = C t. Now 62 = v(19/18000) =
(19/18000)C ⇒ C = 62(18000/19) ⇒ v(t) = 62(18000/19)t. Thus the car
will reach a speed of 60 mph in 60(19)/(18000)(62) = 19/18600 of an hour.
Finally, distance = s(19/18600) = ∫ 19/18600

0 v(t)dt = ∫ 19/18600
0 62(18000/19)t dt =

62(18000/19)(19/18600)2/2 = 285/9300 mile ≈ 161.8 feet.
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Alternatively, we can just draw the velocity curve (a straight line) and calculate the
area under the curve, which is the area of a right triangle:

Area = 1
2

(
19

18600
hours

)
(60 miles/hour) = 19/620 mile ≈ 161.8 feet.

b. Let t∗ be the time (in hours) it takes the car to stop. We are given that v(0) =
62 mph, v(t∗) = 0, and a(t) = C, where C is a negative constant. Then v(t) = Ct + K
and v(0) = 62 ⇒ K = 62 ⇒ v(t) = Ct+62. Also, v(t∗) = 0 ⇒ C = −62/t∗ ⇒ v(t) =
(−62/t∗)t + 62. Noting that the stopping distance, 114 feet, is 114/5280 mile, we can
write s(t∗) = 114/5280 = ∫ t∗

0 v(t)dt = (−62/t∗)(t∗)2/2 + 62 t∗ = −31 t∗ + 62 t∗ =
31 t∗, so that t∗ = 114/(5280 · 31) hour ≈ 2.5 seconds. [As in earlier exercises, we
can just interpret the problem in terms of the area of the appropriate right triangle.]

9. a. For any values of A and B, x′ = 3(A + Bt)e3t + Be3t = {3(A + Bt) + B}e3t = (3A +
B + 3Bt)e3t = y. Now y′ = 3(3A + B + 3Bt)e3t + 3Be3t = (9A + 3B + 9Bt + 3B)e3t =
(9A + 6B + 9Bt)e3t and −9x + 6y = (−9A − 9Bt)e3t + (18A + 6B + 18Bt)e3t =
(9A + 6B + 9Bt)e3t , so that y′ = −9x + 6y.

b. The initial condition x(0) = 1 yields 1 = x(0) = (A + 0)e0 = A, and y(0) = 0
gives us 0 = (3A + B), so that B = −3. The solution of this system IVP is therefore{
x(t) = (1 − 3t)e3t , y(t) = −9te3t

}
.

10. First of all, dx/dt = e−t/10 cos t − (1/10)e−t/10 sin t = (1/10)e−t/10(10 cos t − sin t) =
−y. Next, dy/dt = (1/10)e−t/10(10 sin t + cos t) − (1/100)e−t/10(−10 cos t + sin t) =
e−t/10 sin t + 0.1e−t/10 cos t + 0.1e−t/10 cos t − 0.01e−t/10 sin t = 0.99e−t/10 sin t +
0.2e−t/10 cos t. But 1.01x − 0.2y = 1.01e−t/10 sin t − 0.2(0.1e−t/10)(−10 cos t + sin t) =
0.99e−t/10 sin t + 0.2e−t/10 cos t. Now we see that x(0) = e0 sin 0 = 0 and y(0) =
(1/10)e0(−10 cos 0 + sin 0) = −1.

11. a. Deriving inspiration from Example 1.2.2, we get u(t) = u(0)ekat = Aekat .

b. Substituting the expression for u found in (a) in the differential equation for w,
we get dw

dt = a(1 − k)Aekat . If k = 0, this last equation is just dw
dt = a A, so that

w = a At + C. The condition w(0) = 0 tells us that C = 0, so that w(t) = aAt. On
the other hand, if 0 < k ≤ 1, the differential equation for w is dw

dt = a(1 − k)Aekat
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and we can integrate to find that w(t) = a(1−k)A
ka ekat + C. Knowing that w(0) = 0,

we have 0 = a(1−k)A
ka + C and therefore C = − a(1−k)A

ka = (k−1)A
k . Then we can write

w(t) = (1−k)
k Aekat + (k−1)A

k = (k−1)A
k (1 − ekat).

C
1. a. If W = C

E + (
W0 − C

E

)
e−kEt , then dW

dt = −kE
(
W0 − C

E

)
e−kEt = −kE

(
W − C

E

) =
−kEW + kC = k(C − EW).

b. As t → ∞, e−kEt → 0, so that W(t) → C
E . Note that C/E is in pounds per day.

c. From (a) we know that W(t) = 2500
20 + (

180 − 2500
20

)
e− 20

3500 t = 125 + 55e−t/175. A loss
of 20 pounds means that W(t) = 160, so that we must solve the equation 160 =
125 + 55e−t/175, 35 = 55e−t/175, 7

11 = e−t/175. Taking the natural logarithm of both
sides of this last equation, we get ln(7/11) = −t/175, so that t = −175 ln(7/11) ≈
79 days. Similarly, for a loss of 30 pounds, we must solve 150 = 125 + 55e−t/175,
so that t = −175 ln(5/11) ≈ 138 days. For a loss of 35 pounds, we solve 145 =
125 + 55e−t/175, finding that t = −175 ln(4/11) ≈ 177 days.

Our conclusion is that dieting can be very frustrating. Although it takes 79 days to lose
the first 20 pounds, it takes an extra 59 days to lose 10 more pounds and 39 additional
days to lose 5 pounds beyond the first 30. The original differential equation indicates
that if C and E are constant, with C − EW < 0, then dW/dt < 0 and d2W/dt2 =
−k2E(C − EW) > 0. This says that the weight is a concave up decreasing function of
time—that is, the rate of weight loss slows down with time.

2. Integrating each side of the given equation successively, we have EIy(3) = (−W/L)x +
A, EIy(2) = (−W/2L)x2 +Ax +B, and EIy′ = (−W/6L)x3 + (A/2)x2 +Bx +C. If we use the
boundary condition y′(0) = 0 in the last equation, we find that C = 0. Integrating again,
we get EIy = (−W/24L)x4 + (A/6)x3 + (B/2)x2 + D. Because y(0) = 0, we get D = 0.
Finally, using the conditions y(L) = 0 and y′(L) = 0 in the equations for y and y′, we
get the algebraic equations (−W/6)L2 + (A/2)L2 + BL = 0 and (−W/24)L3 + (A/6)L3 +
(B/2)L2 = 0, respectively. Solving these simultaneously for A and B, we find A = W/2 and
B = −WL/12. Therefore the solution is EIy = (−W/24L)x4 + (W/12)x3 − (WL/24)x2 =
(−W/24L)x2(x − L)2.

Then (xy′ − y)2 − (y′)2 − 1 = (−x2/y − y)2 − (−x/y)2 − 1 =
(−(x2+y2)

y

)2 − x2

y2 − 1 =
1
y2 − x2

y2 − 1 = 1−x2

y2 − 1 = y2

y2 − 1 = 0. Note that solving the relation x2 + y2 = 1 for y gives

us y = ±√
1 − x2, which does not correspond to a particular value of C in the solution

formula given.

3. a. y = M(1 + Ae−kt)−1 ⇒ y′ = −M(1 + Ae−kt)−2 · (−kAe−kt) = MkAe−kt

(1+Ae−kt )2 = kM
1+Ae−kt ·

Ae−kt

1+Ae−kt = kM
1+Ae−kt · 1+Ae−kt−1

1+Ae−kt = kM
1+Ae−kt

(
1 − 1

1+Ae−kt

)
= ky

(
1 − y

M

)
. Clearly y(0) =

M/(1 + A).
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b. Here’s the graph of y(t) = 387.9802
1+54.0812e−0.02270347 t :

c.
Actual Population Logistic Pop. Value

1790 3,929,214 7,043,786
1980 226,545,805 225,066,248
1990 248,709,873 246,050,716

d. lim
t→∞ y(t) = lim

t→∞
387.9802

1+54.0812e−0.02270347t = 387.9802 million people.

4. a. Using the same reasoning found in Example 1.2.1, we see that
V1(t) = V1(0)e−ct = V0e−ct .

b. Let T∗(t) = T∗(0)e−δt + kT0V0
δ−c (e−ct − e−δt). Then dT∗

dt = −δT∗(0)e−δt + kT0V0
δ−c (−ce−ct +

δe−δt) = −δT∗(0)e−δt − c
δ−c (kV0T0e−ct) + δ

δ−c (kV0T0e−δt) = −δT∗(0)e−δt +
kV0T0e−ct

(
1 − δ

δ−c

)
+ δ

δ−c (kV0T0)e−δt = −δT∗(0)e−δt + kV0T0e−ct − δkT0V0
δ−c (e−ct −

e−δt) = k(V0e−ct)T0 − δ
[
T∗(0)e−δt + kT0V0

δ−c (e−ct − e−δt)
]

= [using the result of part

(a)] kV1T0 − δT∗, so that T∗ is a solution of the differential equation for T∗.
c. lim

t→∞ T∗(t) = lim
t→∞ T∗(0)e−δt + kT0V0

δ−c (e−ct − e−δt) = 0 + 0 = 0. The number of infected

cells decreases to zero.
5. Suppose y = yGR + yP . Then x2y′′ + xy′ − 4y = x2(y′′

GR + y′′
P) + x(y′

GR + y′
P) − 4(yGR + yP) =(

x2y′′
GR + xy′

GR − 4yGR
) + (

x2y′′
P + xy′

P − 4yP
) = 0 + x3 = x3. Thus y, having two arbitrary

constants because of its term yGR, is the general solution of the original equation (*).

*Project 1–1 anticipates the discussion of the logistic equation in Example 2.4.1. *
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