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Abstract

These corrections refer to the 3™ edition of the book A Wavelet Tour of Signal Processing
— The Sparse Way by Stéphane Mallat, published in December 2008 by Elsevier. If you
find mistakes or imprecisions in these corrections, please send an email to Gabriel Peyré
(gabriel.peyre@ceremade.dauphine.fr). More information about the book, including how
to order it, numerical simulations, and much more, can be find online at wavelet-tour.com.

1 Chapter 2

Exercise 2.1. For all ¢, the function w — e~ “!f(t) is continuous. If f € L'(R), then for all w,
le®t f(t)| < |f(t)| which is integrable. One can thus apply the theorem of continuity under the

integral sign [ which proves that f is continuous.
If f € L*(R), using the inverse Fourier formula (2.8) and a similar argument, one proves that
f is continuous.

Exercise 2.2. If [ |h| = +oo, for all A > 0 there exists B > 0 such that ffB |h| > A. Taking
f(x) = 1;_4, 4y sign(h(—2)) which is integrable and bounded by 1 shows that

B
Fxh(0) = [ sign(A(t)h(t)de > 4.

This shows that the operator f — f * h is not bounded on L°°, and thus the filter h is unstable.
Exercise 2.3. Let f,(t) = f(t — u), by change of variable ¢t — u — ¢, one gets

ful) = [ - we it = [ e — e (o).
Let f(t) = f(t/s), with s > 0, by change of variable t/s — ¢, one get

fulw) = / f(t/s)etdt = / e sdt = [s] f(sw).
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Let f by C! and g = f’, the by integration by parts, since f(t) — 0 where [t| — +o0,
@) = [ £ tar = - [ )i it = (i) fo)

Exercise 2.4. One has

fr(t) =Re[f()] = [f(t) + [FV)]/2 and  fi(t) = Ima[f(t)] = [f(t) — f*(1)]/2
so that

folw) = [HE L0 O3 T —reta = fu)/2 + Con ( / f(t)e“"tdt) /2
= [f(w) + F*(~w)/2,

where Conj(a) = a* is the complex conjugate. The same computation leads to
filw) = [f(@) = f*(=w)/2.

Exercise 2.5. One has

ﬂm=/}@a:a

If fe Ll(]R), one can apply the theorem of derivation under the integral sign [ and get

%f(w) = / —itf(t)e At =  f'(0) = —i / tf(t)dt = 0.

Exercise 2.6. If f = 1;_; ) then one can verify that

flw) = ZSinuEmu).
It result that ] .
/Sm?fzw) — %/f(w)dw — f(0)=1.

If g = 1[_1,1) then §(w)/2 = sin(w)/w. The inverse Fourier transform of §(w)? is g g » g(t) so

203
[ = ¢ [oraw = Zgugugo) =2

w3 8 4’
where we used the fact that )
g*g*g(O)Z/ h(t)dt =3
~1
where h is a piecewise linear hat function with h(0) = 2.

Exercise 2.7. Writing u = a — ib, and differentiating under the integral sign [, one has
f(w)= /—ite‘“tze_i“tdt.
By integration by parts, one gets an ordinary differential equation

—W A

f'w) = S fw)



whose solution is )
flw) = Ke

for some constant K = f (0). Using a switch from Euclidean coordinates to polar coordinates
(z,y) — (r,0) which satisfies dedy = rdrdf, one gets

K? = /e—uz2dx/e_“y2dy = // e_u(r2+y2)dxdy
2m 400 +o0
= / / e~ rdrdf = 27r/ re " dr = I,
0 0 0 U

Exercise 2.8. If f is C' with a compact support, with an integration by parts we get

flo) = o [ 1 ar

which gives the result.

so that ,
F)l< S with o= / £ (B)ldt < +oo,

which proves that f(w) — 0 when |w| — +o0.

Let f € LY(R) and € > 0. Since C! functions are dense in L*(R), one can find g such that
J1f —g| <e/2. Since g(w) — 0 when |w| — +o00, there exists A such that |§(w)| < /2 when
|w| > A. Moreover, the Fourier integral definition implies that

Fw) - ()] < / F(t) — () dt

so for all [w| > A we have |f(w)| < & which proves that f(w) — 0 when |w| — 400.

Exercise 2.9. a) For fo(t) = 1jg 4.o0)(t)eP", we get

R +oo ) 1
folw) = [ e —
0

iw—p

For fn(t) = t"1j9 1) (t)e?", an integration by parts gives

R +oo , n o .
Fulw) = / eI = —— f 1 (w),
0

iw—p
so that |
~ n:
falw) = o —py°

b) Computing the Fourier transform on both sides of the differential equation gives

_ Vg an(iw)”

S s b (iw)F

We denote by {pi}£_, the poles of the polynomial ZQ/I:O bip2*, with multiplicity ns. If K < M,
one can decompose the rational fraction into

g=fxh where h(w)



where each Qy, is a polynomial of degree strictly smaller than ny. It results that h(t) is a sum of
derivatives up to a degree strictly smaller than ny of the inverse Fourier transform of

1

(iw — pg)™*

fpkmk (w) =

which is 1
forni (t) = mt"k1[0,+m)(t)€pkt-

Each filter f,, n, is causal, stable and nj, times differentiable. It results that that h is causal and
stable.

If, there exists [ with Re(p;) = 0 then for the frequency w = —ip; we have |h(w)| = +00 so h
can not be stable.

If, there exists [ with Re(p;) > 0 then by observing that f,, ,,(—w) = (=1)™ (iw 4 p;) ™™ and
by applying the result in a) we get

1 _
om0 = 2t e ()
which is anticausal. We thus derive that h is not causal.
c) Denoting o = €'"/3, one can write

1

M = T r

with
1/h(w) = (iw/wy + 1) (iw/wo + a)(iw/wy + a*) = P(iw).

Since the zeros of P(z) have all a strictly negative real part, h is stable and causal. To compute

h(t) we decompose
a1 ag as

iw/wo + 1 * iw/wo + a * iw/wo + a*’

hw) =

we compute a, as and a3z and by applying the result in (a) we derive that

il(t) = wo(al 1[0’+OO) (t) e~ two + a9 1[U,+oo)(t) e~ tawo + as 1[07+00)(t) e_ta*w‘)) .

Exercise 2.10. For ¢ > 0 and v > 0 and g a Gaussian function, define

fau(t) =gt —u) + e " g(t + u).
We verify that o,,(fq,) increases proportionally to u. Its Fourier transform is
fa,u(w) = e_iuwg(w —a)+ eiuw!}(w +a)

80 0y (fa,u) increases proportionally to a. For a and u sufficiently large we get the the result.

Exercise 2.11. Since f(t) >0
Fw) = / F() et dt] < / f(tydt = (0) .

Exercise 2.12. a) Denoting u(t) = |sin(¢)|, one has g(t) = a(t)u(wot) so that
1

= %a(w) * U(w/wp)

g(w)



where @(w) is a distribution

i(w) = Z end(w —n)

and ¢, is the Fourier coefficient
™ ) 0 ) ™ )
Cn :/ |sin(t)|e” ™t dt = —/ sin(t)e_mtdt—I—/ sin(t)e~""tdt.
- - 0
The change of variable ¢ — ¢ 4+ 7 in the first integral shows that cor11 = 0 and for n = 2k,

4
1—4k2

s
Cok = 2/ sin(t)e”2*dt =
0

One thus has ) ) A Phn)
“ “ alw — wo

b) If a(w) = 0 for |w| > wp, then h defined by h(w) = 51 [—wy,we] guarantees that gh = @ and
hence a = g x h.

Exercise 2.13. One has

g(w) = % Z Fr(w) * [0(w — 2nwo) + 6(w + 2nwy)] = % Z[fn(w — 2nwo) + fn(w + 2nwo)].

n

Each f,(w + 2nwo) is supported in [(—1 + 2n)wo, (1 £ 2n)wo], and thus § is supported in
[—2NWO, QNLUO].
Since the intervals [(—1 & 2n)wo, (1 & 2n)wp] are disjoint, one has

Jn(w £ 2nw0) = 2G(wW) 1[(—1+2n)wo,(142n)wo] (W)-

The change of variable w + 2nwy — w and summing for n and —n gives

fulw) = [9(w — 2nwo) + §(w + 2nw)]h(w),

where h(w) = 1[—wo,wo] (w). Denoting g,,(t) = 2g(t) cos(2nwot), one sees that f,, is recovered as

Jn=gnxh.

Exercise 2.14. The function ¢(t) = sin(wt)/(nt) is monotone on [—3/2,0] and [0, 3/2] on which
is variation is 14 2=. For each k € N*, it is also monotone on each interval [k +1/2,k + 3/2] on
which the variation is 1[(k 4+ 1/2)7" 4 (k + 3/2)']. One thus has

_ 2.2 -1 1y _

lolv =201+ )+ = > _[(k+1/2)7" + (k+3/2) "] = +oo.
k>1

For ¢ = A [45], |¢'| = AMda + Ady and hence [¢[v = 2.

Exercise 2.16. Let

f(z) =112 (21, 22) = fo(x1) fo(z2) where fo(z1) = 1p,1)(21).



One has ) )
flwi,wa) = fo(wr) folws) = (et —1)(e™> — 1).

wiWwsa
Let
fz) = e 73 = fo(z1)fo(ra) where fo(z1)=e .
One has
Flwr,ws) = folwr) folws) = me~@itwd)/4,

Exercise 2.17. If |t| > 1, the ray A; g does not intersect the unit disc, and thus pg(t) = 0. For
|t| < 1, the Radon transform is computed as the length of a cross section of a disc

po(t) =24/1 — 2.

Exercise 2.18. We prove that the Gibbs oscillation amplitude is independent of the angle 6 and

is equal to a one-dimensional Gibbs oscillation. Let us decompose f(z) into a continuous part
fo(z) and a discontinuity of constant amplitude A:

f(x) = fo(z) + Au(cos(0)x1 + sin(f)z2)

where u(t) = 1[9,4.o0) (t) is the one-dimensional Heaviside function. The filter satisfies he (1, v2) =
ge(21) ge(x2) with ge(t) = sin(&t)/(wt). The Gibbs phenomena is produced by the discontinuity
corresponding to the Heaviside function so we can consider that fo = 0. Let us suppose that
|0] < 7/4, with no loss of generality. We first prove that

frhe(@) = f*ge() (1)

where e (wi,w2) = 1j_¢¢(w2). Indeed f(x) is constant along any line of angle 6, one can thus
verify that its Fourier transform has a support located on the line in the Fourier plane, of angle
0 +7/2 which goes through 0. Tt results that f(w)he(w) = f(w)ge(w) because the filtering limits
the support of f to wa| < & But ge(z1, ) = 8(x1) sin(€xs)/(7x2). The convolution (1) is thus
a one-dimensional convolution along the x5 variable, which is computed in the Gibbs Theorem
2.8. The resulting one-dimensional Gibbs oscillations are of the order of A x 0.045.



