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CHAPTER 1

Let

ry(k) = E[u(nu” (n-Kk)] 1)
ry(k) = E[y(n)y*(n-K)] 2
We are given that

y(n) = u(n+a)—u(n-a) 3)

Hence, substituting Eq. (3) into (2), and then using Eq. (1), we get

ry(k) = E[(u(n+a) —u(n-a))(u*(n+a-k)—u*(n—a-k))]

2r (k) —r, (2a+k)—r (-2a+Kk)
We know that the correlation matrix R is Hermitian; that is
R =R

Given that the inverse matrix R exists, we may write

That is, the inverse matrix R™1 is Hermitian.

For the case of atwo-by-two matrix, we may

Ry = RstR,
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For R, to be nonsingular, we require
_ 2 2
det(Ry) = (ryy+0 )(rpn+0) =15 >0
With 1, =y for real data, this condition reduces to
2 2
(ryp + 0 )(rpp+07)=rypry >0

Sincethisisquadraticin 02 , we may impose the following condition on 02 for nonsingu-
larity of Ry

2.1 0 4Ar g
o >§(r11+r22)D 1- > %
(r11+r22) i

B 2

We are given

[

This matrix is positive definite because

To. 11|21
a Ra = [a},a)] L J [32]

= a’+2a,a,+a>
S teqata,
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2
= (a; +a,)" >0 for al nonzero values of a; and a,

(Positive definiteness is stronger than nonnegative definiteness.)

But the matrix R is singular because

det(R) = (1)°—=(1)* = 0
Hence, it is possible for amatrix to be positive definite and yet it can be singular.

(@

r(0): r"
Rpma+1 = { (r)rRM} 1)
Let
Ryes = Lf b(': } @
where a, b and C are to be determined. Multiplying (1) by (2):
o = {fﬁ?’--f.”} {a___b_“}

r Ryl |P: C
where |41 istheidentity matrix. Therefore,
r(0)a+rp = 1 ©)
ra+Ryb =0 (4)
b +R,C = Iy, (5)
ro)b" +rc =o' (6)

From Eq. (4):



= —RK,llr a (7

Hence, from (3) and (7):

a= 1H - (8)
r(0)—r Ryr
Correspondingly,
-1
Ryr
b= - M 9)
r(0)—r Ryr
From (5):
C = Ry —Ryrb"

-1 H_-1
_ Rurr R
Ry e (10)
r(0)—r Ryr

As acheck, the results of Egs. (9) and (10) should satisfy Eq. (6).

H H r(O)rHRKAl o1 rHRK,llrrHRK,ll
r(0)b +r = - T t" Ry + -]
r(0)—r Ryr r(0)—r Ryr

:OT

We have thus shown that



(b)

where the scalar ais defined by Eq.

where D, e and f are to be determined. Multiplying (11) by (12):

| _{RMsrB*HDse}
M | BT o)) | f

Therefore

B* H _
RMD+r e =1

RMe+rB*f =0

rBTe+r(O)f =1

27D+ r(O)eH =0
From (14):

_ -1 B*
e=— RyT f

Hence, from (15) and (17):

1

f = -
r(0) —rBTRK,ler

Correspondingly,

(8):

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)



1.6

-1 _B*

_ Ry T
°T r(O)—rBTRK,ler*
From (13):
D = RK/Il_RK/Ier* H
-1 B* BT -1

=R +
M 1 B
r(0) —rBTRerB

As acheck, the results of Egs. (19) and (20) must satisfy Eq. (16). Thus

BT -1 B* BT _-1 BT -1
BT H_ BTo-1, " Ryr r Ry 1O Ry
roD+r(Qe =1 Ry+ BT -1 B* BT _—1 B*
r(0)—r— Ryr r(0)—r— Ryr
= OT
We have thus shown that
1. -1 B* BT_—1: . o
1 Ry 0 Ryr™ 1 Ry g B
R = | oM
M+1 T BT -1
0 '0 —r RM 1
-1, -1 _B*
Ry 0 — _
= | M f[__F?W___J [—r°T IRy 1]
oo 1

where the scalar f is defined by Eq. (18).

(a) We express the difference equation describing the first-order AR process u(n) as

u(n) = v(n) +w,u(n-1)

where w; = -a,. Solving this equation by repeated substitution, we get

u(n) = v(n) +wyv(n—-1) +w u(n-2)

(19)

(20)



v(n) +w,v(n—1) +w§v(n—2) + .. +w2'1v(1) (1)

Here we have used the initial condition

ul0) =0
or equivalently
u(l) = v(1)

Taking the expected value of both sides of Eq. (1) and using
E[v(n)] = for all n,

we get the geometric series

E[u(n)] = p+wyp+wip+ .. +w)

0 ) C

FE I

- D“W’ wiEl o

S %
n, W, =

o ™ 1 [

This result shows that if p# 0, then E[u(n)] is a function of time n. Accordingly, the

AR process u(n) is not stationary. If, however, the AR parameter satisfies the
condition:

|a1| <1 or |w1| <1

then

B[] - 2y s 0

Under this condition, we say that the AR process is asymptotically stationary to order
one.

(b) When the white noise process v(n) has zero mean, the AR process u(n) will likewise
have zero mean. Then



var[v(n)]

I
Q

E[u’(n)]. ©)

var[u(n)]

Substituting Eg. (1) into (2), and recognizing that for the white noise process

\2/ n=k (3)

E[v(nv(k)] = 0°
0, n#k

|

we get the geometric series

var[u(n)] = 0\2,(1+wi+w‘1"+ +w§n'2)

5

0 w

00y %L 125, wy#1
=0 1 w

0 0 10

) 3

Eovn, wy =1

When |ag| < 1 or |wy| < 1, then

2 03
varfu(n)] = = 5 for largen

(c) The autocorrelation function of the AR process u(n) equals E[u(n)u(n-k)]. Substituting
Eg. (1) into thisformula, and using Eqg. (3), we get

E[u(n)u(n-k)] = o (W1+W1I 25 +W|;+2n-2)

0
w?
Ecr\zlwgL 125, wy#1
- B Dl w10
o - B
E o,n, wy =1



For [a4] < 1 or jw;| < 1, we may therefore express this autocorrelation function as

r(k) = E[u(n)u(n—-Kk)]

czwk
=Y 12 for largen

Casel: O0<a;<1

In this case, wy = -a4 is negative, and r(k) varies with k as follows:
r(k)
I -3 [ -1 +1,:'|‘\\ +3,'|
-4 | N B N KN

Case2: -1<a;<0

In this case, w; = -a; is positive and r (k) varies with k as follows:

R i |y ‘
4 -3 -2 -1 |0 t1 42 43 +4

1.7 (@) The second-order AR process u(n) is described by the difference equation:

u(n) = u(n—-1)-0.5u(n-2) + v(n)

Hence

wy =1

w, = -0.5

and the AR parameters equal
a; = -1

a, = 05

Accordingly, we write the Yule-Walker equations as



& ol Lod
(1) r©)| |-05 |r)
(b) Writing the Yule-Walker equations in expanded form:
r(0)—0.5r(1) = r(1)
r(1)—0.5r(0) = r(2)
Solving the first relation for r(1):
(1) = £r(0) ®
Solving the second relation for r(2):
r(2) = 21 (0) @
(c) Since the noise v(n) has zero mean, so will the AR process u(n). Hence,

varfu(n)] = E[(u°n)]
= r(0).
We know that

2

v = Y arK
k=0

Q
1

r(0) +a,r(1) +a,r(2) 3

Substituting (1) and (2) into (3), and solving for r(0), we get
2

O-V
r(O) = T =12
1+za,za
37162

1.8 By definition,

Py = average power of the AR process u(n)

10



1.9

1.10

Efju(m)]

r(0) «y

where r(0) is the autocorrelation function of u(n) for zero lag. We note that

0@ re) . rvy
{ag a5 . ay = %(0)%(0)’ ’ r(O)E

Equivalently, except for the scaling factor r(0),
{ag @y 3y} ={r(1),r(2), -.r(M} 2
Combining Egs. (1) and (2):

(Po @y ap - ay} = {r(0).1(1),1(2), -, r(M) 3

(a) Thetransfer function of the MA model of Fig. 2.3is

H(2) = 1+b,Z " +byz 4 -+ b 7

(b) The transfer function of the ARMA mode of Fig. 2.4 is

* * _1 * _9 * _K

H(2) =

* * .

— -2 *
1+alz ta,z +.-tayz

(c) The ARMA model reducesto an AR model when

It reduces to an MA model when
al:azz...:aM:O

We are given

x(n) = v(n)+0.750(n—-1) + 0.25v(n—2)
Taking the z-transforms of both sides:

11



X(2) = (1+0.752 * +0.2572 2)V(2)

Hence, the transfer function of the MA model is

X(2) -1 2
== 1+0. +0.
V) 1+0.75z ~ +0.25z

1
= . = 1)
(1+0.75z “+0.25z )

Using long division, we may perform the following expansion of the denominator in Eq.

D:

-1 —2.-1
(1+0.752 ~ +0.25Z °)

_,. 371,52 33 11 4 45 5
4 716" T4 T 2567 1024

91 6, 93 -7, 8 -8 627 9,6 1541 _-10
——=7 + z '+ z - z + z T+
4096 16283 65536 262144 1048576

~ 1-0.75Z 1 +0.31257 2 —0.0469Z - 0.043z * + 0.04392 >

~0.02227 °+0.00577 ' +0.00137 ° - 0.00247 ° +0.00157 " B
@M=2

Retaining termsin EQ. (2) up to z2, we may approximate the MA model with an AR
model of order two as follows:

X(2) _ 1
V(2) 1_07571+03125772

()M =5

Retaining termsin Eq. (2) up to Z°, we obtain the fol lowi ng approximation in the
forms of an AR model of order five:

X(2) _ 1
V(2 1_07571+031257%-0.0469z > —0.0432 % + 004307 >

12



(o M=10

Finally, retaining termsin Eqg. (2) up to 710 we obtain the followi ng approximation in
the form of an AR model of order ten:

X(2)_ 1

(2 D(»

N—

<

where D(2) is given by the polynomial on the right-hand side of Eq. (2).

111 (&) Thefilter output is

x(n) = WHu(n)

where u(n) is the tap-input vector. The average power of the filter output is therefore

E[Ix(n)I’] = E[w" u(mu" (nyw]

wHE[umu™ (nw

H
=w Rw

(b) If u(n) is extracted from a zero mean white noise of variance 02, we have

where | isthe identity matrix. Hence,

E[|x(n)|2] = o’ww

1.12 (a) The process u(n) is a linear combination of Gaussian samples. Hence, u(n) is
Gaussian.

(b) From inverse filtering, we recognize that v(n) may also be expressed as a linear
combination of samples represented by u(n). Hence, if u(n) is Gaussian, then v(n) is
also Gaussian.

1.13 (a) From the Gaussian moment factoring theorem:

* k * *
E[(uluz)} = E[uy---uquyeuy)

13



k! E[u;uz] ---E[uiuz]

* k
kI (E[uyu,]) «y
(b) Putting u, = u; = u, Eq. (1) reducesto

U = ki (Eu)”

1.14 Itisnot permissible to interchange the order of expectation and limiting operations in Eq.
(1.113). The reason is that the expectation is a linear operation, whereas the limiting
operation with respect to the number of samples N is nonlinear.

1.15 Thefilter output is
y(n) = % h(iu(n—i)
i
Similarly, we may write
y(m) = Zh(k)U(m—k)
Hence,

ry(n.m) = E[y(n)y (m)]

E[Z h(i)u(n—i)gh*(k)u*(m—k)}

IZZh(i)h*(k)E[u(n—i)u*(m—k)]

= IZZh(i)h*(k)ru(n—i, m—k)

1.16 The mean-square value of the filter output in response to white noise input is

_ 20°Aw

Po -

14



The value P, is linearly proportional to the filter bandwidth Aw. This relation holds
irrespective of how small Aw is, compared to the mid-band frequency of the filter.

1.17 (a) Thevariance of the filter output is

2
2 _ 20 Aw
(0) =
y T
We are given

02 =01 voIt2
Aw = 21t x 1 radiang/sec.
Hence,

02 = &nlxz =04 voIt2

y

(b) The pdf of the filter output y is

2,2
1 -y /20,

e
Jﬁoy

fly) =

_ 1 e—yz/o.s
0.63./2m

118 (&) Wearegiven

N-1
Uy = Z u(n) exp(=jnwy), k=0,1,..,N-1

n=oo
where u(n) isreal valued and

_ 21
wk—ﬁ

Hence,

15



N-1 N-1

E[UkUT] = E[Z z u(n)u(m)exp(—jnwk+jmwl)}

n=0 m=0
N-1 N-1
=Y S exp(=inw+ jmey)E[u(n)u(m)]
n=0 m=0
N-1 N-1
= Z Z exp(— jnwy + jmw,)r(n—m)
n=0 m=0
N-1 N-1
= 3 exp(iney) 3 r(n-m)exp(-jnw,) 1)
m=0 n=0

By definition, we also have

N-1

Z r(n)exp(=jnw,) = S,

n=0

Moreover, since r(n) is periodic with period N, we may invoke the time-shifting
property of the discrete Fourier transform to write

N-1

Z r(n—m)exp(=jnw,) = exp(-=jmwy)S,
n=0

Thus, recognizing that wy, = (21YN)K, Eg. (1) reduces to

N-1
E[U,U,] = § z exp(jm(w, —wy))
m=0
_ E S | =k

[0 0, otherwise

(b) Part (a) shows that the complex spectral samples Uy are uncorrelated. If they are
Gaussian, then they will also be statistically independent. Hence,

16



_ 1 Ol HA O

f i (Us Ug, oo yUy ) = exp=—=U AU
ult¥o ~1 N-1

(2n)Ndet(/\) H2 .

where

T
U = [Uo, Ul, ...,UN_l]

A = %E[UUH]

1..
= 5diag(Sy Sy, -0 Sy-a)

1 N-1
det(A) = = I_l%
2 k=0
Therefore,
0 N-1 Zh|
_ 1 01l |Uk| O
07k=0 50

cemyN2™ s
k=0

-1 U 2
= n_Nexpg\lz—a—l—(L{%—ln
05 0% O

o

1.19 The mean square value of the increment process dz(w) is
2
E[ldz(w)|"] = S(w)dw
Hence E[|dz(w)[?] is measured in watts.
1.20 Thethird-order cumulant of a processu(n) is

C3(T4, Tp) = E[u(mu(n+1)u(n+15)]
= third-order moment.

All odd-order moments of a Gaussian process are known to be zero; hence,

17



c3(t,T,) =0
The fourth-order cumulant is

C4(T1, T T3) = E[u(nu(n+1)u(n+1)u(n +13)]
—E[u(nu(n+ 1] E[u(n + 1)u(n+13)]
—E[u(nu(n+ 1) E[u(n + 1 )u(n+13)]
—E[u(nu(n+13)]E[u(n+ 1 )u(n +1,)]

For the special case of T = 11 = T, = 13, the fourth-order moment of a zero-mean Gaussian

process of variance 02 is30%, and its second-order moment of 62. Hence, the fourth-order
cumulant is zero. Indeed, all cumulants higher than order two are zero.

1.21 Thetrispectrumis

00 00 00 .
—J (01T + WyT, + W3T5)

C(wy, 0y, ) = Z Z Z Cy(14, Ty, T3)€

'[1:_00 '[2:_00 ‘[3:_00

L et the process be passed through a three-dimensional band-pass filter centered on wy, wy,
and w3. We assume that the bandwidth (along each dimension) is small compared to the
respective center frequency. The average power of the filter output is proportional to the
trispectrum, Cy(wy, Wy, wy3).

1.22 (&) Starting with the formula

00

(e T2 Te) = Vi 3 Biliag Mg |

|=-00
the third-order cumulant of thefilter output is

o0

C3(TT) = V3 ) Mihjyq sy,

j=-00

where y isthe third-order cumulant of thefilter input. The bispectrum is

18



[o0] .
—j (T + W,Ty)

Ca(wy, ,) =y, Z z C5(14, Ty)e

'[l:-oo T2:'°°

(o] .
—j(gTy + W,Ty)

> i hiie

-0 Tq=-00 T,=-00

M s
M s

Hence,
3 jooJD jm2D * j(ml+m2)D
Cy(wy, ) = ygHEe SHEE HH Le .
(b) From this formula, we immediately deduce that

arg[Cg(wy, w,)] = arg[H %ng} .\ arg[H %ng} ~ arg[H %J(wl + wz)%}

1.23 The output of a filter of impulse response h; due to an input u(i) is given by the
convolution sum

y(n) = ¥ hu(n—i)

The third-order cumulant of the filter output is, for example,

E[y(n)y(n+1)t(n+1,)]
E[Z hiu(n—i)ghku(n + Tl—k)Zhlu(n + T2—|):|

E[IZ h.u(n —i);hkﬂlu(n— k)Zhlﬂzu(n _|)}
2 Z Z MMy Mg ElUM=Du(n=kju(n—1)]

C3(T1, T2)

For an input sequence of independent and identically distributed random variables, we
note that

E[u(n—i)u(n—K)u(n-1)] = HYs T=k=1
00, otherwise

19



1.24

1.25

Hence,

o0

Ca(Ty:T2) = V3 ) Mihjup by,

=-00
In general, we may thus write

[oe]

Ca(Ty Ty on Tp) = Vi Z hihi+T1"'hi+Tk_1

i=-00

By definition:

f( @Dy = %Z E[u(n)u’ (n—k)e 127N glTak
n=0

Hence,
1 N-1 . . ok
r( @) = =S E[u(mu (n+ k)e)2man gima
n=0
N-1 ) )
r(a)*(k) _ ]2nom] oimak

% S Eu (mu(n-k)e
n=0

We are told that the process u(n) is cyclostationary, which means that

j2mon

E[u(mu’ (n+Kk)e 2™ = E[u’ (n)u(n—k)e! 2™

It follows therefore that

(Do = 7w

For a = 0, the input to the time-average cross-correlator reduces to the squared amplitude
of a narrow-band filter with mid-band frequency w. Correspondingly, the time-average
cross-correlator reducesto an average power meter. Thus, for a = 0, the instrumentation of
Fig. 1.16 reduces to that of Fig. 1.13.
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