Chapter 1
THE FIRST LAW OF THERMODYNAMICS

f
Problem 1.1 (a) W, ¢= f PdV="P,V,. Next, to calculate Tr we note that from (i) to (f) we have
1

AU _ s
dt—-— W+mh1

where h is the instantaneous flowrate into the cylinder, and M and U are the mass and energy
inventories of the system (the "system" is the cylinder volume). Integrating in time,

f
Mf—Mi=[ rhdt

i
Up-Uj==P;Vy +hy (M- M) (1)
and recognizing that Uj = 0 and M; = 0, the first law reduces to
Ur=Mshy -P1V2 (1Y
For the "ideal gas" working fluid we write
Us=Ms ey (Tt - To)

h1 =cy (T1 - To) +Pvy

. Mt ey (T - To) = Mt [ey (T1 - To) + Pvi] - P1 V2
Noﬁng that Vo = Myvf and dividing everything by M yields

cy T+ Pyve = cyT1 +Pvy
or

cy T+ RTg=¢c,T1 + RT}
in other words, Tf = T;. The final ideal-gas mass admitted is

PV,
RT,

my =M=

hence the goodness ratio
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(b) mp = P1V1/RT}, based on the solution for ms given in part (a), and
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=PV + ERY (P1Vi =P, Vo)

The second group of terms on the right-hand-side is the work output during the reversible &
adiabatic expansion (path: PVK = constant). Finally, the goodness ratio is

C
Wie PiVit = (P1Vi=P,V)) R P O\
m; PV, /(RT,) TR Py,

(¢) The relative goodness is
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The quantity in the square brackets is positive because k > 1 and V| < V2, therefore
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Problem 1.2 (a) Givenare m=1kg, T1 = 100°C, and x1 = 0.5. The path is constant volume.
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(b) To pinpoint state (2) we must determine
two properties at the final state. The first one
is the volume

V2 = VI =VET + X1 Vig, T =
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SN,

= 0.837 m3 / kg

0.001044 + 0.5 (1.6729 - 0.001044)
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The second property is the internal energy: this comes from the first law
Q12 - Wi =m(u - uy) )
where W12 =0 and

up =Uuf, T, + X1 Ufg, Ty = 418.94 + (0.5) (2087.6) = 1462.74 kl/kg

Equation (1) yields
Uy =uy + g Qpp=3662K7/ ke

(©) To find Ty and P, we must first locate state (2) on the P(v, t) surface (or tables). At
state (2) we know up and v, therefore, one way to proceed is to look at the table of superheated
steam properties and find the u values of order 3662 kJ / kg. This is the equivalent of traveling
along the u = uo line and looking for the v value that comes closest to v. This search leads to this
portion of the table:

T P =0.5MPa P =0.6 MPa

v u A u
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800°C  0.9896  3662.1  0.8245  3661.8
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Fitting vo between 0.9896 and 0.8245, we interpolate linearly for pressure and find

P, =0.592 MPa



The final temperature is clearly T = 800°C.

(d) At state (2) the system is superheated steam. This particular fluid approaches ideal gas
behavior if near state (2) the following two conditions are met:

@ u=u(T)
(i) Pv=RT,ie. Pv/T = constant.
Condition (i) is satisfied, as shown by the u values listed in the preceding table (u depends on T,

while being practically independent of P). As a way of testing condition (ii), we calculate the
group (Pv/T) for the states immediately to the left and right of state (2):

(By) - (05) 10° 09896) _ .,  Pam’ /kg

T~ 273054800 0T K
. 05 10° (0.8245) _, . Pam’/kg
T g 27315+800 00T K

Condition (ii) is also satisfied (approximately, or course), therefore, the ideal gas model could be
used to describe the behavior of the system at states that are sufficiently close to state (2).

Observation: note the use of absolute temperature in the denominators of the (Pv/T)
calculations presented above.

Problem 1.3 Taking the m gas as "system", we write the first law for the process (1) - (2),
Qr2-Wi2=U2-Uj
which means
0-Pra (V2- V) =2 o (T T + F ey (T2 - T + F ey (T2 T1)

or
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Noting that Py =Py, the above statement can be written as

T__1 1 +(Pia/Pig) +(P1a/Pic) R
T, 1+RWk, 3(1+R/cy) Cy
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Problem 1.4 The process is one of heating at constant volume. Let m¢ and mg represen

instantaneous liquid and vapor inventories in the system,
my + Mg = 1, (constant)
Furthermore, the constant-volume constraint reads
mfvf + MgVg =V, (constant)

The first law of thermodynamics requires on a per unit time basis that

. o _dU
Q-W= dt

or, since W = 0,

Q = —C%Z_ (mef + mgug)
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The time derivatives dmg/dt and dmg/dt follow from solving the system of two equations

d d
it (1) and a 2)
The solution is
d dm
oA ad e-4
dt Vfg df Vfg
where
vy dyg dve dp dvg 4p
—_ .\ — —_— —= e 22 2 ==
A=-mp g Mg g =M a M@ dt

Combining (3) and (4) we obtain after a few manipulations
dP _ Q/m
dt Ei_u_f_ Llfg de (deg Ufg deg)

P v, dp T\ AP g, dP
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Problem 1.5 After the seal is broken the atmospheric air rushes into the glass tube and the
pressure inside the tube becomes atmospheric. If we wait long enough, the temperature inside the
tube becomes equal to the atmospheric temperature also (this scenario is described in Example 1.2
in the text). In that example we learned that en route to thermal equilibrium the bottle air rejects
heat to the ambient. This means that immediately after we break the seal the air that occupies the
glass tube is warmer than the ambient. If we dip the open end of the tube into the pool of water
immediately after breaking the seal, the water will rise into the tube as the air mass that is trapped

insde the glass tube cools down (and shrinks) to atmospheric temperature.

Problem 1.6 (a) Applying the first law to the water container as an open system, we have

d . .
at (mu) = (mh)in - (mh)out ()
where
oy min —_— Vv e r'nout
m= = constant — —_—
v T, Tt | T

Mass conservation dictates
dome i .. =0
dt (m) =My — Moyt =

hence m;,, = M, = m. The first law (1) reads finally

Y ”dd% = rh(hin"hout)

VW
For an incompressible fluid we also have
du=cdT and dh=cdT + vydP
In the present case Pjy = Py, therefore
hip - hout = ¢(Tin - Tour) = ¢(T2 - T)

Equation (1) becomes

V4l -
v ¢ g = e (T, -T)

which, integrated from O to t, means
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(b) The mass of hot water that raises the contianer water temperature from 10°C to 20°C is

T,-T
mt:—y—ln 2
Yw  Tp-T
m> 40 - 20
- In 20-20 _ 4055 kg
107 kg H0-10

Problem 1.7 (a) We treat the instantaneous water inventory of the container as an open system
operating unsteadily, so that the first law and the principle of mass conservation read

€73

dat (mu)=Q-W+ (mh)in - (mh)out D

(m) = M, — Mgy 2

dt

State 1 State 2

where Q = W =0 and th;,, = 0. Integrating (2) and writing m; and my for the initial and final mass
inventories of the system yields .

2
L Mgy dt=m; —my

The objective is to calculate xp, therefore, we focus on pinpointing state (2). We already
know one property at that state (namely, P2). To obtain the second property we use the first law
(1) in integral form

2
my Uy —my Uy ==hgy J'l it

=hoyt (mgy — m)

or the dimensionless form

92_51_1._.%31(1_21_) ~ 3)



Next, we note that the volume of the container is fixed,
V=mjvi=my V) 4)

wher vp = V2 + XpVfg 2. What follows from eq. (4) is a relationship between m1/my and x:

m V2 Y2 Vg2
m2 Vl Vl 2 Vl
_ 0001154, 0.13064 )
0.03944 " "2 0.03944
=0.02926 + x, (3.312)
A similar relation exists between up/u; and X2,
u u
2 1 U
_84316 , 17513 ©)
2597.1 © "2 2597.1
=0.3246 + x, (0.6743)

Substituting egs. (5, 6) into eq. (3) yields an equation for x alone, whose solution is xg = 0.805.

v

(b) The final*vapor / liquid volume ratio is

-3 el
\VeJp \meve )y 1=% (Ve s

_ 0805 [0.13177 \_
~1-0.805 (0.001154)_471'4




Problem 1.8 Selected for analysis is the system that contains the two masses (my, m,). In the
initial state (a) the velocities of the two masses are different (V, V,), while in the final state (b)
mutual friction brings the velocities to the same level (V). Since there are no forces between the
system and its environment, the total momentum of the ensemble is conserved,

The initial and final kinetic energy inventories of the ensemble are

_1 1
KEa = '2" lelz + '2— mz sz (2)
KE, = 2(m, +my) V.2 (3)

The evolution of the total kinetic energy during the process (a) - (b) is described by the "efficiency"
ratio

KE,

=X, @

Eliminating V_ between Egs. (1) and (3), the efficiency can be expressed in terms of the initial
mass and velocity ratios m, / my and V, IV,

ms, V 2
(1+~——2— ~—2~)

n= 5 <1 (5)
T

Tt can be shown analytically that 1 is less than 1 as soon as V, is different than V, for any value of
the ratio m, / m;. Two limits of Eg. (5) are worth noting,
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with the special case 1 = 1 when V| =V, for any my/m,. Equations (5) - (7) show that the order

of magnitude of 1 is 1 when m, / m is a number of order 1.



In conclusion, the kinetic energy of the system decreases from state (a) to state (b).
According to the first law of thermodynamics, this decrease is balanced by the other energy
interactons and energy changes of the system,

Qa—b - Wa—b = Ub - Ua + KEb - KEa (8)

where W_ = 0. If the process is adiabatic, Q, y, = 0, then the KE decrease is balanced by an
increase in U,

Up-U,=KE,; - KE,, )

If the system boundary is diathermal, and (a) and (b) are states of thermal equilibrium with the
ambient temperature reservoir (T;), then

Qa—szb”Ua+KEb”KEa (10)

If m; and m, are two incompressible substances then U = U(T), and at thermal equilibrium (T)
the energy change Uy - U, is zero,

Q,, = KE, - KE <0 (11)
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