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Chapter 1 Solutions 
 

 
Problem 1.1 

The Carnot cycle sets the limit on  
thermal efficiency of a heat engine 
operating between two temperature 
limits.  Show that ideal Carnot efficiency is: 
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  What is the thermal efficiency if T1=288 K  
  and T2=2000 K? 
 
 
Solution: 
 
Following conservation of energy, the amount of work done by the system per unit mass is:  

qdw ∫=  

For a reversible heat engine operating between two reservoirs at temperatures HT  and LT , 

sTTTdsdq LH ∆−== ∫∫ )(  
 
Therefore, net work, per unit mass is w 
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The heat input in the cycle takes place between stations 2 and 3, i.e., 
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Therefore thermal efficiency of the cycle is: 
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For the cycle defined in the diagram, the thermal efficiency is 
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Problem 1.2  The ideal Brayton cycle operates between  
  two pressure limits as shown.  It is   
  the model of an airbreathing jet engine, 
  such as a turbojet or ramjet engine. 
 
  Show that ideal Brayton cycle efficiency 
  is: 
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  What is the thermal efficiency of the Brayton 
  That has T1=288 K and T2=864 K? Note that maximum 
  cycle temperature T3 has no effect on cycle thermal efficiency. 
 
Solution: Net cycle heat exchange is: 

∫ ∫= Tdsqδ  
Gibbs equation is: 
Tds = dh - vdp 
Therefore for a constant pressure process, Tds = dh,  
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In a cycle, the net work output is equal to the net heat input (according to the 1st law of thermo) 
 

)()( 1423 TTcTTcqw pp −−−==∫∫ δδ  
 
By definition, cycle thermal efficiency is: 
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Since processes 1-2 and 3-4 are isentropic and p3 = p2 and p4 = p1, we can write: 
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Therefore, the ideal Brayton cycle efficiency is simplified to: 
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The Brayton cycle operates between two isobars (constant pressure lines), therefore, it is the 
pressure ratio that sets the thermal efficiency of the ideal Brayton cycle. The maximum cycle 
temperature changes the amount of heat input and the work output in the same proportion such 
that the ratio remains constant.  

 
 
Problem 1.3 

Humphrey cycle operates a constant-volume 
  combustor instead of a constant-pressure 
  cycle like Brayton.  Show that: 
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  is the thermal efficiency of an ideal 
  Humphrey cycle. 
 
  Let us use the same T1 as in Problems 1.1  

and 1.2, i.e., T1=288 K.  Let use the same 
  temperature T2 as in Problem 1.2, i.e., T2=864 K. 

 
Finally, let us use the same maximum cycle temperature as in Carnot  
(Problem 1.1), i.e., Tmax=2000 K.  With the ratio of specific heats γ=1.4,  
calculate the thermal efficiency of Humphrey cycle.  Compare the answer with 
Brayton cycle efficiency. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Net cycle heat exchange is: 
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Since Gibbs equation is 
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Tds = de + pdv 
 
And the process from 2 to 3 is constant volume heating, Tds = de for a constant volume process, 
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Another form of Gibbs equation is  
Tds = dh - vdp 
 
Therefore for a constant pressure process, Tds = dh, therefore 
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In a cycle, the net work output is equal to the net heat input (according to the 1st law of thermo) 
 

)()( 1423 TTcTTcqw pv −−−== ∫∫ δδ  
Thermal investment in the cycle is the integral of δq from 2 to 3. 
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Therefore thermal efficiency of the ideal Humphrey cycle is: 
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Now, we show that  
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Using chain rule, we may write: 
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Note that p3’=p2 and p4=p1. 
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Therefore, we show that the thermal efficiency of the ideal Humphrey cycle is: 
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