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Solutions Manual

Solutions to Chapter 1 Problems
S.1.1

The principal stresses are given directly by Egs (1.11) and (1.12) in which
oy = 8ON/mm?, g, = 0 (or vice versa) and 1,y = 45N/mm?’. Thus, from Eq. (1.11)

0,:%+% 807 + 4 x 457

o, = 100.2 N/mm?
From Eq. (1.12)

oy :%—%«/802 +4x457

oy = — 20.2 N/mm?

The directions of the principal stresses are defined by the angle @ in Fig. 1.8(b) in
which @ is given by Eqg. (1.10). Hence

tan29 =224 _1125
80-0

which gives
6=24°11" and 6=114°11
It is clear from the derivation of Eqgs (1.11) and (1.12) that the first value of &
corresponds to o, while the second value corresponds to ay,.

Finally, the maximum shear stress is obtained from either of Eqgs (1.14) or (1.15).
Hence from Eq. (1.15)

_1002=(=20.2) _ 56 N/ mim?

Tmax

and will act on planes at 45° to the principal planes.
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S.1.2

The principal stresses are given directly by Egs (1.11) and (1.12) in which oy =
50N/mm?, g, = -35 N/mm’ and t,, = 40 N/mm? Thus, from Eq. (1.11)

o= 2073 1[50+ 35) + 4x 407
! 2 2

o1 = 65.9 N/mm?
and from Eq. (1.12)

50-35 1

5 J(50+35)% + 4x 40°

o) =

o =-50.9 N/mm?
From Fig. 1.8(b) and Eq. (1.10)

2x40
50+35

tan 26 = =0.941

which gives
6=21°38'(c;) and 6=111°38'(cy)

The planes on which there is no direct stress may be found by considering the
triangular element of unit thickness shown in Fig. S.1.2 where the plane AC represents
the plane on which there is no direct stress. For equilibrium of the element in a direction
perpendicular to AC

0=50ABcosa —35BCsina + 40ABsina+40BC cosa (i)

A

50 N/mm? <&

Y |B

40N/mm? ¢

Fig. S.1.2
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Dividing through Eq. (i) by AB
0=50cosa —35tanasina + 40sin + 40tan ¢ cos
which, dividing through by cos «, simplifies to

0 = 50-35 tan® o + 80 tan «

from which

tan ¢=2.797 or -0.511
Hence

a=70°21" or -=27°%
S.1.3

The construction of Mohr’s circle for each stress combination follows the procedure
described in Section 1.8 and is shown in Figs S.1.3(a)—(d).

7(N/mm?)
0 2{?‘23"
104 /
A Qq (54.5)
} il L& - icl f—> a(N/mm?}
0] 10 20 3 40 50 60
Q, (30,~5)
Fig. S.1.3(a)
7 (N/mm?2)
A
10
Qs (54,5)
ay 7
I I > o (Nmn)
o} 10 20 304 40 50 60
Q1 (30,_5){.’
-10+ /
/ S

20 =28°

Fig. S.1.3(b)
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7 (N/mm?)

A
20-159° 1 10

Q, (—60,5), .
o mmA G S P
—6! —50 = -30 -20 =10 o}
Q, (~36,-5)

+-10

Fig. S.1.3(c)

T T T > U(Nfrnmz;
—E%v -850 - 50

Q, (—50,—-30)

Fig. S.1.3(d)

S.1.4

The principal stresses at the point are determined, as indicated in the question, by
transforming each state of stress into a oy, gy, Ty Stress system. Clearly, in the
first case o = 0, o, = 10 N/mm?, Ty = 0 (Fig. S.1.4(a)). The two remaining cases
are transformed by considering the equilibrium of the triangular element ABC in
Figs S.1.4(b), (c), (e) and (f). Thus, using the method described in Section 1.6
and the principle of superposition (see Section 5.9), the second stress system of



Solutions to Chapter 1 Problems 7

Figs S.1.4(b) and (c) becomes the oy, gy, Tx, System shown in Fig. S.1.4(d)
while
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Tm N/mm?

10 N/mm#

i 10 N/mm? (g,)

Fig. S.1.4(a) Fig. S.1.4(b)

10 N/mm?

10 N/mm?
Fig. S.1.4(c)
2.5 N/mm?
. A
4.33 N/mm
= 7.5N/mm? - 7.5 N/mm? (o)
<« 433N/mm? (Ty)
Y
2.5 N/mm? (9,)
Fig. S.1.4(d)

the third stress system of Figs S.1.4(e) and (f) transforms into the oy, oy, Ty, System of
Fig. S.1.4(q).
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Finally, the states of stress shown in Figs S.1.4(a), (d) and (g) are superimposed
to give the state of stress shown in Fig. S.1.4(h) from which it can be seen that
o1 = o =15N/mm? and that the x and y planes are principal planes.
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10 N/mm? 10 N/mm?

10 N/mm? 10 N/mm?
Fig. S.1.4(e) Fig. S.1.4(f)
2.5 N/mm?
A
433N/mmM? @1
=— 7.5N/mm? 7.5 N/mm? (0,

T 5 4.33N/mmP (t,)

Y
2.5 N/mm? (a,)

Fig. S.1.4(g9)
T 15N/mm?
15N/mm? < > 15N/mméZ
l15mem2
Fig. S.1.4(h)
S.1.5

The geometry of Mohr’s circle of stress is shown in Fig. S.1.5 in which the circle is
constructed using the method described in Section 1.8.
From Fig. S.1.5

oy = OP; = OB- BC +CP; (i)
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T Tmax

Q (o rxy)

02 {[Ty., I‘x}.}

Fig. S.1.5

In Eq. (i) OB = o), BC is the radius of the circle which is equal to Tma and
Ch :\/CQf _Q1P12 :\/Tr?']ax —Tfy. Hence

_ 2 2
Oy =01 ~Tmax T4/ Tmax ~ Tyy

Similarly
o, =0P, =0B - BC - CP, inwhich CP, = CP,
Thus
Oy =0 = Tmax — 7'-riax _Tfy
S.1.6

From bending theory the direct stress due to bending on the upper surface of the shaft
at a point in the vertical plane of symmetry is given by

_ My 25x10°x75

- - =75N/ mm?
| 7x150%/64

X

From the theory of the torsion of circular section shafts the shear stress at the same
point is

6
Tr 50x10° x 75 _ 75N/ mm?

1‘ = =
Y xx150%/32

11
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Substituting these values in Egs (1.11) and (1.12) in turn and noting that oy, = 0

o :7—25+%\/752 +4x75°

ie.
o, =121.4N / mm?
o =E—1\/752 +4x75?
2 2
ie.

o, =—46.4N [ mm?

The corresponding directions as defined by & in Fig. 1.8(b) are given by Eq. (1.10)
ie.

tan20=275_»
75-0
Hence
6 =31°43'(o))
and
0 =121°43(o0,,)
S.1.7
The direct strains are expressed in terms of the stresses using Eqgs (1.42), i.e.
1 .
& = E[Gx - V(O-y +0, )i ()
1 .
£y = E[Gy -Vv(o, +0,)] (i)
1
g, = E[O'Z -V(o, +oy)] (iii)
Then
e=étée, e, =%[0X +o, +0,—2V(oy +o, +0,)]
ie.
@-2v)
EB:T(O'X to,+0,)
whence

o, t+t0,= Ee — 0
YR a-2v) f
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Substituting in Eq. (i)

so that

vEe

Ee, =0, (1+V)—
=) -

Thus
vEe E
o, = + &y
1-2v)1+v) (@+v)
or, since G = E/2(1 + v) (see Section 1.15)
o, =Ae+2Gs,

Similarly

o, = Ae+ 2G<9y
and

o, = e+ 2Gg,
S.1.8

The implication in this problem is that the condition of plane strain also describes
the condition of plane stress. Hence, from Egs (1.52)

1 _
& =g (o, —Vvo,) ()
1 )
&y =E(O'y —Vo,) (i)
T
Ty =2 = @rw (see Section 1.15) (i)

The compatibility condition for plane strain is

o e, o
Ty _ L+ 0 82X (see Section 1.11) (iv)
OXoy  ox oy

Substituting in Eq. (iv) for &y, &, and y,, from Eqs (i)—(iii), respectively, gives

21+v)4% —(0' va)+ (0' ) W)
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Also, from Eqgs (1.6) and assuming that the body forces X and Y are zero
0o, Ot

Ly—2=0 vi
x oy (vi)
0 0
9% T g (vii)
oy OX
Differentiating Eq. (vi) with respect to x and Eq. (vii) with respect to y and adding gives
o’c, 0Ot 0°c, 01y

2 t—2 t -
OX oyox oy oxoy

or

Substituting in Eq. (V)

2 PG 2 2
—(1+v){860;X + aydzyJ:a—(o- —Vvo )+%(0'X -vo,)
X

so that

2 a?- 52 2 2 52
—(1+V)[aaa2X + ayozy]: % +a x _V[a % 2%
X

which simplifies to

+ + + =0
X2 oy? X2 oy?
or
o* &
[WJF 2J(a,(+ay)=0
S.1.9

Suppose that the load in the steel bar is Py and that in the aluminium bar is P,. Then,
from equilibrium
P,+P, =P (i)
From Eq. (1.40)
P P

st al

Eg =——— g =——
) A%tEst ’ AaIEaI



Solutions to Chapter 1 Problems 15

Since the bars contract by the same amount

Pst _ I:>al H
Ast Est - Aal Eal (”)

Solving Eqgs (i) and (ii)

poo AB pop o AR,
&t Est + AAI Eal A&t Est + Aal Eal

from which the stresses are

E E
og=——"2 P gy=——2a P (iii)
Ast Est + Aal Eal Ast Est + Aal Eal

The areas of cross-section are

7 x75° _ z(100% - 75%)

A = =4417.9mm* A, = =3436.1mm?
Substituting in Eqg. (iii) we have
10° x 200000

=172.6N/mm? (compression)

75t = (44179 200000 + 3436.1x 80000)

o - 10° x80000
7 (4417.9x 200000 + 3436.1x 80000)

=69.1N/mm? (compression)

Due to the decrease in temperature in which no change in length is allowed the strain
in the steel is a4 T and that in the aluminium is o, T. Therefore due to the decrease in
temperature

o = Eya, T = 200000 x 0.000012 x 150 = 360.0 N/mm? (tension)

o, = E, o, T =80000x 0.000005 % 150 = 60.0 N/mm? (tension)
The final stresses in the steel and aluminium are then

o (total) = 360.0 —172.6 =187.4N/mm? (tension)

o, (total) = 60.0 — 69.1 = —9.1N/mm? (compression)

S.1.10

The principal strains are given directly by Eqgs (1.69) and (1.70). Thus

=—( oooz+oooz)+—J( ~0.002 +0.002)? + (+0.002 + 0.002)?2
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ie.
g =+0.00283
Similarly

g, =-0.00283
The principal directions are given by Eqg. (1.71), i.e.
2(-0.002) + 0.002 — 0.002

tan 20 = =-1
0.002 +0.002
Hence
20 =—-45°0r +135°
and
6 =-22.5°0r + 67.5°
S.1.11

The principal strains at the point P are determined using Egs (1.69) and (1.70). Thus

{ (- 222+45)+—\/( —222+213) + (~213 - 45)? }10‘6

£ =94.0x10"
Similarly
g, =—-217.0x10°°
The principal stresses follow from Eqgs (1.67) and (1.68). Hence
31000

o) =———(94.0-0.2x271.0)x10°°
1-(0.2)

=1.29N/mm?
Similarly
o, = -814N/mm?

Since P lies on the neutral axis of the beam the direct stress due to bending is zero.
Therefore, at P, o, =7 N/mm? and oy = 0. Now subtracting Eq. (1.12) from (1.11)

_ [ 2 2
o, -0y = O'X+4TXy



Solutions to Chapter 2 Problems 17

1.29+8.14= 7% + 47},

from which z,, = 3.17 N/mm’,
The shear force at P is equal to Q so that the shear stress at P is given by

‘., _317-_Q
y 2 x150x 300

from which

Q =95 100N = 95.1kN.

Solutions to Chapter 2 Problems

S.21

The stress system applied to the plate is shown in Fig. S.2.1. The origin, O, of the axes
may be chosen at any point in the plate; let P be the point whose coordinates are (2, 3).

2p
A
4p
YA oP(3) “
3p 3p
ap
<
4
i \’
2p
Fig. S.2.1
From Eqs (1.42) in which o, =0
3p 2p 3.5p .
Ey=—— V= :
x="F VT = (i)
g =P \3p_ 2750 (ii)
E E E
Hence, from Eqs (1.27)
ou 3.5p 3.5p
—=——-sothat u=——x+f iii
x 3 3 1(y) (iii)



18

Solutions Manual

where f; (y) is a function of y. Also

a_u: 2.75p sothat 02_2.75p
oy E E

in which f, (x) is a function of x.
From the last of Eqgs (1.52) and Eq. (1.28)
_4p_dv ou_of() ()

Vxy s _§+ Y P T (from Egs (iv)and (iii))

y+ f5(x)

Suppose
ofy(y) A
oy
then
fi(y)=Ay+B
in which A and B are constants.
Similarly, suppose
afZ (X) — C
OX
then
f,(x)=Cx+D

in which C and D are constants.
Substituting for f; (y) and f; (x) in Egs (iii) and (iv) gives

u:—&%x+Ay+B

and

0:2'7—:[)y+Cx+D

(iv)

V)

(vi)

(vii)

(viii)

Since the origin of the axes is fixed in space it follows that when x =y =0, u=v = 0.
Hence, from Eqs (vii) and (viii), B = D = 0. Further, the direction of Ox is fixed in space
so that, wheny = 0, ow/ox = 0. Therefore, from Eq. (viii), C = 0. Thus, from Egs (1.28)

and (vii), when x =0.
U _4p_ ,
oy G

Eqgs (vii) and (viii) now become

__35p,,4p
E G

(ix)



Solutions to Chapter 2 Problems 19

_2.75p
v=—pc"Y )

From Eq. (1.50), G=E/2(1 +v) =E/2.5 and Eq. (ix) becomes
u= E(—s.s +10y) (xi)
At the point (2, 3)
u :ng (fromEq. (xi))
and
L= @ (from Eq. (X))

The point P therefore moves at an angle « to the x axis given by

S.2.2

An Airy stress function, ¢, is defined by the equations (Egs (2.8)):
o o o
Gx:_? Uy:_f Dy =~ ’
oy OX ox oy
and has a final form which is determined by the boundary conditions relating to a

particular problem.
Since

¢ = Ay® + By®x + Cyx (i)
o' ot %

P oy 020y =
and the biharmonic equation (2.9) is satisfied. Further

o .

o, :ay—f:6Ay+GByx (ii)

o?

o, :£:O (iii)

Ty =— o'¢ =-3By’-C (iv)
Yo oxey

The distribution of shear stress in a rectangular section beam is parabolic and is zero
at the upper and lower surfaces. Hence, wheny = +d/2, t,, = 0. Thus, from Eq. (iv)
—4C

“a? N
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The resultant shear force at any section of the beam is —P. Therefore
d/2 q P
JldlzTth y=-
Substituting for t,, from Eq. (iv)
jdlz( 3By —C)tdy =P
dr2 y y=
which gives
3
2t &4_2 =P
8 2
Substituting for B from Eq. (v) gives
3P

== Vi
2td v
It now follows from Egs (v) and (vi) that
2P ..
= Vii
e (vii)

At the free end of the beam where x =I the bending moment is zero and thus o, =0
for any value of y. Therefore, from Eq. (ii)

6A+6BI=0
whence
2Pl
A=—k-+ Viii
e (viii)
Then, from Eq. (ii)
o _12PI y—lZ—ny
8 td*
or
12P(l - x) .
X e (ix)

Equation (ix) is the direct stress distribution at any section of the beam given by
simple bending theory, i.e.

where M = P (I —x) and | = td*/12.
The shear stress distribution given by Eq. (iv) is

6P , 3P

e T ad
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6P d?
Ty = td [yz _TJ (X)

Equation (X) is identical to that derived from simple bending theory and may be found
in standard texts on stress analysis, strength of materials, etc.

S.23

or

The stress function is

¢ =%(15h2x2y —5x%y® —2h?y3 +y°)

Then
o’¢ 3
67 = y—10y )= Gy
2
a—f 20h3( -30x%y —12h?y + 20y®) = &,
2
aigy P (30h?x —30xy?) = -7,
4
o’ _,
ox*
' w
Y 20h3( 209)
o' w
oo 2o oY)
Substituting in Eq. (2.9)
Vip=0

so that the stress function satisfies the biharmonic equation.
The boundary conditions are as follows:

e Aty=h, oy =w and t,, = 0 which are satisfied.
e Aty =-h, oy =-wand 1,y = 0 which are satisfied.
e Atx =0, o, = W/20h® (=12h% + 20y°) # 0.

Also
h
[ .o dy=—° y +20y°)dy

[-6h%y? +5y*1",

20h3
=0
i.e. no resultant force.
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Finally

h
Lhaxydy j (~12h%y? + 20y*)dy

20h°

20hs[ —4h?y® +4y°1",

=0
i.e. no resultant moment.

S.24

The Airy stress function is

[50¢° = 12X)(y +d)*(y - 2d) - 3yx(y* ~d*)*]

¢= 1200|3

Then
' _,0'_ 3py ' _3py

o' oyt d® axey? 2dB
Substituting these values in Eqg. (2.9) gives
0+2x 39 309 _
Therefore, the biharmonic equation (2.9) is satisfied.
The direct stress, oy, is given by (see Egs (2.8))

0 X
ay? 2§d3[5y(x2—IZ)—10y3+6d2y]

When x =0, o = 0 for all values of y. When x = |

X

(-10y® +6d?y)

X

203

d
and the total end load :j 4O ldy

_20d3~[ (-10y® + 6d°y)dy =0

Thus the stress function satisfies the boundary conditions for axial load in the x direction.
Also, the direct stress, ay, is given by (see Eqgs (2.8))

62¢ _px 2 3
o, =—= —-3yd- -2d
YU ad® PrEA )
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When x = 0, gy = 0 for all values of y. Also at any section x where y = —d
pX 3 3 3
o, =——(-d°+3d°-2d°)=0
Y 4d? ( )
and wheny = +d

Oy = 0gd PX (43 —3d% —2d%) = —px
4d
Thus, the stress function satisfies the boundary conditions for load in the y direction.
The shear stress, t,y, is given by (see Egs (2.8))

82¢ 2 2 2 4 242 4

= = 5(3x2 -1 —d?)-5y* +6y?d® —d

ST 40d3[( )y )—5y" +6y ]
Whenx=0

= —512(y? —d?)-5y* + 6y2d? —d*
Ty 40O|3[ (y? )—5y" +6y ]

so that, when y = *d, t,, = 0. The resultant shear force on the plane x = 0 is given by

2

jdr ldy=— j [512(y2 — d2) — 5y + 6y2d? — d*]dy = —-P
-4 Y 40d° 6

From Fig. P.2.4 and taking moments about the plane x =1,

1, .2
x = 0)12dl = =Ipl =|
Ty (X=0) >3

IZ
£y (=0 =2
and the shear force is pl%/6.

Thus, although the resultant of the Airy stress function shear stress has the same
magnitude as the equilibrating shear force it varies through the depth of the beam
whereas the applied equilibrating shear stress is constant. A similar situation arises on
the plane x = I.

S.2.5

The stress function is

¢ =5 (-100°x* 152y + 26y +5x°y° )

40bc®

23
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Then
82
B
o
x> 4
2
aigy 40\:: 5 (=30c"x +30xy") = -7
4
A
OX
ot w
o aopc 0Y)
¢
> 3( 0y)
ox? oy? 40b
Substituting in Eq. (2.9)
Vip=0

so that the stress function satisfies the biharmonic equation.
On the boundary, y = +c

O'yZ—E 7 =0
Aty =—c
dy—O Ty = 0
Atx=0
(o}
*~ 40bc
Then
C
j o, d
-c 40b
6c%y® —5y*]°
40b3[ y I
=0

i.e. the direct stress distribution at the end of the cantilever is self-equilibrating.
The axial force at any section is

[l

40b
=0
i.e. no axial force at any section of the beam.

~[6c?y? +15x*y? —5y*T°,
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The bending moment at x =0 is

¢ o w e 2,2 4
[ oydy=s[ a2cty* -20y)dy
W
40bc®

i.e. the beam is a cantilever beam under a uniformly distributed load of w/unit area
with a self-equilibrating stress application at x = 0.

S.2.6

[4c?y® —4y°]°, =0

From physics, the strain due to a temperature rise T in a bar of original length L, and
final length L is given by

Loy L@+aT)_ o
Lo Lo

Thus for the isotropic sheet, Egs (1.52) become

&

&y =%(0" —-vo,)+aT

£ Z%(Gy -vo,)+aT

y

Also, from the last of Eqgs (1.52) and (1.50)

2(1+v)
Vxy = E Ty

Substituting in Eq. (1.21)

o2 o2 2 2 2 2
2L+V) rxy_i[ o—y_vaox}am i{aax_v ay]maT

= +
E oxdy E| o  ox° o El oyt P oy?
or
0%t oo 2 2 oo
Y - 2y+8o;x —vao;x ~v—>L+EaV*T (i)
oxoy  ox oy X oy
From Eqgs (1.6) and assuming body forces X =Y =0

2(1+v)

2 2 2 2
arxy__ao-x 0ty 00

yox  ox2 oxdy  oy?

y

Hence
2 2
01y d’c, 00,

OX oy T X oy?
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and

Substituting in Eq. (i)
2 oo, 0o 2
_ao;x_ Y = 2y+60;"+EaV2T
OX oy OX oy

Thus
2 2
(aa—2+%](ax +oy)+ EaV’T =0
X
and since
0’4 62¢
o, :8y_ V=52 (seeEqs (2.8))
2
o ‘32 a? o +EaV?T =0
o 6y oy?  ox?
or
V3(V2p+EaT)=0
S.2.7
The stress function is
¢:3Qxy_Qxy
4a 438
Then
%9
o T
I 3y
8y2 T8 X
0% _3Q C3Qyr
oxoy 4a  4a® Y
Also

P oy° BRPY oy? -
so that Eq. (2.9), the biharmonic equation, is satisfied.

9 _y % _y 0%
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When x = a, o, = —-3Qy/24%, i.e. linear.

Then, when

y:o O'X:
3Q

=—-a = —

y Oy oa
-3Q

=+a o, =——

y X~

Also, when x =-a, oy = 3Qy/2a2, i.e. linear and when

y=0 o,=0
_3Q
=—a =
y Ox 2a
3Q
=+a =—
y o= 5

The shear stress is given by (see above)

30 y2) . .
Tyy =—4—a(l—a—2} i.e. parabolic

so that, when y = #a, t,, = 0 and wheny = 0, t,, = -3Q/4a.
The resultant shear force at x = +a is

a 3Qf, ¥°
- -={1-2 |d
J.—a 4a( azj y

ie.
SF=Q.
The resultant bending moment at x = ta is
a
[ oy
-a
Ia 3Qay?
-a 2a

BM =-Qa

27






