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Solutions Manual 

 Solutions to Chapter 1 Problems 
S.1.1 

The principal stresses are given directly by Eqs (1.11) and (1.12) in which 
σx = 80N/mm2, σy = 0 (or vice versa) and τxy = 45N/mm2

 

. Thus, from Eq. (1.11) 

2 2
I

80 1 80 4 45
2 2

σ = + + ×  

i.e. 
 σI = 100.2 N/mm
From Eq. (1.12) 

2 

 2 2
II

80 1 80 4 45
2 2

σ = − + ×  

i.e. 
 σII = – 20.2 N/mm

The directions of the principal stresses are defined by the angle θ in Fig. 1.8(b) in 
which θ is given by Eq. (1.10). Hence 

2 

 2 45tan 2 1.125
80 0

θ ×
= =

−
 

which gives 
 θ = 24°11′ and θ = 114°11′ 

It is clear from the derivation of Eqs (1.11) and (1.12) that the first value of θ 
corresponds to σI while the second value corresponds to σII

Finally, the maximum shear stress is obtained from either of Eqs (1.14) or (1.15). 
Hence from Eq. (1.15) 

. 

 2
max

100.2 ( 20.2) 60.2N / mm
2

τ − −
= =  

and will act on planes at 45° to the principal planes. 
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S.1.2 

The principal stresses are given directly by Eqs (1.11) and (1.12) in which σx = 
50N/mm2, σy = –35 N/mm2 and τxy = 40 N/mm2

 

. Thus, from Eq. (1.11) 

2 2
I

50 35 1 (50 35) 4 40
2 2

σ −
= + + + ×  

i.e. 
 σI = 65.9 N/mm

and from Eq. (1.12) 

2 

 2 2
II

50 35 1 (50 35) 4 40
2 2

σ −
= − + + ×  

i.e. 
 σII = –50.9 N/mm

From Fig. 1.8(b) and Eq. (1.10) 

2 

 2 40tan 2 0.941
50 35

θ ×
= =

+
 

which gives 
 θ = 21°38′(σI) and θ = 111°38′(σII

The planes on which there is no direct stress may be found by considering the 
triangular element of unit thickness shown in Fig. S.1.2 where the plane AC represents 
the plane on which there is no direct stress. For equilibrium of the element in a direction 
perpendicular to AC 

) 

 0 50ABcos 35BCsin 40ABsin +40BCcosα α α α= − +  (i) 

 
Fig. S.1.2 
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Dividing through Eq. (i) by AB 

 0 50cos 35 tan sin 40sin 40 tan cosα α α α α α= − + +  

which, dividing through by cos α, simplifies to 

 0 = 50–35 tan2

from which 

 α + 80 tan α 

 tan α = 2.797 or –0.511 

Hence 

 α = 70°21′ or –27°5′ 

S.1.3 

The construction of Mohr’s circle for each stress combination follows the procedure 
described in Section 1.8 and is shown in Figs S.1.3(a)–(d). 

 

Fig. S.1.3(a) 

 

Fig. S.1.3(b) 
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Fig. S.1.3(c) 

 

Fig. S.1.3(d) 

S.1.4 

The principal stresses at the point are determined, as indicated in the question, by 
transforming each state of stress into a σx, σy, τxy stress system. Clearly, in the 
first case σx = 0, σy = 10 N/mm2, τxy = 0 (Fig. S.1.4(a)). The two remaining cases 
are transformed by considering the equilibrium of the triangular element ABC in 
Figs S.1.4(b), (c), (e) and (f). Thus, using the method described in Section 1.6 
and the principle of superposition (see Section 5.9), the second stress system of 
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Figs S.1.4(b) and (c) becomes the σx, σy, τxy  system shown in Fig. S.1.4(d) 
while 
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Fig. S.1.4(a) Fig. S.1.4(b) 

 

Fig. S.1.4(c) 

 
Fig. S.1.4(d) 

the third stress system of Figs S.1.4(e) and (f) transforms into the σx, σy, τxy system of 
Fig. S.1.4(g). 
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Finally, the states of stress shown in Figs S.1.4(a), (d) and (g) are superimposed 

to give the state of stress shown in Fig. S.1.4(h) from which it can be seen that 
σI = σII =15N/mm2 and that the x and y planes are principal planes. 
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Fig. S.1.4(e) Fig. S.1.4(f) 

 
Fig. S.1.4(g) 

 

Fig. S.1.4(h) 

S.1.5 

The geometry of Mohr’s circle of stress is shown in Fig. S.1.5 in which the circle is 
constructed using the method described in Section 1.8. 

From Fig. S.1.5 
 σx = OP1 = OB– BC +CP1 (i) 
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Fig. S.1.5 

In Eq. (i) OB = σI, BC is the radius of the circle which is equal to τmax
2 2 2 2

1 1 1 1 maxCP CQ Q P .xyτ τ= − = −

 and 

 Hence 

 2 2
1 max maxx xyσ σ τ τ τ= − + −  

Similarly 

 2 2 2 1OP OB BC CP in which CP CPyσ = = − − =  

Thus 

 2 2
I max maxy xyσ σ τ τ τ= − − −  

S.1.6 

From bending theory the direct stress due to bending on the upper surface of the shaft 
at a point in the vertical plane of symmetry is given by 

 
6

2
4

25 10 75 75 N / mm
150 / 64x

My
I

σ
π

× ×
= = =

×
 

From the theory of the torsion of circular section shafts the shear stress at the same 
point is 

 
6

2
4

50 10 75 75N / mm
150 / 32xy

Tr
J

τ
π

× ×
= = =

×
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Substituting these values in Eqs (1.11) and (1.12) in turn and noting that σy

 

 = 0 
2 2

I
75 1 75 4 75
2 2

σ = + + ×  

i.e. 

 2
I 121.4N / mmσ =  

 2 2
II

75 1 75 4 75
2 2

σ = − + ×  

i.e. 

 2
II 46.4N / mmσ = −  

The corresponding directions as defined by θ in Fig. 1.8(b) are given by Eq. (1.10) 
i.e. 

 2 75tan 2 2
75 0

θ ×
= =

−
 

Hence 
 I31 43 ( )θ σ′= °  
and 
 II121 43 ( )θ σ′= °  

S.1.7 

The direct strains are expressed in terms of the stresses using Eqs (1.42), i.e. 

 1 [ ( )]x x y zv
E

ε σ σ σ= − +  (i) 

 1 [ ( )]y y x zv
E

ε σ σ σ= − +  (ii) 

 1 [ ( )]z z x yv
E

ε σ σ σ= − +  (iii) 

Then 

 1 [ 2 ( )]x y z x y z x y ze v
E

ε ε ε σ σ σ σ σ σ= + + = + + − + +  

i.e. 

 (1 2 ) ( )x y z
ve

E
σ σ σ−

= + +  

whence 

 
(1 2 )y z x

Ee
v

σ σ σ+ = −
−
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Substituting in Eq. (i) 

 1
1 2x x x

Eev
E v

ε σ σ
  = − −  −  

 

so that 

 (1 )
1 2x x
vEeE v

v
ε σ= + −

−
 

Thus 

 
(1 2 )(1 ) (1 )x x

vEe E
v v v

σ ε= +
− + +

 

or, since G = E/2(1 + ν) (see Section 1.15) 
 2x xe Gσ λ ε= +  

Similarly 
 2y ye Gσ λ ε= +  

and 
 2z ze Gσ λ ε= +  

S.1.8 

The implication in this problem is that the condition of plane strain also describes 
the condition of plane stress. Hence, from Eqs (1.52) 

 1 ( )x x yv
E

ε σ σ= −  (i) 

 1 ( )y y xv
E

ε σ σ= −  (ii) 

 2(1 ) (seeSection 1.15)xy
xy xy

v
G E
τ

γ τ+
= =  (iii) 

The compatibility condition for plane strain is 

 
2 2 2

2 2 (see Section 1.11)xy y x

x y x y
γ ε ε∂ ∂ ∂

= +
∂ ∂ ∂ ∂

 (iv) 

Substituting in Eq. (iv) for εx, εy and γxy

 

 from Eqs (i)–(iii), respectively, gives 
2 2 2

2 22 (1 ) ( ) ( )xy
y x x yv v v

x y x y
τ

σ σ σ σ
∂ ∂ ∂

+ = − + −
∂ ∂ ∂ ∂

 (v) 
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Also, from Eqs (1.6) and assuming that the body forces X and Y are zero 

 0zyx

x y
τσ ∂∂

+ =
∂ ∂

 (vi) 

 0y xy

y x
σ τ∂ ∂

+ =
∂ ∂

 (vii) 

Differentiating Eq. (vi) with respect to x and Eq. (vii) with respect to y and adding gives 

 
2 2 22

2 2 0xy y xyx

y x x yx y
τ σ τσ ∂ ∂ ∂∂

+ + + =
∂ ∂ ∂ ∂∂ ∂

 

or 

 
2 22

2 22 xy yx

x y x y
τ σσ ∂ ∂∂

 = − +
 ∂ ∂ ∂ ∂ 

 

Substituting in Eq. (v) 

 
22 2 2

2 2 2 2(1 ) ( ) ( )yx
y x x yv v v

x y x y
σσ

σ σ σ σ
 ∂∂ ∂ ∂ − + + = − + −
 ∂ ∂ ∂ ∂ 

 

so that 

 
2 2 22 2 2

2 2 2 2 2 2(1 ) y y yx x xv v
x y x y x y

σ σ σσ σ σ   ∂ ∂ ∂∂ ∂ ∂
   − + + = + − +
   ∂ ∂ ∂ ∂ ∂ ∂   

 

which simplifies to 

 
2 22 2

2 2 2 2 0y yx x

x y x y
σ σσ σ∂ ∂∂ ∂

+ + + =
∂ ∂ ∂ ∂

 

or 

 
2 2

2 2 ( ) 0x yx y
σ σ

 ∂ ∂
+ + =  ∂ ∂ 

 

S.1.9 

Suppose that the load in the steel bar is Pst and that in the aluminium bar is Pal

 

. Then, 
from equilibrium 

st alP P P+ =  (i) 
From Eq. (1.40) 

 st al
st al

st st al al

P P
A E A E

ε ε= =  
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Since the bars contract by the same amount 

 st al

st st al al

P P
A E A E

=  (ii) 

Solving Eqs (i) and (ii) 

 st st al al
st

st st al al st st al al
al

A E A EP P P P
A E A E A E A E

= =
+ +

 

from which the stresses are 

 st al
st al

st st al al st st al al

E EP P
A E A E A E A E

σ σ= =
+ +

 (iii) 

The areas of cross-section are 

 
2 2 2

2 2
st al

75 (100 75 )4417.9mm 3436.1mm
4 4

A Aπ π× −
= = = =  

Substituting in Eq. (iii) we have 

 
6

2
st

10 200000 172.6N/mm (compression)
(4417.9 200000 3436.1 80000)

σ ×
= =

× + ×
 

 
6

2
al

10 80000 69.1N/mm (compression)
(4417.9 200000 3436.1 80000)

σ ×
= =

× + ×
 

Due to the decrease in temperature in which no change in length is allowed the strain 
in the steel is αstT and that in the aluminium is αal

 

T. Therefore due to the decrease in 
temperature 

2
st st st 200000 0.000012 150 360.0 N/mm (tension)E Tσ α= = × × =  

 2
al al al 80000 0.000005 150 60.0 N/mm (tension)E Tσ α= = × × =  

The final stresses in the steel and aluminium are then 

 2
st (total) 360.0 172.6 187.4N/mm (tension)σ = − =  

 2
al (total) 60.0 69.1 9.1N/mm (compression)σ = − = −  

S.1.10 

The principal strains are given directly by Eqs (1.69) and (1.70). Thus 

 2 2
I

1 1( 0.002 0.002) ( 0.002 0.002) ( 0.002 0.002)
2 2

ε = − + + − + + + +  
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i.e. 
 I 0.00283ε = +  
Similarly 

 II 0.00283ε = −  

The principal directions are given by Eq. (1.71), i.e. 

 2( 0.002) 0.002 0.002tan 2 1
0.002 0.002

θ − + −
= = −

+
 

Hence 
 2 45 or 135θ = − ° + °  
and 

 22.5 or 67.5θ = − ° + °  

S.1.11 

The principal strains at the point P are determined using Eqs (1.69) and (1.70). Thus 

 2 2 6
I

1 1( 222 45) ( 222 213) ( 213 45) 10
2 2

ε − 
= − + + − + + − − × 
 

 

i.e. 

 6
I 94.0 10ε −= ×  

Similarly 

 6
II 217.0 10ε −= − ×  

The principal stresses follow from Eqs (1.67) and (1.68). Hence 

 6
I 2

31000 (94.0 0.2 271.0) 10
1 (0.2)

σ −= − × ×
−

 

i.e. 

 2
I 1.29 N/mmσ =  

Similarly 

 2
II 814 N/mmσ = −  

Since P lies on the neutral axis of the beam the direct stress due to bending is zero. 
Therefore, at P, σx =7 N/mm2 and σy

 

 = 0. Now subtracting Eq. (1.12) from (1.11) 
2 2

I II 4x xyσ σ σ τ− = +  
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i.e. 

 2 21.29 8.14 7 4 xyτ+ = +  

from which τxy = 3.17 N/mm2

The shear force at P is equal to Q so that the shear stress at P is given by 
. 

 33.17
2 150 300xy

Qτ = =
× ×

 

from which 

 95 100N 95.1kN.Q = =  

 Solutions to Chapter 2 Problems 

S.2.1 

The stress system applied to the plate is shown in Fig. S.2.1. The origin, O, of the axes 
may be chosen at any point in the plate; let P be the point whose coordinates are (2, 3). 

 
Fig. S.2.1 

From Eqs (1.42) in which σz

 

 = 0 
3 2 3.5

x
p p pv

E E E
ε = − − = −  (i) 

 3 3 2.75
y

p p pv
E E E

ε = − − = −  (ii) 

Hence, from Eqs (1.27) 

 1
3.5 3.5so that ( )u p pu x f y

x E E
∂

= − = − +
∂

 (iii) 
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where f1

 

 (y) is a function of y. Also 

2
2.75 2.75so that ( )p p y f x

y E E
υ υ∂
= = − +

∂
 (iv) 

in which f2
From the last of Eqs (1.52) and Eq. (1.28) 

 (x) is a function of x. 

 2 1( ) ( )4 (from Eqs (iv)and (iii))xy
f x f yp u

G x y x y
υγ

∂ ∂∂ ∂
= = + = +

∂ ∂ ∂ ∂
 

Suppose 

 1( )f y A
y

∂
=

∂
 

then 

 1( )f y Ay B= +  (v) 

in which A and B are constants. 
Similarly, suppose 

 2 ( )f x C
x

∂
=

∂
 

then 

 2 ( )f x Cx D= +  (vi) 

in which C and D are constants. 
Substituting for f1 (y) and f2

 

 (x) in Eqs (iii) and (iv) gives 

3.5pu x Ay B
E

= − + +  (vii) 

and 

 2.75p y Cx D
E

υ = + +  (viii) 

Since the origin of the axes is fixed in space it follows that when x = y = 0, u=v = 0. 
Hence, from Eqs (vii) and (viii), B = D = 0. Further, the direction of Ox is fixed in space 
so that, wheny = 0, ∂v/∂x = 0. Therefore, from Eq. (viii), C = 0. Thus, from Eqs (1.28) 
and (vii), when x = 0. 

 4u p A
y G
∂

= =
∂

 

Eqs (vii) and (viii) now become 

 3.5 4p pu x y
E G

= − +  (ix) 
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 2.75p y
E

υ =  (x) 

From Eq. (1.50), G=E/2(1 +ν) =E/2.5 and Eq. (ix) becomes 

 ( 3.5 10 )pu y
E

= − +  (xi) 

At the point (2, 3) 

 23 (from Eq. (xi))pu
E

=  

and 

 8.25 (from Eq. (x))p
E

υ =  

The point P therefore moves at an angle α to the x axis given by 

S.2.2 

An Airy stress function, φ, is defined by the equations (Eqs (2.8)): 

 
2 2 2

2 2x y xy x yy x
φ φ φσ σ τ∂ ∂ ∂

= = = −
∂ ∂∂ ∂

 

and has a final form which is determined by the boundary conditions relating to a 
particular problem. 

Since 

 3 3Ay By x Cyxφ = + +  (i) 

 
4 4 4

4 4 2 20 0 0
x y x y
φ φ φ∂ ∂ ∂
= = =

∂ ∂ ∂ ∂
 

and the biharmonic equation (2.9) is satisfied. Further 

 
2

2 6 6x Ay Byx
y
φσ ∂

= = +
∂

 (ii) 

 
2

2 0y x
φσ ∂

= =
∂

 (iii) 

 
2

23xy By C
x y
φτ ∂

= − = − −
∂ ∂

 (iv) 

The distribution of shear stress in a rectangular section beam is parabolic and is zero 
at the upper and lower surfaces. Hence, when y = ±d/2, τxy

 

 = 0. Thus, from Eq. (iv) 

2
4

3
CB

d
−

=  (v) 
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The resultant shear force at any section of the beam is –P. Therefore 

 
/2

/2
d

d
xyd

t y Pτ
−

= −∫  

Substituting for τxy

 

 from Eq. (iv) 
/2 2

/2
( 3 ) d

d

d
By C t y P

−
− − = −∫  

which gives 

 
3

2
8 2

Bd Cdt P
 

+ =  
 

 

Substituting for B from Eq. (v) gives 

 3
2

PC
td

=  (vi) 

It now follows from Eqs (v) and (vi) that 

 3
2PB

td
−

=  (vii) 

At the free end of the beam where x =l the bending moment is zero and thus σx

 6A + 6Bl = 0 

 = 0 
for any value of y. Therefore, from Eq. (ii) 

whence 

 3
2PlA
td

=  (viii) 

Then, from Eq. (ii) 

 3 3
12 12

x
Pl Py xy

td td
σ = −  

or 

 3
12 ( )

x
P l x y
td

σ −
=  (ix) 

Equation (ix) is the direct stress distribution at any section of the beam given by 
simple bending theory, i.e. 

 x
My
I

σ =  

where M = P (l –x) and I = td3

The shear stress distribution given by Eq. (iv) is 
/12. 

 2
3

6 3
2xy

P Py
tdtd

τ = −  
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or 

 
2

2
3

6
4xy

P dy
td

τ
 

= −  
 

 (x) 

Equation (x) is identical to that derived from simple bending theory and may be found 
in standard texts on stress analysis, strength of materials, etc. 

S.2.3 

The stress function is 

 2 2 2 3 2 3 5
3 (15 5 2 )

20
w h x y x y h y y
h

φ = − − +  

Then 

 

2
2 3

2 3

2
2 2 3

2 3

2
2 2

3

4

4

4

4 3

4

2 2 3

(30 10 )
20

( 30 12 20 )
20

(30 30 )
20

0

(120 )
20

( 60 )
20

y

x

xy

w h y y
x h

w x y h y y
y h

w h x xy
x y h

x
w y

y h

w y
x y h

φ σ

φ σ

φ τ

φ

φ

φ

∂
= − =

∂
∂

= − − + =
∂

∂
= − = −

∂ ∂

∂
=

∂
∂

=
∂

∂
= −

∂ ∂

 

Substituting in Eq. (2.9) 
 4 0φ∇ =  
so that the stress function satisfies the biharmonic equation. 

The boundary conditions are as follows: 
● At y= h, σy = w and τxy

● At y = –h, σ
 = 0 which are satisfied. 

y = –w and τxy
● At x =0, σ

 = 0 which are satisfied. 
x = w/20h3 (–12h2y + 20y3

Also 
) ≠ 0. 

 

2 3
3

2 2 4
3

d ( 12 20 )d
20

[ 6 5 ]
20
0

h h
xh h

h
h

wy h y y y
h

w h y y
h

σ
− −

−

= − +

= − +

=

∫ ∫
 

i.e. no resultant force. 



22 Solutions Manual 

 

Finally 

 

2 2 4
3

2 3 5
3

d ( 12 20 )d
20

[ 4 4 ]
20
0

h h
xh h

h
h

wy y h y y y
h

w h y y
h

σ
− −

−

= − +

= − +

=

∫ ∫
 

i.e. no resultant moment. 

S.2.4 

The Airy stress function is 

 3 2 2 2 2 2
3 [5( )( ) ( 2 ) 3 ( ) ]

120
p x l x y d y d yx y d
d

φ = − + − − −  

Then 

 
4 4 4

4 4 3 2 2 3
3 30

2
pxy pxy

x y d x y d
φ φ φ∂ ∂ ∂
= = − =

∂ ∂ ∂ ∂
 

Substituting these values in Eq. (2.9) gives 

 3 3
3 30 2 0
2
pxy pxy
d d

+ × − =  

Therefore, the biharmonic equation (2.9) is satisfied. 
The direct stress, σx

 

, is given by (see Eqs (2.8)) 
2

2 2 3 2
2 3 [5 ( ) 10 6 ]

20x
px y x l y d y

y d
φσ ∂

= = − − +
∂

 

When x = 0, σx

 

 = 0 for all values of y. When x = l 

3 2
3 ( 10 6 )

20x
pl y d y
d

σ = − +  

and the total end load 1 d
d

xd
yσ

−
= ∫  

 3 2
3 ( 10 6 )d 0

20

d

d

pl y d y y
d −

= − + =∫  

Thus the stress function satisfies the boundary conditions for axial load in the x direction. 
Also, the direct stress, σy

 

, is given by (see Eqs (2.8)) 
2

3 2 3
2 3 ( 3 2 )

4y
px y yd d

x d
φσ ∂

= = − −
∂
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When x = 0, σy

 

 = 0 for all values of y. Also at any section x where y = –d 

3 3 3( 3 2 ) 0
4y
px d d d
d

σ 3= − + − =  

and when y = +d 

 3 3 3
3 ( 3 2 )

4y
px d d d px
d

σ = − − = −  

Thus, the stress function satisfies the boundary conditions for load in the y direction. 
The shear stress, τxy

 

, is given by (see Eqs (2.8)) 
2

2 2 2 2 4 2 2 4
3 [5(3 )( ) 5 6 ]

40xy
p x l y d y y d d

x y d
φτ ∂

= − = − − − − + −
∂ ∂

 

When x = 0 

 2 2 2 4 2 2 4
3 [ 5 ( ) 5 6 ]

40xy
p l y d y y d d
d

τ = − − − − + −  

so that, when y = ±d, τxy

 

 = 0. The resultant shear force on the plane x = 0 is given by 
2

2 2 2 4 2 2 4
31 d [ 5 ( ) 5 6 ]d

640

d d
xyd d

p ply l y d y y d d y
d

τ
− −

= − − − − + − = −∫ ∫  

From Fig. P.2.4 and taking moments about the plane x = l, 

 1 2( 0)12
2 3xy x dl lpl lτ = =  

i.e. 

 
2

( 0)
6xy
plx

d
τ = =  

and the shear force is pl2
Thus, although the resultant of the Airy stress function shear stress has the same 

magnitude as the equilibrating shear force it varies through the depth of the beam 
whereas the applied equilibrating shear stress is constant. A similar situation arises on 
the plane x = l. 

/6. 

S.2.5 

The stress function is 

 3 2 2 2 2 3 2 3 5
3 ( 10 15 2 5 )

40
w c x c x y c y x y y
bc

φ = − − + + −  
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Then 

 

2
2 2 3

2 3

2
3 2 3

2 3

2
2 2

3

4

4

4

4 3

4

2 2 3

(12 30 20 )
40

( 20 30 10 )
40

( 30 30 )
40

0

( 120 )
40

(60 )
40

x

y

xy

w c y x y y
y bc

w c c y y
x bc

w c x xy
x y bc

x
w y

y bc

w y
x y bc

φ σ

φ σ

φ τ

φ

φ

φ

∂
= + − =

∂

∂
= − − + =

∂
∂

= − + = −
∂ ∂

∂
=

∂
∂

= −
∂

∂
=

∂ ∂

 

Substituting in Eq. (2.9) 
 4 0φ∇ =  
so that the stress function satisfies the biharmonic equation. 

On the boundary, y = +c 

 0y xy
w
b

σ τ= − =  

At y = —c 
 0 0y xyσ τ= =  
At x = 0 

 2 3
3 (12 20 )

40x
w c y y
bc

σ = −  

Then 

 

2 3
3

2 2 4
3

d (12 20 )d
40

[6 5 ]
40
0

c c
xc c

c
c

wy c y y y
bc
w c y y
bc

σ
− −

−

= −

= −

=

∫ ∫
 

i.e. the direct stress distribution at the end of the cantilever is self-equilibrating. 
The axial force at any section is 

 

2 2 3
3

2 2 2 2 4
3

d (12 30 20 )d
40

[6 15 5 ]
40
0

c c
xc c

c
c

wy c y x y y y
bc
w c y x y y
bc

σ
− −

−

= + −

= + −

=

∫ ∫
 

i.e. no axial force at any section of the beam. 
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The bending moment at x =0 is 

 

2 2 4
3

2 3 5
3

d (12 20 )d
40

[4 4 ] 0
40

c c
xc c

c
c

wy y c y y y
bc
w c y y
bc

σ
− −

−

= −

= − =

∫ ∫
 

i.e. the beam is a cantilever beam under a uniformly distributed load of w/unit area 
with a self-equilibrating stress application at x = 0. 

S.2.6 

From physics, the strain due to a temperature rise T in a bar of original length L0

 

 and 
final length L is given by 

0 0

0 0

(1 )L L L T T
L L

α
ε α

− +
= = =  

Thus for the isotropic sheet, Eqs (1.52) become 

 

1 ( )

1 ( )

x x y

y y x

v T
E

v T
E

ε σ σ α

ε σ σ α

= − +

= − +
 

Also, from the last of Eqs (1.52) and (1.50) 

 2(1 )
xy xy

v
E

γ τ+
=  

Substituting in Eq. (1.21) 

 
2 2 22 22 2

2 2 2 2 2 2
2(1 ) 1 1xy y yx xv T Tv v

E x y E Ex x x y y y
τ σ σσ σ

α α
   ∂ ∂ ∂∂ ∂+ ∂ ∂   = − + + − +
   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

 

or 

 
2 2 22 2

2
2 2 2 22(1 ) xy y yx xv v v E T

x y x y x y
τ σ σσ σ

α
∂ ∂ ∂∂ ∂

+ = + − − + ∇
∂ ∂ ∂ ∂ ∂ ∂

 (i) 

From Eqs (1.6) and assuming body forces X =Y =0 

 
2 2 22

2 2
xy xy yx

y x x yx y
τ τ σσ∂ ∂ ∂∂

= − = −
∂ ∂ ∂ ∂∂ ∂

 

Hence 

 
2 22

2 22 xy yx

x y x y
τ σσ∂ ∂∂

= − −
∂ ∂ ∂ ∂
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and 

 
2 22

2 22 xy yxv v v
x y x y
τ σσ∂ ∂∂

= − −
∂ ∂ ∂ ∂

 

Substituting in Eq. (i) 

 
2 22 2

2
2 2 2 2

y yx x E T
x y x y

σ σσ σ
α

∂ ∂∂ ∂
− − = + + ∇
∂ ∂ ∂ ∂

 

Thus 

 
2 2

2
2 2 ( ) 0x y E T

x y
σ σ α

 ∂ ∂
+ + + ∇ =  ∂ ∂ 

 

and since 

 
2 2

2 2 (seeEqs (2.8))x yy x
φ φσ σ∂ ∂

= =
∂ ∂

 

 
2 2 2 2

2
2 2 2 2 0E T

x y y x
φ φ α

   ∂ ∂ ∂ ∂
+ + + ∇ =      ∂ ∂ ∂ ∂   

 

or 

 2 2( ) 0E Tφ α∇ ∇ + =  

S.2.7 

The stress function is 

 
3

3
3

4 4
Qxy Qxy

a a
φ = −  

Then 

 

2

2

2

2 3

2 2

3

0

3
2

3 3
4 4

y

x

xy

x
Qxy

y a

Q Qy
x y a a

φ σ

φ σ

φ τ

∂
= =

∂
∂

= − =
∂

∂
= − = −

∂ ∂

 

Also 

 
4 4 4

4 4 2 20 0 0
x y x y
φ φ φ∂ ∂ ∂
= = =

∂ ∂ ∂ ∂
 

so that Eq. (2.9), the biharmonic equation, is satisfied. 
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When x = a, σx = –3Qy/2a2

Then, when 
, i.e. linear. 

 

0 0
3
2
3
2

x

x

x

y
Qy a
a
Qy a
a

σ

σ

σ

= =

= − =

−
= + =

 

Also, when x = –a, σx = 3Qy/2a2

 

, i.e. linear and when 

0 0
3
2

3
2

x

x

x

y
Qy a
a

Qy a
a

σ

σ

σ

= =

−
= − =

= + =

 

The shear stress is given by (see above) 

 
2

2
3 1 , i.e. parabolic
4xy
Q y
a a

τ
 

= − −  
 

 

so that, when y = ±a, τxy = 0 and when y = 0, τxy
The resultant shear force at x = ±a is 

 = –3Q/4a. 

 
2

2
3 1 d
4

a

a

Q y y
a a−

 
= − −  

 
∫  

i.e. 

 SF = Q. 

The resultant bending moment at x = ±a is 

 2

3

d

3 d
2

a
xa

a

a

y y

Qay y
a

σ
−

−

=

=

∫

∫
 

i.e. 
 BM = –Qa 
 




