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Objectives Review Questions

Chapter 1

1.1 By the first law of thermodynamics, AE = g+w. If AE = 0, therefore, then ¢ = —w: | ¢ = —743kJ.

1.2 We're taking the square root of the average momentum. The Maxwell-Boltzmann distribution
Py (v) gives the probability of the molecules having any given speed v, and since m is a constant, this
also gives us the probability distribution of the momentum p = mv. To calculate the mean value of p,
we integrate P,(v)p over all possible values of v, from zero to infinity. And finally, remember to take

the square root to get the rms: | [ [ Py (v)(mv)? dv] 1/2, with P,(v) given by Eq. 1.27.

Chapter 2

2.1 If Q = 7776 The number of ways of arranging 5 distinguishable particles in 6 slots is 6° = 7776,
and this is our ensemble size for the system described. For that value of €2, the Boltzmann entropy is
given by

SBoltzmann = ki InQ = (1.381 - 10"2 JK ) In(7776) = | 1.30 - 10-2 J K. |

For the Gibbs energy, we set the probability P(i) for each of the 5 molecules equal to 1/6 (because
there are six states and each state is equally likely). We set N =5 and get:

k
S=—Nkg» P(i)InP(i) Eq. 2.16
=1
1.1
— —5kp(6)= In = k=6, N=5
B( )6 n6 ’

124102 7K.

The expression has a factor of 5 from N =5 and a factor of of 6 because we add the term P(:) InP (i)
k = 6 times. For a system that is this rigidly defined, the Gibbs and Boltzmann entropies are the same.

2.2 We evaluate the sum in Eq. 2.33 over the lowest values of e (which here means the lowest values of
the quantum number n), until additional terms do not contribute significantly:

g(T) = g(e)e =/ *=D)
e=0

_ Z(?m + 1) 67(100K)k3n2/[k3(298K)]
n=0

= (1)e® + (4)e7 9336 1 (T)e 134 1+ (10)e 302 + (13)e 537 + (16)e 539 + ...
= 1.000 + 2.860 + 1.829 + 0.488 + 0.061 + 0.004 + 0.0001 + ... =

1 Copyright © 2014 Pearson Education, Inc.



2.3 For a nondegenerate energy level, ¢ = 1. Using the canonical distribution, Eq. 2.32, we find

g(e)e==/(kaT)
q(T)
(1)exp{—(2.2-10722J)/ [(1.381-10~2* JK~")(373K)] }

- L - (00050

P(e) =

Chapter 3

3.1 If we assume that the equipartition principle is valid for these degrees of freedom, then each Os
molecule has N, = 3 for translation, Nep, = 2 for rotation (because O is linear), and Nep, = 1 X 2
for vibration (1 vibrational mode with kinetic and potential energy terms). For each mole of Oq, the
equipartition principle predicts that the contribution to the energy will be N, RT/2, so we multiply
these values by 3.50 mol to obtain the energy contribution to our system:

E = Etrans + Erot + Evib

RT 3.50 mol)(8.3145 J K~ mol 1) (355 K
:_n2 (3+2+2):( mol) 5 mol™)( )(3+2+2)

These contributions come to: ‘trans: 15.5kJ; rot: 10.3kJ; vib: 10.3kJ. ‘

3.2 We need to solve for P(v = 1), where v here is the vibrational quantum number, based on the
vibrational constant (which with v will give us the energy) and the temperature (which with w, will
give us the partition function). We combine the vibrational partition function (Eq. 3.26)

1 1

vin(T) = 1 — e—we/(kaT) ] — —(1)(89Tcm 1)/[(0.6950 cm 1/ K)(428K)] 1.05

with the vibrational energy expression F.ij, = vw, in the canonical probability distribution given by
Eq. 2.32:

—Eyin/(ksT)
Pl) = g(v)e
QVib(T)
(1)6—(1)(891 em™1)/[(0.6950 cm ™!/ K) (428 K)]
- 1.05

(00775

Note that the vibration of a diatomic is a nondegenerate mode, so we can always set g = 1 for the
vibration of a diatomic.

A couple of quick checks are available here. First, we notice that w, is more than twice the thermal
energy kpT (as a very rough guide, the thermal energy in cm™! is about 1.5 times the temperature in
K). That means that we expect most of the molecules to be in the ground state, because few will have
enough energy to get across the gap between v = 0 and v = 1. Sure enough, gy, = 1.05 is very close
to one, meaning that only one quantum state (the ground state) is highly populated. Secondly, the
partition function is only about 5% bigger than 1.0, which suggests that about 5% of the population is
in excited states. Since the closest excited state is v = 1, it makes sense that the probability of being
in v = 1 turns out to be 0.0475, which is just about 5%.

3.3 Asking for the fraction of molecules, the population in a given quantum state, the number of
molecules or moles (out of some total in the system) at a particular energy—all of these are ways of
asking us to find the probability of an individual state or an energy level using the canonical distribution
Eq. 2.32. To do this, we will always need three things: the degeneracy of the energy level (unless we
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are looking for a particular state among several that share the same energy), the energy expression, and
the partition function. For rotations of any linear molecule (which includes all diatomic molecules), the
expressions we need are these:

kT
5
We can quickly verify that the integral approximation for the partition function is valid, because B, <
kgT = (0.6950 cm™!/ K)(428 K) = 297 cm~*. Then we put all this into Eq. 2.32 to get the probability:

Grot = 2J+1 Erot = BeJ(J + 1) Qrot =

g(J)e_Erot/(kBT)
Qrot(T)
(2J + 1)efBeJ(J+1)/(kBT)
ksT/B.
(9)6—20(20.956 cm 1) /(297 cm™ 1)

(297 cm—1)/(20.956 cm—1)

In this problem, we expect that the molecules are spread out over a large number of quantum states,
because the rotational constant B, is small compared to the thermal energy kgT. A fraction of 15.5%
for the J = 4 energy level is as high as it is only because Frot = 208, = 419cm ™" is fairly close to the
thermal energy of 297 cm ™!, meaning that there is a high probability of molecules colliding with enough
energy to get to this energy level. The fact that the degeneracy increases with J also helps, because it
means that a collision that lands in any of the ¢ = 2J + 1 = 9 quantum states that correspond to the
J = 4 energy level contribute to this probability.

P(J =4) =

3.4 The average of the momentum vector p'= mu should be zero for physical reasons, because every
particle has an equal probability of traveling in either direction along any Cartesian axis (unless we
add forces of some type that push or pull the molecules along a particular direction). To show that
this average is zero mathematically, we would use the classical integrated average, which is obtained
by integrating over all space the property times its probability distribution, which in this case is the
velocity vector distribution P,s () given by Eq. 1.15. For each vector component of the momentum,
we would need to solve an integral of the form (shown here just for the X component)

o aN1/2
(px) = m/ (—) e X yx dvy.

oo \T
But this integral is always zero because the Gaussian function e~ ("% ig symmetric about zero whereas

vx is antisymmetric. For every value of vx from —oo to 400, the integrand is equal and opposite to
the value of the integrand at the point —vx. The integral sums all these values together and gets zero.

Chapter 4

4.1 The goal is to obtain a mean value of a property of our system, so we can use the integrated average,
which in general has the form

Ga)= [ Pula) fa)da,

but for this we need the probability distribution function P,(z). What do we need before we can find
the probability? We need the partition function ¢(7T"). Therefore, the sequence of steps we would need
is something like this:

1. Integrate fooo e~™92d7 to get the partition function gz'(T'). (I'm using ¢’ here instead of q because
this is not a true unitless partition function, similar instead to the ¢’ that was introduced in Eq.
3.7. As long as we integrate over Z with volume element dZ below, the units will cancel.)
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2. Combine this with the canonical distribution to formulate an expression for Pz(Z):

e—m9Z (kBT)

Pz(2) = qz'(T)

3. And finally we would integrate fooo Pz(Z) Z dZ to get the mean value of Z.

4.2 The van der Waals equation (Eq. 4.47) reads
a
P+ 7 (Vs — b) = RT.

If we know the pressure P, the molar volume V,, and the values of the van der Waals coefficients
a =5.57L%barmol 2 and b = 0.06499 Lmol !, then we can solve for T

1 a
T==(P+—|(V,,—b
R( *vn%)(v )

B 1
"~ 0.083145 bar LK~ 1mol-1

- [mE]

For the ideal gas, the temperature would be

(5.57 L2 bar mol ?)

— [(1.00 — 0.06499) Lmol ]
(1.00 Lmol )2

[(24.0 bar) +

PV
T=——=28K
R )

so a pressure of 24.0bar is high enough that we see significant deviation from ideality.

4.3 The goal here is to use the Lennard—Jones parameters to approximate the potential energy curve
u(R) for the interaction between ethane molecules using Eq. 4.11, and then to use this potential
function in the approximate expression from Eq. 4.59 for the pair correlation function. Combining
these equations and obtaining the parameters from the table, we have:

(55

4.4 We are looking for individual particles where all the spins sum to an integer. Atomic hydrogen,
like several of the other group 1 elements, has an odd mass number (so its nucleus is a fermion) and an
odd electron number (so the electron spins sum to a half-integer). That means that the combination of
nucleus and electron(s) forms an integer spin particle—a boson, and in principle, a BEC can be formed
from 'H. Like the alkali metals, 'H has the advantage that its unpaired electron allows it to be steered
in a magnetic field and magnetically cooled, but its relatively low mass and its tendency to form strong
chemical bonds make it much more challenging to form H atom BECs, but researchers accomplished
this in 1998 [1]. Neon has an integer spin nucleus and an even number of electrons, so is a boson also.
Because it is not paramagnetic, however, it cannot be confined by a magnetic trap, and so experimental
methods do not yet exist that allow us to form a BEC from neon. And *F~, which has an odd number
of nucleons (with a total nuclear spin of 1/2) and an even number of electrons, is a fermion, and cannot
be used to form a BEC. So the candidates are only with some significant hurdles to overcome
before we see a Ne BEC formed in the lab.

G(R) ~ exp {—6 /(kBT)} :

where ¢/kp = 230K and R, = 4.42 A.

Chapter 5
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5.1 Equation 5.13,
RO

N Y N \/§p07
tells us that the mean free path depends on the number density p (which we can calculate if we know
P and T') and the collision cross section o

_ NaP  (6.022-10% mol1)(0.23 - 10° Pa)
~ RT  (8.3145JK~'mol~1)(220K)

1
A= =|7.7-10"%m.

V2(7.57 - 1024 m=3)(121 - 1020 m?)

=757-10**m™3

5.2 For a gas, we can predict the diffusion constant from Eq. 5.34. Let A be Ny and B be acetylene
(HCCH):

(vaB)
2pA0AB

8kgT
(vaB) =
T

26.04)(28.01
= B0DE8OL) 1349 amn
26.0 + 28.0

(0am) = 16(1.381-10-23 JK)(298 K)
AR 7(28.0 amu)(1.661 - 1027 kgamu 1)
_ NaP  (6.022-10% mol~1)(1.0 - 10° Pa)

DB:A =

= 683.8ms ™!

=2.431-10®m™3

PATTRT T (83145 JKmol-1)(298K)
1
OAB = (oA +2y/or0B + 0B)

1
=3 (37 + V3T T2+ 72) A% =53.06A°
(683.8111571) 5.2 —1 —
D= —2.651-10 =[0.265cm2s1.
2(2.431- 1025 m—3)(53.06 - 10~20m?) s ans

Then we can use the Einstein equation (Eq. 5.36) ryms = V6Dt to estimate the time required.

rins  (100cm)?

t g _tms

T 6D 6(0.265cm2 s~}

) —[6.3-10%s = L.7hr.

5.3 This problem is asking about the relationship between a flux and the change in concentration from
one place to another (i.e., a concentration gradient). That relationship is the subject of Fick’s first law,
so we employ Eq. 5.42:

(1.0-107 1 m?s71)(1.0 - 107! molm~—3)
(1.0-10~5m)

= ‘ 1.0- 1078 mols~ ! m—2. ‘

DAp/AZ =

Chapter 6
6.1 No matter how we heat the water, the heat must be carried from one part of the bath to the
reaction container, which will require | convection, | and then transferred from the water in contact

with the container into the reaction mix by | conduction. | At a temperature of 373K, we don’t expect
blackbody radiation to be as efficient a means of conveying heat.
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6.2 Problem 6.5 gives a detailed and precise way to approach this problem (but for a different temper-
ature), so let’s use a quicker and dirtier method here. If we examine Fig. 6.2, we see that the peaks of
the three curves shown are at roughly log;,v(s™1) equal to 12.8 for T = 100K, 13.8 for T = 1000 K,
and 14.8 for T = 10* K. This suggests that the peak power occurs at a frequency such that

1og10 Vmax (5™ 1) = 10.8 + log;, T( K).
From this, we can find an equation for vy,,x, and then use the speed of light to solve for Apax:

Vmax(871) = 101987(K) = 6.3 - 10'°T(K)
\ . 2.998 - 108 ms!
T max | 6.3-10107(K)
0.0048

= =13-10"°m.
T(K) "

This is equal to 13 um. Carrying out the work as in Problem 6.5 yields the precise result | 13.7 yum.

6.3 We use the Beer—Lambert law:

A= —logg (;—;) =eCl

_ A (0.85) _ Ry —
‘T Cl T (3.0-10-5M)(1.0 cm) =[28 1070 e

Although these units for e are not SI, they are probably as close as we have to a standard unit for this

and solve for e:

type of measurement, simply because concentrations in solution are normally reported in molarities and
pathlengths in cm.

6.4 The equations we have for these two linewidths are (Egs. 6.57 and 6.59)

4y [2kgTIn2

5VD0 ler = —
pp c m

6ycollision = 47

For the Doppler width, we can plug in the molecular mass of 28.0 amu and the temperature, obtaining
4(2150 cm 1) 2(1.381-10-23 JK1)(298 K) In 2
OVDoppler = =0.010cm ™.
Pboppler = 5 908 108 ms—1 || (28.0 amu)(1.661 - 1027 kg amu—) o

For the collision-broadened linewidth, we will have to know the collision frequency, which we obtain

from the average speed, density, and collisions cross section:

P 16kgT
6ycollision = 4P0 <UAA> =4 (NA ) g L

RT

m™m

~((6.022-10% mol1)(1.0 - 10° Pa) (10 1020 ) 16(1.381-10-23 JK~1)(298 K)
- 8.3145 JK-1mol—1)(298 K m 28.0 amu)(1.661 - 10~27 kg amu—!
( g

=[087m |

At this wavelength, gas-phase spectra taken at atmospheric pressure are strongly collision-broadened.
Partly for this reason, most gas-phase spectroscopy experiments are carried out under vacuum.
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Chapter 7

7.1 For this problem, we can work from both ends to meet in the middle. We rewrite k7 and « in
terms of the partial derivatives:

L L (v L_1(or
Tvi\er),, “viav),,
This lets us know that we need to convert the partial derivative of V' that we’re starting with to two

derivatives involving V. The chain rule in Table A.4 lets us break up the original partial derivative and
also introduce the pressure as one of the variables:

vy (v (op
a8 T)n_ oP Tn a8 Tﬂl.

At some point in the process, the entropy S ceases to be a variable in the expression. That’s the clue
that we need a Maxwell relation to change variables, and Eq. 7.30 does exactly what we need, taking a
partial of S with T" held constant and delivering a partial of V' with P held constant. Combining these
strategies gives the solution:

8—‘/ = 8—‘/ 8—P chain rule
08 Tn oP Tn 08 T
oV oT
=- (ﬁ)m (W)P,n by B T30
RT

==, by Egs. 7.31 and 7.32
o

7.2 At such high temperature, we expect all the vibrational degrees of freedom in the molecule (as well
as the translations and rotations) to contribute to the heat capacity. The molecule is nonlinear and has
11 atoms, so the number of equipartition degrees of freedom is

Nep = 3 trans + 310t + (3Nagom — 6) X 2 vib = 60.

According to the equipartition principle, the molar heat capacity at constant volume Cy, is then

OF 1
Cym = (8_T)V = 5 NepR = 30R.

The value of Cpy, is greater than this by R, so we predict

Cpm = 31R = | 258 JK~' mol !,

This is the same as the experimentally measured value.

7.3 The energy for heating at constant pressure is the integral of the heat capacity over the temperature
range, but for small temperature changes we often assume that the heat capacity is constant:

T2 T2
AE:/ deTanpm/ dT
Tl Tl

= nCpm(Ty —T1) = (1.00mol)(0.71 J K~ mol ') (10.0K) =

Chapter 8
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8.1 Here we can use the equation for the reversible expansion (Eq. 8.2)

Vs
revo = —nRTIn | — |.
wr, n n(%)

The only difference is that Vo < V; for the compression, so the sign of the work is reversed:

1.00
W rer = —(0.100mol)(8.3145 JK~ ' mol 1) (298 K) In (2—00) =|1727J.

The value is positive instead of negative in a compression, because work is done to the system, and the
system absorbs energy (which may later be released by allowing the system to expand).

8.2 Equation 8.24 relates the Joule-Thomson coefficient to the van der Waals coefficients and the heat

TN _ -

OP )  Cpm
From Table 4.2 we learn that for neon a = 0.208 L? barmol™2 and b = 0.01672 Lmol ™!, and from the
Appendix we find Cpy, = 20.786 J K~ 'mol~!. Substituting these values in we predict

(%), %

OP )y Cpm
{2(0.208 L” bar mol %)/ [(0.083145 bar LK~*mol~1)(100K)] } — (0.01672Lmol ")
- 20.786 J KL mol !

=0.00160LKJ™! =/0.160 K bar .

8.3 The efficiency of the Carnot engine is given by Eq. 8.37:

capacity:

_ Thot — Teoa
Thot

We need to solve for Ty, which is a matter of reorganizing the equation:

T'hot:6 = Thot - Tcold

Teold = Thot — Thote€

Teo 298 K
- 4 T = T o030 ~ L430K.
— € — U.

Chapter 9

9.1 The heat capacity of air is roughly the heat capacity of nitrogen or oxygen gas, which covers a
narrow range from 29.088 J K~ !mol~! for Ny to 29.355 J K~ 'mol~! for O,. A good estimate is about
29.1J K~ 'mol™!, because air is mostly No. To calculate the change in entropy, we integrate dS over
the temperature range at constant pressure and use the heat capacity to rewrite dS in terms of dT":

2 = 1ds

AS = ds =
Ty Ty T

Ts
_ / 1(T0S\ .
i) T\ oT Pn

T2 q 2 gr

T1 Tl T
T

=nCpmIn —.

no p IlTl

8 Copyright © 2014 Pearson Education, Inc.



Next, we use the ideal gas law to find the number of moles of the air at the initial temperature of
298K (Keep in mind that we must use kelvin for temperatures in any equation where T' is multiplied
or divided):
- PV (1.00 - 10° Pa)(100. m?)
RT  (8.3145 JK~1mol~1)(297 K)

and we plug this in to find AS, using an initial temperature of 298 K and final temperature of 296 K:

2
AS = (4.05- 10 mol)(29.1 J K ' mol ™) In 2—32 =|-792JK 1.

9.2 Although this may appear to be a simple exercise in plugging numbers into an equation, we find
that it takes some care to arrive at a set of values where the units are all consistent. We begin with Eq.

9.11: }

2rmkpT  27(222 amu)(1.661 - 10727 kgamu1)(1.381 - 10723 JK')(298 K)
12 (6.626 - 1031 J5)2

=4.05-10% mol,

(27kaBT) 32 R

5
m — 5 1
S, R{2—|—n % NP

Let’s work on some of the parts separately:

=2.17-102m™2
RT (8.3145 J K~ 'mol~1)(298 K)

= =4.11-10"%m?.
NaP ~ (6.022- 1023 mol1)(1.00 - 10° Pa) o

Combining these, we have

Sm =R {g +1In [(2.17- 102 m=2)3/2 (4.11-1072° m3)} } =212R =176 JK~'mol L.

This is the same as the experimental value to three significant digits.

Chapter 10

10.1 The molar mass of CCly is 153.8 g/ mol, so we have n = 0.683 mol. We break the process into two
steps: the condensation (which takes place at CCly’s normal boiling point of 349.9K) and the cooling.
For the condensation, the change in enthalpy and entropy are calculated from the latent enthalpy of
vaporization Ay,p, H ©, keeping in mind that the direction of the process indicates that AH and AS will
both be negative:

AH, = —nAyp, H® = —(0.683mol)(29.82kJ mol ™) = —20.4kJ

AvapH® 29.82-10° Jmol ™'
p2veptl
Ty 349.9K

ASy = — = —(0.683 Inol)( = —582JK L.

For the cooling step, we will need the heat capacity:
AHy = nCpy(Ty — T1) = (0.683 mol)(131.75 J K  mol ~)(—27K) = —2.43 kJ

T qr T. 2
ASy = ncpm/ = nCppmIn == = (0.683mol)(131.75 J K~ mol ) In 323

@l =—-7.20JK .
n T T 349.9

Combining these expressions, we get the following:

AH =AH, +AHy, =|—22.8kJ
AS =AS; +AS, =|—65.4JK L.

9 Copyright © 2014 Pearson Education, Inc.



10.2 Finding boiling temperatures and pressures under non-standard conditions is generally a job for
the Clausius—Clapeyron equation, Eq. 10.37. In this case, because the pressure has been raised, we
expect to see the boiling temperature increase. Substituting in P = 1.10 bar and Aya, H® for CCly, we
find out how much the temperature shifts:

Avap H® 1 1
In P(bar) = /2~ ([ _—_ _ —
n P(bar) 7 (Tbe T)
Rln P(bar) 1 1

AwpH® T2 T
1 1 Rln P(bar)

T TF  AwpH®
1 (8.3145J K~ mol~!) In(1.10)
T 3499K 29.82- 103 Jmol !

T = (0.002831 K~1)~! =

10.3 Examining the phase diagram, we see that the solid-liquid phase boundary crosses P = 1.00 bar
at | Ty ~ 390 K. | Similarly, the liquid-gas phase boundary at P = 1.00 bar has a temperature of roughly

Tb ~ 700 K.

Chapter 11

=0.002831 K !

11.1 We find the activity using Eq. 11.50, where in this case we get one SOi_ and two KT ions for
each dissociation of one KoSOy:

vytv_
AA,, Bo_(ag) = ('YiXAmr Bo_ ) =2Inyg+Xg+ +1n Ys02- XSO?{ .
Combining this with Eq. 11.19 gives the following expression for the chemical potential:
w=p® +2RT Inyx+ Xg+ + RT In~ygp2- Xgg2-

11.2 Table 11.1 tells us that the Henry’s law coefficient for CCly in water is 1600 bar. To use that
value, we need the mole fraction, which we can calculate by dividing the moles per liter CCly into the
molarity of 55.6 M for the much more abundant water:

0.00100 mol L. ~*
55.6mol L1

Pcay, ~ kxXccl, = (1600 bar)(1.80 - 107°) = 0.029 bar.

We use Raoult’s law for the water, but since the mole fraction of the water is 1 — X¢c1, = 1.000 to 4
significant digits, the tiny concentration of CCly does not shift the vapor pressure of water significantly

from its value over the pure solvent: Pyoo & 0.032bar.

11.3 We read the red curve for the values of the mole fractions in the gas, and the blue curve for the
mole fractions in the liquid: ‘ gas: 20% chloroform, 80% acetone; liquid: 30% chloroform, 70% acetone.

Xcel, = =1.80-10"°

11.4 The mole fraction of K5SO, ions in solution we estimate by taking the mole fraction of the salt,
0.50 M/(55.6 M + 0.50M) = 0.00892, and multiplying by 3 because each K2SO,4 dissociates into three
ions. The mole fraction of ions is all we then need to use Eq. 11.65 and predict the shift in freezing
point:
AT ~ _RTf‘QXB _ (8.3145 J K1 mol_l)(273.1_51K)2(3)(0.00892) 976K,
ApsHY 6008 J mol

We add this shift to the standard freezing point Ty = 273.15K and find the new freezing point is

10 Copyright © 2014 Pearson Education, Inc.



Chapter 12

12.1 We estimate this value by counting the contours we have to cross to go from the products in the
flat area near the lower right-hand corner (at roughly H-F~ 0.9 A, H-H> 2.0 A) to the transition state
between reactants and products, (at roughly H-F~ 1.6 A, H-H~ 0.8 A). We have to cross 5 contours,

each representing an increase of 30 kJ mol~?, for an activation energy of approximately | 150 kJ mol~!.

12.2 To calculate the enthalpy of an isothermal reaction at a temperature other than 298 K, we first
find AjxnH® at 298 K using Hess’ law. In this case, the enthalpies of formation of Ny and Os gas are
both zero, so

A H? (298K) = —2AH(NO3) = —66.36 kJ.

To correct for the change in temperature we add the term A.,CpAT that appears in Eq. 12.16. For
this reaction, the heat capacity difference is

ApnCp = (29.088 +2 x 29.35 —2 x 37.2) JK ' = 1340 JK 1.
The enthalpy of reaction is therefore

A HH® (373K) = Apn H ® (298 K) + Ay CpAT
= —66.36kJ + (13.40 JK~1)(75 K)(10™2 kJ/ J) =[ —65.36 kJ.

12.3 We use Eq. 12.21,
Aran(Tl)

Th=T — =——"—"7—"
>~ 717 Cp(products)’

but first we need to find the enthalpy of reaction for the combustion of hydrazine:
N2H4(Z) + 02(9) — Nz(g) + 2H20(l),

ApenH® = [~2(285.83) — 50.63] kJ = —622.39 kJ,

We also need the combined heat capacity of the products:
Cp(products) = [2(75.291) + 29.088] JK~! = 179.67 JK .

So the adiabatic flame temperature is predicted to be about

—622.39k
T =298.15K — 62239k 3760 K.

179.67JK!

We expect this to be an upper limit to the actual flame temperature.

12.4 The standard way to get an equilibrium constant for a given reaction at 298 K is to calculate the
free energy of reaction from free energies of formation, and then set Koq equal to exp [—~AnG®/(RT)].
However, in this case we need to know the free energy at 373 K instead of 298 K (which is the temperature
at which the AyG® values are measured). Therefore, to account for the temperature-dependence of
—AxnG® we instead calculate —AnH® and — A4S and then set —AxnG® = Arxcn G° —T A0S
Using Hess’ law, we find that the enthalpy of reaction at 298 K is —66.36 kJ. We find the entropy of
reaction the same way, but this time keep in mind that the standard molar entropies of Ny and O9 are
not zero (even though the enthalpies of formation are):

ApnS® = [191.49 + 2(205.138) — 2(240.06)] JK~! = 121.65 JK .
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This lets us estimate AxnG*® at 373 K:
ApnG® (373K) = —66.36 kJ — (373K)(121.646 JK1)(1073kJ/ J) = —111.74kJ,
which gives us an equilibrium constant of

Keq = exp |:_ A1rx1r1(; :|

RT

(~111.73kJ) —
- =[4.43 107,
P [(8.3145JK1mo11)(373K)(103 kJ/J)

Chapter 13

13.1 For an elementary reaction we can normally assume that the reaction rate is proportional to the
concentration of each reactant, in this case counting the two NO molecules separately so that the rate
is proportional to [NOJ?[Cly]. We also need to scale by the stoichiometric coefficient appropriate to
whichever chemical species we are monitoring:

d[NO] d[Cly]  d[NOCI]

p— - P p— 2
2dt dt 2dt KINOJ[CL]

13.2 We begin with Eq. 13.16 for the rate constant in simple collision theory,

8kgT
T

kscr [ T
FE,=—RT1 .
" K/\/APUAB> 8kpT

We have numerous substitutions to make, here transferring some values into SI units:

ksct = oaB Nape Bal (BT

and solve for F,:

R 8.3145JK !'mol!
p 1.0

T 2000K
oap  36-10729m?

kscr  2.92-10°m®mol s~
wo (32/33)(amu)(1.661 - 1072 kgamu 1)

Combining these yields E, = 1.41-10° Jmol™* =| 141 kJ mol ',

13.3 This is an application of Eq. 13.41,

where, for the reaction given,

k — Ae—Fa/(RT) _ (2.5 1017 871)67(384-103Jmorl)/[(s.3145JK*1 mol™")(1100K)] _ 1465 L.

The value of this rate constant suggests that the reaction takes place over a period of seconds, and
that’s what we find when we calculate the half-life:

In2
b2 =165
Chapter 14
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14.1 The reaction system is

CCloFy +hv  — CF,Cl+ Cl
Cl+03 — ClO+0q
ClO+0 — Cl4 02
Cl+CHy; — HCl+ CHs.

To write the rate law for [Cl], we identify every elementary reaction in the mechanism that involves
Cl, and we add a term for that reaction to the right side of the rate law. Atomic CI is involved in all
four reactions in the mechanism, as a reactant in the second and fourth reactions, and as a product in
the first and third. Therefore, we will have four terms on the right-hand side of the rate law, two with
minus signs (for when Cl is a reactant and is consumed) and two without (for when Cl is a product and
the reaction increases the Cl concentration):

d[C]]

T J1[CClaF2] — ko[Cl][O3] + k3[CIO][O] — k4[CI][CHy].

14.2 Equation 14.23 is

1 = 410 (1~ B0 fosp [t — 1a10) (1~ 22 Y] - B

To verify that this gives the right result in the limit ¢ — 0, we start setting ¢ = 0 on the right-hand
side:

lim[A]' = [Aly ( — %) {eXp [([B]o — [Alo) (1 - ﬁ) kl(o)} - %}1
= [Ao ( - %) {exp [0] - %}_1

This is correct: at ¢ = 0 we should have the initial concentration of A, [A].

In general, when setting ¢ = 0 we have to look out for places where the solution becomes undefined
in that limit, but in this case that doesn’t happen. If it did, we would have to employ I’'Hopital’s rule
to try to get the expression to converge. A correct expression of concentration as a function of time
will always be finite.

14.3 If B is in much greater concentration than A initially, then we can impose the pseudo-first-order
approximation on reaction 1, setting

dlA
S _ o alE) ~ KA
where ki = [B]ok1. This makes the reaction mechanism identical mathematically to our series of

unimolecular reactions used to model sequential reactions, arriving at Eq. 14.16. For our present
system, we replace [C] (the end product) in Eq. 14.16 with [D], and we replace k; in Eq. 14.16 with
our pseudo-first-order rate constant kj = [B]ok;:

kgei[Bo]klt — [B]0k18k2t)
D]~ [A 1-— .
D]~ (Al e
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Chapter Problems

Notes on Maple and Mathematica commands

Several solutions in this manual have added notes on how to set up expressions under the symbolic
mathematics programs Maple (Waterloo Maple, Inc.) and Mathematica (Wolfram Research) to assist
in solving the problem. Please note, however, that a symbolic math program is useful only after we
have overcome the conceptual challenges of the problem. Where these programs have their greatest
use is when we need to solve simultaneous or transcendental equations, or obtain numerical values or
algebraic expressions for integrals. We still have to know how to set up an integral, and we have to
decide where and how to apply approximations (which turns out to be more important than one might
think). Once we have taken these steps, the program may be able to take over.

Even then, however, the math in the majority of our problems is limited to relatively straightforward
algebraic manipulations, however complex the concepts may be. For most of the cases where the
Maple and Mathematica syntax is not shown, little would differ from the written mathematics already
appearing in the solution. This is largely the goal of symbolic math programs in the first place: to
accept input in the form that one would write the problem on paper.

The following problems in this volume give specific commands for use with Maple or Mathematica:

A10 A18 1.12 1.13 211 215 3.12 3.16
3.22 327 338 349 350 434 521 545
6.5 79 736 9.56 10.34

Chapter A

A.1 This problem uses a common manipulation, one of the features of logarithms that makes them so

useful:
pKa = —logjg Ko = —logy, e 2C/(FD)
AG u
== |"&r log,q € logz® = alogx
AG
= ——(0.434).

This shows, if you don’t mind us getting ahead of ourselves a little, that the pK, is directly proportional
to the free energy of dissociation, AG, and inversely proportional to the temperature, T'.

A.2 The idea here is that, even if we think at first we have no idea what the number ought to be, a
closer look at the available choices makes it clear that we can spot some potentially ridiculous answers:
a. 2-10%ms! is faster than the speed of light.
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b. 2-10°ms~! has no obvious objections.

c. 2ms~! is the speed of a slow walk, and would imply, for example, that you could send an e-mail
message over a cable connection to a friend half a mile away, and then run the half-mile to arrive
and deliver the message in person before the e-mail finishes traveling through the wires.

When we have calculations that toss around factors of 10734, for one example, this is a significant skill.

The correct answer is |2 -10°ms™?.

A.3 The volume is roughly 125 A3, which we can show is not big enough to hold more than about 15
atoms. Chemical bonds, formed between overlapping atoms, are roughly 1 A long, and so typical atomic
diameters are roughly 2 A or more, and occupy a volume on the order of (2 A)3 = 8A%. A volume of

125 AB, therefore, cannot hold more than about 125/8 = 15.6 atoms. Among the choices, the only

reasonable value is

A4 a. Chemical bond lengths in molecules are always in the range 0.6-4.0A, or 0.6 - 1071 to
4.0-107%m. 25-10~%m is much too large for a bond length.

b. Six carbon atoms have a mass of 6-12 = 72 amu. With the added mass of a few hydrogen atoms
at 1amu each, 78 amu is a reasonable value.

A.5 a. The derivatives d[A] and dt have the same units as the parameters [A] and ¢, respectively.
Both sides of the equation should therefore have units of molL ™' s~'. That means that k needs
to provide the units of s~! and cancel one factor of concentration units on the righthand side. k

hias units of

b. The argument of the exponential function must be unitless, so kg must cancel units of energy
(J) in the numerator and temperature (K) in the denominator. The correct units are

c. The units all cancel, and K4 is

d. Squaring both sides of the equation, we can solve for k: uw? = k. k must therefore have units

ol ]

A.6 There are two factors on the lefthand side, (2z+1)? and e~ For the product to be zero, at least

one of these factors must be zero. If (2z + 1) = 0, then | = —% . |If e=9” = 0, then

All three are valid solutions.

A.7 In general, for any complex number (a + ib), the complex conjugate is (a + b)* = a — ib. We look
for the imaginary component and and invert its sign:

a. r—iw:a=x b= —y,
b. iz?y?:a=0 b=2%?,

c. zy(x+iy+2): a=22y+axyz b=uxy? 2%y+ayz—iry?, ‘:Cy(x—zy—i—z)‘

d.a=z/z b=y/z, | (x—1iy)/z.
e.
e® =14z — 2% —ixd + ot +iad — ...
a=1—-a>+2"—...
b=zx—2+2°— ...
5 —iz_

a—ib=1—iz—2®+ir>+z*—iz® — ... =|e
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f. 54.3: a =543 b=0,

A.8 This problem tests a few algebraic operations involving vectors, particularly useful to know when
we look at angular momentum and (often related) magnetic field effects.
a. The length of a vector is calculated using the Pythagorean theorem: |C| = 02+ 22 + 12 =

b. We add vectors one coordinate at a time: A+ B = (1+1,0+0,0+ 1) =|(2, 0, 1).

c. The dot product of two vectors multiplies the values for each coordinate of the two vectors and
sums the results: A - B=(1-1)+(0-0)+ (0-1) =|1.]

d. In the case of perpendicular vectors, this gives us zero: A - €' = (1-0)+ (0-2)+(0-1) =

e. The cross product involves a little more work, and yields a new vector, perpendicular to the two
original vectors: A x B=(0-1-0-0,0-1—-1-1,1-0-0-1) =|(0,-1,0).

A.9 If we accept that the Taylor series expansion is exact if we take it to infinite order, then the Euler
formula can be proven by the expansions of e* (Eq. A.25), sinz (Eq. A.26), and cosz (Eq. A.27):

e = Z o (i)
n=0

1
=1

2_13 L4 Ls_
x 6:10 +24x —|—120:C
1 1 1
_ 1,2 4 . 3 5
=(1-3x —|——24:v —...)—i—z(:v—gac +—12Ox—...)

=| cosT + isinx |

NE

i —

+

This equation is of practical importance to us, and is famous among mathematicians for tying together
three fundamental mathematical values—r, i, and e—in one equation:

em=1.
A.10 e Maple: We can have Maple solve the equation

()t

=1
RT

directly using the solve command. After checking that all of the units are indeed consistent, enter
the Maple command

solve((1.000-(3.716/V"2))*(V-0.0408)/(0.083145*%298.15)=1,V);

The resulting solution, 24.98, is in the same units as b, so our final value to three significant digits

is [25.0 L mol*.

e Mathematica: In Mathematica we use the Solve command to find the value of a variable in an

algebraic equation:
Solve[(1.000 - (3.716/V"2))*(V - 0.0408)/(0.083145%298.15) == 1, V]
Note that we need to use a double equals sign in the command. This command gives 24.979,

which rounds to | 25.0 L mol*.
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e Successive approximation: There are several ways to solve this, corresponding to different
forms of the equation that leaves Vi, on one side. One way to set up the equation quickly is to
recognize that (Vi, —b) will vary rapidly compared to P — (a/V;2), so we can isolate Vi, as follows:

(P vg) (i t) _

RT =1
(P—%)(Vm—b):RT
" vy BT
(P-)
V= 2Ly,

Substituting in the values for P, a, b, R, and T (making sure that the units are all compatible),
we can reduce the equation to the following:

1. (0.083145)(298.15) 24.790
Vi Vi

Guessing an initial value of 1 Lmol ™" yields the following series of approximations:

24.790

Tz +0.0408 = ~9.0864

12
24.790

Vi = g +0-0408 = 25.999

5.3302

24.790

Vin = g + 0.0408 = 24.967

22.0992

24.790

Vin = g +0.0408 = 24.979

24.7962

24.790
Vin = —— 515 + 0.0408 = 24.979.

L+ 24.8342

Vi =

The series has converged to the three significant digits requested. The final value for Vi, is

25.0 L mol %,

A.11 Here we apply the rules of differentiation summarized in Table A.3.

a.
fl@) = (z+1)2
a Ly
=1
b,

f(@) = [e/(x+ 1)1/
i (= NP1 de d (1
%_§<x+1> [x——f—l%+x%<w+1)]

1 z O\ V2 I x
2\z+1 zr+1 (z+1)2]°
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Lol £()

= %171/2 exp [zl/z} .

d
2 2
1g = eXP [cos 2] o (cos z*)

= exp [cos z”] (—sin xz)a(ﬁ)

= —2z sin 22 exp [cos a:2] .

A.12 This problem tests our ability to use a few of the analytic integration results given in Table A.5.

a. [;0 ey =—Ltem|e = —-1(0-1) = 1
a
b [7 a2de = L33 = L(125— 1) = 1_24,

c. f15 o3 2de = 207123 = —2(

d. 2 [ dg [ sin6d6 =r? (9)[57 (= cosb)| =r?(2m — 0)[~(=1) = (=1)] =

A.13 We use the Coulomb force law, Eq. A.41, using the charge of the electron —e for both charges
and r12 set to 1.00 A:

62

FCoulomb = 5 5
4egr?

(1.602 - 10719C)?2

= —— =] 231-1078N .
(1.113-10-10 C2 J-1 m~1)(1.00 A)2(10-10m A~ ')2

A.14 This problem relies on the definitions of the linear momentum p and the kinetic energy K (Eq.
A.36):

2m

A.15 We're calling the altitude r. Because the acceleration is downward but r increases in the upward

direction, the acceleration is negative: —9.80 ms~2. We invoke the relationship between force and the
potential energy, and find that we have to solve an integral:

Ulr) = —/OTF(T’)dr’——/OT(—mg)dr’— mgr
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A.16
€2 (1.602- 10719 )2

dmeor?  (1.113-10-10C2 J-1 m—1)(0.529 A)2(10~10m A~ )2
—[8.23.10°°N

|Fgravity| =mpgpg
= (1.008 amu)(1.661 - 107" kgamu ") (9.80 ms?)

=[1.64-10"20N.

Sure enough, the gravitational force is smaller than the Coulomb force by orders of magnitude, and
the motions of these particles will be dictated—as well as we can measure them—exclusively by the

|FCoulomb| =

Coulomb force.

A.17 We are proving an equation that depends on L and z and ¢ and v,, which may look like too many
variables. If we use the definition of L to put this equation in terms of K and U, then we can at least
put K in terms of speed. Then, because speed itself is a function of position and time, the number of
variables is quite manageable. Nonetheless, keeping things in terms of K and U is useful, because of
their straightforward dependence on only v and z, respectively.

To prove the equation, we could try working from both sides and seeing if the results meet in the
middle. First the lefthand side:

L K
?)_x = (?’“)—x —g—g K not a function of z
<~
=0
d2
Wf acceleration = d%x/dt?

Next the righthand side:

d oL d (1 ov2  OU
dt v, dt _2m Ve  OUg
— i mug — a—U U not a function of v,
dt vy
~—
L =0
dvg 2z
= Mm -— =
dt dt?

And there we are. One of the useful features of the Lagrangian is that the equation proved here can be
made to hold for different choices of coordinates. This enables the mechanics problems to be written in
coordinates that take advantage of symmetry (for example, if the only force is a radial one, attracting
or repelling particles from a single point), and the Lagrangian then provides a starting point to develop
relationships between the positions and velocities of the particles.

A.18 The overall energy before the collision is the sum of the two kinetic energies:
K = lmlvf + %mgvg,

2
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and this must equal the energy after the collision:

2 2
K= %mlvll + %mgvé .

Similarly, we may set the expressions for the linear momentum before and after the collision equal to
each other:

/ /
P = mMiv1 + MoV = M1V + Mavsy.

So there are two equations and two unknowns. At this point, the problem is ready to solve with a
symbolic math program.

Maple. The problem can be solved in a single step by asking Maple to solve the conservation of
energy and conservation of momentum equations simultaneously to get the final speeds (here vf[1] and
vf[2] in terms of the masses and initial speeds:
solve({m[1]*v[1]4+m[2]*Vv[2] = m[1]*Vv{[1]+m[2]*Vv{[2], (1/2) * m[1] * v[1]"24(1/2) * m[2] *
v[2]"2 = (1/2) * m[1] * vi[1]"2+(1/2) * m[2]*v{[2]"2}, [vi[1], vi[2]]);

Mathematica. We are looking for an algebraic expression, rather than a numerical value, in the
solution to this problem. We can use the Solve command for either case:

Solve[m1*vl 4+ m2*v2 == ml1*vfl 4+ m2*vf2 && (1/2)*m1*v1"2 + (1/2)*m2*v2"2 ==
(1/2)*m1*vfl™2 4+ (1/2)*m2*vf2°2, vfl, vf2]

On paper. This last equation lets us eliminate one variable by writing, for example, the final speed

v in terms of vy:

/
o = miv1 + MoV — M1V
2 M :

Now we can put this value into the equation for K, and solve for v}:

K= %mlvf + %mgvg (a)

_ 1 12 1 72
= 3M1vy + 5 M2y

2
!
miv1 + movy — mlvl)

2
= —;mlvi + —%mg
mo

This is going to be an equation that depends on viz and vf, so we can solve it using the quadratic
formula. In that case, it’s easiest to put all the quantities on one side of the equation:

/ 2
miv1 + move — mlvl) (1

2
0=21mivy” + 3mo < - §mlvf + %mgvg) subtract (a) above
2

2.2 2.2 2,12
myvy + mavs + mivy

. +2mmavi vy — 2mIv1v] — 2mimav)vy

2
= imvl” + $ma expand the square

2 2
m3
1 2 _ 1 2
— §m1'01 — §m2v2
> | mi mi 2
= miv)” + —20? + mavd + —0) 4 2mivivy divide by 1/2
ma2 ma

2
m

— 2m—1vva — 2m1vivg — mlvf — mgvg
2

12 m% ’ m% ’
=v; (mi+— | +v; | —2—0v1 — 2myv2 group by power of v}
ma2 ma2
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2
m
1,2 2 2 2
+ <—vl + mov3 + 2mivivg — mivy — mQ'U2)
mo

2 2
2 m m

= v’l my + )+ v’l —2—11)1 — 2mqvs
mo mo

m2
+ [(—1 — m1> v% + 2m1’U1’U2:|
ma

2\ 1 2
v = (le + 2&) { (Qﬂvl + 2m1v2) quadratic formula
m mo

m? 2 m? m? 12
(2—11)1 + 2m1v2) —4 <m1 + —1) [(—1 — m1> vf + 2m1v102”
me ma m2

To deal with this equation, we can expand the multiplication inside the square brackets:

2 2 4 3
m m m
2—11)1 +2mive | = 4—; v% +8—1 1102 + 4m§v§
mo msy m2
2 2 3 4 3
m m m m m
—4({mq + —L —1 my vf +2miviva| = —4—11)% - 4_§U% + 4m%“% + 4_1”%
mo my ma
3

m
— 8m%v102 — 8m—1v102.
2

Nearly all of these terms cancel when we add these two expressions together, leaving:
4m3v3 + 4miv? — 8mivivs.
In the quadratic equation, we have to take the square root of this, but that turns out to be easy:

}1/2

1/2
[4mfv§ + 4m%vf — 8m%’01’02 =2m [v% + vf — 21}102} /

= 2m1 (’Ug — ’Ul).

Finally, putting this back into our equation for v}, we get

-1
, mi mi
vy = | 2mg + 2m— 2— vy + 2myvg | £2my (v2 — v1)

ma

-1
= <1 + E) {(%vl + vg) + (v — vl)} . divide out 2m;

2

This is correct as far as it goes, but we have two solutions, corresponding to either the + or — sign. If
we use the — sign, then we get

-1
m m
v1—<1—|——1) {—11)1+1)2—1)2+’Ul}—1)1.
mo mo

This is the solution if the collision doesn’t occur; particle 1 just keeps moving at the same speed as
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before. The + sign gives us the correct solution:

-1
m m
Ui:(l‘f'—l) {—1U1+v2+U2—U1}
mao mao

-1
—(1+m> [(E—1>v1+202}
ma ma

 — - 2 .
. [(m1 — ma) v1 + 2mavy]

We can now use the conservation of momentum to solve for v5. I'm going to factor out a 1/(mq + ms)
to get an equation similar to the one for v1:

/

, miv1 + Mot — M1V]

V. =
2

ma

1

mi
— M1V + Mav2 —

—— [(m1 — ma) v1 + 2mov
» I [y — )+ 2] |

mi mi1 — mso mi mq
— v +vy— | ——— — vy =2 ———— v
<m2> (ml +m2> (m2> (m1+m2>

1 mi(my +m mi(my —m
< > |: 1( 1 2)1)1 + (ml + mz)'UQ — <M) v — 2m1v2:|
mi + mo mo ma

1
= —— (Mg —mq) vy + 2mqvq|.
m1+m2[( 2 1) U2 101]

Because there is nothing in the problem that determines which particle is labeled 1 and which is labeled
2, the equations for v] and v, must be exactly the same, with all the labels 1 and 2 switched.

If you haven’t seen this result or simply don’t remember it, it’s worthwhile to check a few values. For
example, if the two particles have equal mass (m; = ms), then the final speeds are v} = v9 and v§ = vy;
i.e., the particles simply exchange speeds. Another example: if particle 1 is initially at rest (v; = 0),
then it picks up a speed 2mava/(my + m2) from the collision. In that case, if particle 2 dominates the
mass (mg >> mq), then particle 1 will find itself with a final speed equal to 2vs. In contrast, if particle 1
is much more massive than 2, then the collision will hardly affect it (v} ~ 0) and particle 2 will simply
reverse direction (v] & —uy).

Note that the two particles don’t have to be moving in opposite directions. If particle 1 is behind 2
but moving faster and in the same direction, then they will strike each other, and particle 2 will acquire
particle 1’s higher speed.

A.19
2 1.602- 10719 C)2
K=U=-— = ( ) —— =231-1071%)
dmeor  (1.113-10-10C2J-1m~1)(1.0A)(10-1°mA ™)
L=1|F x pl=rp, since™ L p.
p=/2m.K = [2(9.109- 10" kg) - (2.31 - 107 # J)] /> = 2.05- 10 2 kgm s~
L=(1.0A)10"0mA™")(2.05- 10" kgms 1) =| 2.05- 10 kgm?s~" .|
A.20 a. Find the center of mass positions Fgo) at collision. Let’s call the center of mass of the

entire system the origin. The particles have equal mass, so the origin will always lie exactly in
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between the two particles. At the time of the collision, we may draw a right triangle for each
particle, connecting the particle’s center of mass, the origin, and with the right angle resting on
the 2z axis. The hypotenuse of the triangle connects the center of mass to the point of contact
between the two particles, and must be of length d/2 (the radius of the particle). The other two
sides are of length (d/2)cos@ (along the z axis) and (d/2)sinf (along the x axis), based on the
definitions of the sine and cosine functions in Eqgs. A.5. These correspond to the magnitudes of
the z and = coordinates, respectively, of the particle centers of mass at the collision. The signs of
the values may be determined by inspection of the figure: at the time of the collision, z; and 29
are positive while zo and z; are negative, so the position vectors are:

A2 = ((d/2)sin 0,0, —(d/2) cos )
Féo) = (—(d/2)sin0,0, (d/2) cosb).

b. Find the velocities U, after collision. Simple collisions obey a simple reflection law: the angle
of incidence is equal to the angle of reflection. These are the angles between the velocity vectors
and the normal vector—the line at angle 6 from the z axis. (This is the normal vector because
it lies perpendicular to the plane that lies between the two spheres at the point of collision; this
plane is effectively the surface of reflection for the collision.) Therefore, the velocity vector after
the collision is at an angle 20 from the z axis, and the velocity vectors after the collision are

U1 = vp(sin 26, 0, — cos 26)
Ty = vo(— sin 26, 0, cos 26).
Notice that the speed after the collision is still vy for each particle. Because they each began with

the same magnitude of linear momentum, the momentum transfer that takes place only affects

the trajectories.

c. Show that L is conserved before and after the collision. We now have position and velocity

vectors before and after the collision:

71 = ((d/2)sin 6,0, —(d/2) cosf) + Uit 75 = (—(d/2)sin 6,0, (d/2) cosf) + Uit
ﬂlll = UO(Ov 05 1) UQ/ = ’UO(Ov Oa _1)
U] = vp(sin 26,0, — cos 26) Ty = vo(— sin 26, 0, cos 26).

We take the cross products of these for each particle to get L for each particle, and we add these
together to get the total angular momentum for the system. Before the collision,

7 = ((d/2)sin,0,—(d/2) cos0) + vot(0,0,1)

1
T
Ll

U I/
T X Vg

m
"1 " n_rn " " 1

m (yl Vy1 = 21 Uy1, 21 Vg1 — X1 021,10y — Y3 Uﬂcl)
m

(0, —(dvo/2) sin 6, 0)

and similarly for Lj:
LY = m (0, —(dvo/2) sin 6, 0)
and combining these yields:

L" = L' + LY = —mduvy (0,sin6,0).
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All of the position or velocity vectors have only zero y components, and therefore only the y
component of the cross product survives. After the collision,

7 = ((d/2)sin 6,0, —(d/2) cos ) + vot(sin 26, 0, — cos 26)

L =mi, x 7,

which has a y component

E;l =m{—(d/2) cossin 20 — vyt cos 20 sin 20 — [(d/2) sin (— cos 20) + vot sin 26(— cos 26)]}

and similarly for Egﬂz

T
Ly

1 = m{(d/2) cos 0(— sin 20) + vot cos 20(— sin 26) — [—(d/2) sin 6 cos 20 — (—vpt sin 20) cos 26]} .

Adding the two components together we find that all the ¢-dependent terms cancel, and trigono-
metric identities from Table A.2 simplify the rest:

717 7!
Ly = Lly + Lzy

d
= m2v0 [—2 cos 0 sin 260 + 2 sin 6 cos 20)

sin 20 = 2sin 6 cos 6
cos20 =2cos?6 — 1
- 2md
L, = m2 kil [~ cosf (2sinf cos ) + sinf (2cos® 6 — 1)]
= mduvg [—2 cos? §sin @ + 2 cos? fsin § — sin 9}

= —mduvyg sin 6.

This is the y component of L , and the = and z components are again zero in the cross products,
so we have shown that both L’ and L” are equal to

L = mduy (0,sin 0, 0).

If the particles hit head-on, then # = 0 and the angular momentum is zero. As 6 increases, L
increases to a maximum value of mdvy when the two particles just barely touch each other in passing.

If we had used the conservation of L at the outset, we could have found this solution quickly. Because
the angular momentum does not depend on the size of the particles, we can replace our two objects
here with point masses. It won’t matter that they now won’t collide, because if L is conserved we have
to get the same answer before the collision takes place anyway. In fact, because L is conserved, we
can pick any point in time that’s convenient for us to calculate L, so I would pick the time when the
two particles reach z = 0. At this time, both particles are traveling on trajectories that are exactly
perpendicular to their position vectors (7; is perpendicular to 7;). This makes the cross product for
each particle easy to evaluate:

-

L; = mr; x ¥; = m(£(d/2)sin0,0,0) x (0,0, £vg) = mdvy/2(0,sin 6, 0),

where the minus sign applies to particle 2. There are two particles, so we multiply this vector by 2,
arriving at the same L as above.

A.21 a. Write & in vector form. The magnitude of the electric field generated by particle 1 is
given by F = ¢2&1, and this force must be equal to the Coulomb force F = —q;q2/(4meqr?). The
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force vector points along the axis separating the two particles, and we can include this direction-
dependence by multiplying the magnitude of the vector by #/r. The Cartesian form of the vector
7 from particle 1 to 2, just working off part (b) of the figure, may be written (rvy/c,y2,0) and

has length
9 1/2
r= {(ﬂ) + yg] .
c
Therefore, the force vector is

= ne \ T qge
F — _ — = O
(47reor2 ) r 4mweqr3 (rus/e,y2,0)

and the electric field vector is

. F
Sr=—= q—lﬁ(rvl/c,yg,()).

G2 4meg
b. Write B in vector form. Here we just have to be careful to correctly evaluate the cross product.
We are using the equation B = 6%51 X 17, and we have an equation for 52 already. The velocity
vector consists only of an z-velocity component: @7 = (v1,0,0). Notice that because these two
vectors lie in the xy plane, their cross product—which is perpendicular to both vectors—will lie
along the z axis. The z component of the cross product @ x bis equal to azby — ayb;, so we have

5 1a ¢
B==& xt = 07 07 :
21 U1 Areoc2rd ( v1Y2)
c. Find the magnetic force vector. Again, we take a cross product with the velocity. This time,
the B vector lies along z, and ¥ lies along x, so the cross product lies along y:
= S 5 q192 2
Fmag = @201 X B = W (O,UlyQ,O) .
d. Calculate the difference between the actual and classical values of the Coulomb force. To compute
the actual Coulomb force, we use the distance r, so F' has a magnitude

_ Mg
Amegr?’

The classical Coulomb force would be

q192
F' =
dregys

and the difference between the two forces is

Q1Q2[1 1}

T d7eg

F—F
s

We can simplify this by relating r? and y?:

U1\ 2
#= () o

o))
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So, finally, we have
2
por- g2 [ (2]
dmeg |y c Y5

_ Qe _(2)2 _ @it
dTeoys c dmegcys’

In comparison, the magnitude of the magnetic force we calculated from the standard equations is
Finag = qlqgv%yg/(élﬂ'eoc%j),
and for v < ¢, we can allow r = y, so that
Finag = 014201/ (4meoc?y3).

Magnetic forces are a natural result of the motion of electrical charge when special relativity is
taken into account. It was this relationship between electric and magnetic forces that was the basis of
Einstein’s original paper on special relativity.

Chapter 1

1.1 Briefly, the nucleus of any atom except hydrogen has multiple protons, which repel each other,
coexisting at very small distances. With only protons and neutrons present, there is no negative charge
to counter the proton-proton repulsion, and the gravitational attraction between nuclear particles is
much too weak to play a role in holding the nucleus together. If our theories of mass and charge do not
explain the binding of positively charged protons into a nucleus, that suggests that there is some other
property that explains it. This reasoning led to the concepts of quark color and the strong force.

1.2

U=

0.8

0.4 0.6
x(a)

0.2

20 -
U= 15 -

The potential energy climbs to infinity at the walls and is zero in between. We know this because
the walls are impenetrable—the particles always bounce off the wall and transfer no energy into the
wall. In this idealized limit, no amount of energy in the particle will get it to occupy the region of the
wall, so the potential energy of the wall (the energy it would take to occupy that location) must be
infinite. At the wall, the slope of the potential energy is also infinite, so the force F' = dU/dx is infinite,

but pushing back in the negative z direction, so ‘F (x/a) = —oc0. ‘ Within the container, there are no

forces working on the particles, so F' and U = dF'/dx are both equal to zero.
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1.3 One approach would be the following:

1. Invent the scale as described in the chapter, using a spring to find forces by measuring the
displacement of the spring with our ruler.

2. Find the acceleration due to gravity g by measuring changes in speed of falling objects, using
the ruler and clock to compare A(distance)/A(time) at different times. Once g is known, we can
convert the weight of a water sample to a mass.

3. Finally, measure the volume of a sample of water with the ruler and a rectangular container for
the water.

The ratio of the mass to the volume will be the density.

1.4 We will need to figure out how the pressure at the bottom of the column varies with the mass of
water above it, and convert the mass to height. This problem can be started from either end, but let’s
start from how the mass determines the pressure:
F Mg

P=a=a
where F' is the force exerted at the base of the column, M is the mass of the water in the column, and
g = 9.8ms~2 is the acceleration due to gravity near the Earth’s surface. The mass is related to the
height through the density. The volume of the water is equal to the area A times the height z (which is
what we wish to solve), and the mass within a volume V' is equal to the volume times the mass density
pm =1.00gcm™3 =1.00-103kgm 3. So we can set P = 1.00 bar = 1.00 - 10° Pa and solve for z:

Mg _ pmVg _ pm(Az)g

P=7 =72 A e

P 1.00 - 10° Pa
"~ pmg  (1.00-103kgm—3)(9.8 ms—2)

=[10.m |

1.5 Pressure is related to force through Eq. 1.4, and here we need to solve for the force:

z

F=PA

= (0.010 bar)(10° Pabar~1)(78 x 30)(2.54cm)?(10"2m/cm)? = | 1.5 - 10> N,

This force is equivalent to lifting a weight of

F  15-10®N
= —150ke.
g 9.8lms™2 &

1.6 The area of the water drop is
Agater = 7(d/2)* = 0.785 cm? = 7.85- 1075 m?.
The approximate number of molecules that can fit in this area is given by the ratio of this area to the
effective area of a single molecule:
Awater 7.85-107°m?

N = = . —— =2.38-10"
Aputanol (33 A7)(10-10m A )2

We use Avogadro’s number to convert this value to the number of moles:

n= /\% =[3.9-10"1mol |
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1.7 The force is given by the Coulomb force, Eq. A.41:

nq (1.602 - 10719 C)?2

— = —— =2.92-107°N,
dmeoris  1.113-10-10C2J-1m~1(2.81 A)2(10-19m A~ )2

FCoulomb =

which may not look like much. But then to get the pressure we divide by a tiny area to get the effective

F 2.92-1079N
P= 4= S = 7.30- 10 Pa = | 7.30 - 10° bar.

(4.00A%)(10-10m A ™)

pressure:

1.8 Since the overall entropy change must be positive, if the entropy of the system (the engine) is
—0.20 JK™!, then the entropy of the surroundings must rise to compensate by an amount

| ASoue > +0.20TK .

1.9 There are two contributions to the work. Which do you think is greater? Although 100kg should
sound like a significant mass, the force generated by 1 bar of pressure over an area as large as 1 square
meter is much higher than you might think at first. A rough calculation will tell you: the force generated
by 1000 kg in the roughly 10 ms~2 acceleration of gravity is approximately (103 kg)(10ms~2) = 10* N.
But the force generated by 10° Pa across 1m? is 10° N, so air pressure in this case is a much larger
contributor to the work that needs to be done.

The pressure is constant throughout this process, so ¢ is given by AH:

o= a1 ~[29257]

The work is the sum of two terms: the work required to lift the mass of the platform against the pull
of gravity, and the work required to push an area of 1.00 m? against the additional 1.00 bar of ambient
air pressure. These contributions are both negative because they require the system to do work on the
surroundings:

w:—/ (mg+ PA) dz

= —(mg+ PA) Az
= — ((1.00 - 10° kg)(9.8 ms™?) + (1.00 - 10° Pa)(1.00 m*)) (0.060 m)

— _6588] =

And according to the first law, the change in energy is the sum of these two contributions:

AE =q+w=292kJ - 6.6kJ =|—-3.7kJ.

1.10 The value 4.5 JK ™! is equal to dgsurr /dT, the rate of heat loss per temperature increment. Setting
dqsurr = (4.5JK71)dT7 we substitute this into Clausius’ definition of the entropy change, Eq. 1.10, to

find

ng» .

Assurr — / qurr
Tl dT
323K

dT 323K
:/ (4.5JK’1)? = (4.5JK*1)1nM =036 JK 1.

298 K

1.11 We want the probability distribution for speed, P,(v), integrated only between the limits given.

m_\2 ?/(2kpT)
(V) dv =4 2emmv/(2heT) gy,
Py(v) dv T (27rkBT) /102 ve v

103

102
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Plugging in the mass, temperature, and kg, we find that

4.00 am)(1.661 - 10~27 kg amu~!
m__ (4.00amu)( L ) 80710~ m2.
2ksT  2(1.381- 1023 JK 1)(298K)

So the final expression can be written

108
(1.64-10—9)/ v? exp(—8.07- 107 "v?) dv.
102

1.12 We can expand the product (v — (v))?, and organize the results into factors of (v), (v?), and
<v3>. The expression for <v2> is already obtained in Eq. 1.23, and the others we can evaluate using the

integrals over 227 +1e=a2” in Table A.5:

= Po(v)vd dv — 3/000 Py (v)v? (v) dv + 3/0OO Py, (v)v (v)* dv — /OOO Py (v) (v)* dv
3

= <v3> -3 <’U2> (V) + 3 (v) (V) — (v)

o0 . 3/2
<U3>:A/ Vo e dv:%:z (SkBT>
0

2a3 2\ ™

m (8kpT 3/2_3 3kpT\ [ 8kgT 1/2+2 8kpT \ /2

2 ™m m ™m ™nm
_ <8kBT)3/2 <E 9 +2)
™m 2 8

_ (8keT\Y?(, 57
S\ m™m 8 )

Maple. The integral for pu3 can be solved in a few steps in Maple using the following commands:

e Pv:i=v->4*Pi*(abs(m/kT)/(2*Pi))"(3/2)*v"2*exp(-abs(m/kT)*v"2/2);
e avgv:=integrate(Pv(v)*v,v=0..infinity);
e int(Pv(v)*(v-avgv)"3, v = 0 .. infinity);

Note the use of abs for m/kT. That’s because Maple needs to know that the coefficient (m/kT) in
the exponential is positive in order to arrive at the correct analytical solution. The general solution,
which allows for the argument of the exponential to be positive or negative, employs the error function
(appearing in Maple as erf), which is not especially helpful.

Mathematica. The integral for us can be solved by the following set of commands:

e $Assumptions = m>0 && kT > 0;
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