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First Printing Errors

Please make the indicated corrections in the following exercises:

Section 3.1: Exercise 9: Z, x Z¢ find two subgroups H and K of order 4 such
that H is not isomorphic to K, but (Z, X Z¢) | H= (Z4XZe) | K
Section 3.4: Exercise 7: n =36
Section 4.1: line8...LetGactonX...

Exercise 18: Let 1 < i = [G : H] be the index of H in a finite
group G .
Section 4.4: Exercise 15: Let G be a finite group . . .

Exercise 21: Explain why for any g € G, the group G and the
centralizer C(g) are equal if and only if g € Z(G).
Section 5.1: Exercise 12: Let K < G with |Gl finite. Let H be a subgroup of G
such that [G : H] and |K] are relatively prime . . .
Section 5.3: Exercise 16: Let H be a non trivial normal subgroup of 4, , n = 6.
Assume that A, is simple. Show that G; < H, where G; = { pE€ A, | p(§) =i }, for
some l sisn.

Exercise 19: Show that if G is a finite solvable group . . . .

Section 6.3: Exercise 41: . . . for every nonzero element a € R there exists . . .
Section 7.2: Exercise 25 (d): If R is a commutative ring with unity . . .

Exercise 28 (b): If J is a maximal ideal in ¢(R) . . .
Section 8.8: Exercise 8 and Exercise 9: Let R be a commutative ring with
unity . . .

Section 10.3:  Exercise 13: Prove Proposition 10.3.10,
Exercise 14 : . . . as in Example 10.3.11
Section 10.4:  Exercise 23 (b): Use (a) to show that if r divides n, then p” - 1
divides p”" - 1.)
Section 11.1:  Exercise 20: f{x) = x* - x*+ 1/8,
Exercise 21: f{x)=x%+2x-2
Section 11.3:  Exercise 1 (b): By a substitution reduce f(x) = 0 to the form g(y) =
y*-3y-V7/7=0.
Section 11.4:  Exercise 12 (b) If (¢/2)* + (¢/3)* <O0. . .,
Exercise 13: . . . with square roots and angle trisections are those
with three real zeros . . .
Section 12.5:  Exercise 5: x° - x* + x - 1,
Exercise 17: X + x* + X - 2¢* - 2x -2
Exercise 18: Let f(x) € Q[x] be an irreducible quintic over Q with
exactly two nonreal zeros... (b) For any field F= K, F= E with ...
Chapter 16: Exercise 28: .. . where Bisan (n-r) X (n- k) = k X r matrix . . .
Exercise 33: Show that a (6, 3) linear binary code could correct . . .






Chapter 0
Background

0.1 Sets and Maps
The notions of one to one, onto and invertible maps may be already in the
background of many students. One of the aims of this section though is to make the
introduction of permutations in Chapter 1 much easier. Theorem 0.1.15, Proposition
0.1.17, Theorem 0.1.20 and Theorem 0.1.24 allow us in Chapter 1 to immediately
see that the set of permutations S,, is a group. The notion of cardinality of a set is also
introduced here as an appropriate example and is used throughout the text.
Exercises 0.1

1. Yes. 5u + 3=5v + 3 implies 5u =5vand u =vinR.

2. Yes.¢*=¢"impliesu=Ine'=ine’ =v.

3. Yes. u® = v’implies u = ()% = (V})!? = v.

4. No. (-2)*=(2)*

5. Yes. If m/n =u/v then mv = un which implies v/u = n/m.

6. No. (-2)* = (2)*

7. No. ¢(0,1)'= 0= ¢(0,2).

8. Yes. For b ER consider a = ¢®. Thenlna = Ine® = b.

9. No. ¢(x) = 4.
10. Yes. ¢ is one to one and ¢(1), ¢(2), ¢(3), ¢(4) are all distinct.
11. (1) Letpo: A — 2 be the identity map. po(¥) = u and py(v) =v.
Therefore, po(#) = p,.+) implies u = v and given any b € A we have b = py(b).
(2) For any a € A, we have ¢ - po (@) = ¢ (p () = ¢ (@).
(3) For any b € B, we have pq - ¢(b) = po ($(b)) = ¢ (b).

12. No. (0) = 1= ¢(=2).
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13. Yes and ¢''(%) = (2x - 3)/5.
14. Yesand ¢'()) =i 2for3<isn,¢'(2)=n and¢p '(I)=n-1.

15. (a) Suppose ¥ - ¢ is onto. Then for any ¢ € C there exists an a € A such that
c =x(¢(a)). Let b = ¢(a) €E B, thenc =y (b) .

(b) Suppose ¢p(u) = ¢(v). Then x(§(x)) = x(¢(v ) and this implies u = v when x-¢
is one to one. '

Exercises 16, 17 and 18 illustrate the fact that if two maps ¢ and 1 are one to one and
onto then so is the map (¢,) on the Cartesian products. One may add this as a
separate exercise.

16. Let ¢: Z — 27Z be the one to one and onto map defined by ¢(x) = 2x and let

% : Z X Z —> 2Z x 27 be the map defined by x(a, b) = (¢(a), ¢(b)) = (2, 2b). Then
x is one to one because if x(a, b) = x(4, v), then ¢(a) = ¢(u) , $(b) = ¢(v) and
a=u,b = vsince ¢ is one to one. Finally, % is onto because for any (2k,2/) in

27 x 27, we have (k1) =(2k,2I).

17. If |Al = n then there exists a one to one and onto map ¢ : {1,2,3,...,n} — A.

Solet A ={a,, a,, as,...,a,}, where a; = ¢(i) andlet X = { (i, j)) | 1 s i, j s n}. Then
IXI=n®and x : X = Ax A defined by x(i, j) = (¢(D), ®()) = (a; a)) is one to one and
onto since ¢ is .

18. If |Al = |Bl and |Cl = DI, then there exist one to one and onto maps ¢ : A — B and
y:C— D.Hencey:Ax C —BxD, defined by x(a, c) = (¢(a), ¥(¢)), is one to
one and onto.

0.2 Equivalence Relations and Partitions

Equivalence relations and equivalence classes are fundamental notions that play an
important role throughout the text. For many students the notions of quotient groups
and quotient rings are very difficult to work with. Theorem 0.2.4 is used in Chapter 2
where cosets are seen as equivalence classes and in this way the proof of Lagrange's
theorem becomes easier. In Chapter 7 again where quotient rings are introduced
Theorem 0.2.4 is needed.

Exercises 0.2

1. Yes. (1) lal = lal , (2) lal = 1bl implies 1bl = lal , (3) lal = bl and |5 = Icl implies
lal = Icl. The equivalence classes are {a,- a} forall a€ R.
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2. No. For example, 1 ~ 2 holds but 2 ~ 1 is false.

3.Yes. (1) a-aiseven,(2)if a-biseven,sois b-a,(3)ifa-b = 2kand
b - ¢ = 2l for some integers k and /, thena - ¢ = (a-b) + (b - ¢) = 2(k + [) . There are
two equivalence classes, namely 2Z = the even integers and 1 + 2Z = the odd
integers.

4.No.2-3lsland3-4<1butl2-4/>1.

5.Yes. (1) a - a is amultiple of 3, (2) if a - b is a multiple of 3, sois b - a,
3)if a-b=3kand b - c = 3! for some integers k and /, then a - ¢ = 3(k + D). In this
case there are three equivalence classes, namely 3Z = {all multiples of 3}, 1 + 3Z =
{1 + any multiple of 3} and 2 + 3Z = {2 + any multiple of 3}.

Exercise 6 should be assigned together with Exercise 11 for students to realize the.
difference between the two examples.

6. Yes. (3) Suppose x,y, = Xx,y; and X,y3 = x3y, . If x; =0, then y, = 0 and the first
equation implies x, = 0. In this case y, = 0 and the second equation implies x; = 0.
Thus if x; = 0, we obtain x,y; = x3y;. If x; = 0, then x, = 0 and x; = 0, the two
equations imply y,/Xx; =¥,/ X, = Y3/ X3 and x,y; = x3y;. The equivalence classes are
all the straight lines through the origin with the origin removed.

7. Yes. (x1,y)) ~ (%.y,) if and only if they are on the same circle centered at the
origin.

8. Yes. The equivalence classes are all the parallel lines with slope 5/3.

9. (3) if x ~ y, then x € [n] and y € [n] for some integer n and if y ~ 2 then
y € [m] and z € [m] for some integer m. Since y € [n] N [m] = O, the two
equivalence classes are equal. Hencen=m andx~z.

10.[n+2]=(n,n+2]={xERI0<x-n=<2}. For any x € R we have x € [n +2],
where 7 is the greatest even integer such that n < x and [n + 2] N [m + 2] = Jis
equivalent to n = m.

11. (1, 2) ~ (0, 0) and (1, 3) ~ (0, 0) even though (1, 2) and (1, 3) are not equivalent.
The origin would belong to every equivalence class and this contradicts Theorem
024.

12 ()nla-a=0,Q)ifnl a-b,then nl-(a-b)=b-a,3)ifa-b=kn and
b - ¢ = Infor some integers k and /, then a-c = (k+ 1) n.
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13. (1) ¢(a) = #(a) , (2) §(a) = ¢(b) is equivalent to ¢(b) = ¢(a) , (3) ¢(a) = ¢(b) and
®(b) = ¢(c) imply ¢(a) = ¢(c).

0.3 Properties of Z

The Binomial theorem, Theorem 0.3.8, is used repeatedly and students should be
familiar with it. The Division Algorithm and the Euclidean Algorithm for Z,
Theorem 0.3.11 and Proposition 0.3.18, are used as models in Chapter 8 for the
corresponding theorems for F [x] . The last part of this section on integers mod n
does all the necessary ground work for the introduction in Chapter 1of the groups Z,
and U(n) , the group of units mod n..

Exercises 0.3

1.Forn=1,the LHS=1andthe RHS=1(1+1)/2=1. Assume truefor n==%.
Thenl+2+. .+k+k+1D)=[k(k +1)/2]+(k+ ) =(k+ 1)(k+2)/2.

2.Forn=1,the LHS = 1 and the RHS = 1(1 + 1)(2 + 1/ 6 = 1. Assume true for
n=k.Then1>+ 2%+ ..+ P+ (k+ 1)?*=[k(k+ D2k + 1)/ 6] + (k + 1)*=
(k+ D[k + 1) + 6(k + 1)]/ 6 = (k+ 1)(k + 2)(2k + 3) /6.

3. For n =1, the LHS = 1 and the RHS = 1%(1 + 1)?>/ 4 = 1. Assume true for n = k.
Then 3+ ..+ B+ (k+ 1> =[Pk+1)?/14]+ (k+ 1)’ =(k+ D[P+ 4k+ 1] /4=
(k+ 1)%(k + 2)*/ 4.

4. For n = 0 the inequality holds. Assume true for n = k. Then x* < y* and since
Osxsy wehave X' = X . x sy . x sy .y = y".

5.Forn=0,wehave LHS =0<1=RHS andfor n=1, LHS =1 <2=RHS.
Assume true forn=k=1.Thenk+ 1 sk + k=2k < 2. 2¢=2%1

6. For n = 1, the LHS = 1° - (1 . 2) = -1 and the RHS = -1. Assume true for n = k.
Thel} F k+2)i '1 FraFes = (F k+2)2 - (F k+1)2 - FraFre = (F k+2)2 - ('l)k - FiFyiz - FraFre =
(-1)'= (D™ '

7. Fn+1Fn+2 - FnFn+3 = Fn+l(Fn+1 + Fn) - Fn(Fn+2 + Fn+1) = (Fn+l)2 - FnFn+2 = ('l)n .

8. For n = 1 we have LHS = 1 < 2 = RHS. Assume true for all i such that
1sisk.ThenFy, =Fy+ Fyy <2t+ 281 <284 2k =201

9 For n=1,the LHS = a(l + r) and the RHS = a(1- ) /(1 -r) = a(1 + 1).
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Assume true forn = k. Then a + ar + ..... + ar + a*' =a(l - Y1 -r) + ar**' =

all -7+ A 22 (1-n=a1-7)11-7).

10. Suppose there exists a positive integer n = n, for which P(n) is false. Then the set
S of all positive integers n = no, for which P(n) is false, is nonempty. Therefore, S has
a least element m. Then for any & such that n, < k < m, we have k & S and hence P(k)
is true but then (2) leads us to a contradiction.

11. (a) = (b) This is Theorem 0.3.2

(b) => (c¢) This is Theorem 0.3.6

(c) = (a) Suppose there exists a set U of positive integers with no least element. Let
P(n) be the statement " n & U ". P(1) is true because 1 ¢ U since U has no least
element. Assume P(k) true forall k, 1 s k <m. Then k & Uforallk, 1 s k <mand

m & U since U has no least element. Hence P(m) is true. Therefore P(n) is true for
all n=1and U is the empty set.

12.1 10 45 120 210 252 210 120 45 10 1
13.n!/ri(n-Nt=n!/(n-r'r!

14. For this exercise it is important to first point out that the binomial coefficients are
always integers. This follows immediately from Pascal's identity and induction on n.
c,=p!/r! (p-r)! €Z ,wherer<p andp -r < p. Therefore, the prime number p does
not appear in the prime factorization of r!or of (p -r)! . Hence since p divides
p!=c,r! (p-r)! andp doesnot divide r! (p -r)!, we have that p must divide c, .

15. Cl=11=c10,02 =55=C9,C4=330,06=462

16. 135=2(52) + 31

52=31+21
31=21+10
21=2(10)+1

1=21-2(10) =21 - 2(31 - 21) =3(21) - 2(31) = 3(52 - 31) - 2(31) = 3(52) - 5(31)
=3(52) - 5(135 - 2(52)) = 13(52) - 5(135).

17. gcd(a,b) = 1 = ua + vb. Therefore n = (nu)a + (nv)b.

18. Let 1 < u = ged(a'b'). Then ud is a common divisor of a and b. Hence ud divides
dandu=1.

19. Letd=p,"...p; *. Since ¢; < a; ,d divides n and since ¢; < b;,d divides m . If
Iln and Ilm then I =p".. p/*,wherer;s a;and r; s b; . Hence r; s min(a;b;)
=c;and /1 d.
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20. Let f=p,% ... p. Since a; s d;, n divides f and since b, s d;, m divides f. If
g=p..p* and nlgandm| g thena; ss;and b; ss; . Hence max(a;b) s's;
andfl g.

21. Let ¢; = min(a;,b;) + max(a;,b;) = a; + b; . Then lem(n,m)gcd(n,m) =
plel ...pkek .

22. From Exercise 21 we obtain lem(n,m) = nm if and only if gcd(n,m) = 1.

23. gcd(9750,59400) = 2 . 3 . 5? and 1em(9750,59400) = 2° . 3*.5°.11.13
24.n°-n=n-1)=n(n+ 1)(n-1).Since 2l nor2in+1,wehave 21 n’ - n.
Furthermore 7 = 0 mod 3 in which case 3 | n, or n =1 mod 3 in whichcase3 | n -1,

or n=2mod3 in which case 3 |n + 1. Hence 3 | n° - n.

25. n=1modS5S= n*=1mod5, n=2mod 5= n*=16=1mod 5,
n=3mod5= n*=8l=1mod5and n=4mod5= n’=(-1)*mod5=1mod5.

26.n°-n =n(n*-1).If n=0mod 5 then »° =nmod 5. Otherwise by Exercise 25
n*=1mod 5 and hence n°=rnmod 5.

27.[r1 + [s1=[r + s] = [s + r] = [s] +[r] and [r][s] = [rs] = [sr] = [s][r].

2.1+ ([s1+ D=+ +A=r+ @+ D]=[r+s)+1]=(r+s)+ [t]1=
([r] + [s1) + [] and [F)([s1(2]) = [P)(s) = [r(st)] = [(rs)e] = [rs]le] = ([P ALsD LA

29 [r]([s]1+ () =1[rlls + A=[r(s + D] =[rs + re] = [rs] + [rt] = [r][s] + [r1[z).

30.[0] + [/]=[0 + r]1=[r] = [r + O] = [r] + [0] and
Mir=M0.r1=r=I0r.11=[r][1].

31. Addition mod 6 in Zg Multiplication mod 6 in Zg

012345 012345
00123435 00 000O0O0
1112345060 110123435
20234501 21024024
3134501 2 303 03 03
4450123 404 2 0 4 2
51501234 50 54321
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Addition mod 7 in Z, Multiplication mod 7 in Z
0123456 0123456
000123456 000000000
111234560 110123456
212345601 200246135
31345601 2 310362514
44560123 40415263
55601234 50531642
66 012345 6|06 54321

32. Suppose p is prime. Then [r][s] = [rs] = [0] implies p divides rs in Z. Hence p
divides r and [r] = [0] or p divides s and [s] = [0]. Suppose p is not prime and p = rs
with 7 < p and s < p . Then [r] = [0] and [s] = [0] in Z, with [r][s] = [0].

33. gcd(n,r) = 1 = un + vr for some integers u and v. Therefore, ged(n,v) =1 and
vr=1modn.

34. Multiplication mod 7 in U(7) is as in Z, with the row and column of zeros
removed (see Exercise 31).

Mult. mod 8 in U(8)
1 3

7

5
5
7
1
3

NN W=

35. gcd(m,n) = 1 = um + vn for some integers ¥ and v. Then a = aum + avn, hence
a = avnmod m and b = bum + bvn, hence b = bum mod n. Let x = avn +bum.

36. (a) We will use induction on s. For s = 1 let x = a,. Assume true fors-1andlety
=g;modm;forlsis s-1.LetN=my..mg,. Then gcd(N,m;,) = 1 and by Exercise
35 there exists x such that x = y mod N and x = a, mod m; . Note that
y=a;+km;,1siss-1forsomek;and x =y + k(m;...m,,) for some k. Hence

x = a; + km; + k(m, ..m,) and x =samod m; foralli, 1<i= s.

(b) If s = 1 there is nothing to prove. Assume true for 1 si= s-1 and let N be as in
part (a) . Thenx = x' + kN and x = x' + Im, for some integers k and [ and kN = Im,.
By Proposition 0.3.22 since gcd(N,m,) = 1 we have m; divides k. Hence

x =x'mod M.
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0.4 Complex Numbers

De Moivre's formula is used freely throughout the text. The cyclic group of the nth
roots of unity is introduced in Chapter 1 using the polar representation of a complex
number. Examples 0.4.18, 0.4.19 and 0.4.20 illustrate the type of calculations
students should become comfortable with. For this purpose Exercises 23 through 28
are strongly recommended. It is especially important in Chapter 8 and later chapters
for students to be at ease with finding solutions of polynomial equations.

Exercises 0.4

1.10-3i 2.2+2i 3.1+

4.1 5.-1 6.-i

7.1 8.-1 9. -i
10. -4 + 19i 11. 23 + 14i 12.8-8i
13.1-i 14.3/2-i/2 15.-12+i2
16. V13 ,vV2 ,V5 17. V2 (cos 7n/4 + i sin 7v/4)
18. V2 (cos 5n/4 + i sin 5n/4) 19. 2(cos 2n/3 + i sin 27/3)

20. 7,2, = ryr;[(cos 6,cos 8, - sin 6;sin 6,) + i (sin 8,cos 6, + cos 9,sm 0,) =
rir; (cos (8;+ 6,) + i sin (0,+ 6,) ).

21. Apply Proposition 0.4.15 with 6 =6, =6, .
22. For n = 1 there is nothing to prove. Assume true for n = k. Then
ZF = r*(cos kB + i sin k)
Using now Proposition 0.4.15 with 8, = k8 and 6, = 6 we obtain
7 =75 . 7 = P**Y(cos (k +1)8 + i sin (k + 1)8).
23.z=1,=0=(-1+vV30)2, =0’ =(-1-vV3i)2.
24 L= 1,22-:1..,13:‘ -1 ,Z4-_—"i .

25. 7%= r*(cos 40 + i sin 49) = cos 7t + i sin . Thus 7 = 1 and 6 = /4 + kn/2 with
k=0, 1,2or 3. Hence the four solutions are z = (V2 =v2i)/2.

26‘Theﬂu'eesolutionsare-2,1—\/31' and 1++3i
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27. The three solutions are i, (-v3-i)/2 and (V3-i)/2.
28. The three solutions are 5i,5(-v3-i )/2 and 5(V3-i)/2.

29. Using from calculus the power series expansions of the exponential function as
well as that of the cosine and the sine functions we obtain

€0= (0) / n! = 3 [6% /(4K)! + i 0% /(@K + 1)! - 6%2 /(4k+2)! - § 6% /(4K + 3)!] =
n=0 k=0

SED /2! + iy (-1)"6*!/(2n+ 1) =cosB+isinB.

n=0 n=0

30. Let z = r(cos 8 + i sin 0). Then z = r¢’® and " = r"e¢"® = r"(cos n@ + i sin nd).

0.5 Matrices

In order to introduce the general linear groups and the special linear groups of 2x2
matrices in Chapter 1 a brief review on 2x2 matrices and their determinant is done in
this section. The examples and the exercises illustrate matrices with entries not

necessarily from R.

Exercises 0.5

1 2. 3.

2 6 1+ 3+21i 1 +21i 4
3 5 1+ 1 a i 4+210
0 5

4 5. 6

1 +1i 3 +2i -1 1 +1 1 4
11+ 1 -1+ -1 3 2
7 _ 8.

4 2 1 +2i 21

4 2 | - 2 +1 -2

,9 _ 10

i 0 8 8 i

0 i | |- 81 8
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11.1-(1+)@2i)=3-2i 12. 2 13. 1 14. O

15.detA=2=0 andA'=12 A

16.det A=1=0and Al= 17.detA=2=0 and A'=-1/2 A
cos 8 sinb

-sinb cos 6

18.detA=1=0 and Al= 19. det AB=det AdetB =0

2 -1

13 4

20.

1 0 0 1 1 1 1 0 1 1 0 1

_0 1 1 1 1 0 1 1 0 1 1 0

21.det A= ad- bc = 1inZ; .We will break up the counting into five cases.
(1)a=0,d=0,1or2andb=1,c=20rb=2,c=1

(2)d=0,a=10r2 andb=1,c=20rb=2,c=1
B3)b=0,c=0,1or2anda=d=1 ora=d=2

@®c=0,b=10r2 anda=d=1 ora=d=2
(B)b=c=1lorb=c=2anda=2,d=1or a=1,d=2



Chapter 1

Groups

1.1 Examples and basic concepts

All the examples of groups the students will be working on in the rest of the text are
introduced in this first section. Familiarity with the finite groups Z,, U(n), S;, D, , the
Klein 4-group, the quaternion group as well as the matrix groups GL(2,R) and
SL(2,R) right at the beginning is very important. In this section students also get to
practice developing finite group tables. The first examples help them see the
difference between a specific group of a given order and the underlying group
structure.

Exercises 1.1

1. () If a, b € 2Z, then a =2k and b = 2m for some integers k and m. Therefore, a
+ b = 2(k + m) € 2Z, (2) addition in Z is associative, (3) 0 € 2Z and (4) a = 2k
implies -a = 2(-k) €E 2Z, .

2. By Proposition 0.3.31 and Proposition 0.3.34 .
3. Use Table 5.

4. (1)If x,y EC then x=a + biand y = ¢ + di where a, b and c, d are pairs of real
numbers which are not the 0, 0 pair. Hence xy = (ac - bd) + (bc + ad)i and xy = 0
only when ac = bd and bc = -ad. If a = 0 then d = 0 and this contradicts the second
equation. If a = O then d = 0 and from the second equation we obtain b? = -a® which
is impossible since b is a real number and a = 0 . Hence xy € C’,

(2) (a + bi)[(c + di)(u + vi)] = a(cu - dv) - b(cv + du) + [b(cu - dv) + afcv + du)li =
(ac - bd)u - (ad + be)v + [(ac-bd)v + (ad +bc)uli = [(a + bi)(c + di))(u + vi),
(3)1 €C" and (4) x = a + bi € C" implies a® + b*= 0 and x '= (a - bi)/a® + > EC".

5. (1) det A = 0 and det B = O implies det AB = det A det B = 0, (2) multiplication is
associative in Q hence in G, (3) det I, = 1 hence I, € G and (4) det A = O hence A
existsand det A?=(1/detA)=0.

Constructing the group tables in Exercises 6 through 9 help students understand how

the tables give us a "picture " of these groups, and at the same time they get more
familiar with these important finite groups that will appear very often in the text.

11
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6. The group table of S,
2

Po PP W Py U3
Po|Po P PP M M W
PP P P B3 W M
PPIP Po P M M Wy
Bi (W1 M2 U3 P PP
Bo M2 M3 W P° po P

Uz {Us U H2 P P° Po
Not Abelian since for example p,p = pp,

7. The group table of D,
2 3

PP P2 P T pt_ pT pr
Po [P0 P PP P T pt  pt p
P |p PP P p PT pT Pt T
> [P° P po P pT pT T  pT
PP e P PP Pt T pTt P
T |t pt pft Pt p PP PP P
pt |pt T pt pT P  p PP
pt [Pt Pt T pT PP P p P
pt [Pt p Pt T PP PP P po
Not Abelian since for example pt = tp.

8. Leta= and c=ab=

= e TR

Then we obtain the following group table and the group is Abelian

e a b ¢
e |le a b ¢
a la e ¢ b
b |b ¢ e a
c |lc b a e

9. The group table of Qg

1 -1 @i -4 j 5 k -k

1 i 4 j 9 k -k
1011 < 0 5 j ok Kk
ilio o4 11k -k 4
|- i1 -1 -k kK j o4
jlj ¥ -k k -1 1 i -
1< Jj k -k 1 -1 - i

k| k -k 5 j i i -1

-k |-k kK j 4 0 - 1 -1
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PO B
HENR R

11. If n = O or 1 nothing to prove since the group is Abelian. Assume true for all
k=0, then (ab)**! = (ab)(ab) = (a'b*)(ab) = a* (b*a)b = a*(ab")b = a**'b**! and
if n = - s< O then (ab)" = (ab)* =(b'a*)’=(a’'b")’ = a°b”®* = a"b".

12. (pw)> = po While p?p,>=p’ = po.

13.4% = py if a = p,.u;, pyorp; and b’ = pyif b= p or p’.

14. In U(10) 3'=7,7'=3and 9" = 9.
In U(15) 2'=8,4'=4,7'=13, 11"=11 and 14" =14.

15.a'=a"".
16.p'=p*,t =t and (pv)'=pt.

17. The elements of V can be written as /,, A, -A and -1, and
2= A = CAP=(LY =1,

18. Let a, b € G, then (ab)* = ab and (ab)’ =b'a = ba.

Exercises 19 and 20 may seem to students at first long and complex with too many
cases. The hint though in Exercise 20 should help them take a short cut.

19. Let G = {e, a, b, c}. Case 1: Assume a’= e. Then a” is one of the remaining two
elements, let's say a*> = b . Then ac can not be equal to a, b or c. Therefore, ac = e,
ab=c=d’ a*=ac=eand G={e, a, a’,a’}. Case 2 : Assume @’ = e. Thenab = ¢
and ac = b. Furthermore, this givesus ba = candca = b. If b*= athenc = ba = b
and G= {e, b, b*b*} and we get the same table as in Case 1. If b* = e then we obtain

e a b c
e |le a b =
a |a e c b
b |b ¢ e a
c |lc b a e
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20. If there exists @ = e in G such that a®> = e, then let ¢, a, b, c, d be the five distinct
elements of G with ¢ = ab. Then b = a’*b=ac and ad = d which is impossible.
Thus for all elements a= e in G we have a’= e. If there exists an element a= e in G
such that a> = e ,then G={e, a, a®>,h, ¢} withab = c and ac = b . In this case

a®b = ac = b which is impossible. Thus for all elements a= ¢ in G we have a’= e.
Finally if there exists an element a = ¢ in G with a*=e then G = {e, a, @, @’, b},
and ab = b which is impossible. Thus G = {e, a, @% a@’, a*}and @’ =e.

21. 6, as in Exercise 20 in Section 0.5.

22.4° = emeans a=a’. Since |G - {e}| is odd , if we pair every element of G - {e}
with its inverse, {b, b} , then in at least one of these pairs b = bl

23. pr(1) = p(1) =2 and pr(2) = p(n) = 1,
alsotp?’(1) =t(n) =2and Tp’(2) =t(1) = 1.

24. Let G ={ay, a,, ..., a;,.., a,} and A = {a,a;} the matrix that gives its group table.
Then G is Abelian if and only if a,a; = gja; forall 1 <i,j <n.

25. ged(m, n) = 1 = um + vn for some integers u and v by Theorem 0.3.16.
Hence a = (@a™*(@")" = (a")".

26. Since a® = e for all a = e in G and G is Abelian , we have
a,a,..a, = [[; (@aa ) =e.

27. Since G is finite and closed under the given operation, for any element a of G
there exist positive integers i <j such that a’ = a’. Hence, using the cancellation laws
we obtain a’**!= g where j - i + 1 > 1. For any other element b in G we have a/*'b =
ab and by the left cancellation law a’'b = b. Similarly, using the right cancellation
law we obtain ba’ = b Therefore a’is the identity element in G. Furthermore, a’*!

is the inverse of ain G.

28. By Proposition 0.3.37, Z,- {0} = U(p) is closed under multiplication mod p.
By Proposition 0.3.34 the operation is associative. Furthermore, if a, b, ¢ € U(p)
and ab = ac, then a(b - c) = 0, that is pl a(b - c) inZ . Since p does not divide a, by
Euclid's Lemma, Corollary 0.3.23, p | b - c and b = cin U(p). Similarly, right
cancellation holds and Z, - {0} is a group by Exercise 27.

29. For any prime p and any integer y suchthatO<y <p,p|yimpliesy=0or

y = p. For any x € U(p) such that x> =1 we must have p | (x + 1)(x - 1) which implies
x+1=porx-1=0.Thus x = x"in U(p) only if x =1 or x = p-1. Therefore,
(p-2)!=1modpand (p-1)! =-1mod p.
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1.2 Subgroups

The subgroup test , Theorem 1.2.10, introduced in this section is used very frequently
throughout the text . Similar theorems based on the subgroup test are given in
Chapter 6 for subrings, subdomains and subfields. The order of an element a and the
cyclic subgroup < a > it generates are notions introduced here and prepare students

for the next section on cyclic groups. In addition, they help students construct
examples of subgroups.

Exercises 1.2
1.3 2.5 3.2 4.4 52 6.3 7.4 8.4
9. Infinite 10.7 11.nZ foralln =1 12.nZ foralln =1
13.R*,<i> ,<cos2n/n + i sin 27/n > 14.<2>,<4>
15.<p>,<pu > 16.<p>,{po,p>,T,pT} 17.16Z , 24 Z
18. {Uppe; triangular invertible matrices} , {Lower triangular invertible matrices }
19.<i>,<j>

20. For any integer k , a*a* = e. Hence a* = e if and only if (a')* = e and lal = la’.
Furthermore, if lal = n, then a* = a™* =(a?)"*.

In Exercises 21, 22, 23, 24, 25 and 29 we use repeatedly the subgroup test
Theorem 1.2.20.

21.Forx=a+b/2andy = c + dV2 ,where a, b, c, dareinQ,
x-y=(a-c)+(b-d)V2isinGsincea-c and b - dare in Q.

22 Ifx=n+mi andy=r+siinGthenn-r andm-sareinZ.
Therefore,x -y =(n-r) + (m-s)iisin G.

23. Let x = cos (2kn/7) + i sin (2kn/7) and y = cos (2mnt/7) + i sin (2ma/7)
then xy * = cos (2(k-m)x/7) + i sin (2(k-m)n/7) is in G and |Gl = 7.

24. If x and y are complex numbers with Ixl = [yl = 1, then
x=cosB+isin®,y=cos@+isingandxy ™’ =cos(6-¢)+isin-9)EG.

25. (a) det A(x) = cos*y + sin* = 1 for any angle x, and
A(B)A(p)"' = A(B)A(-9) = A(B-9)EG.
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(b) A(4n/3) = A'(2n/3) and (c) IAQ2n/3)I =3

26. (a) A= A=A and (b)1AI=5

b

27.DY(a, b,c)=D( -a, ac - b, -c) and D(a, b, ¢)D(x, y, z) =
D(x +a,y + az + b, 7 + c¢) . Hence, by Theorem 1.2.13, H is a subgroup of SI(3, R).

28. Let a, b € G with lal = k and bl = m. Then, by Exercise 20, b !l = m and by
Exercise 11 in Section 1.1, (@b )" = a * (b " = (a *)"((b )"} = € and lab 'l is
finite. We obtain a subgroup by Theorem 1.2.13.

29. letx, yE€ HN K. Then xy ' € H because H is a subgroup and xy ' € K because
K is a subgroup. Hence xy '€ HN K.

30. Let k= Ibl and n = laba ' . Then (aba ') =ab'a ' =eand n < k.
Also (aba )" = ab "a ™ = e which implies b " = ¢ and k s n. Hencen = k .

31. (ab)**' = a (ba) *b. Hence (ba)t = eif and only if (ab)* =e.
32. Let x, y € C(a). Then (xy)a = x(ya) = x(ay) =(xa)y = a(xy) and xa = ax implies

ax ' = x Yxa)x ! = x Yax)x ! = x 'a. Hence by Theorem 1.2.13 C(a) is a subgroup
of G.

33.Cuy)=<w > 34. C(p,) =D,

35. C(a) = G means xa = ax for all x € G. Hence C(a) = G is equivalent to a € Z(G).

36. Z(S5) = { po}-

1.3 Cyclic Groups

In this section Theorem 1.3.16 allows students to calculate orders of elements in a
cyclic group in a direct way. Corollary 1.3.12" of Theorem 1.3.11 clarnfies a very
common misconception that students have about the order of an element. This
Corollary is used repeatedly throughout the book. In Theorem 1.3.26 it should be
pointed out that it is the subgroup of order d that is unique while the number of
elements of order d can be larger, it is actually ¢(d) as is shown in Exercise 26.



1 Groups 17

Exercises 1.3
1.(a)5 (b)s (c)21 (d) 30 (e) 21 "3
2.21,7,21,7,3,7,7 3.(a)<a>={ea d aa", a’}, (b)d a, a*
4.InZy, 1,3,7,9. InZy, 1,5,7,11.InZ;5 1,2,4,7,8,11, 13, 14.

s. a, a7, dll, 013, a17’ al9’ 023, a29

6.
@,
@) 3 \
(6) ©)
Y
7.3,6,9,12 8.a%a%a"a®

9. < py>,< P>, <M >, <MW, > <Ws>. All proper subgroups of S; are cyclic.

10.< po>,<p><p°><T><PT><pT><pT>.
{ po, P> T, p>t }is anon cyclic proper subgroup of D, .

11. Counterexample given in Exercise 9 with S5 . 12. <i>, < cos 2a/n + i sin 2n/n >

13.(=)Ifa* = ethena® = a°. Hence by Theorem 1.3.11 part (2) n | k.
(<)Ifnlk, thenk=nranda*= (" =e.

14. By definition < a >= {a*lkEZ} Letn=lal, then for any integer k£, when
dividedbynwehavek:qn+r,whereOsrsn-1.Hencea"=a‘1"”=
(a"fla"=a’.

15.1f0si,j=n-landa’'= a’thena’ = ¢ and by Corollary 1.3.12nlj-i.
Hencej-i=0andl<a>l=n=lal

16. Letx, y€ G=< a >. Thenx = a* and y = a ™ for some integers k and m and
_ A k,m __ Jktm _  m+k _ om k _
xy=a‘a"=a"=a""=a"a" =xy.
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17.(@)Z ,2Z ,nZ ®Q,R,R*,C’ (©) Z1, Z4 (d) Klein 4-group

18. H= <a > withlal= 10 and K = < b > with |bl = 14. Define L = < b*> < K.

Then ILl =7 and H N L = {e}. Hence if k = |(ab®)|, then e = (ab?* = a*b * , which
implies a* = b % =e &€ HN L. Therefore, 101k, 7| k, hence 70 | k. Also , since the
group is Abelian , by Exercise 11 in Section 1.1, (ab*)™=a"b'¥ = ¢ and k1 70.
Therefore, < ab ? > is a cyclic subgroup of order 70.

19. (a) If G = {e} leta = ¢ in G. Then < a > is a nontrivial subgroup of G. Hence it
can not be a proper subgroup. Thus G = < a >.

(b) Suppose G is infinite. In this case a 2= e. Consider < a *> >. If a & < a® > this
would be a proper nontrivial subgroup which is impossible. Therefore, a = a % for
some integer k, which implies a®*' = e and G is a finite cyclic group. Also, by
Theorem 1.3.26, |G| must be prime. So G is a finite cyclic group of prime order.

20. () Letx = mk + nl and'y = mr + ns, then x-y=m(k-r) + n(l -s)
(b) By Theorem 0.3.16, 3 = ged(12,21) € 12Z + 21 Z . Hence 3 is a generator.
(©YmZ +nZ=<ged(m, n)>.

21. <30>=6Z+15Z 22. <lem(m, n) >

23.(a) Yes, U(10)=<3>=<9> (b)No,I5I=17I=1111=2
() No, BI=171=1131=1171=4and 91 = 1111 =2

24. Let H=<a >N < b > Then H is a subgroup of < a > and |H! divides lal.
Similarly |H! divides 1bl. Therefore |HI = 1 and H = {e}.

25. K is a nontrivial proper subgroup of G. Hence IKl=2,4, 5 or 10. H is a nontrivial
proper subgroup of K , therefore IK1 = 2. Also, since a* ¢ K we have [Kl = 5. If IKl =
10, then a® € K which implies a* € K. Therefore, 1K =4, |[HI =2, K = {e, @’, @', a'*}
and H = {e, a'’}.

26. Let H be the unique subgroup of G of order d. If b € G with bl = d, then
<b>=Hand b is a generator of H. Therefore the elements of order d in G are
exactly the generators of H. By Corollary 1.3.21 there are @(d) of them.

1.4 Permutations

Throughout the text the notation used for the product of two permutations is that of
the composition of two functions which is easier for students to remember. Thus
pt stands for the composite function p(t(x)) and the product permutation is always
calculated from right to left. The fact that some textbooks perform the product of two
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permutations from left to right is not mentioned in the text to avoid confusion. This
section contains a lot of calculations students learn easily. Permutations give them
concrete examples of the notions they have learned so far. Seeing some of the finite
groups they encountered in Section 1.1, such as D, , as subgroups of some S,, make
these groups easier to work with.
Exercises 1.4

1. Yes 2.No 3. No 4. Yes 5. Yes

6.1-7—>5—-1,2»6—>4-2 and3 =3

71-6—-8—>2—>5->1,3-9—->3 4—->4and7—7

85%Z,1+57Z ,2+5Z,3+5%Z ,4+5%Z 93%Z.,1+3%Z,2+3Z

10. (a)
12345678 123 45678
=(71382564)’T¢(13268547)
(b) |
(12345678 , (12345678
¢t=(23458671)’ =(58716423)
©

34827156

(1234567 8
$=la713856 2"

_1(1234'5678)

@lpl=15, ki=4
11.¢ =(283)(4910657)and Ipl =6 12.9=(276)(34)andlgl=6
13.9=(14)(25)and lgl=2

14.leto=(a,a,a.- . .a,),thenc'(a,) =ay,forall 1 si<nando’(a)=a.
Similarly 7 is the least positive integer such that o(a)) = a; .

15. If p and o are disjoint cycles in S,, then < p > N < 0> = < po > and by
Proposition 1.4.22 po = op. Hence p, = (po)* = p ¥ o * implies p* = (@) =po -
Hence lpol =1cm (lpl, lal).
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16. (a, ay a5 . . . a,) = (a, a)(a,a,,) . . . (a, a,) and the number of 2-cyclesism - 1.
17. In Exercise 11 odd, Exercise 12 odd, Exercise 13 even

18. (a) The identity is an even permutation and (b) The product of two odd
permutations is an even permutation.

19.4 20.6 2.6 2212 23.5 245 257

26. If all the elements of H are even permutations there is nothing to prove. So
suppose H contains an odd permutation p. Let E be the set of all even permutations
in H and O the set of all odd permutations in H . Lety : E — O be the map defined
by x(t) = tp for every even permutation T € E. The map x is one to one and onto
which shows that |El = 10! .

The group table of A, is not given in the text only the twelve elements are described
in Example 1.4.35. Exercise 27 together with Exercise 38 should give students a very
good picture of this very important group.

27. The group table of A, with the notation as in Example 1.4.35

Po_Pr P’ P P Ps P Pa_Pi O Oy O
Po Po P P P2 P2 Ps Ps’ Pa Pi O Oy O
PL P P° Po 05 pa P2 O O pst opsd P P
pi® Pi® Po P P3s Oy O3 pi opd o1 P ps P2
P2 P2 O pd P’ Po O P Ps O3 Pa ps P’
P P2 P O3 Po P2 Pa Oy O P’ ps P P
Pz Pz P4+ O O pi’ P’ Po O3 Py P2’ P P
P Ips> O3 PP Pl O Po Ps P1 O P’ P2 P

P+ P4 O1 P3 P1 O3 ‘322 P ps Po P2 Jh ps°
pl o2 p2 02 O pi’ Pt O Po2 Pa P1 P P2
O [O1 P3 P4 ps> P P1 P2 P P P O3 O

o, lo; pd P2 PP ops P P42 ps> p1 O3 Po O
O3 3 Pz2 P32 Pa  P1 P42 Pi" P2 P3 O Op Po

28. (a) Forany o,,tin Hwehave 1™ (2) =0 (2)=2and ot ' isin H.
(b)IHI=6 and (c){po,(134),(143)}

29. (a) Forany o ,tin Hwe have ot ({) =0 (i) =i and ot isin A.
(b) IHl = (n-1)! and (c) All the even permutations on the set of 7 - 1 elements
{1,2,..,i-1,i+1,..,n}

30.(123)(12)=(12)(123)and(123)and(12)are permutations in S, for
alnz3
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31.(12),(13),(14),(23),(24),(34)and 5,, 0, 03 as in Example 1.4.35

32.Ift=0,0,...0,, where the o; are disjoint cycles, then It| = lem(l0y,....lo,)) =2
implies |ol = 2 for all i . Therefore the o; are all 2-cycles.

33. Let 0 € 4, . Then o can be written as the product of an even number of 2-cycles,

let's say o = (p; P2)(P3Pa) - - - (Pas1 P25) Where the p; are all 2-cycles. If a pair (p, py.1)
of 2-cycles is not disjoint it can be replaced by a 3-cycle as follows:

(ij)jk) = (jki)andifitis disjoint it can be replaced by 3-cycles as follows:
(ij)kD)=@kj)(kli).

Exercise 34 should be assigned together with Exercise 33 .

34.(12k)(12k)(12i)=(2ik). Therefore, the 3-cycles ( 1 25 generate all the
3-cycles of type ( 2 i k ) where i, k = 3. Furthermore, (2i k)(2kj) = (i kj) and the
the 3-cycles (1 2 s ) generate all the 3-cycles in S, . The exercise now follows from
Exercise 33.

35. We will use inductiononj-ifor1sisjsn . Ifj-i=1then(ij)=(ii+1).
Assume that any 2-cycle (i j ) with j - i = k can be written as the product of 2-cycles
of type (s s+1). Consider a 2-cycle (i j) with j - i = k+ 1. Then

(ij) = (i+ 1 j)(ii+1)@+ 1) .By our induction hypothesis (7 + 1 j) can be written
as the product of 2-cycles of type (s s +1 ) and therefore (i) also.

Exercise 36 should be assigned together with Exercise 35.

36.(123...n)12)(1 nn-1...32)=(23)and

(123...m)(i i+1)(1n n-1...32)=(i+1 i + 2). Therefore, the cycles
(123...n)and (12) generate all the 2-cycles of type (s s+ 1). Hence, by
Exercise 35, they generate all the permutaions in S, .

37. For an m-cycle ( a, a, as . . . a,) there are n choices for the value of a;, n -1
choices for a,, . . . and n - m +1 choices for a,, . Hence we have found
n(n - 1)...(n - m + 1) choices but the same m-cycle can be written m different ways

since (@, 8,03 ...0p) =(n @18y ... 0p)=...=(020304...0n0, ).

38. (a) With 1 si s 4, p; and p;? give the two rotations with vertex i fixed .
o, the rotation around the axis through the edges 1 -2 and 3 - 4,

o, the rotation around the axis through the edges 1 - 3 and 2 - 4 and

o, the rotation around the axis through the edges 1 -4 and 2 - 3.

(b) A4

39.5,.
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40. Let X denote the empty square. Every rearrangement is obtained by a series of
exchanges of X with an adjacent square. Such an exchange can be written as a

2-cycle. In order for X to end up where it started from, the bottom right comer, it
must move to the left as many squares as it moves to the right and it must move up as
many squares as it moves down. Therefore, the rearrangement can be written as the
product of an even number of 2-cycles.

41. The rearrangement corresponds to the permutation
(123)(456)(789)( 1011 12)( 13 14 15) which is an even permutation
therefore a possible arrangement.

42.(1811356)(21247 1510 14) is an odd permutation hence not a possible
arrangement.

43. An even permutation , hence the arrangement is possible.

44. Let o be the permutation that gives a "perfect” shuffle.Then o(x) = 2x mod 2n + 1
and o* (x) = 2¥ x mod 2n + 1. Therefore, the order of o is the order of 2 in the group
U(2n + 1). In the case of 2n = 52 the order of o is 52 and in the case of 2n = 50 the
order of ois 8. : '



Chapter 2

Group Homomorphisms

2.1 Cosets and Lagrange's Theorem

Cosets of a subgroup are introduced as equivalence classes. Theorem 0.2.4 gives us
right away the partition of a finite group and Lagrange's theorem follows easily. The
fact that two cosets of a subgroup H are equal, aH = bH, exactly when a'b € H

needs to be emphasized to facilitate later on the understanding of quotient groups and
quotient rings.

Exercises 2.1
1.5Z2,1+5Z,2+5Z,3+5Z,4+5%Z

2.97,1+9Z,2+9Z ,3+9Z ,4+9Z ,5+9Z ,6+9Z ,7+9Z ,8 +9Z
andin3 Z the cosets are 97 ,3+97Z ,6+97%Z

3.<6>,1+<6>,2+<6>,3+<6>,4+<6>,5+<6> and in < 2 > the
cosetsare < 6> ,2+<6> ,4+<6>

4.<t>,p<T>=<T>p’,pKT>=<T>p?,pP<T>=<T>p

5.2 6.3 7.4 8n

9. (1) Since His a subgroupaa'=e € Handa~aforalla €G
(2) ab! € H implies (ab')' = ba’ € H since H is a subgroup and
() ab' € Hand bc' € Himply ab''bc’ =ac' €EH.
Finally, x = ha for some h € His equivalenttoxa' €H andx~a
10. Consider the map  : H — Ha defined by x(h) = hafor all h € H . (1) x is one to
one since x(h;) = hya = h,a = x(h,) implies h, = (ma)a! = (hya)a = h, and (2)  is
onto since for any y € Ha we have y = ha for some h € H and (h) = ha = y. Thus
|Hal=H
11. Immediate from Lemma 0.2.4 part (4) and Exercise 9
12. Immediate from Lemma 0.2.4 part (3) and Exercise 9

13. By Lemma 2.1.7 part (2) aH = Hif anonlyif a = ae’ € H

23
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14. (a) Yes, since 27- 12 € H (b) Yes, since 13 - (-2) EH
(c) No, since 126 - (- 1) € H

15.1H1=1,2,3,6,7,14,21,42 and [G:H] = 42, 21, 14, 7, 6, 3, 2, 1, respectively

16. IH1 = 1a*® = 12, [G:H] = 5and H = < a®** > = < @’ >. Therefore, H, aH, a*H, a’H
and a*H are exactly all the left cosets of H

17. lal is a divisor of 36 = 2232, Therefore, a'? = e implies lal = 1,2,3,4,6 or 12 . In
addition, lal = 9 or 18 because a'® = e. Hence lal=36and G =<a >

18. 216 19. |IH N Kl =3 because |H N Kl is a common divisor of 9 and 12 and
[G:H N K] = |Gl implies [H N K] > 1

20. Let H be a proper subgroup of G. Then |Hl = 1 and H = < e > or |Hl = p and by
Theorem 2.1.16 cyclic

21. Let H be a proper subgroup of G. Then |Hl = 1 and H < e > or |Hl = p or q and by
Theorem 2.1.16 cyclic

22. H N K is a subgroup of both H and K. Hence |H N Kl is a common divisor of n
and m. Since ged(n,m) = 1,we have [HN Kl=1and HN K = {e}

23.Let H= < a >and K = < b >. Then by Exercise 22 , H N K = {e}. If for some &
a* = b*, then a* = e = b*. By Corollary 1.3.12, n must divide k and m must divide k.
Finally, by Proposition 0.3.29 we have nm divides k

24. Suffices to show that 3 and 7 divide n(n'® - 1). (1) If 3 | n, then 3 In(n'® - 1). If 3
does not divide r, then n* = 1 mod 3, n'® - 1 = (n?)° - 1 = 0 mod 3and 3 divides

n'® - 1. (2) If 7 divides n, then 7 In(n'® - 1). If 7 does not divide n, then n° = 1 mod 7,
(n°)* - 1 =0mod 7 and 7 divides n'® - 1

259" =P =(-2=3mod 11 26. 9(p) =p*-p=p(p-1)
27 9(p9=(-D(@Q-1)
28. ¢(12) = 4 , therefore by Theorem 2.1.18 , 5'%% = (5%** 5% = 5> = 1 mod 12

Exercises 29 and 30 sould be assigned together. Exercises 30 and 32 use a very
similar construction.

29. For any a € G we have lal = 1, 2, p or 2p . By Exercise 18 in Section 1.1, since G
is not Abelian there exists an element g in G with g? = ¢ . Hence Igl=p or 2p .
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Iflgl=2p thenlg?l =p

30. By Exercise 29 there exists an element g in G with Igl=p. Let H=< g > and let

a € G such that a & H. lal = 2 or p since G is not cyclic. Furthermore, H N <a > =
{e}, since they are both of prime order and a & H. [G:H] = 2, hence H and aH are the
two left cosets of H. The left coset a*H = aH because a & H, hence a°H = H and

a* € HN < a> = {e}. Therefore, lal = 2 . Since there are p elements in G not in H,
there are p elements in G of order 2. '

31. See Solution of Exercise 19 in Section 1.3

32. Let a = e be an element of G. If lal = 3 or 15 we are done since lal = 15 implies
la’l = 3. So assume lal = 5. Let H = < a > and let b € G such that b & H. Again if bl =
15 we are done. So assume |bl =3 or 5. Then H N < b > is a proper subgroup of both
H and < b >, hence H N < b > = {e} since they are both of prime order and b ¢ H.

[G :H] = 3 and H, bH, b*H are the three distinct left cosets of H. Consider now b*H.
Since b & H and b* & H we obtain b°H = H . Therefore b* € H N < b > = {e} and Ibl
=3.

Exercise 33 is assumred in Exercise 35, so the two exercises could be assigned
together. The fact shown in Exercise 33 will be used repeatedly in later exercises and
should either be assigned as a homework problem or the proof be given in class.

33. First we show that {x,y,K}, where 1 si<nand 1 s jsm, are all the left cosets of
Kin G. For let g € G, then g € x;H, for some i , and g = x;h for some h € H . Also,

h € y,K , for some j and = yk for some k € K. Hence for all g € G we have

g€ xy;K for some i and j. Second we show that the {x;;K} are all distinct. If there
exists g € x),K N xyK, then g = xyk = x,yk' for some k and k' in K. But this
implies that x,,x; € H, since y;k and y,k' are in H, thus x,H = x,/ and x; = x,,. Hence
yjk =yk' and yi''y; € K which implies y,K = y,K and y; = y;.

34. (1) a=eae ,hence a~a .(2) If a~b then a = hbk which implies hlak' = b and
b~a.(3)Ifa~b andb~c thena = hbk and b = h'ck', a =(hh")c(kk') and a ~ b

35. By Exercise 33, [GHN K] = [GHIHHN K] =n[HHN K] =m [K:H N K]
and lem(n, m) s [G:H N K] . Furthermore, if s = [H:H N K]and h,( HN K) , .. .,
hy( H N K) are the s.distinct left cosets of H N K in H then 4;'h; & H N K implies
hi'h; & Kand hiK, ..., hKares distinct left cosets of K in G. Therefore,
[HHHNK]=s=<[G:K]=mand [G:H N K] s nm

36. Lets=[H:HN K] =H /IH N Kl and let hy(H N K), . . . ,h(H N K) be the s
distinct left cosets of H N K in H that is h;'h; & H N K. Consider the left cosets
hK, ..., hK. They are distinct because h;'h; & H N K and h;'h; € H, hence
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hj'lh,- & K . Also, given hk € HK then h € h(H N K) for some i , hence hk € h,K.
Therefore, the {h,K} partition HK. Finally, since 14,K] = |Kl we obtain |IHKI = sIK].

37. If x(aH) = Ha ' then Ha "' = Hb ! implies b 'a € H and aH = bH . Hence ¥ is
one to one. Also, ¥ is onto since x(b'H) = Hb.

38. Let G be any cyclic group of order n. By Exercise 26 in Section 1.3 for every
divisor d of n there are exactly @(d) elements of G of order d. Hence

n=1Gl = 34,9(d)

39. With the notation as in Example 1.4.35, A, has 8 elements of order 3, p; , p;?

1 s i < 4. Suppose H is a subgroup of A, of order 6. Then at least one element of A,
of order 3 is notin H, let's say p; & H. Since p; = (p,°)* we have p? & H . Therefore,
H, p;H, psz are three distinct left cosets of H . This is impossible since [A,:H] = 2

2.2 Homomorphisms

With this section students should become comfortable with constructions of
homomorphisms between two specific groups and identifying the kernel in each case.
Proposition 2.2.15 provides them with basic tools. The importance of part (4) of the
proposition should be emphasized. Also, part (4) of Proposition 2.2.23 gives them
very strong tools for identifying nonisomorphic groups.

Exercises 2.2

1. No, since (n+m)=n+ m -1, while p(n) + p(m)=n+m-2

2. Yes,p(n+ m)y=3(n+m)=3n+3m=en)+ ¢(m) and Kem ¢ = {0}

3. Yes, @(xy) = Ixyl = Ixl Iyl and Ker ¢ = {1, -1}

4. Yes, (AB) = det AB = det A det B = @(A) @(B) and Kemn ¢ = SL(2,R)

5. Yes,(1) If o and T are both even permutations, then ot is also an even
permutation , @(ot) = 0 and (o) + @(t) = 0 + 0 = @(ot). (2) If o and t are both odd
permutations then ot is an even permutation , ¢(ot) =0 and @(0) + p(r) =1 +1=0
= @(ot). (3) If only one of them is odd , let's say o, then otis also odd and ¢(ot) =1
and @(0) + @(t) =1+ 0=g(ot). Kemn @ = A;

6. Yes, (p't p’t) =g(p”) =0and g(p' 7) + p(p’t) =1+ 1 =0,
o' p’D)=p(p'’t)=1andp(p ) + p(p't) =0+ 1=1. Kemp=<p>



