Revised Answers Manual to
an Introduction to
Measure-Theoretic
Probability

George G. Roussas
University of California, Davis, United States

Chapter 1
Certain Classes of Sets, Measurability, Pointwise Approximation

1. (i) x € lim, A, if and only if x € Up>1Nj>nAj, so that x € Nj>, A;
for some ng > 1, and then x € Aj forall j > ng, orx € Uj>,A; for all
n>1,sothatx € mnzlLsz]Ajmn_)OOAn.

(i) (hmn—>ooA )C = (UnzlﬂjZ"Aj)L = mn>1uj>”A?
(mneooAn) :(mnzlujznAj) —Un>lmj>nA —h_mn_>ooAn
Let lim, oA, = A. Then lim, A, = (hm,,_)ooAn) =
(limyoody)” = A° and limye0d, = (lim,  A,)° =
(limn_moAn)C = A€, so that lim,_, «c A, exists and is A°.

(iii) To show that lim, , (A, N B,) = (lim,_, A,) N (lim,_, . By).
Equivalently,

00 00 00 00
U N(4; ﬂB)-(U ﬂAj)ﬂ(U ﬂB)
n=1 j=n n=1 j=n n=1 j=n

Indeed, let x belong to the left-hand side. Then x € N T=no (Aj N Bj) for
some ng > 1, hence x € (A; N Bj) for all j > no, and then x € A; and
xeB'foralljzno.Hencexeﬁ A andxeﬁC>O B],sothatxe
UneiN52,Ajandx € U2 N2 Bj, i e x belongs to the rlght hand side.
Next, letx belong to the right-hand side. Then x € U72,N%2, Aj and x €
U ﬂ°° .Bj.sothatx € ﬂ°° JAj andx € ﬂ°° ,Bj forsomenl, np > 1.
Thenx € ﬂoo A and x € ﬂoo 0B where no = max(m ny), and hence
X €A andx e B for all j > ng. Thus, x € (A; N Bj) for all j > ny,
SO thatx € ﬂ;";no(A N Bj) and hence x € U2, ;)O:,,(A N Bj);ie., x
belongs to the left-hand side.

Next, lim,— (A, U By) = lim,—00(AS N BE)C = [lim,,_, . (AS N
B?)]¢ (by part (ii)), and this equals to [(llmn_wo an (11mn_>oo BH)I¢ (by
what we just proved), and this equals [(lim,_ 00 A, )’3 N Aimy— 00 Bn)CI¢ =
(limy,— 00 Ap) U (limy,— o0 By, as was to be seen.
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(iv) To show that: Tim,— oo(A, N By) € (limy—o00d,) N (limy,— 00 By,) and

(v)

lim (A, UB,) 2 (lim,_, A, U (lim B,).

2 h—00 -0

Suffices to show: MJ2,U%, (A; N Bj) < (ﬂOO]U _nA) n

(np2, v, B)).

Indeed, let x belong to the left-hand side. Then x € U‘]?in (A; N Bj) for
alln > 1, sothat x € (A; N Bj) for some j > n and all n > 1. Then
x € Ajandx € Bj forsome j > nandalln > 1, hence x € U?’;nAj and

X € U<>O LB foralln > 1,sothatx € N°° U L,Ajandx € m;’;lu‘;oan.,-,

n=1

and hence x € (ﬁ"o 1U R LA ) N (ﬂoo 1U . Bj ) i.e., x belongs to the
right-hand side. So, the above inclusion is correct.

Also, to show that : (Uf;]m?inAj) U (Ug‘;lﬂj?o:nBj> C U;’l"zlﬂ;?‘;n
(A; U B;j).

Indeed let x belong to the left-hand side. Then x € U2, _nA or
x e Uy ﬂoo ,Bj ortoboth. Let x € U7 ﬂ"o ,Aj. Then x e ﬂ;’O Aj
for some no > 1, hence x € Aj for all j > no, and then x € (A; U B )
for all j > ng, so that x € U°° °° 2 ,(Aj U Bj);ie., x belongs to the
right-hand side. Similarly if x € U°° ]ﬂ LB

An alternative proof of the second part is as follows:

lim(A, U By) = U ﬂ(Ak U By) = [ﬂ Uin Bﬁ)]

n= n=1k=n
(im0 0] 2 [(miag) 0 (7o)
(by the previous part)

(A0 (A0

n=1k=n n=1k=n
(e olNe e (e ole ]

= (U M Ak> U (U N Bk) = (limA,) U (imB,).
n=1k=n n=1k=n

That the inverse inclusions in part (iv) need not hold is demonstrated by
the following

Counterexample:

Let Ayj_1 = A, Ayj = Agand By;_1 = B, B; = By, j > 1, for some
events A, Ao, B and Bo. Then: lim,_, (A, = AN Ao, lim, 04, =
AUAp, lim, .. B, = BN By, lim,ocB, = B U By, lim,_«
(A,NB,) = (ANB)U(ApNBy),lim, _,  (A,UB,) = (AUB)N(AoUBy).
Therefore (AU B) N (Ag U By) need not contain (A U Ag) N (B U By), and
(AN Ap) U (BN By) need not contain (A U B) N (Ag U By).

As a concrete example, take Q@ = RN, A = (0,1], Ap = [2,3],
B =1[1,2], Bp = [3,4]. Then: (AU B)N (AgU Bp) = (0,2], (AU Apg) N
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(BU Bp) = ((0,17U[2,3]) N ([1,2]1U[3,4]) = {1}U{3} = (1,3} 2
(0,2],and (AN Ag) U(BNBy) =QUQ =@, (AUB) N (AgU By) =
(0,2]N[2, 4] = {2} not contained in @.
(vi) If lim,—~oA, = A and lim,_ B, = B, then by parts (iii) and (iv):
lim,—00(A, N By) € AN B and lim, , . (A, N B,) = AN B. Thus,
AN B = lim, , (A, N B,) C lim,_ (A, N B,) € AN B, so that
lim, (A, N B,) = AN B. Likewise: AU B C lim, , (A, UB,) C
lim,— o0 (A, U B,) = A U B, so that lim,,—, oo (A, U B,) = AU B.
(vii) Since A,AB = (A, — B) + (B — A,) = (A, N BY) + (B N AS), we
have lim,,—, 5 (A, N B€) = (lim,— s A;) N B¢ = AN B¢ by part (vi), and
lim, (B NASY) = BN (lim,—,AS) = BN A€ by parts (vi) and (ii).
Therefore, by part (vi) again, lim,_, oo (A, AB) = lim,_ [(A, N B°) +
(BN AY] = limy00(A, N BY) + lim,,0(B N AS) = (AN B +
(BN AS) = AAB.
(viii) Ayj_1 = B, Ay; = C, j > 1.Then,asinpart(v),lim,_, A, = BNC and
lim,— oA, = BUC. The lim,,_, oo A, exists if and onlyif BNC = BUC,
or BUC = (BNC)+(B°NC)+(BNC) = BNC. Then, by the pairwise
disjointness of BNC¢, B°NC and BNC,wehave BNC = B°NC = Q.
From B N C¢ = @, it follows that B € C, and from B*° N C = @, it
follows that C € B. Therefore B = C. Thus, lim,,_, oA, exists if and
onlyif B=C.#

(i) Allthreesets A, ‘A, and A (if it exists) are in .4, because they are expressed
in terms of A,, n > 1, by means of countable operations.

(i) Let A, 1. Then lim,_, A, = Up2 N, A; = Up2, Ay, and limy— oo

A, = m;’;luﬁnAj = U?‘;nAj = U?‘;lAj = U2 | Ay, so that lim,,
A, =UX A,

If A, |, then A 4 and hence ﬁzO:lU?‘;nAj. = UzozlﬂﬁoznA? =
U™ | Aj, so that, by taking the complements, U7 lﬂ;‘;nA j= ﬁ;’l‘;IU?o:n
A; =022 Ay, sothat limy, oA, = N2 Ay #

3. (i) NjesF; # @ since, e.g., Q € Fj, j € I. Next, if A € Nje; F; for all
Jj € 1,and hence A° € Fj forall j € I, sothat A° € Nj¢;F;. Finally, if
A,B enNjeFj,then A, B € Fjforall j € I, and hence AU B € F;
forall j € I,sothat AU B € Nj¢ Fj.

(i) fA; enjerAj,i=1,2,... thenA; € A;,i =1,2,... forall j €I,
and hence U2 | A; € Aj forall j € I,sothat UP2 | A; € NjerAj. #

4. Let Q =N, F ={A CN; either A or A®is finite}, and let A; = {1,2, ..., j},
j = 1.Then Fisafieldand A; € F,j > 1, but U?ilAj ={1,2,...} ¢ F,
because neither this set nor its complement is finite.

Also,if B = {j +1,j+2,...}, then B; € F; since B;f is finite, whereas

c
N2 Bj = N3, A% = (U?‘;lAj) ¢ F, as it has been seen already. #
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5. Clearly, C is # @, every member of C is a countable union of members of P,

and C is the smallest o-field containing P, if indeed, is a o-field. If B € C,
then B = U;¢;A; forsome / € N ={1,2,...}, and then B¢ = Ujc;A;, where
J =N-—1,sothat B € C.Finally,if B; € C,j =1,2,...,then B; = Uiel_/Aji,
where I; € Nand ; N I; = @. Then U?":]Bj = u?;luieleji, the union of
members of P, so that U‘j’.‘;l Bj belongs in C. #

. Since C; and C} CCo,j=1,...,8,itfollows that o (C;) and (T(C}) Co(Cy) =

B, so that it suffices to show that B C ¢ (C;) and B C G(C}), which are implied,
respectively, by Co € o(C;) and Cp C U(C}), j =1,...,8. As an example,
consider the classes mentioned in the hint.

So, to show that Cy C o (Cy). In all that follows, all limits are taken as n — 00.
Indeed, for y, | y, we have (x, y,) € C; and N72, (x, y,) = (x,y] € a(Cy).
Likewise, for x, 1 x, we have (x,, y) € C; and 072, (x,, y) = [x,y) € o(Cy).
Next, with x,, and y, as above, (x,, y,) € Crand N2, (x,, yu) = [x, y] € o (Cy).
Also, for x, | —oo, we have (x,,a) € C; and ﬂﬁozl(xn,a) = (—o0,a) €
o (C1), and likewise (x,, a] € Cy and U2, (x, a] = (=00, a] € o (Cy). Finally,
(b, 00) = (—00, b]° € 0 (Cy), and [b, 00) = (—00, b)¢ € o(Cy). It follows that
Co S a(Cy).

That Cy € U(C{) is seen as follows. For (x, y), there exist x,, and y, rationals
with x, | x and y, 1 y, so that (x,y) = UZOZI € U(C}). Also, for y, | v,
we have (x, y,) € a(C;), as was just proved, and then ﬁff:](x, yn) = (x,y] €
o (C}). Likewise, with x,, 1 x, we have (x,, y) € 0(C}) and then N°° | (x,, y) =
[x,y) € o(C}). Also, with x, 1 x and y, | y, we have (x,, y,) € o(C}), and
N (xn, yn) = [x,y] € o(C}). Likewise, with x, | —oo, we have (x,,a) €
o(C)) and U | (x,,a) = (=00, a) € o(C}), whereas (x,,a] € o(C}), so that
U | (xn, a] = (=00, a] € o(Cy). Finally, (b, 00) = (—00, b]° € o(C}) since
(=00, b] € 0(C}), and [b, 00) = (—00, b)° € o (C}) since (—o0, b) € o (C)). It
follows that Cy C o (C)).

A slightly alternative version of the proof follows. We will show (a) o (C;) = B
and (b) 0 (C}) = B.

(a) o(C)) =B.

That o (Cy) € B is clear; to show B C o (C)) it suffices to show that Cy C
o (Cy). To this end, we show that (x, y] € o(Cy). Indeed, (x, y+ %) €
Ci, so that ﬂzozl (x, v+ %) = (x,y] € o(C;). Next, (x — % y) e (i,
so that (2 (x — % y) = [x,y) € a(C1). Also, (x — % y + %) e Cy,
so that (;2; (x — % y+ %) = [x,y] € o(C1). Next, (—n, x) € Ci, so
that ()2, (—n,x) = (—00,x) € o(Cy). Also, (—oo,x +1] € ¢y, s0
that (= (—o0, x + %] = (—o00, x] € o(Cy). Likewise, (x,n) € Cy, so
that |52 (x,n) = (x,00) € o(Cy); and (x — 1, 00) € o(Cy), so that
N> (x — % oo) = [x, 00) € 6(Cy). The proof is complete.

n=1



Revised Answers Manual to an Introduction ed

Since, clearly, o(C{) S o(Cy), it suffices to show that o(C;) S o (C)).
For x,y € 9 with x < y, there exist x, | x and y, 1 y with x,, y,
rational numbers and x,, < y, for each n. Since (x,, y,) € C{ , it follows that
Une (xn, yn) = (x,y) € 6(C}).SoCy € o (C)),and hence o (C1) € o (C)).

The proof is complete. #
7. (i) Let A € C. Then there are the following possible cases:
@ A=X" 5L, =(, Bili=1,....,m.
] / / ] / ,

t j € I € I t j
631 ﬂl Qg /32 Q-1 ﬂmfl 7% ﬁm

Then A€ = (=00, a1+ (B1, a2l +. .. 4+ (Bu—1, o]+ (By, 0) and
this is in C.

(b) A consists only of intervals of the form (—oo, «]. Then there can be
only one such interval; i.e., A = (—o0, @] and hence A = («, 0c0)
which is in C.

(c) A consists only of intervals of the form (8, co). Then there can only
be one such interval; i.e., A = (8, 00) so that A = (—o0, 8] which
isinC.

(d) A consists only of intervals of the form (—oo, «] and (8, c©). Then
A will be as follows: A = (—o0, o] + (B8, 00) (¢ < B), so that
A€ = (o, 00) N (—00, B] = (a, B] whichisin C.

(e) Finally, let A consist of intervals of all forms. Then A is as below:

1 v 1 I 1 r 1 I 1 [

] { ] { ] { ] { ] {
-0 @ o /}1 ay Ba-r e ﬁmfl (77 ﬁm “H oo

Then, clearly,

A= (a, 1]+ Br,2l + ... + Bu—1. @] + (B, Bl

which is in C. So, C is closed under complementation. It is also
closed under the union of two sets A and B in C, because, clearly,
the union of two such sets is also a member of C. Thus, C is a field.
Next, let C; = {(a, B]; o, 8 € R, a < B}. Then, by Exercise 6,
o(Cy) = B. Also, C, C C, so that B =0 (C2) C o(C). Furthermore,
C C 0(Cyp) = B and hence o (C) C B. It follows that o (C) = B.

(i) If A eC, then A =37, I;, where ;s are of the forms: («, ), (a, B].
[a, B), [a, B], (=00, @), (—00, &], (B, 00), [B,00). But (&, f)° =
(=00, a] +[B, 00), (&, BI° = (=00, a] + (B, 00), [a, B)° = (—00, @) +
(B, 00), [, BI° = (—00, a)+(B, 00), (=00, )" = [a, 00), (—00, a]® =
(o, 00), (B, 00)¢ = (—o0, B], and [B, 00)¢ = (—o0, B). Then, consider-
ing all possibilities as in part (i), we conclude that A € C in all cases.
Next, for A as above and B = Z;f:l Jj with J; being from among the
above intervals, it follows that A U B is a finite sum of intervals as above,



eb

Revised Answers Manual to an Introduction

8.

10.

11.

12.

and hence A U B € C. Thus, C is a field. Finally, from Cy C C C B, it
follows that B = o (Cp) C o (C) C B,sothato(C) = B. #

Clearly, F4 is # © since, for example, A = A N Q and hence A € F4. Next,
for B € Fy,itfollowsthat B=ANC,C € F, and Bg(=complement of B with
respect to A)=A N C¢ € F4 since C¢ € F. Finally, for B, By € F4, it follows
that B, = A;NC;,C; € F,i =1,2,and then BiU B, = AN(C1UCy) € Fau,
since CiUC, € F. #

. That A4 # @ and that it is closed under complementation is as in Exercise 8.

For B; € Ay,i =1,2,...,itfollowsthat B; = ANC; forsome C; € A,i > 1,
and U | B; = UX (ANC;) = AN (U2,Ci) € Ay since U2 C; € A.

Thus, A4 is a o-field. Since F C A, it follows that 74 C A4 and hence
0(F4) € Aa. Since forevery F C A;,i € I, itfollows F4 € A; 4,1 € I, then
0(Fa) S NjerAj a.Also, 0 (Fa) = mjejAj: for all o -fields of subsets of A with
A’; D Fa.Inorder to show that o (F4) = Ay, it must be shown that for every o -
field A* of subsets of A with A* D Fy4, we have A* D A,4. That this is, indeed,
the case is seen as follows. Define the class M by : M = {C € A; ANC € A*}.
Then, clearly, F € M C A and M4(= M N A) C A*. This is so because, for
C e F,itfollows that CN A € F4 and hence C N A € A* (2 F4). Also, with
Myp={C CA;C=MnNA, M e M}, it follows that M4 C A* from the
definition of M. We assert that M is a monotone class. Indeed, let C,, € M with
Cy 1 orCy, |.Then, for the case that C,, 1, AN(limy—.00Cy) = AN (U2, Cp) =
U, (A N C,,) € A* since ANC, € A*, n > 1, so that lim,_,,,C, € M.
Likewise, for C, |, AN (lim,_5Cy) = AN(NS2,Cy) = N2 [ (ANCy) € A*
since ANC, € A*, n > 1, so that lim,_, ooC,, € M. So M is a monotone class
D F, and hence M 2 minimal monotone class My, say, 2 F. Since F is a field,
it follows that My is a o-field and indeed My = A (by Theorem 6). Finally,
A= Mo S M implies A4 = Mo 4 € My C A*, as was to be seen. #

Set F = U2 | A,, and let A € F. Then A € A, for some n, so that A° € A,
and hence A € F. Next, let A, B € F. Then A € A,,, B € A,, for some n;
and ny, and let np = max(ny, na). Then A, B € A,,, sothat AU B € A,, and
AUB € F.Then, A° € Fand AU B € F, so that F is a field.

It need not be a o -field.

Counterexample: Let @ = R and let A, = {A C [—n, n]; either A or A€ is
countable}, n > 1. Then A, is a o-field (by Example 8) and 4, 1. However,
F is not a o-field because, if A, = {rationals in [—n, n]}, n > 1, and if we set
A= U;’L‘; 1An, then A ¢ F, because otherwise A € A,, for some n, which cannot
happen. #

Set MM jeyM; and let A, € M,n > 1, where the A,s form a monotone
sequence. Then A, € M foreach j € I and all n > 1, so that lim, A, is
also in M. Since this is true for all j € I, it follows that lim,,_. s A, is in M,
and M is a monotone class. #

Let Q ={1,2,..}, M ={o,{1,...,n},{n,n+1,...},n > 1,Q}. Then M
is a monotone class, but not a field, because, e.g., if A = {1,...,n} and B =
fn—2,n—1,...}(n>3),thenA, B e M,butANB={n—-2,n—1,n} ¢ M.
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As another example, let 2 = (0, 1) and M = {(0, 1 — %], n > 1, 2}. Then
M is a monotone class and (0, %] € M, but (0, %]" = (%, 1) ¢ M.
Still as a third example, let @ = R and let M = {@, (0,n), (—n,0),n >
1, (0, 00), (—00, 0)}. Then M is a monotone class, but not a field since, for
A=(—1,0)and B=(0,1),wehave A, B,e M,but AUB = (—1,1) ¢ M.#
13. (i) Forw = (w1, wy) € E°, wehave w ¢ E = A x B, so that either w ¢ A
or wy ¢ B orboth. Let w; ¢ A. Then w; € A and (w1, wy) € A° X Q»,
whether or not wy € B. Hence E€ C (A x B€) 4+ (A€ x Q7). Ifw; € A,
then wy ¢ B, sothat (wy, w2) € Ax B€and E€ C (A x B€)+ (A° x Q2).
Next, if (w1, w3) € Ax B¢, thenw; € Aandwy ¢ B,sothat (w, w2) ¢ E
and hence (w1, wp) € E€. If (w1, wp) € A° X Q,then w; ¢ A and hence
(w1, ) ¢ A x B = E whether or not w» € B. Thus (w1, wy) € E°.
In both cases, (A x B€) + (A° x Q,) 2 E° and equality follows. The
second equality is entirely symmetric.
(ii) Let (w1, w2) € E| N Ey, so that (w1, wp) € E; and (w1, w2) € E)
and hence w; € Aj,wy € By, and w; € A, wy € Bj. It follows that
w] € A{NAj, wr € BiNByandhence (w1, wp) € (A1NA) x (BN By).
Next, (w1, w2) € (A1 N Ay) x (B; N By), so that w; € A1 N Ay and
wy € By N By. Thus, w; € A1, w1 € Ay and wy € By, wy € By, so that
(w1, wp) € A; N By and (w1, wy) € Ay N By, or (wy, w2) € E1 N Ey, so
that equality occurs. The second conclusion is immediate.

(iii) Indeed, E; N F; = (A4 ﬁA’l) x (B ﬁBi) and E,NFy = (AzﬂAlz) X
(B2NBY)), by part (ii), and the first equality follows. Next, again by part (ii),
andreplacing E1 by (AjNA)) x (B1NB}) and E; by (A2NA%) x (B2NB)),
we obtain the second equality. The third equality is immediate. Finally,
the last conclusion is immediate. #

14. (i) Either by the inclusion process or as follows:

(A1 X By) — (A2 x By)
= (A1 x B)) N (A2 x By)*
= (A1 x B1) N[(A2 x B5) + (A§ x ©22)] (by Lemma 2)
= (A1 x B1) N (A2 x BS) + (A1 x By) N (A§ x Q)
= (A1 N Ay) x (BN B3) + (A1 N AS) x (B N Qy) (clearly)
= (A1 N Ay) x (By — B2) + (A1 — Az) x By.

(ii) Let A x B = @.Then (x,y) € A x B,sothatx € A and y € B. Also,
(x,y) € @ and this can happen only if at least one of A or B is = @. On
the other hand, if at least one of A or B is = @, then, clearly, A x B = @.

(iii) Let A; x By € Ay x By. Then (x,y) € A} x By, so that x € A
and y € Bjp. Also, (x,y) € Ay x By implies x € Ay and y € Bs.
Thus, Ay € Ay and B; C Bj. Next, let Ay € A, and By € Bj. Then
A1 X B; € Ay x By since (x,y) € A} x By ifand only if x € Ay and
y € Bi.Hence,x € A andy € Byor (x,y) € Ay X B;.
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(iv)

(v)

A1 xBy #@and Ay x By #@.Then Ay x By = Ay x Boor A1 X B; C
Az x B> and then (by (iii)), A € A and By C Bj. Also, Ay X By =
Ay X Byror Ay x By € A x Bj, and then (by (iii) again), A» € A and
B> C Bj.

So, both A; € A and Ay, € Aj, and therefore A| = Aj. Likewise,
B; € By and B, C Bj so that B| = B».

A X B=(A] x B)) + (A2 X B)) @)

From @ = (A1 x B1) N (A2 x B2) = (A1 N A2) x (B1 N By) and part (ii),
we have that at leastone of A|N Ay, BiNByis@.Let AiNA> = @.Then
the claim is that A = A| 4+ Aj. In fact, (x, y) € A x B implies x € A
(and y € B). Also, (x, y) belonging to the right-hand side of (*) implies
(x,y) € AyxBjor(x,y) € Ao xBy.Let(x,y) € A1 xB1.Thenx € A;
(andy € Bp),sothat A € Aj.Ontheotherhand, (x, y) € Ay x By implies
x € Ay (and y € By),sothat A C Ajp. Thus, A € A1 + Aj. Next, let
again (x, y) belong to the right-hand side of (*). Then (x, y) € A1 x By
or (x,y) € A x Ba. Now (x,y) € Ay x By implies that x € A;
(and y € By). Also, (x, y) belonging to the left-hand side of (*) implies
(x,y) € Ax B,sothatx € A (and y € B). Hence A} C A. Likewise,
(x,y) € Ay x By implies A C A, so that A; + A C A, and hence
A=A;+ Ay Next,let A=A+ A>. ThenAx B = (A1 +A3) x B =
(A1 X B) + (A2 x B). Also, A x B = (A1 x B1) + (A2 x Bp). Thus,
(A1 X B)+ (A2 x B) = (A1 x B1) + (A2 X By). (x, y) belonging to the
left-hand side of (*) implies (x, y) € Ay x Bor (x,y) € A, xB.(x,y) €
A; X Byields y € B (and x € Aj). Same if (x,y) € Az x B. Also,
(x, ) belonging to the right-hand side of (*) implies (x, y) € A; x Bj or
(x,y) € Ay xBy.For (x,y) € Ay x Bj,wehavey € By (andx € A1), so
that B C Bj. For (x,y) € A> x By, we have B C B, likewise. Next, let
again (x, y) belong to the right-hand side of (*). Then (x, y) € A} x B;
or (x,y) € Ay x By.For (x,y) € A; x Bj,wehavey € By (andx € Ay).
Thus By € B. For (x,y) € A x By, we have B, C B. It follows that
B = B; = B».

To summarize: A N Ay = @ implies A = A + Ay and B = B] = B».
Likewise, B N B, = @ implies B = B + B and A = A} = A,. Fur-
thermore, A1 N Ay = @ and B; N B, = @ cannot happen simultaneously.
Indeed, A1 N A = @ implies A = Ay + A, and By N By = @ implies
B =Bi+B). ThenAxB = (A14+A3) X (B1+B2) = (A1 xB1)+ (A x
By)+ (A1 xBy)+(Ayx B1).Also, AxB = (A1 xB1)+(Ayx By),sothat:
(A1 X B1)+ (A2 x B2)+(A1 X B2)+ (A2 x By) = (A1 X B1)+ (A2 x B).
Then (A1 X B2) + (A2 X By) = @ implies (A} X By) = (A2 X B)) = @,
so that at least one of A1, Az, By, By = @ (by part (ii)). However, this is
not possible by the fact that A1 x B] # @, Ay X By # Q. #
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15. (i) If either A or B = Q, then, clearly, A x B = @. Next, if A x B = Q,
and A # © and B # @, then there exist w; € A and w> € B, so that
(w1, wp) € A x B, a contradiction.
(ii) Both directions of the first assertion are immediate. Without the assump-
tion E; and E; # @, the result need not be true. Indeed, let 2; = >,
Al #Q,Bi=A=B,=0.Then Ey = E; = Q,but A; gAz.#

16. (i) Ifatleastoneof Af,..., A, is = @, then, clearly, A| x ... x A, = @.
Next, let E = @ and suppose that A; # @,i = 1,...,n. Then there
exists w; € A;,i = 1,...,n,sothat (wq,...,w,) € E, acontradiction.

(ii) Letw = (w1,...,0p) € ENF,or (w1,...,0p) € (A1 X ... X AN
(By x...xBy,). Then (wy, ...,w,) € A1 X...Xx Ay and (wy, ..., wy) €
B x...x B,.Itfollows that w; € A; andw; € B;,i =1, ..., n, so that
w;j € AjNB;,i =1,...,n,andhence (w1, ...,w,;) € (A]NB]) x...X
(A, N By). Next, let (wq,...,w,) € (A1NBy) X ... X (A, N B,). Then
wi € AiNB;,i=1,...,n,s0thatw; € A;jandw; € B;j,i =1,...,n.
It follows that (wy, ..., w,) € Ay X ... X A, and (wq, ..., w,) € By X
... X By,sothat (wy,...,wy) € (A1 X ... X Ap)N(By X ...X By). #

17. Wehave E = F + G and E, F, G are all # @. This implies that A;, B;, and
Ci,i = 1,...,n are all # @; this is so by Exercise 16(i). Furthermore, by
Exercise 16(ii):

FNG=MB1 x...xB,)N(C; x...xCyp)=(B1NC) x...x(B,NCy),

whereas F NG = @. It follows that B; N C; = @ for at leastone j, 1 < j < n.
Without loss of generality, suppose that B; N C1 = @. Then we shall show that
Ay =B +Ciand A; = B; = C;,i =2,...,n. Tothisend, let w; € Aj,

j=1,...,n Then (w1,...,wy) € A1 X ... X A, or (w1,...,w,) € E or
(w1, ...,wn) € (F 4+ G). Hence (w1, ...,wy) € For (wg,...,w,) € G. Let
(wi,...,wy) € F. Then (wy,...,w,) € By X ... x B, and hence w; € By or
w1 € (B1UCy),sothat A| C By UCj. Likewise if (wq, ..., ®,) € G. Next, let
wj€Bj,j=1,...,n.Then(wi,...,w;) € By x...xByor(wy,...,w,) € F
or (wy,...,wy) € Eor(wy,...,w,) € (A; X...X A,), hence w; € Ay, which
implies that By € Ay.Bytakingw; € C;, j =1, ..., nand arguing as before, we

conclude that C; € Ay. From B € Ajand C; € A, we obtain BiUC| C Aj.
Since also A1 € By U Cy, we get A = By U Cj. Since By N C1 = @, we have
then Ay = By + Cj.

It remains for us to show that A; = B; = C;, i = 2,...,n. Without loss
of generality, it suffices to show that A, = B, = (3, the remaining cases
being treated symmetrically. As before, let w; € A;, j = 1,...,n. Then
(w1,...,0p) € (A1 Xx...xAy)or(wy,...,wy) € Eor(wy,...,w,) € (F+G).
Hence either (wq,...,w,) € F or (wy,...,w,) € G. Let (wy,...,w,) € F.
Then (wq,...,wy) € By X ... x B, and hence w, € B>, so that A, C Bj.
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18.

19.

Likewise Ay C C; if (wy, ..., w,) € G.Next, let (w1, ...,w,) € By X...X B,
or (wi,...,wy) € For (w1,...,w,) € (F+ G) or (wg,...,w,) € E or
(w1, ...,0y) € (A] X ... x A,;) and hence wr, € Aj, so that By C Aj. It

follows that A, = B». We arrive at the same conclusion A» = B if we take
(w1, ..., 0,) € G.So, tosumitup, A; = By + Cy, and A, = By = C7, and by
symmetry, A; = B; =C;,i =3,...,n.

A variation to the above proof is as follows.

LetE=F+GorA; x...xA, =By x...xB,)+(C; x...xCy),and
let (wy,...,w,) € E.Then (wy,...,w,) € A1 X ... X A,,sothatw; € A;,i =
1,...,n. Thenw; € B;,i =1,...,norw; € C;,i =1, ..., n(butnotboth). So,
A; =BiUC;,i=1,...,nand A; = B;+C| foratleastone j. Consider the case
n = 2, and without loss of generality suppose that A = B;+Cy, A = BoUCs.
Then, clearly:

Al x Ay = (B1 +C) x (BoUC(C)
= (B x B)) U(Cy x C2) U (B x C2) U (Cy X By).

However, A1 x A> = (B] X B2) + (C1 x C2), and this implies that B; x C,
By x By and C; x By € Bj x Cp, hence C; C By and B, C (>, so that
B> = C>(= Aj). Next, assume the assertion to be true for n and consider:

Al X .. . XAy X Apr1 = (B1 X ... X By X Byy1)+(Cp X ... x Cpy X Cpyy),

or A" X Ay41 = (B" X Byy1) = (C" x Cy41), where A" = A| X ... X A,
B"=B; x...x Byand C" = Cy x ... x Cy,. Apply the reasoning used in the
case n = 2 by replacing A by A" and A, by A, 41 (so that By, By and Cy, Ca
are replaced, respectively, by B", B,y and C", C,,41) to get that:

A" =B"+ Cn’ An—H = Bn+1 U Cn—H-

The first union is a “+” by the induction hypothesis. The second union may or
may not be a “+” as of now. Then:

A" x Apy1 = (B"uC") x (Bu+1 U Cuy1)
= (B" X Byy1) U(C" X Crg1) U(B" x Crs1) U(C" x Brs).

However, A" x A,+1 = (B" X By41) + (C" x Cp41). Therefore B" x Cp41 <
B"xByi1and C" x By € C"xCpqq,s0that Cyqy € Byyrand By € Cryys
and hence B,4+1 = C,+1. The proof is completed. #

The only properties of the o-fields .4; and A, used in the proof of Theorem 7 is
that A;,i = 1, 2 are closed under the intersection of two sets in them and also
closed under complementations. Since these properties hold also for the case that
A;,i = 1,2 are fields, F;, i = 1, 2, the proof is completed. #

C as defined here need not be a o-field. Here is a

Counterexample: Q21 = Q = [0,1]. Forn > 2, let I,; = [0, %], Ij =

(ﬂ i.],j = 2,...,n,and set Ey; = Iyj X I;,j = 1,...,n. Also, let

n ’n
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O, = Z?=1 Enj,n > 2. Then Q, belongs to the field of all finite sums of
rectangles. Furthermore, it is clear that ﬂ;’loﬁ 0, = D, where D is the main diag-
onal determined by the origin and the point (1,1). (See picture below.) However,
D is not in the class of all countable sums of rectangles, since it cannot be written
as such. D is written as D = Uy¢[o,17(x, X), an uncountable union.

A

0 1

Note: In the picture, the first rectangle E,;; = [0, %] x [0, %], and the subsequent
rectangles E,; are: E,j = (=i i=23,. . n#

n’n
That C # @ is obvious. For A € C, there exists A’ € A’ such that A = X1 (A").
Then A¢ = [X~1(A")]¢ = X 1[(A")¢] with (A")¢ € A’. Thus A€ € C. Finally, if
AjeC,j=1,2,... thenA; = X_I(A/j) WithA/j € A’,andhenceU?‘;lAj =
U2, X (A7) = X1 (U2, A%) with U AT € A so that U2, 4 € C, and
Cis a o-field. #
That C’ # @ is obvious. For A’ € C’, there exists A € Asuchthat A = X1 (A’).
Then X ![(A)¢] = [X1(A)]° = A¢ € A, so that (A")¢ € C'. Finally, for
A’j e C,j=12,..., there exists A; € A such that A; = X_l(A/j) and
X7 (U, 4)) = U, XTIA)) = U A) € A sothat U, 4 € C'.
follows that C’ is a o-field. #
A simple example is the following. Let @ = {a, b, ¢, d}, A = {@, {a}, {b, ¢, d},
Q) X(a) = X(b) = 1, X(c) = 2, X(d) = 3. Then Q' = {1, 2, 3} and X ({a}) =
{1}, X({b, c,d}) = {1,2,3}, so that C' = {@, {1}, {1,2,3}} which is not a
o-field. #
Let X = ) ! ,@l4, and suppose that A; € A,i = 1,...,n. Then for any
B € B, X~ 1(B) = UA,; where the union is taken over those is for which «; € B.

ell
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24,

25.

26.

27.

28.

Since this union is in A, it follows that X is a r.v. Next, let X be a r.v. Then, by
assuming without loss of generality that o; # oj,i # j, we have X)) =
A; € Asince {o;} € B,i = 1,..., n. Clearly, the same reasoning applies when
X =32 aila,. #
Let w belong to the right-hand side. Then X (w) < r and Y (w) < x — r for some
r € Q,sothat X(w)+ Y (w) < x and hence w belongs to the left-hand side. Next,
let w belong to the left-hand side, so that X (w) 4+ Y (w) < x or X(w) < x — Y (w).
But then there exists € Q suchthat X(w) <r < x—Y(w)or X(w) < randr <
x—Y(w)or X(w) < randY (w) < x—r,so thatwbelongs to the right-hand side. #
If X is a r.v., then so is | X[, because for all x > 0, we have | X|~'((—o0, x)) =
(JX] < x) = (—x < X < x) € A, since X is a r.v. That the converse is not
necessarily true is seen by the following simple example. Take 2 = {a, b, c, d},
A = {®@,{a, b}, {c,d}, Q}, and define X by: X(a) = —1,X(b) = 1, X(c) =
—2,X(d) = 2. Then Q' = {-2,—1,1,2}, and let A’ = P(Q'). We have
X171 (1) = {a. b}, X7 (2D = {c. d}, X171 (=2 = 1XI7'{-1) = @.
and all these sets are in A, so that | X| is measurable. However, X ' ({—1}) = {a}
and X1 ({=2}) = {c}, none of which belongs in A, so that X is not measurable.
As another example, let B be a non-Borel set in )i, and define X by: X (w) =
1,w € B,and X(w) = —1, w € B. Then X is not 3-measurable as X_l({l}) =
B¢ B,but | X|"'({1) =ReB. #
X + Y is measurable by Exercise 24. Next, (=Y < y) = (Y > —y) € A, so that
—Y is measurable. Then X + (—Y) = X — Y is measurable. Now, if Z is mea-
surable, then so is Z2 because, for z > 0, (Z%2 < z) = (—/72<Z <72 e A
Thus, if X, Y are measurable, then so are (X + ¥)? and (X — Y)2, and therefore
sois: (X +Y)? — (X — Y)2. But (X + Y)? — (X — ¥)? = 4XY. Thus, 4XY is
measurable, and then so is, clearly, XY.
Finally, if P(Y # 0) = 1, then, fory # 0, ( < y) = (¥ > %) € A, so that &
is measurable. Thus, X and Y are measurable, and P (Y # 0) = 1, so that X and
% are measurable. Then X x % = % is measurable. #
Since o (7,,) = B", it suffices to show (by Theorem 2) that f~1(7,,) € B™ for f
to be measurable. By continuity of f, f~'(Z,) € 7,, € B", since o (7,,) = B".
Thus, f is measurable. Then, for B € B™, [f(X)]"! = X~ [f~1(B)] € A,
since f~1(B) € B" and X is measurable. #
For any r.v. Z,itholds: Z = Z* — Z~ and |Z| = Z* + Z~. Hence Z* =
3121+ 2), 27 = 3321 - 2).
Applying this to X, Y and X 4 Y, we get:

+ 1 + 1 + 1
X =§(|X|+X), Y :§(|Y|+Y), (X+7Y) =§[|X+YI+(X+Y)].
Hence

IX+Y|+(X+YV)]=X+1)*.

N =

Xt +¥ = S[(X|+ YD+ (X +1)] =
: >
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Likewise,

X7 = Z0XI =X, Y7 = (V1= 1), (X 1) = 201X + 7]~ (X 7))
and hence

X7 = HIXIHIY )~ (X1 2 11X+ V= (X4 1)) = (X4 7)

Alternative proof.
Let X+Y <0.Then X +Y)T=0=04+0<XT4+YT . LetX+Y > 0.
Then (X +Y)T = X +Y < XT 4+ YT because X = XT — X~ < Xt and
Y=Y —-Y <Y . Thus, X+ Y)T < XT 4+ Y+, Again, let X + Y < 0.
Then (X +Y)" =—(X+Y)=—X—-Y <X +Y ,because X = Xt — X~
or— X=X —-Xt<X andY=Yt—Y or—Y =Y —YT <Y~.Next,
let X +Y >0.Then(X +¥Y)" =0=0+0< X"+ Y, sothat (X + ¥)~ <
X" +Y .So,again: X +Y)T <Xt +YTand (X +Y)" <X +Y .#
(i) From the definition of B,,, we have: By = Ay, and form > 2, B,,
ASO L NAS_ N Ay

(ii) Fori # j (e.g.,i < j), B iseither Ay (fori = 1)or B; = A{N...N
Af_| N A;, whereas B; = A{N...N A?_l NAj;,and B; N B; = @,
because B; contains A; and B; contains A{ (sincei < j — 1).

(iii) Letw =", ; By. Then either v € B; = Ay, and hence w € U | A,,
orw ¢ Aj,i =1,...,n—1and w € Ay, so that w € U2 | A,. Thus,
> ooy B € U2 A, Next, letw € US2 | A, Then eitherw € Aj = By,
sothatw € > > | Bp,orw ¢ A;,i =1,...,n— 1l and ® € A,. Then
w € By,sothatw € Y o> | By #

(i) We have lim, , A, = U2 N2, Ag, so that o € (lim, ,  A,) or
w € U N2 Ay, therefore w € ﬂ,foznOAk for some ng, and hence
w € Ay for all k > ng. Next, let w € A, for all but finitely many ns; i.e.,
w € A, foralln > ng. Thenw € ﬂ,finoAk and hence w € U2 | NP2 Ay,
which completes the proof.

(ii) Here lim,, oA, = No2 Uz, Ak, and hence € (limy,— 00 Ap) Or @ €
N2 U2, Ay implies that w € U2 Ay forn > 1. From w € U | Ay,
let ky be the first k for which w € Ay,. Next, consider U,‘ziklﬂAk, and
from w € U,‘z‘;leAk, let k be the first k (> kj + 1) for which @ € Ay,.
Continuing like this, we get that @ belongs to infinitely many A,s. In the
other way around, if w belongs to infinitely many A,s, that means that
there exist 1 < k1 < k» < ... such that w € Akj,j =1,2,... Then
w € U,‘zozk/_Ak,j > 1, and hence € U2 Ay for 1 < n < ky and

kj <n <kjyr,j>1.Thus,w € N%,UX Ay and the result follows. #

From Ay C By,k > 1, we have U2 Ay C U2 Br,n > 1, and hence
N2, UX A € N22,UR By or limy00A, € limy—oaoB, or (4, i0.) C
(B, 1.0.) (by Exercise 2). #

I
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32,

33.

We have lim,, , A, = U2, N2 Ag and NP2 Ay = N2 {re (I — g, 1+
E); r € Q} = {1} for all n, so that U2 ,M2 Ax = {1};i.e., lim, , A, = {1}.
Next, limy,_ oo Ay = N2 U2 Ak and U2 Ap = U2 {r € (1 - ﬁ 1+ %)'
reQl={red- n+1,1+ ) r e Q},sothat NP2 UX A = NP2 {r €
(= . 1+ 2 r € ) = (1). Thus, lim, , A, = hmn»ooAn =} =
lim, 5 00A,. #

Here lim, , A, = Uy2 N2, Ay, and consider the N2, Ay for n odd or even.
Then
o0
N Ax=(C N Apn( N A,
k=2n-1 k odd k even
>2n—1 >2n
and
A1 NAgp N =[—1, 2,} s IN[=1, 52510 = [—1,0], Ay N Azyi2 N

=[O0, 2n)ﬁ[O, 2n+2)ﬁ = {0}, sothat N2, ,Ar =[—1,0]N{0} = {0}.
Next,

A Ar=(C N AN N Ap),

k=2n k even k odd
>2n >2n+1
and
A2n NAzp2N... =10, 2,,) n[o, 2,,+2) N...={0} Azpy1 N Ap3 N ... =
-1, 55g1N[=1, 55 3]m =[-1,0], sothatﬂk -y Ar = {0}N[—1,0] = {0}.
It follows that U?> | N2 A, = {0} =1lim,,_, A,.
Next, llmn_,ooAn = ﬂnz faam ® Ay, and consider the U,finAk for odd and even

values of n. We have

o
U Ag=( U AU U Ap),
k=2n—1 k odd k even
>2n—1 >2n
and
Azn_IUAanu...:[—Lﬁw[—l,ﬁ]u o= [-1, 551 Ay U
A2 U... = [0, ) U0, 55) U... = [0, ), so that U2, | Ay =

1 1 1
[-1, 5, =51VI0, 5,) = [—1, 5,71 Next,

U Av=( U ApU( U Ap.
n

k=2 k even k odd
>2n >2n+1
and
A2y UAgui2U... =10, 37) U0, 2n1+2) U.o. =10, 57), Azug1 UAgu3U. .. =

[l 55l UL 55U = [—1, 5 +l] so that U2, Ax = [0, ﬂ) U
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[—1. 527] = [=1. 5-). Tt follows that

oo _ 1 1 1
N UA=[-110n[-LHn=1n-1,Hn...

n=1k=n
=[-1,0] = lim A,.
n—oQ

So, lim,,_, ., A, = {0} and lim,_ 0A, = [—1, 0], so that the lim,,_, 5o A,, does
not exist. #

(i) We have:
{0, 1),[1,2),...,[n—1,n)} C{[0,1),[1,2),...,[n—1,n),[n,n+1)}

and hence A, C A,4;. That A, C A, follows by the fact that, e.g.,
[n, n + 1) cannot belong in 4, since all members of A, are C [0, n).

(ii) LetA; € Ay, Ap € Apbutnotin Ay, ..., A, € A, butnotin 4,,_1, ...,
andset A = U2 | A;. Then A ¢ U2 | A, because otherwise, A € A, for
some n. However, this is not possible since U2, | A; ¢ A,.

(iii) A = {©,[0,1),[0, 1) = (—00,0) U [1,00), %}, 4 = {®, ][0, 1),
[1,2), (—00,0) U [1,00), (=00, 1) U [2,00),[0,2),(—00,0)
U2, 00), R, #

(i) First, observe that all intersections A} N ... N A) are pairwise disjoint,
so that their unions are, actually, sums. Next, if A and B are in C, it is
clear that A U B is a sum of intersections A/1 N...N A} (the sum of those
intersections in A and those intersections in B), so that A U B is in C.
Now, if A € C, then A° is the sum of all those intersections A} N...N A},
which are not part of A. Hence A€ is also in C, and C is a field.

(ii) Informing A N...N A}, we have 2 choices at each one of the n steps.

Thus, there are 2" sets of the form A/] n...N A;. Next, in forming their
sums, we select k of those members at a time, where k = 0,1, ...,2".

Therefore the total number of sums is: (2(;1) + (21”) + ...+ (%:) =22 #

(i) Ifw e A, then f(w) € f(A) and w € f~'[f(A)]. For a concrete exam-
ple, take f : % — [0, 1) where f(x) = x2, and let A = [0, 1). Then
f(A) = ([0, 1) = [0, 1), and f~1([0, 1)) = (-1, 1). It follows that
FTUFAI= 7110, 1) = (=1, 1) D [0, 1) = A.

(ii) Letw’ € f[f~'(B)] which implies that there exists w € f~!(B) such
that f(w) = o'. Also, w € f_l(B) implies that f(w) € B. Since also
f(w) = o, it follows that ' € B. Thus f[f~!(B)] C B.

For a concrete example, let f : W — N with f(x) = c. Take
B = (c—1,c+1),sothat f[(c—1,c+ 1] = N and fN) =
{c} C(c—1,c+1). Thatis, f[f~'(B)={c}C(c—1,c+1)=B.#

(i) Since X~'({—1}) = A1, X~1({1}) = AN Az, and X1 ({0}) = ASNAS,
and Ay, A{ N Az, A{NASarein A, X isar.v.
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39.

40.

41.

(i) We have X~ 1({—1}) = {a,b}, X '{1}) = {c}, X '({2}) = {d}, and
neither {c} nor {d} are in A. Then X is not A-measurable.

(i) We have X~ '({-2}) = {2}, X~ '({-1}) = {-1}, X~ '({0}) = {0},
X1y = {1}, X ~1({2}) = {2}, so that X~ 1(B) is the field induced in
Q by the partition: {{—2}, {—1}, {0}, {1}, {2}}.
The values taken on by X2 are 0, 1, 4, and (X%)~'({0}) = {0}, (X*)~!
(1) = {—1, 1}, (X>) ' ({4}) = {—2, 2}, so that the field induced by X
is the one generated by the sets {0}, {—1, 1}, {—2, 2}, and it is, clearly,
strictly contained in the one induced by X. #

Forafixedk,let Ay , = Xk, ..., Xi4n—1)"1(B). Then the o-fields Agn,n>1,
form a nondecreasing sequence and therefore F = U™ | Ay , is a field (but it
may fail to be a o-field; see Exercise 10 in this chapter) and By = o (F%). Like-
wise, B; = o (F;) where F; = U3 | A .

However, U2® A, 2 U A, so that By = o (U2, Ay) 2 o (U2, A,) =
B;. This is so by the way the o -fields By and B; are generated (see Theorem 2(ii)
in this chapter). #

Since Sy is a function of the X;s, j = 1,...,k, k = 1,...,n it follows that
o(S) € o(X1,...,Xu),k =1,...,n Hence U;_,0(8) C o(Xy,...,Xy,)
and then o (U}_,0 (k) S o(X1,..., Xy)oro(Sy, ..., 8) Co(Xy, ..., Xpn).

Next, X = Sy — Sik—1,k = 1,...,n (S = 0), so that X; is a function of
the §;s, k = 1,...,n. Then, as above, o (X{,..., X;) € 0(S1,...,S,), and
equality follows. #
Consider the function f : R — N defined by y = f(x) = x 4 c. Then, clearly,
f(B) = B.. The existing inverse of f, f~!,is givenby: x = f~1(y) = x — ¢,
and it is clear that (f~')(B.) = B. By setting g = !, so that g~! = f, we
have that g_l(B)(z f(B)) = B.. So, g_1 is continuous and hence measurable,
and g_l(B) = B.. Since B is measurable then so is B,. #

(i) Clearly, F # @. Next, to show that F is closed under complementation.

Indeed, if A € F, then

=(AjN...NnATHU...U@AlN...NA™)
withall A}, ..., AT, ... AL ... AR in Fy, so that

AC=T[AIN...NATHU...UM@A)N...NAM
=[(ADU...UATHTIN...NIAD U U (Am)]

= U . Uranen. nane.

i1=1 in=1

The fact that Aill, ..., A" are in | implies that (Aill)c, o (Al are
also in Fj, as follows from the definition of Fi. So, A€ is a finite union
of a finite intersection of members of 77, and hence A¢ € F3(= F),
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by the definition of F3. Next, let A, B € F. To show that AU B € F.
Indeed, A, B € F implies that A = AjU...UA, = (Al n...N

AU u@lnonal with Al A in FLi =1, m,

B=BU...UB,=(B!n...nBYU...u®B n...N Bl with

Bl.....B/inFi.j=1....n,

so that

AUB=[AIN...naAMu...u@l n...naknu
[(BlN...nBHYU...UBN...N B
=@Aln...naHu...u@ln...nakH U

(Bln...nBHuU...u®B!n...nBY),

which is a finite union of finite intersections of members of F;. It follows

that A U B is in F3(= F), so that F is a field.

(ii) Trivially, C € F,sothat F(C) C F.To show that F C F(C).Let A € F.
Then, by part (i), A = (A} N...NATHU...U AL N...NAZ") with

all Al .o AT AL LAY in .

Clearly, 71 € F(C) by the definition of F;. Thus, A}, R A;”’ are in
F(C),fori = 1,...,n, and then the intersections Al.1 Nn...N A?"",i =
1,...,n are in F(C), and therefore so is their union (A} N...N A'f“) U

...U(Aln...n A}™). Since this union is A, it follows that A € F(C).
Thus, F € F(C), and the proof is completed. #

Remark: In Exercise 41, in the proof that A € F implies A € F, the
following property was used (in a slightly different notation for sim-
plification); namely, (C] U...UC{'")Nn...Nn(CLu...uC™) =
UL uimcfnLnG.

This is justified as follows: Let w belong to the right-hand side. Then w
belongs to at leats one of the m1 x ... x m, members of the union, for
example, w € (C;1 Nn...N C;z;’) for some 1 < i} < my,...,1 < i,
<my. Butthenw € (ClU...UC"),...,w e (C}U...UCy™), and
therefore w € [C] U...UCT")N...N(CLU...UCy"™)], or » belongs
to the left-hand side. Next, let @ belong to the left-hand side. Then w €

(Clu..uCM), ..., we (ChU...UC)™),sothatw € C}', ..., @ € Cy
./ ¥
forsome 1 <ij <mjy,...,1 <i, <m, Butthenw € (Ci] N...NCM),

and Ci‘ Nn...N C,i{/' is one of the m X ... x m, members of the union on
the right-hand side. It follows that w belongs to the right-hand side, and
the justification is completed. #
42. LetA € A.ThenA = U2 A;, A; = AlNAZN...with Al A, . ..inA;,i > 1.
Then

A= (U A =N A= N(A NAZN.. )¢
TN Y Tt T e P



