
An Introduction to Parallel Programming
Solutions, Chapter 1

Jinyoung Choi and Peter Pacheco

February 1, 2011

1. quotient = n / p;

remainder = n % p;

if (my_rank < remainder) {

my_n_count = quotient + 1;

my_first_i = my_rank * my_n_count;

} else {

my_n_count = quotient;

my_first_i = my_rank * my_n_count + remainder;

}

my_last_i = my_first_i + my_n_count;

2. We are assigning blocks of elements to cores in order (the first n/p elements to core
0, the next n/p elements to core 1, so on). So, for example, if n = 12 and p = 4,
core 0 spends 12 milliseconds in the call to Compute_next_value (i = 0, 1, 2), core 1
spends 30 milliseconds (i = 3, 4, 5), core 2 spends 48 milliseconds (i = 6, 7, 8), and core
3 spends 66 milliseconds (i = 9, 10, 11). So clearly this assignment will do a very poor
job of load balancing.

A better approach uses a cyclic assignment of the work to the cores:

/* assign[c][j] is the jth value of i assigned to core c */

/* work[c] is the total amount of work assigned to core c */

c = j = 0;

for (i = 0; i < n; i++) {

work[c] += 2*(i+1);

assign[c][j] = i;

c = (c + 1) % p;

if (c == 0) j++;

}

1

Copyright © 2010, Elsevier Inc. All rights Reserved.

https://selldocx.com/products
/solution-manual-an-introduction-to-parallel-programming-1e-pacheco

https://selldocx.com/products/solution-manual-an-introduction-to-parallel-programming-1e-pacheco

Prof. Timothy Rolfe of Eastern Washington University came up with a much better
approach. He uses a cyclic assignment of the work to the cores, but he starts with
the largest amount of work (2n) and works backward through the work (2n− 2, 2n−
4, . . . , 4, 2). However, he alternates between going forward (0, 1, . . . , p − 1) and back-
ward (p−1, p−2, . . . , 1, 0) through the cores. For example, suppose p = 5 and n = 23.
Then the cyclic assignment outlined above will assign work as follows:

Core Value of i Total Work

0 0 5 10 15 20 110
1 1 6 11 16 21 120
2 2 7 12 17 22 130
3 3 8 13 18 92
4 4 9 14 19 100

On the other hand, Prof. Rolfe’s solution assigns the work as follows:

Core Value of i Total Work

0 22 13 12 3 2 114
1 21 14 11 4 1 112
2 20 15 10 5 0 110
3 19 16 9 6 108
4 18 17 8 7 108

His algorithm can be described as follows:

j = 0; i = n-1;

while (i >= 0) {

/* Go forward through cores */

for (c = 0; c < p && i >= 0; c++) {

work[c] += 2*(i+1);

assign[c][j] = i;

i--;

}

j++;

/* Go backward through cores */

for (c = p-1; c >= 0 && i >= 0; c--) {

work[c] += 2*(i+1);

assign[c][j] = i;

2

Copyright © 2010, Elsevier Inc. All rights Reserved.

i--;

}

j++;

}

3. divisor = 2;

core_difference = 1;

sum = my_value;

while (divisor <= number of cores) {

if (my_rank % divisor == 0) {

partner = my_rank + core_difference;

receive value from partner core;

sum += received value;

} else {

partner = my_rank core_difference;

send my sum to partner core;

}

divisor *= 2;

core_difference *=2;

}

4. bitmask = 1;

divisor = 2;

sum = my_value;

while (bitmask < number of cores) {

partner = my_rank ^ bitmask;

if (my_rank % divisor == 0) {

receive value from partner core;

sum += received value;

} else {

send my_sum to partner core;

}

bitmask <<= 1;

divisor *= 2;

}

5. It could happen that some cores wait for non-existent cores to send values, and this
would probably cause the code to hang or crash. We can simply add a condition,

if (partner < number of cores) {

3

Copyright © 2010, Elsevier Inc. All rights Reserved.

receive value

sum += received value

}

when a cores tries to receive a value from its partner to make sure the program will
handle the case in which the number of cores isn’t a power of 2.

6. (a) The number of receives is p− 1, and the number of additions is p− 1.

(b) The number of receives is log2(p), and the number of additions is log2(p).

(c)

p Original Tree-Structured

2 1 1
4 3 2
8 7 3

16 15 4
32 31 5
64 63 6

128 127 7
256 255 8
512 511 9

1024 1023 10

7. The example is a combination of task- and data- parallelism. In each phase of the
tree-structured global sum, the cores are computing partial sums. This can be seen
as data-parallelism. Also, in each phase, there are two types of tasks. Some cores are
sending their sums and some are receiving another cores partial sum. This can be seen
as task-parallelism.

8. (a) Cleaning the place for the party, bringing food, scheduling the setup, making
party posters, etc.

(b) There are several locations to clean. We can partition them among the faculty.

(c) For instance, we can assign the task of preparing the food and drinks to some of
the faculty. Then, this group can be partitioned according to the types of food:
some individuals can be responsible for hors d’oeuvres, some for sandwiches, some
for the punch, etc.

9. (ESSAY)

4

Copyright © 2010, Elsevier Inc. All rights Reserved.

