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Chapter 1

21

E[1{A}]=Pr{A} = % Similarly, E[1{A1}] = Pr{Ai} = % for k=1,...,13. Then, because the expected value of a sum
is always the sum of the expected values, E[N] = E[1{A1}]+---+ E[1{A;3}] = 1]—3 +- 4 % =1.

2.2 Let X be the first number observed and let Y be the second. We use the identity (E)c,')2 = Exiz + Xjzjxix; several times.

2.3

24

2.5

2.6

2.7

1
EXI=E[Y]= £ ) x;

1 1 2 N=DY X=X
Var[X] = Var[Y] = NZX‘Z - <N Zx,) = 1\’]2 .
2N

E[XY] = T

i XiXj — (N — 1 2
Cov[X, Y] = E[XY] - E[X]E[Y] = L5 — V- DX

N2(N-1)
ey — Cov[X,Y] _ 1
XY = oxOy o N-—-1 ’
Write S, =& +---+ &, where & is the number of additional samples needed to observe k distinct elements, assuming
that k — 1 district elements have already been observed. Then, defining py = Pr(& =1} =1— % we have Prl[é =n] =

pr(1=py)"~" for n=1,2,... and E[&] = ;. Finally, E[S,] = E[§1]+ - +E[§] = ;- +---+ - will verify the given
formula.
n—1 n—1

Using an obvious notation, the event {N =n} is equivalent to either HTH ... HIT or THT ... THH so P,{N =n} =
n—1 n—1 n—1 n—1
2x(3) xd=(4)" forn=23 . cPriNisevent =3, 5, (1) =}amd AN=6=35,(3) =%

n—1
Pr{Nisevenand N <6}5) , ;¢ (%) =2

In losses

—_——
Using an obvious notation, the probability that A wins on the 2n+ 1 trial is Prq A°B°...A°B°A } =[(1 —p)(1 —¢)]"p,

n=0,1,...Pr{Awins} = Y 2 ;[1—p)(1 —¢)]"p = m. Pr{A wins on 2n + 1 play|A wins} = (1 — )" where

7 = (1= p)(1 = . E[*rials| A wins] = Y20 @n+ D1 —m)w" = 1+ 2 = FHBES = 2 - 1.

n—1
Let N be the number of losses and let S be the sum. Then Pr{N =n,S =k} = (é) (ng) where p3 = p11 =pa =p1o =

%;p5 =p9g =pe =pg = % and p7 = % Finally Pr{iS=k} =2 Pr{N =n,S =k} = pi. (It is not a correct argument to
simply say Pr{S = k} = Pr{Sum of 2 dice = k|Dice differ}. Compare with Exercise II, 2.1.)

We are given that (*) Pr{U > u, W > w} =[1 — F,(w)][1 — F,,(w)] for all u, w. According to the definition for independence
we wish to show that Pr{U < u, W < w} = F,(u)F,,(w) for all u, w. Taking complements and using the addition law

PriU<u,W<w}=1—Pr{U>uor W > w}
=1—[Pr{U > u} + Pr{W > w} — Pr{U > u, W > w}]

=1-[(1=Fyw)+A—-Fww) — (1 = F,w)) (1 = Fyu(w))]
= Fy(u)Fw(w) after simplification.

An Introduction to Stochastic Modeling, Instructor Soluti M.
(© 2011 Elsevier Inc. All rights reserved.
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2.8 (a) E[Y]=Ela+bX]= [(a+bx)dFx(x) =a [dFx(x)+b [ xdFx(x) = a+ bE[X] = a+ bu. In words, (a) implies that the
expected value of a constant times a random variable is the constant times the expected value of the random variable. So
E[p*(X — w)?] = *E[(X — w)?].

(b) Var[Y]=E[(Y — E{Y})?]| = E[(a+bX —a—bu)*| = E[b*(X — w)*] = ’E[(X — p)*] = b*c?

2.9 Use the usual sums of numbers formula (See I, 6 if necessary) to establish

> kn—k) = %n(n—i— 1(n—1); and
k=1

;kz(n—k) =nZk2 - Zk3 = 1—12n2(n+ D(n—1), so

2
nn—1)
3

1
E[Xz] - nn—1) Zkz(n —h= 6n(n+ 1), and

E[X] = Zk(n—k)=%(n+1)

|
Var[X] = E[Xz] — (E[X])? = gt De=2).

2.10 Observe, for example, Pr{Z =4} =Pr{X=3,Y =1} = (%) (%), using independence. Continuing in this manner,

z 1 2 3 4 5 6

1

Pr{Z =z} & 1 5 %

1
12 6 1

Sl=

2.11 Observe, for example, Pr{iW =z} =Pr{iU =0,V =2}+Pr{iU =1,V =1} = é + é + % Continuing in this manner, arrive at

w 1 2 3 4

1 1

Pr{W =w}

1
3 3 6

A=

2.12 Changing any of the random variables by adding or subtracting a constant will not affect the covariance. Therefore, by

replacing U with U — E[U], if necessary, etc, we may assume, without loss of generality that all of the means are zero.
Because the means are zero,

Cov[X, Y] = E[XY] — E[X]E[Y] = E[XY] = E[UV — UW 4+ VW — W?] = —E[W?] = —o%. (E[UV] = E[U]E[V] = 0, etc.)
213 priv<V,U<u}=Priv<X<u,v<Y <u}
= Pr{v < X <u} Pr{v < Y < u} (by independence)
= (u— v)2
= // Juw (V) du'av'

' Vyv<v <u'<u

u u
:/ /fu,v (u' V) pav'.
v Wy

The integrals are removed from the last expression by successive differentiation, first w.r.t. v (changing sign because v is a
lower limit) than w.r.t. u. This tells us

furu)=———u—v)>=2for0<v<u<l.
’ du dv
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3.1 Z has a discrete uniform distribution on 0, 1, ..., 9.

3.2 In maximizing a continuous function, we often set the derivative equal to zero. In maximizing a function of a discrete variable,

we equate the ratio of successive terms to one. More precisely, k* is the smallest k for which L (k(J,;)]) < 1, or, the smallest k£
for which Z+1 1 p) < 1. Equivently, (b) k* = [(n+ 1)p] where [x] = greatest integer < x. for (a) let n — oo, p — 0, A = np.
Then k* = [A].

33 Recallthatelzl+k+)§—§+)§—?+mande_)‘zl—)»—l-kz—z!—g‘—s,-i----sothatsinh)\E%(e)‘—e_)‘):)\—i—%—i—;‘—?—i—m
Then PriXisodd)= Y 2 =¢sinh(h)=1(1—e2).

k!
k=1,3,5,--
o0 o0
1 )\kef)» ef)» )LkJr]
34EVI=Y —2— =~ Ny &
Vi ;kﬂ k! ) %(k+l)!

=L )= (1),
3.5 E[XY]=E[X(N—X)]=NE[X] - E[X?]
= N?p— [Np(1 —p) + N*p*] = N*p(1 — p) = Np(1 — p)
Cov[X, Y] = E[XY] — E[X]E[Y] = —Np(1 — p).

3.6 Your intuition should suggest the correct answers: (a) X is binomially distributed with parameters M and 71; (b) N is binomial
with parameters M and 71 + m2; and (¢) X1, given N = n, is conditionally binominal with parameters n and p = w1 /(71 + 72).
To derive these correct answers formally, begin with

. . M!
PriXi=i,X,=j,X3 =k} = Pp 'k'JTIJTIJT3,l~|-]+k M.

Since k =M — (i +))

M! i Me—iei
PriXi=i,Xo=j=——aladay " 0<i+j<M.
{Xi 2 =]} M — i 1T StTJ=

@) PriXy=i}=) Pr{X;=iXy=j)
i

_ (M_l)‘ / M—i—j
_z'(M—z)' 12 A M—i—p 2

= <Ai4>nf(n2+n3)M_i,i=0,1,...,M

(b) Observe that N = n if and only if X3 = M — n. Apply the results of (a) to X3:

M! M—n
PriN=n}=Pr{Xz=M—n}= m(”l"‘fm) T3

PriXi =k, X, =n—k}

(¢) Pr{Xi=k|IN=n}= PriN = n)

M! k_n—k__M—n
_ k'(M n)~(n_k)~”1”2 ”3

n!(an)! (r1 +m)" 7}

\ k n—k
- " ™l i k=0,1,....n.
kKln—k)!'\m +m 7T+ 7
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3.7 PriZ=n)=)_ PriX=Kk\Pr{iY =n—k)

k=0
n Kk — —k) - n
_ ZM e Mv(n )e v _e*(M‘FU)lZ n! k n—k
= - - = —ufv
T (k)] nl K (n = b))

B e~ (ntv) (L+v)"

‘ (Using binomial formula.)
n!
Z is Poisson distributed, parameter p + v.

3.8 (a) X is the sum of N independent Bernoulli random variables, each with parameter p, and Y is the sum of M indepen-
dent Bernoulli random variables each with the same parameter p. Z is the sum of M + N independent Bernoulli random
variables, each with parameter p.

(b) By considering the ways in which a committee of n people may be formed from a group comprised of M men and N

n
women, establish the identity (M : N) =y (i) (nﬁfk)

k=0
Then

Pr{Z=n}=Y PriX=KkPrlY =n—K}
k=0

k=0

(M:N>p"(1 —p)MN T forn=0.1,....M+N.

Note:

(1127) =(0fork>N.

39 PriX+Y=n}=) PriX=kY=n—-k=) (1-mn*(l-mr"*

k=0 k=0
n
= (1 —n)%7" 21 =+ 1)1 —7m)’x" forn > 0.
k=0
3.10

k Binomial Binomial Poisson
n=10p=.1 rn=100p =.01 A=1

0 .349 .366 .368

1 .387 .370 368

2 .194 185 .184

3.11 PrlU=uW=0=PriX=uY=u}=(1—n)>7>u>0.
PHU=uW=w>0=PriX=u,Y=u+w}+Pr{Y =u, X =u+w)=2(1 —)>72+"

PriU =u}= ZPr{U:u,W:w} =712“<1 —7{2).

w=0

Pr{W =0} = iPr{U:WW:O}: a _”)2/(1 _n2>'

w=0
PHW =w >0} =2 [(1 —71)2/(1 — )2 (1 —_ nz)]nw, and
PriU=u,W =w} = Pr{U = u}Pr{W = w} for all u,w.
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3.12 Let X = number of calls to switch board in a minute. Pr{X >7}=1— >
k=0
3.13 Assume that inspected items are independently defective or good. Let X = # of defects in sample.

PriX =0} = (.95)'° = .599
Pr{X =1} =10(.95)°(.05) = .315
PriX =2} =1—(.599 +.315) = .086.

3.14 (a) E[Z] = % =9, Var[Z] = 1[7;;’ =90
(b) Pr{Z > 10} = (.9)!0 = 349,

3.15 Pr{X <2) = (1 e %) 2 =502 = 677.

& 1
316 (@) po=1-b> (1 —plk=1 —b(;”).
k=1 P
(b) When b = p, then py is given by (3.4).
When b = %, then py is given by (3.5).

@© PriN=n>0}=Pr{X=0,Z=n}+PriX=1,Z=n—-1}
=1 —ap(l—p)"+ap(l—p"!
=[d-ap+ap/(A—p]1—p)

Sob=(1—a)p+ap/(1-p).

+00 1 +00
1.2 1,2 1 2 1,2
41 E[e)»Z] - / e2% +)‘ZdZ:e2)‘ - / eg(sz) dz — o2
\/271'_C>o \/27'[_00
42 (a) Prw > j=e %% =¢71 = 368....
(b) Mode = 0.

4.3 X — 0 and Y — 0 are both uniform over [—%, %], independent of 8, and W =X — Y = (X — ) — (Y — ). Therefore the distri-

bution of W is independent of 8 and we may determine it assuming 6 = 0. Also, the density of W is symmetric since that of
both X and Y are.

1
Pr{W>w}=Pr{X>Y+w}=§(1—w)2, w>0
Sofs(w)=1—w for O0<w<landf,(w)=1—|w| for —1<w<+1

44 1o = 010;02 = (.005)2, Pr{C <0} = Pr{% < %} = Pr{Z < -2} = .0228.

45 PrZ <Y} = [;°{ [ 3e Vdy)2e P dx = 2.

51 Pr{N >k} = PriX| <&,... . Xy <&} = [FE)*, k=0,1,...
PrN =k} =Pr{N>k—1}—PriN >k} =[1 — FE)FE* 1 k=1,2,...

52Pr{Z>z}=PriXy>z...,.Xpy>2y=Pr{iX;>z2}-----PriX, >z}
=e M. e = 750,
Z is exponentially distributed, parameter n.

o0
53 PriX>kl= Y pl—pl=p-p 1 k=0,1,...
I=k+1

E[X] = f PriX >k} = lp;”
k=0
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5.4 Write V=V -V~ when V' =max{V,0} and V™ =max{—V,0}. Then Pr{V*t >v}=1-F,(v) and Pr{iV= >v} =
F,(—v) for v>0. Use (5.3) on V* and V™~ together with E[V]=E[V*]—E[V~]. Mean does not exit if E[VT]=
E[V™]=oo0.

55 E[W?] =[S P{W? > t}di= [;°[1 = F, (V1)]dt =[5 2y[1 = F,(y)]dy by letting y = /1.

56 PriV>tl= [CreMdv=e M E[V]= [T Pr{V > t}dt = | [ he Mdt = 1.

57 PriV>vi=Pr{Xi>v,.... X, >vI=Pr{iX; >v}----- Pri{X, > v}
=e MV oMY = o=ty o, o ()
V is exponentially distributed with parameter Zl)‘ .

5.8

Spares 3 2 1 0

A
B

1 1 1 1
Mean % % % %

Expected flash light operating duration = ﬁ + ﬁ + % + % = % = 2 Expected battery operating durations!



