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Solutions — Chapter 2

2.1.1. Commutativity of Addition:
(x+iy)+(u+iv)=(@+u)+i(y+v)=(u+iv)+ (z+ iy).
Associativity of Addition:
(z+iy) + [(u+iv)+(p+ig)]| =@+ iy) + [(ut+p)+ilw+q)]
=(x+ut+p) +ily+v+q)
=[@+w+i+v)]+@+ig =[x+ iy)+ (u+iv)]+ @+ ig).
Additive Identity: 0 =0=0+ i0 and
(x+iy)+0=ac+iy=0+ (z+ iy).
Additive Inverse: —(x + iy) = (—x) + i(—y) and
@+iy+[(—a)+i(-y)]=0=[(—2)+i(-y) ]+ (= + iy).
Distributivity:
(c+d)(z+1iy)=(c+d)z+i(c+d)y=(cx+dz)+ i(cy+dy) =c(z+ iy)+d(z+ iy),
cllz+iy)+ (u+iv)]=cle4+u)+ (y+v) =(cx+cu)+ i(cy +cv) =c(x + iy) + c(u+ iv).
Associativity of Scalar Multiplication:
cld(z+ iy)] =c[(dz) + i(dy)] = (cdz) + i(cdy) = (cd) (x + iy).
Unit for Scalar Multiplication: 1(z+ iy) = (lz)+ i(ly) =z + iv.

Note: Identifying the complex number z + iy with the vector (z,y )T € R? respects the opera-

tions of vector addition and scalar multiplication, and so we are in effect reproving that R?is a
vector space.

2.1.2. Commutativity of Addition:
(@1,91) + (22, Y2) = (%1 3, Y1 Y3) = (%2, ¥2) + (21, Y1)
Associativity of Addition:
(T, 91) + [($2ay2) + (353793)] = (2123 T3, Y1 Yo Y3) = [(951vy1) + (952=?JQ)] + (23, 93)-
Additive Identity: 0 = (1,1), and
(z,9) + (1,1) = (z,y) = (1, 1) + (z,y).

Additive Inverse:

~en=(21) ad @)+ @] =00 = [~ @] + @)

Ty
Distributivity:

(c+d)(z,y) = @y T = @ 2%y y?) = (2%y°) + (2%, y?) = c(z,y) + d(z,y)
c[(:vl,yl) + (55'2,92)] = ((zy 1'2)07 (1 y2)c) = (azi f’fgayf yS)

= (21,y1) + (25, 93) = c(21,y7) + (29, ¥)-
Associativity of Scalar Multiplication:

c(d(@,y)) = (@, y?) = @%y°) = (cd) (2,y).
Unit for Scalar Multiplication: 1(z,y) = (z,y).

42


https://selldocx.com/products/solution-manual-applied-linear-algebra-1e-olver

© 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced,
in any form or by any means, without permission in writing from the publisher.

For the exclusive use of adopters of the book Applied Linear Algebra, by Peter J. Olver and Cheri Shakiban. ISBN 0-13-147382-4.

Note: We can uniquely identify a point (x,y) € @ with the vector (log x,logy)T € R2. Then
the indicated operations agree with standard vector addition and scalar multiplication in RQ,
and so Q is just a disguised version of R?.

& 2.1.3. We denote a typical function in F(S) by f(z) for x € S.
Commutativity of Addition:

(f +9)(@) = f(z) + g(x) = (f + 9)(@).
Associativity of Addition:
[f+(g+h)]() = f(@)+(g+h)(x) = f(z)+9(x)+h(x) = (f+9)()+h(x) = [(f+g)+h](z).

Additive Identity: 0(x) = 0 for all z, and (f 4+ 0)(x) = f(z) = (0 + f)(x).
Additive Inverse: (— f)(x) = — f(z) and

[f + (D) = f(@) + (= f)@) = 0= (= F)(z) + f(x) = [(= ) + fl(2).
Distributivity:
[(c+d) fl(z) = (c+d) f(z) = cf(z) +df(z) = (cf)(z) + (df)(z),
[c(f + 9l(x) = cf(z) + cg(x) = (cf)(@) + (cg)(z).

Associativity of Scalar Multiplication:

[c(dN)](z) = cd f(z) = [(cd) f](z).
Unit for Scalar Multiplication: (1f)(x) = f(x).

2.1.4. (a) (1,1,1,1)%, (1,-1,1,-1)7, (1,1,1,1)", (1,-1,1,—-1)T . (b) Obviously not.
2.1.5. One example is f(z) = 0 and g(z) = z° — z.
2.1.6. (a) f(z)=—42+3; (b) f(z)=—22% -z +1.

1.7 - .
(a) <ac y)) < N >, and (é), which is a constant function.

Ty cosy
. . (r—y+et+1 —bx+5y—5e* -5
(b) Their sum is < _Bay—5eosy—15 )"

»Ty—l-cosy_{_g)- Multiplied by —5 is <

(c) The zero element is the constant function 0 = <8>

¢ 2.1.8. This is the same as the space of functions f(RZ, ]R2). Explicitly:
Commutativity of Addition:

() + () = (e tmen) = ()« ().
Associativity of Addition:
() +[ () + ()] = (e puen ey
A N - [(f )+ () |+ ().
dditive Identity: 0 = (0,0) for all z,y, and
() o= sy o (i),

Additive Inverse: — <Ul (a:,y)) = <_U1 (y) >, and
Vg (:Ua y) — Uy (.’)3, y)

() (Tt =o=(Zuin) + (i)
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Distributivity:
T c+ d)v(x, vy (x
(C+d)< (?J)) <(+)1( y)> C(l(a
b}

) ) = et d)oste.y) D) va(iy).
[(nen) o (mle)] < (calentemn) _ (u@n) (@),

Associativity of Scalar Multiplication:
d vﬂx,y))} — <Cd’U1(I,y)> — d <U1($,y)>'
e (i) )= (e ) = eo ()
Unit for Scalar Multiplication:
1 <’Ul($,y)> — (Ul(xvy)> .
vy (2, y) vy ()

© 2.1.9. We identify each sample value with the matrix entry m,; = f(ih,jk). In this way, every
sampled function corresponds to a uniquely determined m X n matrix and conversely. Ad-
dition of sample functions, (f + g)(i¢h,jk) = f(ih,jk) + g(ih,jk) corresponds to matrix
addition, m;; + n;;, while scalar multiplication of sample functions, c f (ih,jk), corresponds

to scalar multlphcatlon of matrices, cm; j

2.1.10.a+b = (a; +by,ay +by,a53 +bs,...), ca=(cay,cay,casg,...). Explicity verification of
the vector space properties is straightforward. An alternative, smarter strategy is to iden-
tify R as the space of functions f:N — R where N = {1,2,3, ... } is the set of natural
numbers and we identify the function f with its sample vector f = (f(1), f(2),...).

2111 () v+ (-)v=1v+ (-1)v= (1 +(-1) )v=0v =0.
(j) Let z=c0. Then z+z = c(0 + 0) = c0 = z, and so, as in the proof of (h), z = 0.

1 1 1
(k) Suppose ¢ #0. Then v=1v = (—-c)v:—(cv):—O:O.
c c c

¢ 2.1.12.1f 0 and 0 both satisfy axiom (c), then 0 =0+0=0+0 = 0.

& 2.1.13. Commutativity of Addition:

(v,w)+ (V,W) = (v+V,w+ W) = (V,W) + (v, w).

Associativity of Addition:
v, W)+ [(¥, W)+ (¥, W) ] = (v+V+V, w+ W+ W) = [(v,w) + (V,W) ] + (¥, W).
Additive Identity: the zero element is (0,0), and
(v,w) +(0,0) = (v,w) = (0,0) + (v, w).

Additive Inverse: —(v,w) = (—v,—w) and

(viw)+ (=v,—w) =(0,0) = (—v,—w) + (v, w).
Distributivity:

(c+d) (v, w) = (e + d)v, (c + d)w) = c (v, w) + d(v, W),

c[(v,w)—i—(?x,v?r)] (cv+cv,ev+cew) =c(v,w) +c(V,W).
Associativity of Scalar Multiplication:
c(d(v,w)) = (cdv,cdw) = (cd) (v,w).

Unit for Scalar Multiplication: 1(v,w) = (1v,1w) = (v,w).

2.1.14. Here V. = C% while W = R, and so the indicated pairs belong to the Cartesian prod-

uct vector space C°% x R. The zero element is the pair 0 = (0,0) where the first 0 denotes
the identically zero function, while the second 0 denotes the real number zero. The laws of
vector addition and scalar multiplication are

(f(@),a) + (9(2),b) = (f(x) + 9(x),a+b),  c(f(x),a) = (cf(z),ca).
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2.2.1.

(a) If v= (:c,y,z)T satisfies x —y+4z=0and v = (fi:,'gj,fi)T also satisfies T — y + 4% = 0,
) since (x4 %) — (y+7) +4(z2+32) = (z—y+42) +
(T—§+4%) =0, as does cv = (cx,cy,cz)’ since (cx)—(cy)+4(cz) = c(z—y+42) = 0.

sodoesv+v=(z+Z,y+7y,z+2

(b) For instance, the zero vector 0 = (0,0,0 )T does not satisfy the equation.

2.2.2. (b,c,d,g,i) are subspaces; the rest are not. Case (j) consists of the 3 coordinate axes and
the line x =y = 2.

2.2.3. (a) Subspace: (b) Not a subspace:

(c) Subspace:

[y
v
iy

1 2 0 a-+2b T
2.2.4. Any vector of the form a 214610 4+c|-1| = 2a —c = |y | wil
-1 1 3 —a+b+3c z
1 2 0
belong to W. The coefficient matrix 2 0 —1 | is nonsingular, and so for any
-1 1 3
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x = (z,y,2 )T € R? we can arrange suitable values of a, b, ¢ by solving the linear system.
Thus, every vector in R3 belongs to W and so W = R3.

2.2.5. False, with two exceptions: [0,0] = {0} and (—oc0,00) = R.

2.2.6.

(a) Yes. For instance, the set S = {(z,0} U {(0,y) } consisting of the coordinate axes has
the required property, but is not a subspace. More generally, any (finite) collection of 2
or more lines going through the origin satisfies the property, but is not a subspace.

(b) For example, S = {(x,y)|x,y > 0} — the positive quadrant.

2.2.7. (a,c,d) are subspaces; (b,e) are not.

2.2.8. Since x = 0 must belong to the subspace, this implies b = A0 = 0. For a homogeneous
system, if x,y are solutions, so Ax =0 = Ay, so are x+y since A(x+y)=Ax+ Ay =0,
as is ¢x since A(cx) =cAx = 0.

2.2.9. L and M are strictly lower triangular if lz‘j =0=my; whenever ¢ < j. Then N =L+ M
is strictly lower triangular since n; ;= l; jtmy; = 0 whenever ¢ < j, as is K = cL since

k:l-j = clij = 0 whenever 7 < j.
n n
2.2.10. Note tr(A+B) = > (a; +b;;) =tr A+tr B and tr(cA) = > ca,; =c¢ > a;,; =ctrA.

=1 1=1 1=1
Thus, if tr A = tr B = 0, then tr(A 4+ B) = 0 = tr(cA), proving closure.
2.2.11.
(a) No. The zero matrix is not an element.

(b) No if n > 2. For example, A = <(1) 8), B = (8 ?) satisfy det A = 0 = det B, but

1 0

det(A + B) = det <0 1

) =1, so A+ B does not belong to the set.

2.2.12. (d,f,g,h) are subspaces; the rest are not.

2.2.13. (a) Vector space; (b) not a vector space: (0,0) does not belong; (c¢) vector space;
(d) vector space; (e) not a vector space: If f is non-negative, then —1 f = — f is not (un-
less f =0); (f) vector space; (g) vector space; (h) vector space.

2.2.14.1f f(1) = 0 = g(1), then (f + g)(1) = 0 and (c¢f)(1) = 0, so both f + g and cf be-

long to the subspace. The zero function does not satisfy f0) = 1. For a subspace, a can be
anything, while b = 0.

2.2.15. All cases except (e,g) are subspaces. In (g), | z| is not in C!.

2.2.16. (a) Subspace; (b) subspace; (c) Not a subspace: the zero function does not satisfy
the condition; (d) Not a subspace: if f(0) = 0, f(1) = 1, and g(0) = 1, g(1) = 0, then f
and g are in the set, but f + g is not; (e) subspace; (f) Not a subspace: the zero function
does not satisfy the condition; (g) subspace; (h) subspace; (i) Not a subspace: the zero
function does not satisfy the condition.

2.2.17.1f v = zu, v = zv, are solutions, and ¢, d constants, then (cu+ dv)" =cu” +dv’ =
cxu+dxrv = z(cu+ dv), and hence cu + dv is also a solution.

2.2.18. For instance, the zero function u(x) = 0 is not a solution.

2.2.19.
(a) Tt is a subspace of the space of all functions f:[a,b] — R?, which is a particular instance

of Example 2.7. Note that £(t) = ( f,(t), fy(?) )T is continuously differentiable if and
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only if its component functions f;(t) and f,(¢) are. Thus, if f(¢t) = ( f,(t), f5(t) )% and
g(t) = (91(t), g5(t) )T are continuously differentiable, so are

(F+8)(1) = (f1(t) + g, (1), fo(t) + 92(1)) and (c£)(t) = (cfy(t), e fo(t))T
(b) Yes: if f(0) = 0 = g(0), then (cf + dg)(0) = 0 for any ¢,d € R.

2220.V-(cv+dw)=¢V-v+4+dV-w =0 whenever V-v=V . -w =0 and ¢,d, € R.

2.2.21. Yes. The sum of two convergent sequences is convergent, as is any constant multiple of
a convergent sequence.

2.2.22.

(a) If v,w € W N Z, thenv,w € W, socv +dw € W because W is a subspace, and
V,W € Z,s0 cv+dw € Z because Z is a subspace, hence cv+dw € W N Z.

(b) fw+z,w+zeW+ Zthenc(w+z)+d(W+2z)=(cw+dw)+ (cz+dz) e W+ Z,
since it is the sum of an element of W and an element of Z.

(c) Given any w € W and z € Z, then w,z € W U Z. Thus, if W U Z is a subspace, the
sumw+z € WUZ. Thus, either w+2z=w € W orw+z =72z € Z. In the first case
z =w —w € W, while in the second w =z — z € Z. We conclude that for any w € W
and z € Z, either w € Z or z € W. Suppose W ¢ Z. Then we can find w € W\ Z, and
so for any z € Z, we must have z € W, which proves Z C W.

¢ 2.2.23.1f viw € NW,, then v,w € W, for each 7 and so cv +dw € W, for any c,d € R because
W, is a subspace. Since this holds for all i, we conclude that cv +dw € N W,.

7

0 2.2.24.
(a) They clearly only intersect at the origin. Moreover, every v = <x> = (g) + <0> can
be written as a sum of vectors on the two axes. y y
(b) Since the only common solution to x = y and x = 3y isx = y = 0, the lines only

intersect at the origin. Moreover, every v = <§> = <Z>+<3bb>’ where a = — %ZL‘-F% Y,

b= %az — %y, can be written as a sum of vectors on each line.

(¢) A vector v = (a,2a, 3a)T in the line belongs to the plane if and only if a + 2(2a) +
3(3a) = 14a = 0, so a = 0 and the only common element is v.= 0. Moreover, every

T z+2y+3z 13z -2y -3z
v=1y]| =1 2(x+2y+32) | + T2 —2x+ 10y — 62 | can be written as a sum
z 3(x+2y+32) -3z —6y+5z

of a vector in the line and a vector in the plane.

(d) If w+ 2z =w + 2z, then w — w =z — z. The left hand side belongs to W, while the right
hand side belongs to Z, and so, by the first assumption, they must both be equal to 0.
Therefore, w = w, z = Z.

2.2.25.

(a) (v,w) € V, N W, if and only if (v,w) = (v,0) and (v,w) = (0, w), which means v =
0,w = 0, and hence (v,w) = (0,0) is the only element of the intersection. Moreover, we
can write any element (v,w) = (v,0) + (0, w).

(b) (v,w) € DN A if and only if v = w and v = —w, hence (v,w) = (0,0). Moreover, we
can write (v,w) = (%V + %W, %V + %w) + (%V - %w,—%v + %w) as the sum of an
element of D and an element of A.

2.2.26. B B B B

(a) If f(—2) = f(z), f(—2) = f(z), then (cf +df)(—z) = cf(—z) +df(—2) = cf(z) +

df(z) = (cf +df)(x) for any c,d, € R, and hence it is a subspace.

(b) Ig(~2) = —g(x), 5(~2) = —g(x), then (cg + dg)(—x) = cg(—=) +dg(—=) =
—cg(x) — dg(x) = —(cg + dg)(z), proving it is a subspace. If f(z) is both even and
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odd, then f(z) = f(—x) = — f(x) and so f(z) = 0 for all z. Moreover, we can write any
function h(z) = f(x) + g(x) as a sum of an even function f(z) = %[h(:v) + h(—ac)] and
an odd function g(z) = %[h(x) — h(—x) ]

(¢) This follows from part (b), and the uniqueness follows from Exercise 2.2.24(d).

2227.1f A = AT and A = — AT is both symmetric and skew-symmetric, then A = O.
Given any square matrix, write A = S 4+ J where § = %(A + AT) is symmetric and
J = %(A — AT) is skew-symmetric. This verifies the two conditions for complementary

subspaces. Uniqueness of the decomposition A = S + J follows from Exercise 2.2.24(d).

$ 2.2.28.
(a) By induction, we can show that

e~ 1/x

x’I’L

)

f(”)(ac) =P, <1> e 1T = Q,(x)

x
where P, (y) and Q,,(z) = 2" P, (1/x) are certain polynomials of degree n. Thus,

e—l/m

lim " (2) = lim Q, (@)™~ =Q,(0) lim_y"e™¥ =0,

z—0
because the exponential e~ Y goes to zero faster than any power of y goes to oo.
(b) The Taylor series at a = 01is 0 4+ Ox + 0z2 4+ - = 0, which converges to the zero

function, not to e~ 1z,

2.2.29.

(a) The Taylor series is the geometric series ———— =1 — w4zt -2+

142
(b) The ratio test can be used to prove that the series converges precisely when |z | < 1.
(¢) Convergence of the Taylor series to f(x) for x near 0 suffices to prove analyticity of the

function at x = 0.

© 2.2.30.
(a) If v+a,w+a € A, then (v+a)+(w+a) = (v+w+a)+a € A requires vitw+a=u e V,
and henccea=u—v —w € A.

3 3 3

2 2 2

(b) (i) 3 -2 -1 1 2 3 (ii) 3 -2 -1 1 2 3 (iii) 3 -2 -1 1 2 3

-1 -1

-2 -2 -2

(c) Every subspace V C R? is either a point (the origin), or a line through the origin, or all
of R2. Thus, the corresponding affine subspaces are the point {a}; a line through a, or
all of R? since in this case a € V = R2.

(d) Every vector in the plane can be written as (z,y, z)T = (2,7, E)T + (1,0, O)T where
(Z,9, E)T is an arbitrary vector in the subspace defined by z — 23y + 3% = 0.

(e) Every such polynomial can be written as p(z) = ¢(z) + 1 where ¢(z) is any element of
the subspace of polynomials that satisfy ¢(1) = 0.
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3 2 1
-3 1 -2 —2
T _o] 3 6 4
232.| =3 31+2| Sl+| ¢
1 0 4 -7
2.3.3.
1 1 0
(a) Yes,since [ -2 | = | 1| —-3|1]|;
-3 0 1
1 1 1 0
(b) Yes, since | —2 | = 1% 2 | + % 9| = % 3|
-1 2 0 4
3 1 0 2
(c) No, since the vector equation _(1) =c 3 + e _é +eq (i) does not have a
solution. -2 1 0 -1

2.3.4. Cases (b), (¢), (e) span RZ.
2.3.5.

(a) The line (3t,0,t)T:

(b) The plane z = —s 2z — 2 ¥:

(c¢) The plane z = —z — y:

2.3.6. They are the same. Indeed, since v; = u; + 2u,, vy = u; + u,, every vector v € V can
be written as a linear combination v = ¢; v + ¢, vy = (¢] +¢5)u; + (2¢4 +¢,) u, and hence
belongs to U. Conversely, since u; = —v; +2v,, uy = v; — vy, every vector u € U can be
written as a linear combination u = ¢y u; +cyuy = (—c¢; +¢5) vy +(2¢; — cy) Vo, and hence
belongs to U.

. . a b\ _ 1 0 00 0 1
2.3.7. (a) Everysymmetrlcmatrlxhastheform<b C>—a<0 O>+C<O 1>—|—b<1 0).
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1 0 0 0 0 0 0 0 0 010 0 0 1 0 0 0
) {o o o], o 10}, [0o00o0|,[10o0]|,|000],[00 1]
0 0 0 0 0 0 0 0 1 0 0 0 1 00 01 0

2.3.8.
(a) They span P since az?+bx+c = %(a— 2b+c)(z%+1)+ %(a—c)(ac2 —1)+b(z*+z+1).
(b) They span PG) since az® +ba® +cx+d = a(z®=1)+b(z%+1)+c(x—1)+ (a—b+c+d)1.
(¢) They do not span P®) since az®+ba? +cr+d = crz® ey (2?4 1) +eg(a? —a) +ey(z+1)
cannot be solved when b+ ¢ — d # 0.
2.3.9. (a) Yes. (b) No. (¢) No. (d) Yes: cos?x =1 —sin?z. (e) No. (f) No.

2.3.10. (a) sin3:c:cos(3:1:— %7’[‘); (b) cosz —sinz = /2 cos(x+ iw),

(c) 30082:L’+4sin2:z::5005(2x—tan_1%), (d) coszsinx = %sin2x: %COS(2$— %71’)

2.3.11. (a) If u; and u, are solutions, so is u = c;u; + cyuy since v’ — 4u’ + 3u = ¢y (u] —
4l + 3uy) + ey (ul — 4uly + 3uy) = 0. (b) span {e%,e37}; (c) 2.

2.3.12. Each is a solution, and the general solution u(x) = ¢; + ¢y cosx + cysinx is a linear
combination of the three independent solutions.

2.3.13. (a) €2%; (b) cos2z,sin2x; (¢) €3%,1; (d) e~ %, e 3%; (e) efx/Qcoséx,
e_x/Qsinéaz; (f) €%, 1,z; (g) em/‘/icos%,egc/‘/isini,e_x/‘/icosi,e_ac/\/isini

V2 V2 V2

2.3.14. (a) If u; and u, are solutions, so is u = ¢; uy + cyuy since v’ + 4u = ¢y (u] + 4uy) +
co(uy + 4uy) = 0, u(0) = cquq(0) + cyuy(0) = 0, u(m) = cjuq(m) + cyuy(m) = 0.
(b) span {sin2z}

2.3.15. (a) (%) = 2f,(z) + f5(z) — f5(x); (b) not in the span; (c) <i1—_293> =f,(z) —

fy(x) — f3(x); (d) not in the span; (e) <2 6 x) =2f,(z) — f3(x).

2.3.16. True, since 0 = 0v; +---+0v,,.

1 1 0 0
2.3.17. False. For example, if z = (1),u: (O),v: (1),w: (O),thenz:u—i—v, but
0 0 0 1

1+ c3
the equation w = cju+cyv+c3z = | ¢y +c3 | has no solution.

¢ 2.3.18. By the assumption, any v € V' can be written as a linear combination

v=cvi+ - te, vy, =vi+ oo e, v, +0v, .+ - +0v,
of the combined collection.
$ 2.3.19.
m n n m
(a) Ifv = > c;v;and v; = > a;; W;, then v = > b;v; where b, = > a;;cj, or, in
j=1 =1 1=1 j=1
vector language, b = Ac.
(b) Every v € V can be written as a linear combination of v,...,v, , and hence, by part
(a), a linear combination of wy,...,w, , which shows that w,,...,w, also span V.
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$ 2.3.20.
m n
(a) If v= Z a;v;, W= Z b, v,, are two finite linear combinations, so is
=1 =1
max{m,n }
ev+dw= > (ca; +db;)v; where we set a; =0if i >m and b, =0 if i > n.
=1

(b) The space P() of all polynomials, since every polynomial is a finite linear combination
of monomials and vice versa.

2.3.21. (a) Linearly independent; (b) linearly dependent; (c) linearly dependent;
(d) linearly independent; (e) linearly dependent; (f) linearly dependent;
(g) linearly dependent; (h) linearly independent; (i) linearly independent.

2.3.22. (a) The only solution to the homogeneous linear system

1 -2 2
-2 .
cq (2) +cq _i’ + 3 1 =0 1S ¢ =cg =cg3=0.
1 1 -1
(b) All but the second lie in the span. (c) a —c+d=0.
2.3.23.
(a) The only solution to the homogeneous linear system
1 1 1 1
1 1 -1 -1
AC:C1 1 +02 1 +C3 0 +C4 O =0
0 0 1 -1
1 1 1 1
. . . . 1 1 -1 -1/,
with nonsingular coefficient matrix A = 1 1 0 1| sc= 0.
0 0 1 -1
(b) Since A is nonsingular, the inhomogeneous linear system
1 1 1 1
1 1 -1 -1
VIACZCl 1 +C2 _1 +03 0 +C4 O
0 0 1 -1
has a solution ¢ = A~1v for any v € R*.
1 1 1 1 1
0] 3|1 1 1 3| —1 1| -1
(c) o =8{1| T8 -1]|T2| o] 1| o
1 0 0 1 -1

2.3.24. (a) Linearly dependent; (b) linearly dependent; (c¢) linearly independent; (d) linearly
dependent; (e) linearly dependent; (f) linearly independent.

2.3.25. False:
1 0 0 01 0 0 0 1 1 0 0 0 1 0 0 0 1
o1 0|l-|l1T 0O0]—-]01O0]-]001|+f0 0 1|+1 0 0]=0.
0 0 1 0 0 1 1 0 0 0 1 0 1 0 0 0 1 0

2.3.26. False — the zero vector always belongs to the span.

2.3.27. Yes, when it is the zero vector.
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2.3.28. Because x,y are linearly independent, 0 = c;u+ ¢y v = (ac; + ccy)x + (bey + dey)y if
and only if ac; + ccy = 0,bc; + dcy = 0. The latter linear system has a nonzero solution
(cy,¢9) # 0, and so u, v are linearly dependent, if and only if the determinant of the coef-

ficient matrix is zero: det <Z ;) = ad — bc = 0, proving the result. The full collection

X,¥y,u,Vv is linearly dependent since, for example, ax+by —u+0v = 0 is a nontrivial linear
combination.

2.3.29. The statement is false. For example, any set containing the zero element that does not
span V is linearly dependent.

¢ 2.3.30. (b) If the only solution to Ac = 0 is the trivial one ¢ = 0, then the only linear com-
bination which adds up to zero is the trivial one with ¢; = --- = ¢;, = 0, proving linear
independence. (c) The vector b lies in the span if and only if b =c; v, +--- 4+ ¢, v, = Ac
for some ¢, which implies that the linear system A c = b has a solution.

$ 2.3.31.
(a) Since vq,...,v,, are linearly independent,
O=cvi+ - tegvp=cvy+ - Fvp+0vey+ - +0v,
if and only if ¢; = --- = ¢, = 0.

(b) This is false. For example, v, = <%> , Vo = <§>, are linearly dependent, but the
subset consisting of just v, is linearly independent.
2.3.32.
(a) They are linearly dependent since (z% — 3) +2(2 —z) — (z — 1) = 0.
(b) They do not span P2,
2.3.33. (a) Linearly dependent; (b) linearly independent; (¢) linearly dependent; (d) linearly

independent; (e) linearly dependent; (f) linearly dependent; (g) linearly independent;
(h) linearly independent; (i) linearly independent.

2.3.34. When x > 0, we have f(x) — g(z) = 0, proving linear dependence. On the other hand, if
¢, f(x) + cog(x) = 0 for all z, then at, say v = 1, we have ¢; + ¢, = 0 while at z = —1, we
must have —c¢; + ¢y = 0, and so ¢; = ¢, = 0, proving linear independence.

© 2.3.35.
k

n . n k
(a) 0= > ¢p;(x)= > ciaijx] if and only if > > ¢;a;; =0,7=0,...,n, or, in
i=1 j=01i=1 j=0i=1

Nk

matrix notation, A7 ¢ = 0. Thus, the polynomials are linearly independent if and only if
the linear system A% ¢ = 0 has only the trivial solution ¢ = 0 if and only if its (n+1) x k
coefficient matrix haskrank AT =rank A = k.

n .
(b) q(z) = >_ bja’ = > ¢;p;(x) if and only if ATc=b.
=0

= =1
-1 0 0 1 0
4 -2 0 1 0
(c) A= 0 —4 0 0 1| hasrank 4 and so they are linearly dependent.
1 0 1.0 0
1 2 0 4 -1
(d) g(z) is not in the span.
¢ 2.3.36. Suppose the linear combination p(x) = ¢y + ¢; ¢ + ¢4 2?4+ o+ c,x" = 0 for all z.
Thus, every real z is a root of p(x), but the Fundamental Theorem of Algebra says this is
only possible if p(z) is the zero polynomial with coefficients ¢; =c¢; =--- =¢,, = 0.
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© 2.3.37.

(a) If ¢; fi(x) + - +¢c, f,(x) =0, then ¢ fi(z;) + -+ ¢, f,,(z;) = 0 at all sample points,
and so ¢; f; +---+ ¢, f, = 0. Thus, linear dependence of the functions implies linear
dependence of their sample vectors.

(b) Sampling f;(z) = 1 and fy(x) = 22 at —1,1 produces the linearly dependent sample

1
vectors f; = f, = 1

(¢) Sampling at 0, %7[', %ﬂ', %ﬂ', m, leads to the linearly independent sample vectors

1 1 0 1 0
V2 V2
1 5" 5 0 1
1], 0 , 1 |, -1 1, 0
2 2
1 —2 v2 0 ~1
1 1 0 1 0
2.3.38.
(a) Suppose ¢, f;(t) +--- + ¢, f,(t) = 0 for all t. Then ¢, f,(t,) +---+¢,f,(t;) = 0, and
hence, by linear independence of the sample vectors, ¢; = --- = ¢, = 0 which proves

linear independence of the functions.
20t + (] —cy) \ _ . .
(b) ¢ £,(t) + cofi(t) = <202t2 e —et) = 0 if and only if ¢ = 0, ¢; — ¢, = 0, and
so ¢; = ¢y = 0, proving linear independence. However, at any t, the vectors f,(t;) =
(2ty — 1)f; (ty) are scalar multiples of each other, and hence linearly dependent.

© 2.3.39.
(a) Suppose ¢; f(z) + c5g(z) = 0 for all x for some ¢ = (¢q, ¢, )T # 0. Differentiating,

x x c
we find ¢; f'(z) + c5¢'(z) = 0 also, and hence < Jj( ) gz( )> < 1) = 0 for all z.
[(@) g(x)

The homogeneous system has a nonzero solution if and only if the coefficient matrix is
singular, which requires its determinant W[ f(x), g(z)] = 0.

(b) This is the contrapositive of part (a), since if f, g were not linearly independent, then
their Wronskian would vanish everywhere.

(¢) Suppose ¢; f(z) + cyg(x) = c;2® + ¢y |x |3 = 0. then, at = 1, ¢; + ¢, = 0, whereas
at t = —1, —c; + ¢y = 0. Therefore, c; = ¢y = 0, proving linear independence. On the

other hand, W|z3, |z |?] = 3 (322 signz) — (3z2) |z |> = 0.

2.4.1. Only (a) and (c) are bases.
2.4.2. Only (b) is a basis.

1 0
2.4.3. (a) (0),<1>; (b)
0 2

2.44.
(a) They do not span R3 because the linear system Ac = b with coefficient matrix

O = RW
=l
—~
O
N—
OO N
— o o

1 3 2 4

A=|0 -1 -1 -1 | does not have a solution for all b since rank A = 2.
2 1 -1 3

(b) 4 vectors in R® are automatically linearly dependent.
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(c¢) No, because if v, vy, V3, v, don’t span RS, no subset of them will span it either.
(d) 2, because v; and v, are linearly independent and span the subspace, and hence form a
basis.

2.4.5.
(a) They span R3 because the linear system A c = b with coefficient matrix

1 2 0 1
A= (—1 -2 =2 3) has a solution for all b since rank A = 3.
2 5 1 -1

(b) 4 vectors in R? are automatically linearly dependent.
(c¢) Yes, because v, vy, vy also span R3 and so form a basis.
(d) 3 because they span all of R?.

2.4.6.
2y 44z
(a) Solving the defining equation, the general vector in the plane is x = Y where
z
2 4 2 0
y, z are arbitrary. We can writex =y | 1 | +2 [0 | =(y+22) | =1 | +(y+2) 2
0 1 1 -1

and hence both pairs of vectors span the plane. Both pairs are linearly independent
since they are not parallel, and hence both form a basis.

NE RN E ]

(¢) Any two linearly independent solutions, e.g., | 1 |, 1 |, will form a basis.
1 2

© 2.4.7. (a) (i) Left handed basis; (i7) right handed basis; (#74) not a basis; (iv) right handed
basis. (b) Switching two columns or multiplying a column by —1 changes the sign of the
determinant. (c¢) If det A = 0, its columns are linearly dependent and hence can’t form a
basis.

2.4.8. - -
(a) (-3,8,1,0)" ,(5,-3,0,1)"; dim=2.
(b) The condition p(1) = 0 says a+b+c=0, so p(z) = (=b—c)z® + bz +c=b(—z>+z)+
o(—2% +1). Therefore —z + z, —z* + 1 is a basis, and so dim = 2.
(c) €*, cos2x, sin2z, is a basis, so dim = 3.

3 2 0 (D (L
2.4.9. (a) 1|,dim=1; (b) |0 [,| =1 |,dim=2; (c) AN e dim =
—1 1 3 9 3 1

2.4.10. (a) We have a + bt +ct? = ¢; (1 +1%) 4+ co(t + %) + c3(1 + 2t + %) provided a = ¢; + ¢,

1 0 1
b= cy+2cy, c = c; + cy + c3. The coefficient matrix of this linear system, (0 1 2) ,
1 1 1
is nonsingular, and hence there is a solution for any a, b, ¢, proving that they span the space
of quadratic polynomials. Also, they are linearly independent since the linear combination
is zero if and only if ¢, ¢y, c5 satisfy the corresponding homogeneous linear system c; +c3 =
0, cy +2c3 =0,c¢; +cyg+c3 = 0,and hence ¢; = ¢5 = ¢3 = 0. (Or, you can use
the fact that dimP? = 3 and the spanning property to conclude that they form a basis.)
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(b) 144t + 7t =201 +t%) + 6(t + %) — (1 + 2t + t?)

2.4.11. (a) a+bt+ct?+dt3 = 61+02(1—t)+c3(1—t)2—|—c4(1—t)3 provided a = ¢; +cy+cg+cy,
1 1 1 1
0 -1 -2 -3
0 0 1 3
0 0 0 -1

is nonsingular, and hence they span PG, Also, they are linearly independent since the lin-
ear combination is zero if and only if ¢; = ¢, = ¢3 = ¢, = 0 satisfy the corresponding

b= —cy—2c3 —3¢cy, c =cg3+3¢cy, d= —c,. The coefficient matrix

homogeneous linear system. (Or, you can use the fact that dim PG) = 4 and the spanning
property to conclude that they form a basis.) (b) 14+¢> =2—-3(1—t)4+3(1—1)% — (1 —1)3.

2.4.12. (a) They are linearly dependent because 2p; — p, + p3 = 0. (b) The dimension is 2,
since py, py are linearly independent and span the subspace, and hence form a basis.

2.4.13. 1 1 1 1
e ol | vz
(a) The sample vectors L 8 , L 2 are linearly independent and
1 —v2 0 v2
hence form a basis for R* — the space of sample functions.
0 1 1 1
1 V2 _V2
(b) Sampling = produces ; = % 1 - 2—1_8\/5 5 _2 8\/5 02
3 1 _V2 V2
2.4.14. 2 ?
(a) By = <(1) 8>,E12: <8 (1)>,E21: <(1) 8>,E22: <8 (1)> is a basis since we

can uniquely write any <Z Z) =al; +bE |y +cEy +dEy,.

(b) Similarly, the matrices E;; with a 1 in position (,7) and all other entries 0, for
t=1,...,m, j=1,...,n, form a basis for M ., which therefore has dimension mn.

2.4.15.k # —1,2.

2.4.16. A basis is given by the matrices I/;;, 7 = 1,...,n which have a 1 in the ith diagonal
position and all other entries 0.

2.4.17.
1 0 0 1 0 0 . .
(a) E11:<0 0>,E12:<0 0>,E22:<0 1); dimension = 3.

(b) A basis is given by the matrices E;; with a 1 in position (7, j) and all other entries 0 for
1 <i < j <n, so the dimension is %n(n +1).

2.4.18. (a) Symmetric: dim = 3; skew-symmetric: dim = 1; (b) symmetric: dim = 6; skew-
symmetric: dim = 3; (c¢) symmetric: dim = %n(n—kl); skew-symmetric: dim = %n(n—l).

© 2.4.19.

(a) If a row (column) of A adds up to a and the corresponding row (column) of B adds up
to b, then the corresponding row (column) of C' = A 4+ B adds up to ¢ = a + b. Thus,
if all row and column sums of A and B are the same, the same is true for C. Similarly,
the row (column) sums of ¢ A are ¢ times the row (column) sums of A, and hence all the
same if A is a semi-magic square.
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a b c
(b) A matrix A = (d e f ) is a semi-magic square if and only if
g h J

a+b+c=d+e+f=g+h+j=a+d+e=b+e+h=c+f+7.
The general solution to this system is

1 -1 0 1 0 -1 -1 1 1 0 0 1 0 1 0
A:e(—l 1 0>+f<—1 0 1)—|—g( 10 0)—|—h(1 0 0>+j<1 0 0)
0 0 0 0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 010 0 0 1
:(e—g)(O 1 0)—1—(9—1—]’—6)(1 0 O)+g(0 1 O)+
0 0 1 0 0 1 1 00

1 0 0 00 1
+f(0 0 1)+(h—f)(1 0 0),
01 0 01 0

which is a linear combination of permutation matrices.
(¢) The dimension is 5, with any 5 of the 6 permutation matrices forming a basis.
(d) Yes, by the same reasoning as in part (a). Its dimension is 3, with basis

2 2 -1 2 -1 2 -1 2 2
(—2 1 4), (1 1 1), ( 4 1 —2).
3 0 0 0 3 0 0 0 3
2 2 -1 2 -1 2 -1
(e)A:cl<—2 1 4)—{—02(1 1 1)—}—03( 4
3 0 0 0 3 0 0

2
1
0
. 1 0
<& 2.4.20. For instance, take v, = o) V2=1{1) Vs = . Then =2v, +vy, =

vy + v3. In fact, there are infinitely many different ways of writing thls vector as a linear
combination of v{, vy, vs.

& 2.4.21.
(a) By Theorem 2.31, we only need prove linear independence. If 0 = ¢y Av; + --- +
c,Av, = A(c;vy + - +¢,V,), then, since A is nonsingular, ¢; v, +---+¢, v, =0,
and hence ¢; =---=¢, = 0.
(b) Ae, is the i*" column of A, and so a basis consists of the column vectors of the matrix.

2
—2) for any c;, ¢y, c5.

< 2.4.22.Since V' # {0}, at least one v; # 0. Let v, # 0 be the first nonzero vector in the list

vy,...,V,. Then, for each k = 7, —|— 1,...,n— 1 suppose we have selected linearly indepen-
dent Vectors Vi Vi, from among Vl, con v vy o Vi Vil form a linearly inde-
pendent set, we set v, i1 = Va1 otherw1se Vi1 1s a linear combma‘mon of v, ,... Vi

and is not needed in the basis. The resulting collection v, e Vi forms a ba51s for V

since they are linearly independent by design, and span V since each v, either appears in
the basis, or is a linear combination of the basis elements that were selected before it. We

have dimV = n if and only if v{,...,v, are linearly independent and so form a basis for
V.

< 2.4.23. This is a special case of Exercise 2.3.31(a).

O 2.4.24.
(a) m < n as otherwise vy,...,v,, would be linearly dependent. If m = n then v,,..., v,

are linearly independent and hence, by Theorem 2.31 span all of R". Since every vector
in their span also belongs to V', we must have V = R".

(b) Starting with the basis vy,...,v,, of V. with m < n, we choose any v, ., € R" \ V.
Since v,,, 1 does not lie in the span of vy,...,v, , the vectors vy,..., v, ., are linearly
independent and span an m + 1 dimensional subspace of R™. Unless m + 1 = n we can
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then choose another vector v, 5 not in the span of vi,... s Vina1, and so vy, ..., v

+2
are also linearly independent. We continue on in this fashion until we arrive at n linﬂ}
early independent vectors vy, ..., v, which necessarily form a basis of R".
T
() () (L1,3) ,(1,0,0)7,(0,1,0)"5 (i) (1,0,—1)",(0,1,-2)",(1,0,0)"

& 2.4.25.

(a) If dimV = oo, then the inequality is trivial. Also, if dim W = oo, then one can find
infinitely many linearly independent elements in W, but these are also linearly indepen-
dent as elements of V' and so dim V' = oo also. Otherwise, let w,,...,w,_ form a basis
for W. Since they are linearly independent, Theorem 2.31 implies n < dim V.

(b) Since w,...,w, are linearly independent, if n = dim V, then by Theorem 2.31, they
form a basis for V. Thus every v € V can be written as a linear combination of
Wi,..., W, , and hence, since W is a subspace, v. € W too. Therefore, W = V.

(c) Example. V =C%a,b] and W = P(>).

{ 2.4.26. (a) Every v € V can be uniquely decomposed as v = w + z where w € W,z € Z. Write
W=C W ... W, and z =dyz, +---+d,z,. Thenv:clwl—i—...—i—cjwj—{—dlzl—i—

-+ dy, 7, proving that w,... s Wjs 21, .., 2 span V. Moreover, by uniqueness, v = 0 if
and only if w = 0 and z = 0, and so the only linear combination that sums up to 0 € V is
the trivial one ¢; = --- = c; = d, = --- =d; = 0, which proves linear independence of the

full collection. (b) This follows immediately from part (a): dimV = j+k = dim W +dim Z.
< 2.4.27. Suppose the functions are linearly independent. This means that for every 0 # ¢ =

n
(cphe9,--0scy, )T € R", there is a point z. € Rsuch that > ¢, f;(z.) # 0. The as-
=1
sumption says that {0} # Verizm for all choices of sample points. Recursively define the

following sample points. Choose xy so that f;(z;) # 0. (This is possible since if f,(z) =0,
then the functions are linearly dependent.) Thus V,, C R™ since e; ¢ V,,- Then, for each

m = 1,2,..., given zq,...,x,,, choose 0 # c, € Va71 .x,,» and set :cm_H = z, . Then

cy €V, S - le,...,mm and hence, by induction, dimV,, < n —m. In particular,

dimV, ., =0,s0V, . = {0}, which contradicts our assumption and proves the
result. Note that the proof implies we only need check linear dependence at all possible col-

lections of n sample points to conclude that the functions are linearly dependent.

2.5.1.
(a) Range: all b = <21

2

b
b

-2
1) such that 2b; + b, = 0; kernel spanned by ( ), ( 0) .

2 1

5

1

) !

8

1

= 0;

1
such that 3 701 + by = 0; kernel spanned by < >

(b) Range: all b = <

bl
(c) Range: all b = (ZQ such that —2b; + by + b3 = 0; kernel spanned by | —

1 —

kernel spanned by

)

1
0
0
1

1
0
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1
-2\ (3 1 2\ (-3
2.5.2. (a) ol,| 1 |: plane; (b) g line; (¢) | 0], 1 |: plane;
1 0 1 1 0
~1 0 3
(d) | =2 |: line; (e) | O |: point; (f) [ 2 |: line.
3
1 0 1
2.5.3.
; 1\ (2 0
a) Kernel spanned by ; range spanned by , , ;
(a) Kernel dby |, dby |2 ],]0 2
0 1 -3
0

(b) compatibility: — % a+ %b +c=0.

-1 3+t

2.5.5. In each case, the solution is x = x* + z, where x* is the particular solution and z belongs
to the kernel:

-1 1+1
2.5.4. (a) b= 21; (b) x= |2+t | where ¢ is arbitrary.

1 1 -3 1 —2
(a) x*=|0], z=y|1|+2| O0f; (B)x*=|-1], z==2 1
0 0 1 0 7
- 2 ¢ -1 2
(c)x"=| 2 |, z=2[2]; (dx'= 1|, z=0; (e)x*z( >,z:v< >,
10 1 2 0 1
9 —3
5 5 =5 3 6 4
1 _3 1 2 2 -1
(fyx*=|2 |, z=r 2 [ +s| 72 ]; (g) x*= , Z=2 +w
0 1 0 0 1 0
0 0 1 0 0 1

2.5.6. The it entry of A(1,1,...,1 )T is a;; + ...+ a;, which is n times the average of the en-
tries in the itP row. Thus, A(1,1,...,1 )T = 0 if and only if each row of A has average 0.

T
2.5.7. The kernel has dimension n—1, with basis — k=l e te, = (—rk_l, 0,...,0,1,0,... ,0)
for k =2,...n. The range has dimension 1, with basis (1,7", 72" ... ,r(n_l)n)T.
$ 2.58. (a) If w = Pw, then w € rng P. On the other hand, if w € rng P, then w = Pv for
some v. But then Pw = P?v = Pv = w. (b) Given v, set w = Pv. Thenv = w + z
where z = v — w € ker P since Pz= Pv— Pw=Pv—P?v=Pv—Pv=0. Moreover, if
w € ker PNrng P, then 0 = Pw = w, and so ker PNrng P = {0}, proving complementarity.

2.5.9. False. For example, if A = (_i _i) then (i) is in both ker A and rng A.

¢ 2.5.10.Let rq,...,r,, ., be the rows of C, sorq,...,r,, are the rows of A. For v € ker C, the

ith entry of Cv = 0'is r;,v = 0, but then this implies Av = 0 and so v € ker A. As an

example, A= (1 0) has kernel spanned by (é), while C' = (é (1)> has ker C' = {0}.
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$ 2511.1f b = Ax € rng A, then b = C'z where z = <x

0), and so b € rng C'. As an example,

0 1> is the x axis.

A= <8> has rng A = {0}, while the range of C' = <O 0

2.5.12. x} = <_§2> x5 = <_1>; x = X} + 4%} = <_16>.
2 2

-1
2.5.13. x* =2x] + x5 = ( 3
3

2.5.14. 1
(a) By direct matrix multiplication: Ax} = Ax} = —g .

1 —4
(b) The general solution is x = x] + ¢(x5 — x}) = (1 — t)x] +tx5 = (1) —i—t( 2).

0 —2
2.5.15. 5 meters.

2.5.16. The mass will move 6 units in the horizontal direction and —6 units in the vertical di-
rection.

2.5.17.x = ¢y X] + ¢ x5 where ¢; = 1 — ¢,.

2.5.18. False: in general, (A + B)x* = (A+ B)x] + (A+ B)x5 = ¢ +d + Bx] + Axj3, and the
third and fourth terms don’t necessarily add up to O.

$ 2.5.19.tng A = R", and so A must be a nonsingular matrix.

& 2.5.20.
(a) If Ax, =e;, then x, = A_lei which, by (2.13), is the ith column of the matrix A™1,

1 1 1
2 T2 2
(b) The solutions to Ax, = e; in this case are x; = 2 [hxo=| -1 ix3=1 -1,
1 1
-3 -1 2
1 _1 1
2 2 2
which are the columns of A7 = 2 -1 -1
_1 1 1
2 2 2
2.5.21.
(a) range: é), corange: ; kernel: < >; cokernel: <_§>
0 -8 0 -2 1
(b) range: | 1 |,| —1 |; corange: 0 |; kernel: 1 |; cokernel: | —2 |.
2 6 -8 0 1
A g ey .
(c) range: | 1|, 0 |; corange: 2 || 3 |7 kernel: L 0l cokernel: 1.
2 3 1 2 0 1 1
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1 -3 1 1 0 0
0 3 -2 3 3 0
(d) range: | 2 |, | =3 [, 0 |; corange: 21,1 =61{,|0[;

3 -3 3 2 0 0
1 0 3 1 -2 4
4 -2 -2 2
2 0 -1 1

kernel: | 1 |, 0 |; cokernel: 1], 0
0 1 0 1
0 0 0 1

, which are its first, third and fourth columns;

-1 0 -3
2.5.22. 2), 1], 1
-3 2 0
2 5 -1 0 -3
Second column: ( 4) ( 2); fifth column: (—4) :—2< 2)—}—(1)—( 1).
6 8 -3 2 0
1 0 -3 1
2.5.23. range: ( ) ( ) corange: (—3), (0); second column: (—6) = —3( 2);
0 4 9 -3
1 0 -3 1 0
second and third rows: (— )—2( 3)+<0), ( 9)2—3(—3)%—%(0).
4 0 4 1 0 4

2.5.24.
(i) rank = 1; dimrng A = dimcorng A =1, dimker A = dim coker A = 1;

kernel basis: <_§ >; cokernel basis: (%) ; compatibility conditions: 2b; + by = 0;

example: b = <_%>, with solution x = <(1]> —|—z<_%>.

(it) rank = 1; dimrng A = dimcorng A = 1, dimker A = 2, dim coker A = 1; kernel basis:

2
3 3
( 1 ) , ( 0) ; cokernel basis: <§>7 compatibility conditions: 2b; + by = 0;

0 1 1 9
3\ . . L 3 3
example: b = 6 ) with solutionx =0 | +y| 1 | +2]| 0 |-
0 0 1
(i17) rank = 2; dimrng A = dim corng A = 2, dimker A = 0, dim coker A = 1;
20
13
kernel: {0}; cokernel basis: % ; compatibility conditions: — % b, + % by + by = 0;

1 1 1
example: b= | —2 |, with solution x = | 0 |.
2 0

(iv) rank = 2; dimrng A = dimcorng A = 2, dimker A = dim coker A = 1;

1 1

2 1 -2
—2by + by + b3 = 0; example: b = (1>,With solution x = (0) —{—z(—l).
3 0 1

(v) rank = 2; dimrmg A = dimcorng A = 2, dimker A = 1, dimcoker A = 2; kernel

-2 -2
kernel basis: (—1) ; cokernel basis: ( 1 ) ; compatibility conditions:
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1
4

|
o

_1
4 |; compatibility: — by + 1 by +by =0,
0
1

—1
basis: ( —1) ; cokernel basis:
1

O = R

2
1 -1
%bl — ib2 + b, = 0; example: b = g , with solutionx=| 0 | +2z| —1 |.
1 0 1
(vi) rank = 3; dimrng A = dimcorng A = 3, dimker A = dimcoker A = 1; kernel basis:
13
1 -1
13 ~1
87 ; cokernel basis: 113 compatibility conditions: —b; — by + b3 + b, = 0;
2
1
1 1 1 T
3 0 ¢
example: b= | 7 |, with solution x = 0 +w| &
2
(vii) rank = 4; dimrng A = dimcorng A = 4, dimker A = 1, dim coker A = 0; kernel basis:
-2
1
0 |; cokernel is {0}; no conditions;
0
0 _

1 2

0 1

example: b = ,withx=1|[0|+4+y 0
0 0

0 0

2.5.25. (a) dim = 2; basis:

— N =

e = e e N TN _
| -

NN =N —

=N NEN

N——

(b) dim = 1; basis: (

(c) dim = 3; basis: ; (d) dim = 3; basis:

(e) dim = 3; basis:

O O
R R e~ ——

2
1
1 — 0 0
) 1 2 4 . .
2.5.26. It’s the span of ol sl 21 |5 the dimension is 3.
0 1 -1
2 0 1 0 -1
0 -1 1 -1 3
2.5.27. (a) L ol (b) L 0l (c) 0
0 1 0 1 1
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1 2 1 0
2.5.28. First method: (2) , _i ; second method: g , _g . The first vectors are the
1 5 1 3
2 1 0 0 1 2
. 31 .10 3. 31_ 510 3
same, while 4| = 2 9 + Yk 8| = 2 9 + _4
5 1 3 3 1 5

2.5.29. Both sets are linearly independent and hence span a three-dimensional subspace of R4,
Moreover, w; = v, + V3, Wy = V| + Vo + 2V3, W3 = Vv, + Vv, + v3 all lie in the span of
V{,Vy, vy and hence, by Theorem 2.31(d) also form a basis for the subspace.

2.5.30.
(a) f A = AT thenker A = {Ax =0} = {ATx =0} = coker 4, and mg A = {Ax} =
{ATx} = corng A.
(b) ker A = coker A has basis (2,—1,1 )T; rng A = corng A has basis (1, 2, O)T ,(2,6,2 )T.
(c¢) No. For instance, if A is any nonsingular matrix, then ker A = coker A = {0} and
rng A = corng A = R3.

(a) Yes. This is our method of constructing the basis for the range, and the proof is out-
lined in the text.

1 0 00 10 00
. |1 0 0 O 10 1 0 0

(b) No. For example, if A = 010 0l then U = 00 1 0 and the first three
0 010 0 0 0O

rows of U form a basis for the three-dimensional corng U = corng A. but the first three

rows of A only span a two-dimensional subspace.
(¢) Yes, since ker U = ker A.
(d) No, since coker U # coker A in general. For the example in part (b), coker A has basis

(-1, 1,0,O)T while coker A has basis (0,0,0, 1 )T.

0 0

1 0)°
tions of the first r rows of A. Hence these rows span corng A, which, by Theorem 2.31c,
implies that they form a basis for the corange.

2.5.32. (a) Example: < (b) No, since then the first r rows of U are linear combina-

2.5.33. Examples: any symmetric matrix; any permutation matrix since the row echelon form is

0 0 1
the identity. Yet another example is the complex matrix [ 1 i i |.
0 i i
$ 2.5.34. The rows ry,...,r of A span the corange. Reordering the rows — in particular inter-

changing two — will not change the span. Also, multiplying any of the rows by nonzero

scalars, ¥; = a, r;, for a; # 0, will also span the same space, since

n nooe

v= > ¢r,=> —‘T.

i=1 i=1 %

2.5.35. We know rng A C R is a subspace of dimension r = rank A. In particular, rng A = R™
if and only if it has dimension m = rank A.

1

2.5.36. This is false. If A = <1

i) then rng A is spanned by <}> whereas the range of its
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row echelon form U = ( (1) é) is spanned by ( (1)>

& 2.5.37.
(a) Method 1: choose the nonzero rows in the row echelon form of A. Method 2: choose the

columns of AT that correspond to pivot columns of its row echelon form.

1 3 2 1 0 0
(b) Method 1: | 2 |,| =1 |,| —4 |. Method 2: | 2 |,| =7 |, | O |. Not the same.
4 5 2 4 -7 2

& 2.5.38.1f v € ker A then Av =0 and so BAv = B0 =0, so v € ker(BA). The first statement
follows from setting B = A.

$ 2.5.39.If v € rng A B then v = A Bx for some vector x. But then v = Ay where y = Bx, and
so v € rng A. The first statement follows from setting B = A.

2.5.40. First note that B A and AC' also have size m x n. To show rank A = rank B A, we prove
that ker A = ker BA, and so rank A = n — dimker A = n — dimker BA = rank B A.
Indeed, if v € ker A, then Av = 0 and hence BAv = 0 so v € ker BA. Conversely, if v €
ker BA then BAv = 0. Since B is nonsingular, this implies Av = 0 and hence v € ker A,
proving the first result. To show rank A = rank AC', we prove that rng A = rng AC, and
so rank A = dimrng A = dimrng AC = rank AC. Indeed, if b € rng AC, then b = ACx
for some x and so b = Ay wherey = Cx, and so b € rng A. Conversely, if b € rng A
then b = Ay for some y and so b = ACx where x = Cily, so b € rng AC, proving the
second result. The final equality is a consequence of the first two: rank A = rank BA =
rank(B A)C.

& 2.5.41. (a) Since they are spanned by the columns, the range of (A B)) contains the range of
A. But since A is nonsingular, rng A = R", and so rng (A B) = R" also, which proves
rank (A B) = n. (b) Same argument, using the fact that the corange is spanned by the
rows.

2.5.42. True if the matrices have the same size, but false in general.
& 2.5.43. Since we know dimrng A = 7, it suffices to prove that w,..., w, . are linearly indepen-
dent. Given
O=c,wy+-+cw,=ciAvi+ -+, Av, =A(c; v, + - +¢,.V,),

we deduce that ¢; vy +---+c¢,.v, € ker A, and hence can be written as a linear combination
of the kernel basis vectors:

Vit GV =G Vet 6 Ve

But vq,..., v, are linearly independent, and so ¢y =---=¢,. =¢,.,y = - =¢, =0, which
proves linear independence of w,...,w,_.
$ 2.5.44.
(a) Since they have the same kernel, their ranks are the same. Choose a basis v,...,v,, of
R™ such that V,i1s--+3V, form a basis for ker A = ker B. Then wy = Avy,...,w_ =
Av, form a basis for rng A, while y;, = Bvy,...,y, = Bv, form a basis for rng B.
Let M be any nonsingular m X m matrix such that Mw; =y;,j=1...r, which

exists since both sets of vectors are linearly independent. We claim M A = B. Indeed,
MAvj = ij,j = 1,...,r, by design, while MAvj =0 = ij,j =r+1,...,n,
since these vectors lie in the kernel. Thus, the matrices agree on a basis of R" which is
enough to conclude that M A = B.

(b) If the systems have the same solutions x* + z where z € ker A = ker B, then Bx =
MAx = Mb = c. Since M can be written as a product of elementary matrices, we

conclude that one can get from the augmented matrix (A ] b) to the augmented matrix
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(B | c) by applying the elementary row operations that make up M.

& 2.5.45. (a) First, W C rng A since every w € W can be written as w = Av for some v €
V C R", and so w € rng A. Second, if w; = Av, and w, = Av, are elements of W, then
sois cw; + dwy = A(cv, + dv,) for any scalars c,d because cvy + dv, € V, proving
that W is a subspace. (b) First, using Exercise 2.4.25, dimW < r = dimrng A since it is

a subspace of the range. Suppose v{,...,v, form a basis for V, so dimV = k. Let w =
Av € W. We can write v = ¢;v; + - 4 ¢, v}, and so, by linearity, w = ¢; Av; + -+ +
¢, Avy. Therefore, the k vectors w; = Av,,...,w, = Av, span W, and therefore, by
Proposition 2.33, dim W < k.

$ 2.5.46.

(a) To have a left inverse requires an nxm matrix B such that BA = I. Suppose dimrng A =
rank A < n. Then, according to Exercise 2.5.45, the subspace W = { Bv|v € rng A}
has dim W < dimrng A < n. On the other hand, w € W if and only if w = Bv where
v € rng A, and so v = Ax for some x € R"™. But then w = Bv = BAx = x, and
therefore W = R" since every vector x € R" lies in it; thus, dim W = n, contradicting
the preceding result. We conclude that having a left inverse implies rank A = n. (The
rank can’t be larger than n.)

(b) To have a right inverse requires an mxn matrix C' such that AC = I. Suppose dimrng A =
rank A < m and hence rng A C R™. Choosey € R™ \rng A. Theny = ACy = Ax,
where x = C'y. Therefore, y € rng A, which is a contradiction. We conclude that having
a right inverse implies rank A = m.

(c) By parts (a—b), having both inverses requires m = rank A = n and A must be square
and nonsingular.

A

2.6.1. (a) (b) (c)
w i
|
(d) (e) or, equivalently,
2.6.2. (a) o -0 -0 -0 -0 )

(b) (1,1,1,1,1,1,1 )T is a basis for the kernel. The cokernel is trivial, containing only the
zero vector, and so has no basis. (c¢) Zero.
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-1 01 0 O
-1 01 0 jég? -1 1.0 0 0
0 -1 1 0 0 -1 0 1 0],
2.6.3. (a) 0 1 o0 -1 (b) é (1) —é _(1] i (o) 0 -1 0 0 uE
0 0 1 -1 00 —1 1 o 01 -1 o0
0 0 0 1 -1
L= 0 00 -1 0 0 1 0 0
1 0 —1 0 0
1 o 0 0 -1 0
0 -1 0 10 o 1 -1 0 0 0
@ lo -1 0o o 1(; (e ;
0 -1 0O 0 0 1
0 0 1 -1 0
0 0 1 0 0 -1
0 0 =10 o 0 0 -1 1 0
0 0 O 1 -1
1 -1 0 0 0 O
1 0 -1 0 0 O
0 1 0 -1 0 0
-1 0 0 1 0 0
(£) 0 0 1 0 0 -1
0o 0 -1 0 1 0
o 0 0 -1 0 1
0o 0 0 0 -1 1
-1 0
0 -1 0 1 0
-1 1 -1 1 -1
2.6.4. (a) 1 circuit: e (b) 2 circuits: 0f,] =1 |; (c¢) 2 circuits: 0l uE
1 ; ! 1 0
0 1
—1 1 0 0 1
1 -1 0
0 1
1 0 -1 1 0
(d) 3 circuits: o1, —-11, 1 1; (e) 2 circuits: 1ol
1 0 0
1 0
0 1 0 0 1
0 0 1
1 -1 0
0 1 0
1 -1 0
T I | 0 0
(f) 3 circuits: 0l 101
0 0 1
0 1 0
0 0 1
1 -1 0 0
1 0 -1 0
© 2.6.5.(a) | 1 0 0 —11; (b) rank =3; (c¢) dimrng A = dimcorng A = 3,
0 1 -1 0
0 1 0 -1
1 ) (o
dimker A =1, dimcoker A =2; (d) kernel: i ;  cokernel: 01, —-11;
1 0
1 0 1
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! Lot
t
() by —by+by, =0, by —by+b; =0; (f) example: b= [1) ;X = .
0 t
$ 2.6.6.
(a) 1 -1 0 0 0 0 0 0
1 0 -1 0 0 0 0 0
1 0 0 -1 0 0 0 0
0 1 0 0 -1 0 0 0
0 1 0 0 0 -1 0 0
0 0 1 0 -1 0 0 0
0 0 1 0 0 0 -1 0
0 0 0 1 0 -1 0 0
0 0 0 1 0 0 -1 0
0 0 0 0 1 0 0 —1
0 0 0 0 0 1 0 -1
0 0 0 0 0 0 1 -1
-1 -1 0 0 0
1 0 -1 0 0
0 1 1 0 0
-1 0 0 -1 0
0 -1 0 1 0
. 1 0 0 0 -1
Cokernel basis: v; = oV = ol Vva=1|_1|va= olVs = 1
0 1 0 0 0
0 0 1 0 0
0 0 0 -1 -1
0 0 0 1 0
0 0 0 0 1
These vectors represent the circuits around 5 of the cube’s faces.
0 0 0
0 1 -1
0 -1 1
0 -1 1
0 1 -1
(b) Examples: 8 =V, —Vy+V3—V,+Vg, (1) =V, — Vg, _(1) =vV3—V,.
-1 -1 0
1 0 1
0 0 1
-1 0 -1
1 0 0
Q 2.6.7. 1 -1 0 0
1 0 -1 0
1 0 0 -1
(a) Tetrahedron: 0 1 1 0
0 1 0 -1
0 0 1 -1
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number of circuits = dim coker A = 3, number of faces = 4;

(b) Octahedron:

0001010001_.01

OO 1 OO0 OO 1O ——O

400011100000

—NH A A A O OO0 O OO

number of circuits = dim coker A = 7, number of faces = 8.

(¢) Dodecahedron:

0000000001_*00000000110000000000

000000040000000011000000000000

OOOOO_l_A000000001100000000000000

0001_¢00000000110000000000000000

O_I_A0000000011000000000000000000

OOOOOO‘I_AOl100000000000000000000

00001_.0110000000000000000000000

004|_A011000000000000000000000000

_I_A01100OOOOOOOOOOOOOOOOOOOOOOOO

11000OOO‘|__000000000000000000000

number of circuits = dim coker A = 11, number of faces = 12.
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(d) Icosahedron:

OO O OO OO OO0 OO0 o oo o-Ho-HOOoO O OO HO A OO

OO OO OO OO0 O 1O TO OO OO O +H+HOOOO

‘I_A00001110000000001_.OOOOOOOOOOOO

HrEAA A A OO OO OO O OO0 ODODODODODOO0OO0OO0OoO0O0cO0O0CO

number of circuits = dim coker A = 19, number of faces = 20.

© 2.6.8.

(b)
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(c) Let m denote the number of edges. Since the graph is connected, its incidence matrix
A has rank n — 1. There are no circuits if and only if coker A = {0}, which implies
0 = dimcoker A=m — (n — 1), and so m =n — 1.

© 2.6.9.

1 -1 0 0 0
1 0 -1 0 0
1 -1 0 0 1 0 0 -1 0
1 0 -1 0 1 0 0 0 -1
(b) D 1 0 0 -1 0 1 -1 0 0
oY) 0 1 -1 o0} 0 1 0 -1 0
0 1 0 -1 0 1 0 0 -1
0 0 1 -1 0 0 1 -1 0
0 0 1 0 -1
0 0 0 1 -1
(c) gnn—1); (d) 3(n—1)(n—-2).
© 2.6.10.
(a)
10 -1 0 0 0 R
10 -1 0 o0 10 0 -1 0 0 R
10 0 -1 0 10 0 0 -1 0 O PO
m |10 0 0 10 0 0 0 -1 O S
01 -1 0 o o1 -1 o o of o128 o ¢ 9
01 0 -1 0 01 0 -1 0 0 P SR
01 0 0 -1 01 0 0 -1 0
OO 001 0 -1 0
001 0 0 -1
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© 2.6.11.

(a)

(b)

(c)

(d)

& 2.6.12.

1 -1 0 0 0 0 0 0
-1 0 0 1 0 0 0 0
0 -1 0 1 0 0 0 0
A= 0 0 -1 0 01 0 0
0 0 0 0 -1 0 1 0
0 0 00 -1 0 O 1
0 0 0 0 00 1 -1
1 0 0
1 0 0
0 1 0
The vectors v, = 1 Vo = 0 Vo = 0 form a basis for ker A.
1 0] "2 01 "3 1
0 1 0
0 0 1
0 0 1

The entries of each v, are indexed by the vertices. Thus the nonzero entries in v, cor-
respond to the vertices 1,2,4 in the first connected component, v, to the vertices 3,6 in
the second connected component, and v to the vertices 5,7,8 in the third connected
component.

Let A have k connected components. A basis for ker A consists of the vectors v{,..., v,
where v, has entries equal to 1 if the vertex lies in the i*" connected component of the
graph and O if it doesn’t. To prove this, suppose Av = 0. If edge #¢ connects vertex a
to vertex b, then the £* component of the linear system is v, — v, = 0. Thus, v, = v,
whenever the vertices are connected by an edge. If two vertices are in the same con-
nected component, then they can be connected by a path, and the values v, = v, = ---
at each vertex on the path must be equal. Thus, the values of v, on all vertices in the
connected component are equal, and hence v = ¢;v; + --- + ¢, v, can be written as a
linear combination of the basis vectors, with ¢, being the common value of the entries
v, corresponding to vertices in the ith connected component. Thus, Vi,...,V} span the
kernel. Moreover, since the coefficients ¢, coincide with certain entries v, of v, the only
linear combination giving the zero vector is when all ¢; are zero, proving their linear in-
dependence.

If the incidence matrix has rank r, then # circuits

=dimcoker A =n —r =dimker A > 1,

since ker A always contains the vector (1,1,...,1 )T.

2.6.13.

Changing the direction of an edge is the same as multiplying the corresponding row of

the incidence matrix by —1. The dimension of the cokernel, being the number of indepen-
dent circuits, does not change. Each entry of a cokernel vector that corresponds to an edge
that has been reversed is multiplied by —1. This can be realized by left multiplying the
incidence matrix by a diagonal matrix whose diagonal entries are —1 is the corresponding
edge has been reversed, and +1 if it is unchanged.

© 2.6.14.
(a)

(b)
(c)

Note that P permutes the rows of A, and corresponds to a relabeling of the vertices of
the digraph, while ) permutes its columns, and so corresponds to a relabeling of the
edges.

(i),(7),(v) represent equivalent digraphs; none of the others are equivalent.

v = (vy,...,0,,) € coker A if and only if V.= Pv = (v;(y) ... Ur(y,) ) € coker B. Indeed,

vI'B = (PV)TPAQ = vI'AQ = 0 since, according to Exercise 1.6.14, PT = P! is the
inverse of the permutation matrix P.
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2.6.15. False. For example, any two inequivalent trees, cf. Exercise 2.6.8, with the same num-
ber of nodes have incidence matrices of the same size, with trivial cokernels: coker A =
coker B = {0}. As another example, the incidence matrices

1 -1 0 0 0 1 -1 0 0 0
0 1 -1 0 0 0 1 -1 0 0
A=| -1 0 1 0 0 and B=|-1 0 1 0 0
1 0 0 -1 0 1 0 0 -1 0
1 0 0 0 -1 0 1 0 0 -1

both have cokernel basis (1,1,1,0,0 )T, but do not represent equivalent digraphs.

2.6.16.

(a) If the first k vertices belong to one component and the last n—k to the other, then there
is no edge between the two sets of vertices and so the entries a, ;= 0 whenever ¢ =
1,...,k,j=k+1,...,n,or wheni=k+1,...,n,j=1,...,k, which proves that A has
the indicated block form.

(b) The graph consists of two disconnected triangles. If we use 1,2, 3 to label the vertices in
one triangle and 4, 5, 6 for those in the second, the resulting incidence matrix has the in-

-1 0 0 0 0
1 -1 0 0 0
0 1 0 0 0

0 0 1 -1 0

0

0

dicated block form , with each block a 3 x 3 submatrix.

0 0 1 -1
0 -1 0 1

(NeNall Nal

71



