
Instructor’s Manual:
Exercise Solutions

for

Artificial Intelligence
A Modern Approach

Third Edition (International Version)

Stuart J. Russell and Peter Norvig

with contributions from
Ernest Davis, Nicholas J. Hay, and Mehran Sahami

Upper Saddle River Boston Columbus San Francisco New York
Indianapolis London Toronto Sydney Singapore Tokyo Montreal

Dubai Madrid Hong Kong Mexico City Munich Paris Amsterdam Cape Town

https://selldocx.com/products
/solution-manual-artificial-intelligence-a-modern-approach-3e-russell

https://selldocx.com/products/solution-manual-artificial-intelligence-a-modern-approach-3e-russell

Editor-in-Chief: Michael Hirsch
Executive Editor: Tracy Dunkelberger
Assistant Editor: Melinda Haggerty
Editorial Assistant: Allison Michael
Vice President, Production: Vince O’Brien
Senior Managing Editor: Scott Disanno
Production Editor: Jane Bonnell
Interior Designers: Stuart Russell and Peter Norvig

Copyright © 2010, 2003, 1995 by Pearson Education, Inc.,
Upper Saddle River, New Jersey 07458.
All rights reserved. Manufactured in the United States of America. This publication is protected by
Copyright and permissions should be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form orby any means, electronic, mechanical,
photocopying, recording, or likewise. To obtain permission(s) to use materials from this work, please
submit a written request to Pearson Higher Education, Permissions Department, 1 Lake Street, Upper
Saddle River, NJ 07458.

The author and publisher of this book have used their best efforts in preparing this book. These
efforts include the development, research, and testing of the theories and programs to determine their
effectiveness. The author and publisher make no warranty ofany kind, expressed or implied, with
regard to these programs or the documentation contained in this book. The author and publisher shall
not be liable in any event for incidental or consequential damages in connection with, or arising out
of, the furnishing, performance, or use of these programs.

Library of Congress Cataloging-in-Publication Data on File

10 9 8 7 6 5 4 3 2 1
ISBN-13: 978-0-13-606738-2
ISBN-10: 0-13-606738-7

Preface
This Instructor’s Solution Manual provides solutions (or at least solution sketches) for

almost all of the 400 exercises inArtificial Intelligence: A Modern Approach (Third Edition).
We only give actual code for a few of the programming exercises; writing a lot of code would
not be that helpful, if only because we don’t know what language you prefer.

In many cases, we give ideas for discussion and follow-up questions, and we try to
explainwhywe designed each exercise.

There is more supplementary material that we want to offer tothe instructor, but we
have decided to do it through the medium of the World Wide Web rather than through a CD
or printed Instructor’s Manual. The idea is that this solution manual contains the material that
must be kept secret from students, but the Web site contains material that can be updated and
added to in a more timely fashion. The address for the web siteis:

http://aima.cs.berkeley.edu

and the address for the online Instructor’s Guide is:

http://aima.cs.berkeley.edu/instructors.html

There you will find:

• Instructions on how to join theaima-instructors discussion list. We strongly recom-
mend that you join so that you can receive updates, corrections, notification of new
versions of this Solutions Manual, additional exercises and exam questions, etc., in a
timely manner.

• Source code for programs from the text. We offer code in Lisp, Python, and Java, and
point to code developed by others in C++ and Prolog.

• Programming resources and supplemental texts.

• Figures from the text, for making your own slides.

• Terminology from the index of the book.

• Other courses using the book that have home pages on the Web.You can see example
syllabi and assignments here. Pleasedo notput solution sets for AIMA exercises on
public web pages!

• AI Education information on teaching introductory AI courses.

• Other sites on the Web with information on AI. Organized by chapter in the book; check
this for supplemental material.

We welcome suggestions for new exercises, new environmentsand agents, etc. The
book belongs to you, the instructor, as much as us. We hope that you enjoy teaching from it,
that these supplemental materials help, and that you will share your supplements and experi-
ences with other instructors.

iii

Solutions for Chapter 1
Introduction

1.1

a. Dictionary definitions ofintelligence talk about “the capacity to acquire and apply
knowledge” or “the faculty of thought and reason” or “the ability to comprehend and
profit from experience.” These are all reasonable answers, but if we want something
quantifiable we would use something like “the ability to apply knowledge in order to
perform better in an environment.”

b. We defineartificial intelligence as the study and construction of agent programs that
perform well in a given environment, for a given agent architecture.

c. We define anagentas an entity that takes action in response to percepts from anenvi-
ronment.

d. We definerationality as the property of a system which does the “right thing” given
what it knows. See Section 2.2 for a more complete discussion. Both describe perfect
rationality, however; see Section 27.3.

e. We definelogical reasoningas the a process of deriving new sentences from old, such
that the new sentences are necessarily true if the old ones are true. (Notice that does
not refer to any specific syntax oor formal language, but it does require a well-defined
notion of truth.)

1.2 See the solution for exercise 26.1 for some discussion of potential objections.
The probability of fooling an interrogator depends on just how unskilled the interroga-

tor is. One entrant in the 2002 Loebner prize competition (which is not quite a real Turing
Test) did fool one judge, although if you look at the transcript, it is hard to imagine what
that judge was thinking. There certainly have been examplesof a chatbot or other online
agent fooling humans. For example, see See Lenny Foner’s account of the Julia chatbot
at foner.www.media.mit.edu/people/foner/Julia/. We’d say the chance today is something
like 10%, with the variation depending more on the skill of the interrogator rather than the
program. In 50 years, we expect that the entertainment industry (movies, video games, com-
mercials) will have made sufficient investments in artificial actors to create very credible
impersonators.

1.3 Yes, they are rational, because slower, deliberative actions would tend to result in more
damage to the hand. If “intelligent” means “applying knowledge” or “using thought and
reasoning” then it does not require intelligence to make a reflex action.

1

2 Chapter 1. Introduction

1.4 No. IQ test scores correlate well with certain other measures, such as success in college,
ability to make good decisions in complex, real-world situations, ability to learn new skills
and subjects quickly, and so on, butonly if they’re measuring fairly normal humans. The IQ
test doesn’t measure everything. A program that is specialized only for IQ tests (and special-
ized further only for the analogy part) would very likely perform poorly on other measures
of intelligence. Consider the following analogy: if a humanruns the 100m in 10 seconds, we
might describe him or her asvery athleticand expect competent performance in other areas
such as walking, jumping, hurdling, and perhaps throwing balls; but we would not desscribe
a Boeing 747 asvery athleticbecause it can cover 100m in 0.4 seconds, nor would we expect
it to be good at hurdling and throwing balls.

Even for humans, IQ tests are controversial because of theirtheoretical presuppositions
about innate ability (distinct from training effects) adn the generalizability of results. See
The Mismeasure of Manby Stephen Jay Gould, Norton, 1981 orMultiple intelligences: the
theory in practiceby Howard Gardner, Basic Books, 1993 for more on IQ tests, what they
measure, and what other aspects there are to “intelligence.”

1.5 In order of magnitude figures, the computational power of thecomputer is 100 times
larger.

1.6 Just as you are unaware of all the steps that go into making your heart beat, you are
also unaware of most of what happens in your thoughts. You do have a conscious awareness
of some of your thought processes, but the majority remains opaque to your consciousness.
The field of psychoanalysis is based on the idea that one needstrained professional help to
analyze one’s own thoughts.

1.7

• Although bar code scanning is in a sense computer vision, these are not AI systems.
The problem of reading a bar code is an extremely limited and artificial form of visual
interpretation, and it has been carefully designed to be as simple as possible, given the
hardware.

• In many respects. The problem of determining the relevanceof a web page to a query
is a problem in natural language understanding, and the techniques are related to those
we will discuss in Chapters 22 and 23. Search engines like Ask.com, which group
the retrieved pages into categories, use clustering techniques analogous to those we
discuss in Chapter 20. Likewise, other functionalities provided by a search engines use
intelligent techniques; for instance, the spelling corrector uses a form of data mining
based on observing users’ corrections of their own spellingerrors. On the other hand,
the problem of indexing billions of web pages in a way that allows retrieval in seconds
is a problem in database design, not in artificial intelligence.

• To a limited extent. Such menus tends to use vocabularies which are very limited –
e.g. the digits, “Yes”, and “No” — and within the designers’ control, which greatly
simplifies the problem. On the other hand, the programs must deal with an uncontrolled
space of all kinds of voices and accents.

3

The voice activated directory assistance programs used by telephone companies,
which must deal with a large and changing vocabulary are certainly AI programs.

• This is borderline. There is something to be said for viewing these as intelligent agents
working in cyberspace. The task is sophisticated, the information available is partial, the
techniques are heuristic (not guaranteed optimal), and thestate of the world is dynamic.
All of these are characteristic of intelligent activities.On the other hand, the task is very
far from those normally carried out in human cognition.

1.8 Presumably the brain has evolved so as to carry out this operations on visual images,
but the mechanism is only accessible for one particular purpose in this particular cognitive
task of image processing. Until about two centuries ago there was no advantage in people (or
animals) being able to compute the convolution of a Gaussianfor any other purpose.

The really interesting question here is what we mean by saying that the “actual person”
can do something. The person can see, but he cannot compute the convolution of a Gaussian;
but computing that convolution ispart of seeing. This is beyond the scope of this solution
manual.

1.9 Evolution tends to perpetuate organisms (and combinationsand mutations of organ-
isms) that are successful enough to reproduce. That is, evolution favors organisms that can
optimize their performance measure to at least survive to the age of sexual maturity, and then
be able to win a mate. Rationality just means optimizing performance measure, so this is in
line with evolution.

1.10 This question is intended to be about the essential nature ofthe AI problem and what is
required to solve it, but could also be interpreted as a sociological question about the current
practice of AI research.

A scienceis a field of study that leads to the acquisition of empirical knowledge by the
scientific method, which involves falsifiable hypotheses about what is. A pureengineering
field can be thought of as taking a fixed base of empirical knowledge and using it to solve
problems of interest to society. Of course, engineers do bits of science—e.g., they measure the
properties of building materials—and scientists do bits ofengineering to create new devices
and so on.

As described in Section 1.1, the “human” side of AI is clearlyan empirical science—
called cognitive science these days—because it involves psychological experiments designed
out to find out how human cognition actually works. What aboutthe the “rational” side?
If we view it as studying the abstract relationship among an arbitrary task environment, a
computing device, and the program for that computing devicethat yields the best performance
in the task environment, then the rational side of AI is really mathematics and engineering;
it does not require any empirical knowledge about theactual world—and theactual task
environment—that we inhabit; that a given program will do well in a given environment is a
theorem. (The same is true of pure decision theory.) In practice, however, we are interested
in task environments that do approximate the actual world, so even the rational side of AI
involves finding out what the actual world is like. For example, in studying rational agents
that communicate, we are interested in task environments that contain humans, so we have

4 Chapter 1. Introduction

to find out what human language is like. In studying perception, we tend to focus on sensors
such as cameras that extract useful information from the actual world. (In a world without
light, cameras wouldn’t be much use.) Moreover, to design vision algorithms that are good
at extracting information from camera images, we need to understand the actual world that
generates those images. Obtaining the required understanding of scene characteristics, object
types, surface markings, and so on is a quite different kind of science from ordinary physics,
chemistry, biology, and so on, but it is still science.

In summary, AI is definitely engineering but it would not be especially useful to us if it
were not also an empirical science concerned with those aspects of the real world that affect
the design of intelligent systems for that world.

1.11 This depends on your definition of “intelligent” and “tell.”In one sense computers only
do what the programmers command them to do, but in another sense what the programmers
consciously tells the computer to do often has very little todo with what the computer actually
does. Anyone who has written a program with an ornery bug knows this, as does anyone
who has written a successful machine learning program. So inone sense Samuel “told” the
computer “learn to play checkers better than I do, and then play that way,” but in another
sense he told the computer “follow this learning algorithm”and it learned to play. So we’re
left in the situation where you may or may not consider learning to play checkers to be s sign
of intelligence (or you may think that learning to play in theright way requires intelligence,
but not in this way), and you may think the intelligence resides in the programmer or in the
computer.

1.12 The point of this exercise is to notice the parallel with the previous one. Whatever
you decided about whether computers could be intelligent in1.11, you are committed to
making the same conclusion about animals (including humans), unlessyour reasons for de-
ciding whether something is intelligent take into account the mechanism (programming via
genes versus programming via a human programmer). Note thatSearle makes this appeal to
mechanism in his Chinese Room argument (see Chapter 26).

1.13 Again, the choice you make in 1.11 drives your answer to this question.

1.14

a. (ping-pong) A reasonable level of proficiency was achievedby Andersson’s robot (An-
dersson, 1988).

b. (driving in Cairo) No. Although there has been a lot of progress in automated driving,
all such systems currently rely on certain relatively constant clues: that the road has
shoulders and a center line, that the car ahead will travel a predictable course, that cars
will keep to their side of the road, and so on. Some lane changes and turns can be made
on clearly marked roads in light to moderate traffic. Drivingin downtown Cairo is too
unpredictable for any of these to work.

c. (driving in Victorville, California) Yes, to some extent,as demonstrated in DARPA’s
Urban Challenge. Some of the vehicles managed to negotiate streets, intersections,
well-behaved traffic, and well-behaved pedestrians in goodvisual conditions.

5

d. (shopping at the market) No. No robot can currently put together the tasks of moving in
a crowded environment, using vision to identify a wide variety of objects, and grasping
the objects (including squishable vegetables) without damaging them. The component
pieces are nearly able to handle the individual tasks, but itwould take a major integra-
tion effort to put it all together.

e. (shopping on the web) Yes. Software robots are capable of handling such tasks, par-
ticularly if the design of the web grocery shopping site doesnot change radically over
time.

f. (bridge) Yes. Programs such as GIB now play at a solid level.

g. (theorem proving) Yes. For example, the proof of Robbins algebra described on page
360.

h. (funny story) No. While some computer-generated prose andpoetry is hysterically
funny, this is invariably unintentional, except in the caseof programs that echo back
prose that they have memorized.

i. (legal advice) Yes, in some cases. AI has a long history of research into applications
of automated legal reasoning. Two outstanding examples arethe Prolog-based expert
systems used in the UK to guide members of the public in dealing with the intricacies of
the social security and nationality laws. The social security system is said to have saved
the UK government approximately $150 million in its first year of operation. However,
extension into more complex areas such as contract law awaits a satisfactory encoding
of the vast web of common-sense knowledge pertaining to commercial transactions and
agreement and business practices.

j . (translation) Yes. In a limited way, this is already being done. See Kay, Gawron and
Norvig (1994) and Wahlster (2000) for an overview of the fieldof speech translation,
and some limitations on the current state of the art.

k. (surgery) Yes. Robots are increasingly being used for surgery, although always under
the command of a doctor. Robotic skills demonstrated at superhuman levels include
drilling holes in bone to insert artificial joints, suturing, and knot-tying. They are not
yet capable of planning and carrying out a complex operationautonomously from start
to finish.

1.15
The progress made in this contests is a matter of fact, but theimpact of that progress is

a matter of opinion.

• DARPA Grand Challenge for Robotic Cars In 2004 the Grand Challenge was a 240
km race through the Mojave Desert. It clearly stressed the state of the art of autonomous
driving, and in fact no competitor finished the race. The bestteam, CMU, completed
only 12 of the 240 km. In 2005 the race featured a 212km course with fewer curves
and wider roads than the 2004 race. Five teams finished, with Stanford finishing first,
edging out two CMU entries. This was hailed as a great achievement for robotics and
for the Challenge format. In 2007 the Urban Challenge put cars in a city setting, where
they had to obey traffic laws and avoid other cars. This time CMU edged out Stanford.

6 Chapter 1. Introduction

The competition appears to have been a good testing ground toput theory into practice,
something that the failures of 2004 showed was needed. But itis important that the
competition was done at just the right time, when there was theoretical work to con-
solidate, as demonstrated by the earlier work by Dickmanns (whose VaMP car drove
autonomously for 158km in 1995) and by Pomerleau (whose Navlab car drove 5000km
across the USA, also in 1995, with the steering controlled autonomously for 98% of the
trip, although the brakes and accelerator were controlled by a human driver).

• International Planning Competition In 1998, five planners competed: Blackbox,
HSP, IPP, SGP, and STAN. The result page (ftp://ftp.cs.yale.edu/pub/
mcdermott/aipscomp-results.html) stated “all of these planners performed
very well, compared to the state of the art a few years ago.” Most plans found were 30 or
40 steps, with some over 100 steps. In 2008, the competition had expanded quite a bit:
there were more tracks (satisficing vs. optimizing; sequential vs. temporal; static vs.
learning). There were about 25 planners, including submissions from the 1998 groups
(or their descendants) and new groups. Solutions found weremuch longer than in 1998.
In sum, the field has progressed quite a bit in participation,in breadth, and in power of
the planners. In the 1990s it was possible to publish a Planning paper that discussed
only a theoretical approach; now it is necessary to show quantitative evidence of the
efficacy of an approach. The field is stronger and more mature now, and it seems that
the planning competition deserves some of the credit. However, some researchers feel
that too much emphasis is placed on the particular classes ofproblems that appear in
the competitions, and not enough on real-world applications.

• Robocup Robotics SoccerThis competition has proved extremely popular, attracting
407 teams from 43 countries in 2009 (up from 38 teams from 11 countries in 1997).
The robotic platform has advanced to a more capable humanoidform, and the strategy
and tactics have advanced as well. Although the competitionhas spurred innovations
in distributed control, the winning teams in recent years have relied more on individual
ball-handling skills than on advanced teamwork. The competition has served to increase
interest and participation in robotics, although it is not clear how well they are advancing
towards the goal of defeating a human team by 2050.

• TREC Information Retrieval Conference This is one of the oldest competitions,
started in 1992. The competitions have served to bring together a community of re-
searchers, have led to a large literature of publications, and have seen progress in par-
ticipation and in quality of results over the years. In the early years, TREC served
its purpose as a place to do evaluations of retrieval algorithms on text collections that
were large for the time. However, starting around 2000 TREC became less relevant as
the advent of the World Wide Web created a corpus that was available to anyone and
was much larger than anything TREC had created, and the development of commercial
search engines surpassed academic research.

• NIST Open Machine Translation Evaluation This series of evaluations (explicitly
not labelled a “competition”) has existed since 2001. Sincethen we have seen great
advances in Machine Translation quality as well as in the number of languages covered.

7

The dominant approach has switched from one based on grammatical rules to one that
relies primarily on statistics. The NIST evaluations seem to track these changes well,
but don’t appear to be driving the changes.

Overall, we see that whatever you measure is bound to increase over time. For most of
these competitions, the measurement was a useful one, and the state of the art has progressed.
In the case of ICAPS, some planning researchers worry that too much attention has been
lavished on the competition itself. In some cases, progresshas left the competition behind,
as in TREC, where the resources available to commercial search engines outpaced those
available to academic researchers. In this case the TREC competition was useful—it helped
train many of the people who ended up in commercial search engines—and in no way drew
energy away from new ideas.

Solutions for Chapter 2
Intelligent Agents

2.1 This question tests the student’s understanding of environments, rational actions, and
performance measures. Any sequential environment in whichrewards may take time to arrive
will work, because then we can arrange for the reward to be “over the horizon.” Suppose that
in any state there are two action choices,a andb, and consider two cases: the agent is in state
s at timeT or at timeT − 1. In states, actiona reaches states′ with reward 0, while action
b reaches states again with reward 1; ins′ either action gains reward 10. At timeT − 1,
it’s rational to doa in s, with expected total reward 10 before time is up; but at timeT , it’s
rational to dob with total expected reward 1 because the reward of 10 cannot be obtained
before time is up.

Students may also provide common-sense examples from real life: investments whose
payoff occurs after the end of life, exams where it doesn’t make sense to start the high-value
question with too little time left to get the answer, and so on.

The environment state can include a clock, of course; this doesn’t change the gist of
the answer—now the action will depend on the clock as well as on the non-clock part of the
state—but it does mean that the agent can never be in the same state twice.

2.2 Notice that for our simple environmental assumptions we need not worry about quanti-
tative uncertainty.

a. It suffices to show that for all possible actual environments (i.e., all dirt distributions and
initial locations), this agent cleans the squares at least as fast as any other agent. This is
trivially true when there is no dirt. When there is dirt in theinitial location and none in
the other location, the world is clean after one step; no agent can do better. When there
is no dirt in the initial location but dirt in the other, the world is clean after two steps; no
agent can do better. When there is dirt in both locations, theworld is clean after three
steps; no agent can do better. (Note: in general, the condition stated in the first sentence
of this answer is much stricter than necessary for an agent tobe rational.)

b. The agent in (a) keeps moving backwards and forwards even after the world is clean.
It is better to doNoOp once the world is clean (the chapter says this). Now, since
the agent’s percept doesn’t say whether the other square is clean, it would seem that
the agent must have some memory to say whether the other square has already been
cleaned. To make this argument rigorous is more difficult—for example, could the
agent arrange things so that it would only be in a clean left square when the right square

8

9

was already clean? As a general strategy, an agentcan use the environment itself as
a form of external memory—a common technique for humans who use things likeEXTERNAL MEMORY

appointment calendars and knots in handkerchiefs. In this particular case, however, that
is not possible. Consider the reflex actions for[A,Clean] and[B,Clean]. If either of
these isNoOp, then the agent will fail in the case where that is the initialpercept but
the other square is dirty; hence, neither can beNoOp and therefore the simple reflex
agent is doomed to keep moving. In general, the problem with reflex agents is that they
have to do the same thing in situations that look the same, even when the situations
are actually quite different. In the vacuum world this is a big liability, because every
interior square (except home) looks either like a square with dirt or a square without
dirt.

c. If we consider asymptotically long lifetimes, then it is clear that learning a map (in
some form) confers an advantage because it means that the agent can avoid bumping
into walls. It can also learn where dirt is most likely to accumulate and can devise
an optimal inspection strategy. The precise details of the exploration method needed
to construct a complete map appear in Chapter 4; methods for deriving an optimal
inspection/cleanup strategy are in Chapter 21.

2.3

a. An agent that senses only partial information about the state cannot be perfectly ra-
tional.
False. Perfect rationality refers to the ability to make good decisions given the sensor
information received.

b. There exist task environments in which no pure reflex agent can behave rationally.
True. A pure reflex agent ignores previous percepts, so cannot obtain an optimal state
estimate in a partially observable environment. For example, correspondence chess is
played by sending moves; if the other player’s move is the current percept, a reflex agent
could not keep track of the board state and would have to respond to, say, “a4” in the
same way regardless of the position in which it was played.

c. There exists a task environment in which every agent is rational.
True. For example, in an environment with a single state, such that all actions have the
same reward, it doesn’t matter which action is taken. More generally, any environment
that is reward-invariant under permutation of the actions will satisfy this property.

d. The input to an agent program is the same as the input to the agent function.
False. The agent function, notionally speaking, takes as input the entire percept se-
quence up to that point, whereas the agent program takes the current percept only.

e. Every agent function is implementable by some program/machine combination.
False. For example, the environment may contain Turing machines and input tapes and
the agent’s job is to solve the halting problem; there is an agent function that specifies
the right answers, but no agent program can implement it. Another example would be
an agent function that requires solving intractable problem instances of arbitrary size in
constant time.

10 Chapter 2. Intelligent Agents

f. Suppose an agent selects its action uniformly at random fromthe set of possible actions.
There exists a deterministic task environment in which thisagent is rational.
True. This is a special case of (c); if it doesn’t matter whichaction you take, selecting
randomly is rational.

g. It is possible for a given agent to be perfectly rational in two distinct task environments.
True. For example, we can arbitrarily modify the parts of theenvironment that are
unreachable by any optimal policy as long as they stay unreachable.

h. Every agent is rational in an unobservable environment.
False. Some actions are stupid—and the agent may know this ifit has a model of the
environment—even if one cannot perceive the environment state.

i. A perfectly rational poker-playing agent never loses.
False. Unless it draws the perfect hand, the agent can alwayslose if an opponent has
better cards. This can happen for game after game. The correct statement is that the
agent’s expected winnings are nonnegative.

2.4 Many of these can actually be argued either way, depending onthe level of detail and
abstraction.

A. Partially observable, stochastic, sequential, dynamic, continuous, multi-agent.

B. Partially observable, stochastic, sequential, dynamic, continuous, single agent (unless
there are alien life forms that are usefully modeled as agents).

C. Partially observable, deterministic, sequential, static, discrete, single agent. This can be
multi-agent and dynamic if we buy books via auction, or dynamic if we purchase on a
long enough scale that book offers change.

D. Fully observable, stochastic, episodic (every point is separate), dynamic, continuous,
multi-agent.

E. Fully observable, stochastic, episodic, dynamic, continuous, single agent.

F. Fully observable, stochastic, sequential, static, continuous, single agent.

G. Fully observable, deterministic, sequential, static, continuous, single agent.

H. Fully observable, strategic, sequential, static, discrete, multi-agent.

2.5 The following are just some of the many possible definitions that can be written:

• Agent: an entity that perceives and acts; or, one thatcan be viewedas perceiving and
acting. Essentially any object qualifies; the key point is the way the object implements
an agent function. (Note: some authors restrict the term toprogramsthat operateon
behalf ofa human, or to programs that can cause some or all of their codeto run on
other machines on a network, as inmobile agents.)MOBILE AGENT

• Agent function: a function that specifies the agent’s action in response to every possible
percept sequence.

• Agent program: that program which, combined with a machine architecture,imple-
ments an agent function. In our simple designs, the program takes a new percept on
each invocation and returns an action.

11

• Rationality: a property of agents that choose actions that maximize their expected util-
ity, given the percepts to date.

• Autonomy: a property of agents whose behavior is determined by their own experience
rather than solely by their initial programming.

• Reflex agent: an agent whose action depends only on the current percept.

• Model-based agent: an agent whose action is derived directly from an internal model
of the current world state that is updated over time.

• Goal-based agent: an agent that selects actions that it believes will achieveexplicitly
represented goals.

• Utility-based agent: an agent that selects actions that it believes will maximize the
expected utility of the outcome state.

• Learning agent: an agent whose behavior improves over time based on its experience.

2.6 Although these questions are very simple, they hint at some very fundamental issues.
Our answers are for the simple agent designs forstaticenvironments where nothing happens
while the agent is deliberating; the issues get even more interesting for dynamic environ-
ments.

a. Yes; take any agent program and insert null statements thatdo not affect the output.

b. Yes; the agent function might specify that the agent printtrue when the percept is a
Turing machine program that halts, andfalse otherwise. (Note: in dynamic environ-
ments, for machines of less than infinite speed, the rationalagent function may not be
implementable; e.g., the agent function that always plays awinning move, if any, in a
game of chess.)

c. Yes; the agent’s behavior is fixed by the architecture and program.

d. There are2n agent programs, although many of these will not run at all. (Note: Any
given program can devote at mostn bits to storage, so its internal state can distinguish
among only2n past histories. Because the agent function specifies actions based on per-
cept histories, there will be many agent functions that cannot be implemented because
of lack of memory in the machine.)

e. It depends on the program and the environment. If the environment is dynamic, speed-
ing up the machine may mean choosing different (perhaps better) actions and/or acting
sooner. If the environment is static and the program pays no attention to the passage of
elapsed time, the agent function is unchanged.

2.7
The design of goal- and utility-based agents depends on the structure of the task en-

vironment. The simplest such agents, for example those in chapters 3 and 10, compute the
agent’s entire future sequence of actions in advance beforeacting at all. This strategy works
for static and deterministic environments which are eitherfully-known or unobservable

For fully-observable and fully-known static environmentsa policy can be computed in
advance which gives the action to by taken in any given state.

12 Chapter 2. Intelligent Agents

function GOAL-BASED-AGENT(percept) returns an action
persistent: state, the agent’s current conception of the world state

model , a description of how the next state depends on current stateand action
goal , a description of the desired goal state
plan , a sequence of actions to take, initially empty
action , the most recent action, initially none

state←UPDATE-STATE(state,action ,percept ,model)
if GOAL-ACHIEVED(state,goal) then return a null action
if plan is emptythen

plan←PLAN (state,goal ,model)
action← FIRST(plan)
plan←REST(plan)
return action

Figure S2.1 A goal-based agent.

For partially-observable environments the agent can compute a conditional plan, which
specifies the sequence of actions to take as a function of the agent’s perception. In the ex-
treme, a conditional plan gives the agent’s response to every contingency, and so it is a repre-
sentation of the entire agent function.

In all cases it may be either intractable or too expensive to compute everything out in
advance. Instead of a conditional plan, it may be better to compute a single sequence of
actions which is likely to reach the goal, then monitor the environment to check whether the
plan is succeeding, repairing or replanning if it is not. It may be even better to compute only
the start of this plan before taking the first action, continuing to plan at later time steps.

Pseudocode for simple goal-based agent is given in Figure S2.1. GOAL-ACHIEVED

tests to see whether the current state satisfies the goal or not, doing nothing if it does. PLAN

computes a sequence of actions to take to achieve the goal. This might return only a prefix
of the full plan, the rest will be computed after the prefix is executed. This agent will act to
maintain the goal: if at any point the goal is not satisfied it will (eventually) replan to achieve
the goal again.

At this level of abstraction the utility-based agent is not much different than the goal-
based agent, except that action may be continuously required (there is not necessarily a point
where the utility function is “satisfied”). Pseudocode is given in Figure S2.2.

2.8 The file"agents/environments/vacuum.lisp" in the code repository imple-
ments the vacuum-cleaner environment. Students can easilyextend it to generate different
shaped rooms, obstacles, and so on.

2.9 A reflex agent program implementing the rational agent function described in the chap-
ter is as follows:

(defun reflex-rational-vacuum-agent (percept)
(destructuring-bind (location status) percept

13

function UTILITY -BASED-AGENT(percept) returns an action
persistent: state, the agent’s current conception of the world state

model , a description of how the next state depends on current stateand action
utility − function, a description of the agent’s utility function
plan , a sequence of actions to take, initially empty
action , the most recent action, initially none

state←UPDATE-STATE(state,action ,percept ,model)
if plan is emptythen
plan←PLAN (state,utility − function ,model)
action← FIRST(plan)
plan←REST(plan)
return action

Figure S2.2 A utility-based agent.

(cond ((eq status ’Dirty) ’Suck)
((eq location ’A) ’Right)
(t ’Left))))

For states 1, 3, 5, 7 in Figure 4.9, the performance measures are 1996, 1999, 1998, 2000
respectively.

2.10

a. No; see answer to 2.4(b).
b. See answer to 2.4(b).
c. In this case, a simple reflex agent can be perfectly rational. The agent can consist of

a table with eight entries, indexed by percept, that specifies an action to take for each
possible state. After the agent acts, the world is updated and the next percept will tell
the agent what to do next. For larger environments, constructing a table is infeasible.
Instead, the agent could run one of the optimal search algorithms in Chapters 3 and 4
and execute the first step of the solution sequence. Again, nointernal state isrequired,
but it would help to be able to store the solution sequence instead of recomputing it for
each new percept.

2.11

a. Because the agent does not know the geography and perceivesonly location and local
dirt, and cannot remember what just happened, it will get stuck forever against a wall
when it tries to move in a direction that is blocked—that is, unless it randomizes.

b. One possible design cleans up dirt and otherwise moves randomly:

(defun randomized-reflex-vacuum-agent (percept)
(destructuring-bind (location status) percept

(cond ((eq status ’Dirty) ’Suck)
(t (random-element ’(Left Right Up Down))))))

14 Chapter 2. Intelligent Agents

Figure S2.3 An environment in which random motion will take a long time tocover all
the squares.

This is fairly close to what the RoombaTM vacuum cleaner does (although the Roomba
has a bump sensor and randomizes only when it hits an obstacle). It works reasonably
well in nice, compact environments. In maze-like environments or environments with
small connecting passages, it can take a very long time to cover all the squares.

c. An example is shown in Figure S2.3. Students may also wish tomeasure clean-up time
for linear or square environments of different sizes, and compare those to the efficient
online search algorithms described in Chapter 4.

d. A reflex agent with state can build a map (see Chapter 4 for details). An online depth-
first exploration will reach every state in time linear in thesize of the environment;
therefore, the agent can do much better than the simple reflexagent.

The question of rational behavior in unknown environments is a complex one but it is
worth encouraging students to think about it. We need to havesome notion of the prior
probability distribution over the class of environments; call this the initialbelief state.
Any action yields a new percept that can be used to update thisdistribution, moving
the agent to a new belief state. Once the environment is completely explored, the belief
state collapses to a single possible environment. Therefore, the problem of optimal
exploration can be viewed as a search for an optimal strategyin the space of possible
belief states. This is a well-defined, if horrendously intractable, problem. Chapter 21
discusses some cases where optimal exploration is possible. Another concrete example
of exploration is the Minesweeper computer game (see Exercise 7.22). For very small
Minesweeper environments, optimal exploration is feasible although the belief state

15

update is nontrivial to explain.

2.12 The problem appears at first to be very similar; the main difference is that instead of
using the location percept to build the map, the agent has to “invent” its own locations (which,
after all, are just nodes in a data structure representing the state space graph). When a bump
is detected, the agent assumes it remains in the same location and can add a wall to its map.
For grid environments, the agent can keep track of its(x, y) location and so can tell when it
has returned to an old state. In the general case, however, there is no simple way to tell if a
state is new or old.

2.13

a. For a reflex agent, this presents noadditionalchallenge, because the agent will continue
to Suck as long as the current location remains dirty. For an agent that constructs a
sequential plan, everySuck action would need to be replaced by “Suck until clean.”
If the dirt sensor can be wrong on each step, then the agent might want to wait for a
few steps to get a more reliable measurement before decidingwhether toSuck or move
on to a new square. Obviously, there is a trade-off because waiting too long means
that dirt remains on the floor (incurring a penalty), but acting immediately risks either
dirtying a clean square or ignoring a dirty square (if the sensor is wrong). A rational
agent must also continue touring and checking the squares incase it missed one on a
previous tour (because of bad sensor readings). it is not immediately obvious how the
waiting time at each square should change with each new tour.These issues can be
clarified by experimentation, which may suggest a general trend that can be verified
mathematically. This problem is a partially observable Markov decision process—see
Chapter 17. Such problems are hard in general, but some special cases may yield to
careful analysis.

b. In this case, the agent must keep touring the squares indefinitely. The probability that
a square is dirty increases monotonically with the time since it was last cleaned, so the
rational strategy is, roughly speaking, to repeatedly execute the shortest possible tour of
all squares. (We say “roughly speaking” because there are complications caused by the
fact that the shortest tour may visit some squares twice, depending on the geography.)
This problem is also a partially observable Markov decisionprocess.

Solutions for Chapter 3
Solving Problems by Searching

3.1 In goal formulation, we decide which aspects of the world we are interested in, and
which can be ignored or abstracted away. Then in problem formulation we decide how to
manipulate the important aspects (and ignore the others). If we did problem formulation first
we would not know what to include and what to leave out. That said, it can happen that there
is a cycle of iterations between goal formulation, problem formulation, and problem solving
until one arrives at a sufficiently useful and efficient solution.

3.2

a. We’ll define the coordinate system so that the center of themaze is at(0, 0), and the
maze itself is a square from(−1,−1) to (1, 1).

Initial state: robot at coordinate(0, 0), facing North.
Goal test: either|x| > 1 or |y| > 1 where(x, y) is the current location.
Successor function: move forwards any distanced; change direction robot it facing.
Cost function: total distance moved.

The state space is infinitely large, since the robot’s position is continuous.

b. The state will record the intersection the robot is currently at, along with the direction
it’s facing. At the end of each corridor leaving the maze we will have an exit node.
We’ll assume some node corresponds to the center of the maze.

Initial state: at the center of the maze facing North.
Goal test: at an exit node.
Successor function: move to the next intersection in front of us, if there is one; turn to
face a new direction.
Cost function: total distance moved.

There are4n states, wheren is the number of intersections.

c. Initial state: at the center of the maze.
Goal test: at an exit node.
Successor function: move to next intersection to the North,South, East, or West.
Cost function: total distance moved.

We no longer need to keep track of the robot’s orientation since it is irrelevant to

16

17

predicting the outcome of our actions, and not part of the goal test. The motor system
that executes this plan will need to keep track of the robot’scurrent orientation, to know
when to rotate the robot.

d. State abstractions:

(i) Ignoring the height of the robot off the ground, whether it is tilted off the vertical.
(ii) The robot can face in only four directions.

(iii) Other parts of the world ignored: possibility of otherrobots in the maze, the
weather in the Caribbean.

Action abstractions:

(i) We assumed all positions we safely accessible: the robotcouldn’t get stuck or
damaged.

(ii) The robot can move as far as it wants, without having to recharge its batteries.
(iii) Simplified movement system: moving forwards a certaindistance, rather than con-

trolled each individual motor and watching the sensors to detect collisions.

3.3

a. State space: States are all possible city pairs(i, j). The map isnot the state space.
Successor function: The successors of(i, j) are all pairs(x, y) such thatAdjacent(x, i)

andAdjacent(y, j).
Goal: Be at(i, i) for somei.
Step cost function: The cost to go from(i, j) to (x, y) ismax(d(i, x), d(j, y)).

b. In the best case, the friends head straight for each other insteps of equal size, reducing
their separation by twice the time cost on each step. Hence (iii) is admissible.

c. Yes: e.g., a map with two nodes connected by one link. The twofriends will swap
places forever. The same will happen on any chain if they start an odd number of steps
apart. (One can see this best on the graph that represents thestate space, which has two
disjoint sets of nodes.) The same even holds for a grid of any size or shape, because
every move changes the Manhattan distance between the two friends by 0 or 2.

d. Yes: take any of the unsolvable maps from part (c) and add a self-loop to any one of
the nodes. If the friends start an odd number of steps apart, amove in which one of the
friends takes the self-loop changes the distance by 1, rendering the problem solvable. If
the self-loop is not taken, the argument from (c) applies andno solution is possible.

3.4 From http://www.cut-the-knot.com/pythagoras/fifteen.shtml, this proof applies to the
fifteen puzzle, but the same argument works for the eight puzzle:

Definition: The goal state has the numbers in a certain order, which we will measure as
starting at the upper left corner, then proceeding left to right, and when we reach the end of a
row, going down to the leftmost square in the row below. For any other configuration besides
the goal, whenever a tile with a greater number on it precedesa tile with a smaller number,
the two tiles are said to beinverted.

Proposition: For a given puzzle configuration, letN denote the sum of the total number
of inversions and the row number of the empty square. Then(Nmod2) is invariant under any

18 Chapter 3. Solving Problems by Searching

legal move. In other words, after a legal move an oddN remains odd whereas an evenN
remains even. Therefore the goal state in Figure 3.4, with noinversions and empty square in
the first row, hasN = 1, and can only be reached from starting states with oddN , not from
starting states with evenN .

Proof: First of all, sliding a tile horizontally changes neither the total number of in-
versions nor the row number of the empty square. Therefore let us consider sliding a tile
vertically.

Let’s assume, for example, that the tileA is located directly over the empty square.
Sliding it down changes the parity of the row number of the empty square. Now consider the
total number of inversions. The move only affects relative positions of tilesA, B, C, andD.
If none of theB,C,D caused an inversion relative toA (i.e., all three are larger thanA) then
after sliding one gets three (an odd number) of additional inversions. If one of the three is
smaller thanA, then before the moveB, C, andD contributed a single inversion (relative to
A) whereas after the move they’ll be contributing two inversions - a change of 1, also an odd
number. Two additional cases obviously lead to the same result. Thus the change in the sum
N is always even. This is precisely what we have set out to show.

So before we solve a puzzle, we should compute theN value of the start and goal state
and make sure they have the same parity, otherwise no solution is possible.

3.5 The formulation puts one queen per column, with a new queen placed only in a square
that is not attacked by any other queen. To simplify matters,we’ll first consider then–rooks
problem. The first rook can be placed in any square in column 1 (n choices), the second in
any square in column 2 except the same row that as the rook in column 1 (n−1 choices), and
so on. This givesn! elements of the search space.

Forn queens, notice that a queen attacks at most three squares in any given column, so
in column 2 there are at least(n − 3) choices, in column at least(n − 6) choices, and so on.
Thus the state space sizeS ≥ n · (n− 3) · (n− 6) · · ·. Hence we have

S3 ≥ n · n · n · (n− 3) · (n− 3) · (n− 3) · (n− 6) · (n− 6) · (n− 6) · · · ·
≥ n · (n− 1) · (n− 2) · (n− 3) · (n− 4) · (n− 5) · (n− 6) · (n− 7) · (n− 8) · · · ·
= n!

or S ≥ 3
√
n!.

3.6

a. Initial state: No regions colored.
Goal test: All regions colored, and no two adjacent regions have the same color.
Successor function: Assign a color to a region.
Cost function: Number of assignments.

b. Initial state: As described in the text.
Goal test: Monkey has bananas.
Successor function: Hop on crate; Hop off crate; Push crate from one spot to another;
Walk from one spot to another; grab bananas (if standing on crate).
Cost function: Number of actions.

19

c. Initial state: considering all input records.
Goal test: considering a single record, and it gives “illegal input” message.
Successor function: run again on the first half of the records; run again on the second
half of the records.
Cost function: Number of runs.
Note: This is acontingency problem; you need to see whether a run gives an error
message or not to decide what to do next.

d. Initial state: jugs have values[0, 0, 0].
Successor function: given values[x, y, z], generate[12, y, z], [x, 8, z], [x, y, 3] (by fill-
ing); [0, y, z], [x, 0, z], [x, y, 0] (by emptying); or for any two jugs with current values
x andy, poury into x; this changes the jug withx to the minimum ofx + y and the
capacity of the jug, and decrements the jug withy by by the amount gained by the first
jug.
Cost function: Number of actions.

3.7

a. If we consider all(x, y) points, then there are an infinite number of states, and of paths.

b. (For this problem, we consider the start and goal points to be vertices.) The shortest
distance between two points is a straight line, and if it is not possible to travel in a
straight line because some obstacle is in the way, then the next shortest distance is a
sequence of line segments, end-to-end, that deviate from the straight line by as little
as possible. So the first segment of this sequence must go fromthe start point to a
tangent point on an obstacle – any path that gave the obstaclea wider girth would be
longer. Because the obstacles are polygonal, the tangent points must be at vertices of
the obstacles, and hence the entire path must go from vertex to vertex. So now the state
space is the set of vertices, of which there are 35 in Figure 3.31.

c. Code not shown.

d. Implementations and analysis not shown.

3.8

a. Any path, no matter how bad it appears, might lead to an arbitrarily large reward (nega-
tive cost). Therefore, one would need to exhaust all possible paths to be sure of finding
the best one.

b. Suppose the greatest possible reward isc. Then if we also know the maximum depth of
the state space (e.g. when the state space is a tree), then anypath withd levels remaining
can be improved by at mostcd, so any paths worse thancd less than the best path can be
pruned. For state spaces with loops, this guarantee doesn’thelp, because it is possible
to go around a loop any number of times, picking upc reward each time.

c. The agent should plan to go around this loop forever (unlessit can find another loop
with even better reward).

d. The value of a scenic loop is lessened each time one revisitsit; a novel scenic sight
is a great reward, but seeing the same one for the tenth time inan hour is tedious, not

20 Chapter 3. Solving Problems by Searching

rewarding. To accommodate this, we would have to expand the state space to include
a memory—a state is now represented not just by the current location, but by a current
location and a bag of already-visited locations. The rewardfor visiting a new location
is now a (diminishing) function of the number of times it has been seen before.

e. Real domains with looping behavior include eating junk food and going to class.

3.9

a. Here is one possible representation: A state is a six-tupleof integers listing the number
of missionaries, cannibals, and boats on the first side, and then the second side of the
river. The goal is a state with 3 missionaries and 3 cannibalson the second side. The
cost function is one per action, and the successors of a stateare all the states that move
1 or 2 people and 1 boat from one side to another.

b. The search space is small, so any optimal algorithm works. For an example, see the
file "search/domains/cannibals.lisp" . It suffices to eliminate moves that
circle back to the state just visited. From all but the first and last states, there is only
one other choice.

c. It is not obvious that almost all moves are either illegal orrevert to the previous state.
There is a feeling of a large branching factor, and no clear way to proceed.

3.10 A state is a situation that an agent can find itself in. We distinguishtwo types of states:
world states (the actual concrete situations in the real world) and representational states (the
abstract descriptions of the real world that are used by the agent in deliberating about what to
do).

A state spaceis a graph whose nodes are the set of all states, and whose links are
actions that transform one state into another.

A search treeis a tree (a graph with no undirected loops) in which the root node is the
start state and the set of children for each node consists of the states reachable by taking any
action.

A search nodeis a node in the search tree.
A goal is a state that the agent is trying to reach.
An action is something that the agent can choose to do.
A successor functiondescribed the agent’s options: given a state, it returns a set of

(action, state) pairs, where each state is the state reachable by taking the action.
Thebranching factor in a search tree is the number of actions available to the agent.

3.11 A world state is how reality is or could be. In one world state we’re in Arad, in another
we’re in Bucharest. The world state also includes which street we’re on, what’s currently on
the radio, and the price of tea in China. A state description is an agent’s internal descrip-
tion of a world state. Examples areIn(Arad) andIn(Bucharest). These descriptions are
necessarily approximate, recording only some aspect of thestate.

We need to distinguish between world states and state descriptions because state de-
scription are lossy abstractions of the world state, because the agent could be mistaken about

21

how the world is, because the agent might want to imagine things that aren’t true but it could
make true, and because the agent cares about the world not itsinternal representation of it.

Search nodes are generated during search, representing a state the search process knows
how to reach. They contain additional information aside from the state description, such as
the sequence of actions used to reach this state. This distinction is useful because we may
generate different search nodes which have the same state, and because search nodes contain
more information than a state representation.

3.12 The state space is a tree of depth one, with all states successors of the initial state.
There is no distinction between depth-first search and breadth-first search on such a tree. If
the sequence length is unbounded the root node will have infinitely many successors, so only
algorithms which test for goal nodes as we generate successors can work.

What happens next depends on how the composite actions are sorted. If there is no
particular ordering, then a random but systematic search ofpotential solutions occurs. If they
are sorted by dictionary order, then this implements depth-first search. If they are sorted by
length first, then dictionary ordering, this implements breadth-first search.

A significant disadvantage of collapsing the search space like this is if we discover that
a plan starting with the action “unplug your battery” can’t be a solution, there is no easy way
to ignore all other composite actions that start with this action. This is a problem in particular
for informed search algorithms.

Discarding sequence structure is not a particularly practical approach to search.

3.13
The graph separation property states that “every path from the initial state to an unex-

plored state has to pass through a state in the frontier.”
At the start of the search, the frontier holds the initial state; hence, trivially, every path

from the initial state to an unexplored state includes a nodein the frontier (the initial state
itself).

Now, we assume that the property holds at the beginning of an arbitrary iteration of
the GRAPH-SEARCH algorithm in Figure 3.7. We assume that the iteration completes, i.e.,
the frontier is not empty and the selected leaf noden is not a goal state. At the end of the
iteration,n has been removed from the frontier and its successors (if notalready explored or in
the frontier) placed in the frontier. Consider any path fromthe initial state to an unexplored
state; by the induction hypothesis such a path (at the beginning of the iteration) includes
at least one frontier node; except whenn is the only such node, the separation property
automatically holds. Hence, we focus on paths passing through n (and no other frontier
node). By definition, the next noden′ along the path fromn must be a successor ofn that
(by the preceding sentence) is already not in the frontier. Furthermore,n′ cannot be in the
explored set, since by assumption there is a path fromn′ to an unexplored node not passing
through the frontier, which would violate the separation property as every explored node is
connected to the initial state by explored nodes (see lemma below for proof this is always
possible). Hence,n′ is not in the explored set, hence it will be added to the frontier; then the
path will include a frontier node and the separation property is restored.

The property is violated by algorithms that move nodes from the frontier into the ex-

22 Chapter 3. Solving Problems by Searching

plored set before all of their successors have been generated, as well as by those that fail to
add some of the successors to the frontier. Note that it is notnecessary to generateall suc-
cessors of a node at once before expanding another node, as long as partially expanded nodes
remain in the frontier.

Lemma: Every explored node is connected to the initial stateby a path of explored
nodes.

Proof: This is true initially, since the initial state is connected to itself. Since we never
remove nodes from the explored region, we only need to check new nodes we add to the
explored list on an expansion. Letn be such a new explored node. This is previously on
the frontier, so it is a neighbor of a noden′ previously explored (i.e., its parent).n′ is, by
hypothesis is connected to the initial state by a path of explored nodes. This path withn
appended is a path of explored nodes connectingn′ to the initial state.

3.14

a. False: a lucky DFS might expand exactlyd nodes to reach the goal. A∗ largely domi-
nates any graph-search algorithm that isguaranteed to find optimal solutions.

b. True: h(n) = 0 is always an admissible heuristic, since costs are nonnegative.

c. True: A* search is often used in robotics; the space can be discretized or skeletonized.

d. True: depth of the solution matters for breadth-first search, notcost.

e. False: a rook can move across the board in move one, although the Manhattan distance
from start to finish is 8.

3.15

1

2 3

4 5 6 7

8 9 10 1211 13 14 15

Figure S3.1 The state space for the problem defined in Ex. 3.15.

a. See Figure S3.1.

b. Breadth-first: 1 2 3 4 5 6 7 8 9 10 11
Depth-limited: 1 2 4 8 9 5 10 11
Iterative deepening: 1; 1 2 3; 1 2 4 5 3 6 7; 1 2 4 8 9 5 10 11

c. Bidirectional search is very useful, because the only successor ofn in the reverse direc-
tion is ⌊(n/2)⌋. This helps focus the search. The branching factor is 2 in theforward
direction; 1 in the reverse direction.

23

d. Yes; start at the goal, and apply the single reverse successor action until you reach 1.
e. The solution can be read off the binary numeral for the goal number. Write the goal

number in binary. Since we can only reach positive integers,this binary expansion
beings with a 1. From most- to least- significant bit, skipping the initial 1, go Left to
the node2n if this bit is 0 and go Right to node2n+ 1 if it is 1. For example, suppose
the goal is11, which is1011 in binary. The solution is therefore Left, Right, Right.

3.16

a. Initial state : one arbitrarily selected piece (say a straight piece).
Successor function: for any open peg, add any piece type from remaining types. (You
can add to open holes as well, but that isn’t necessary as all complete tracks can be
made by adding to pegs.) For a curved piece, addin either orientation; for a fork, add
in either orientationand (if there are two holes) connectingat either hole. It’s a good
idea to disallow any overlapping configuration, as this terminates hopeless configura-
tions early. (Note: there is no need to consider open holes, because in any solution these
will be filled by pieces added to open pegs.)
Goal test: all pieces used in a single connected track, no open pegs or holes, no over-
lapping tracks.
Step cost: one per piece (actually, doesn’t really matter).

b. All solutions are at the same depth, so depth-first search would be appropriate. (One
could also use depth-limited search with limitn−1, but strictly speaking it’s not neces-
sary to do the work of checking the limit because states at depth n− 1 have no succes-
sors.) The space is very large, so uniform-cost and breadth-first would fail, and iterative
deepening simply does unnecessary extra work. There are many repeated states, so it
might be good to use a closed list.

c. A solution has no open pegs or holes, so every peg is in a hole,so there must be equal
numbers of pegs and holes. Removing a fork violates this property. There are two other
“proofs” that are acceptable: 1) a similar argument to the effect that there must be an
even number of “ends”; 2) each fork creates two tracks, and only a fork can rejoin those
tracks into one, so if a fork is missing it won’t work. The argument using pegs and holes
is actually more general, because it also applies to the caseof a three-way fork that has
one hole and three pegs or one peg and three holes. The “ends” argument fails here, as
does the fork/rejoin argument (which is a bit handwavy anyway).

d. The maximum possible number of open pegs is 3 (starts at 1, adding a two-peg fork
increases it by one). Pretending each piece is unique, any piece can be added to a peg,
giving at most12 + (2 · 16) + (2 · 2) + (2 · 2 · 2) = 56 choices per peg. The total
depth is 32 (there are 32 pieces), so an upper bound is16832/(12! · 16! · 2! · 2!) where
the factorials deal with permutations of identical pieces.One could do a more refined
analysis to handle the fact that the branching factor shrinks as we go down the tree, but
it is not pretty.

3.17 a. The algorithm expands nodes in order of increasing path cost; therefore the first
goal it encounters will be the goal with the cheapest cost.

24 Chapter 3. Solving Problems by Searching

b. It will be the same as iterative deepening,d iterations, in whichO(bd) nodes are
generated.

c. d/ǫ
d. Implementation not shown.

3.18 Consider a domain in which every state has a single successor, and there is a single goal
at depthn. Then depth-first search will find the goal inn steps, whereas iterative deepening
search will take1 + 2 + 3 + · · ·+ n = O(n2) steps.

3.19 As an ordinary person (or agent) browsing the web, we can onlygenerate the suc-
cessors of a page by visiting it. We can then do breadth-first search, or perhaps best-search
search where the heuristic is some function of the number of words in common between the
start and goal pages; this may help keep the links on target. Search engines keep the complete
graph of the web, and may provide the user access to all (or at least some) of the pages that
link to a page; this would allow us to do bidirectional search.

3.20 Code not shown, but a good start is in the code repository. Clearly, graph search
must be used—this is a classic grid world with many alternatepaths to each state. Students
will quickly find that computing the optimal solution sequence is prohibitively expensive for
moderately large worlds, because the state space for ann×n world hasn2 · 2n states. The
completion time of the random agent grows less than exponentially in n, so for any reasonable
exchange rate between search cost ad path cost the random agent will eventually win.

3.21

a. When all step costs are equal,g(n) ∝ depth(n), so uniform-cost search reproduces
breadth-first search.

b. Breadth-first search is best-first search withf(n) = depth(n); depth-first search is
best-first search withf(n) = −depth(n); uniform-cost search is best-first search with
f(n) = g(n).

c. Uniform-cost search is A∗ search withh(n) = 0.

3.22 The student should find that on the 8-puzzle, RBFS expands more nodes (because
it does not detect repeated states) but has lower cost per node because it does not need to
maintain a queue. The number of RBFS node re-expansions is not too high because the
presence of many tied values means that the best path changesseldom. When the heuristic is
slightly perturbed, this advantage disappears and RBFS’s performance is much worse.

For TSP, the state space is a tree, so repeated states are not an issue. On the other hand,
the heuristic is real-valued and there are essentially no tied values, so RBFS incurs a heavy
penalty for frequent re-expansions.

3.23 The sequence of queues is as follows:
L[0+244=244]

M[70+241=311], T[111+329=440]

L[140+244=384], D[145+242=387], T[111+329=440]

D[145+242=387], T[111+329=440], M[210+241=451], T[251+329=580]

25

C[265+160=425], T[111+329=440], M[210+241=451], M[220+241=461], T[251+329=580]

T[111+329=440], M[210+241=451], M[220+241=461], P[403+100=503], T[251+329=580], R[411+193=604],

D[385+242=627]

M[210+241=451], M[220+241=461], L[222+244=466], P[403+100=503], T[251+329=580], A[229+366=595],

R[411+193=604], D[385+242=627]

M[220+241=461], L[222+244=466], P[403+100=503], L[280+244=524], D[285+242=527], T[251+329=580],

A[229+366=595], R[411+193=604], D[385+242=627]

L[222+244=466], P[403+100=503], L[280+244=524], D[285+242=527], L[290+244=534], D[295+242=537],

T[251+329=580], A[229+366=595], R[411+193=604], D[385+242=627]

P[403+100=503], L[280+244=524], D[285+242=527], M[292+241=533], L[290+244=534], D[295+242=537],

T[251+329=580], A[229+366=595], R[411+193=604], D[385+242=627], T[333+329=662]

B[504+0=504], L[280+244=524], D[285+242=527], M[292+241=533], L[290+244=534], D[295+242=537], T[251+329=580],

A[229+366=595], R[411+193=604], D[385+242=627], T[333+329=662], R[500+193=693], C[541+160=701]

S
A

G

B

h=7

h=5

h=1 h=02 1

4

4

Figure S3.2 A graph with an inconsistent heuristic on which GRAPH-SEARCH fails to
return the optimal solution. The successors ofS areA with f = 5 andB with f =7. A is
expanded first, so the path viaB will be discarded becauseA will already be in the closed
list.

3.24 See Figure S3.2.

3.25 It is complete whenever0 ≤ w < 2. w = 0 givesf(n) = 2g(n). This behaves exactly
like uniform-cost search—the factor of two makes no difference in theorderingof the nodes.
w = 1 gives A∗ search.w = 2 givesf(n) = 2h(n), i.e., greedy best-first search. We also
have

f(n) = (2− w)[g(n) +
w

2− wh(n)]

which behaves exactly like A∗ search with a heuristic w
2−wh(n). Forw ≤ 1, this is always

less thanh(n) and hence admissible, providedh(n) is itself admissible.

3.26

a. The branching factor is 4 (number of neighbors of each location).

b. The states at depthk form a square rotated at 45 degrees to the grid. Obviously there
are a linear number of states along the boundary of the square, so the answer is4k.

26 Chapter 3. Solving Problems by Searching

c. Without repeated state checking, BFS expends exponentially many nodes: counting
precisely, we get((4x+y+1 − 1)/3) − 1.

d. There are quadratically many states within the square for depthx+ y, so the answer is
2(x+ y)(x+ y + 1)− 1.

e. True; this is the Manhattan distance metric.

f. False; all nodes in the rectangle defined by(0, 0) and (x, y) are candidates for the
optimal path, and there are quadratically many of them, all of which may be expended
in the worst case.

g. True; removing links may induce detours, which require more steps, soh is an under-
estimate.

h. False; nonlocal links can reduce the actual path length below the Manhattan distance.

3.27

a. n2n. There aren vehicles inn2 locations, so roughly (ignoring the one-per-square
constraint)(n2)n = n2n states.

b. 5n.

c. Manhattan distance, i.e.,|(n− i+ 1)− xi|+ |n− yi|. This is exact for a lone vehicle.

d. Only (iii) min{h1, . . . , hn}. The explanation is nontrivial as it requires two observa-
tions. First, let thework W in a given solution be the totaldistancemoved by all
vehicles over their joint trajectories; that is, for each vehicle, add the lengths of all the
steps taken. We haveW ≥∑i hi ≥≥ n ·min{h1, ..., hn}. Second, the total work we
can get done per step is≤ n. (Note that for every car that jumps 2, another car has to
stay put (move 0), so the total work per step is bounded byn.) Hence, completing all
the work requires at leastn ·min{h1, ..., hn}/n = min{h1, ..., hn} steps.

3.28 The heuristich = h1 +h2 (adding misplaced tiles and Manhattan distance) sometimes
overestimates. Now, supposeh(n) ≤ h∗(n) + c (as given) and letG2 be a goal that is
suboptimal by more thanc, i.e.,g(G2) > C∗ + c. Now consider any noden on a path to an
optimal goal. We have

f(n) = g(n) + h(n)

≤ g(n) + h∗(n) + c

≤ C∗ + c

≤ g(G2)

soG2 will never be expanded before an optimal goal is expanded.

3.29 A heuristic is consistent iff, for every noden and every successorn′ of n generated by
any actiona,

h(n) ≤ c(n, a, n′) + h(n′)

One simple proof is by induction on the numberk of nodes on the shortest path to any goal
from n. For k = 1, let n′ be the goal node; thenh(n) ≤ c(n, a, n′). For the inductive

27

case, assumen′ is on the shortest pathk steps from the goal and thath(n′) is admissible by
hypothesis; then

h(n) ≤ c(n, a, n′) + h(n′) ≤ c(n, a, n′) + h∗(n′) = h∗(n)

soh(n) atk + 1 steps from the goal is also admissible.

3.30 This exercise reiterates a small portion of the classic workof Held and Karp (1970).

a. The TSP problem is to find a minimal (total length) path through the cities that forms
a closed loop. MST is a relaxed version of that because it asksfor a minimal (total
length) graph that need not be a closed loop—it can be any fully-connected graph. As
a heuristic, MST is admissible—it is always shorter than or equal to a closed loop.

b. The straight-line distance back to the start city is a rather weak heuristic—it vastly
underestimates when there are many cities. In the later stage of a search when there are
only a few cities left it is not so bad. To say that MST dominates straight-line distance
is to say that MST always gives a higher value. This is obviously true because a MST
that includes the goal node and the current node must either be the straight line between
them, or it must include two or more lines that add up to more. (This all assumes the
triangle inequality.)

c. See"search/domains/tsp.lisp" for a start at this. The file includes a heuristic
based on connecting each unvisited city to its nearest neighbor, a close relative to the
MST approach.

d. See (Cormenet al., 1990, p.505) for an algorithm that runs inO(E logE) time, where
E is the number of edges. The code repository currently contains a somewhat less
efficient algorithm.

3.31 The misplaced-tiles heuristic is exact for the problem where a tile can move from
square A to square B. As this is a relaxation of the condition that a tile can move from
square A to square B if B is blank, Gaschnig’s heuristic cannot be less than the misplaced-
tiles heuristic. As it is also admissible (being exact for a relaxation of the original problem),
Gaschnig’s heuristic is therefore more accurate.

If we permute two adjacent tiles in the goal state, we have a state where misplaced-tiles
and Manhattan both return 2, but Gaschnig’s heuristic returns 3.

To compute Gaschnig’s heuristic, repeat the following until the goal state is reached:
let B be the current location of the blank; if B is occupied by tile X (not the blank) in the
goal state, move X to B; otherwise, move any misplaced tile toB. Students could be asked to
prove that this is the optimal solution to the relaxed problem.

3.32 Students should provide results in the form of graphs and/ortables showing both run-
time and number of nodes generated. (Different heuristics have different computation costs.)
Runtimes may be very small for 8-puzzles, so you may want to assign the 15-puzzle or 24-
puzzle instead. The use of pattern databases is also worth exploring experimentally.

Solutions for Chapter 4
Beyond Classical Search

4.1

a. Local beam search withk = 1 is hill-climbing search.
b. Local beam search with one initial state and no limit on the number of states retained,

resembles breadth-first search in that it adds one complete layer of nodes before adding
the next layer. Starting from one state, the algorithm wouldbe essentially identical to
breadth-first search except that each layer is generated allat once.

c. Simulated annealing withT = 0 at all times: ignoring the fact that the termination step
would be triggered immediately, the search would be identical to first-choice hill climb-
ing because every downward successor would be rejected withprobability 1. (Exercise
may be modified in future printings.)

d. Simulated annealing withT = ∞ at all times is a random-walk search: it always
accepts a new state.

e. Genetic algorithm with population sizeN = 1: if the population size is 1, then the
two selected parents will be the same individual; crossoveryields an exact copy of the
individual; then there is a small chance of mutation. Thus, the algorithm executes a
random walk in the space of individuals.

4.2 Despite its humble origins, this question raises many of thesame issues as the scientifi-
cally important problem of protein design. There is a discrete assembly space in which pieces
are chosen to be added to the track and a continuous configuration space determined by the
“joint angles” at every place where two pieces are linked. Thus we can define a state as a set of
oriented, linked pieces and the associated joint angles in the range[−10, 10], plus a set of un-
linked pieces. The linkage and joint angles exactly determine the physical layout of the track;
we can allow for (and penalize) layouts in which tracks lie ontop of one another, or we can
disallow them. The evaluation function would include termsfor how many pieces are used,
how many loose ends there are, and (if allowed) the degree of overlap. We might include a
penalty for the amount of deviation from 0-degree joint angles. (We could also include terms
for “interestingness” and “traversability”—for example,it is nice to be able to drive a train
starting from any track segment to any other, ending up in either direction without having to
lift up the train.) The tricky part is the set of allowed moves. Obviously we can unlink any
piece or link an unlinked piece to an open peg with either orientation at any allowed angle
(possibly excluding moves that create overlap). More problematic are moves to join a peg

28

29

and hole on already-linked pieces and moves to change the angle of a joint. Changing one
angle may force changes in others, and the changes will vary depending on whether the other
pieces are at their joint-angle limit. In general there willbe no unique “minimal” solution for
a given angle change in terms of the consequent changes to other angles, and some changes
may be impossible.

4.3 Here is one simple hill-climbing algorithm:

• Connect all the cities into an arbitrary path.

• Pick two points along the path at random.

• Split the path at those points, producing three pieces.

• Try all six possible ways to connect the three pieces.

• Keep the best one, and reconnect the path accordingly.

• Iterate the steps above until no improvement is observed for a while.

4.4 Code not shown.

4.5 See Figure S4.1 for the adapted algorithm. For states that OR-SEARCH finds a solution
for it records the solution found. If it later visits that state again it immediately returns that
solution.

When OR-SEARCH fails to find a solution it has to be careful. Whether a state can be
solved depends on the path taken to that solution, as we do notallow cycles. So on failure
OR-SEARCH records the value ofpath . If a state is which has previously failed whenpath

contained any subset of its present value, OR-SEARCH returns failure.
To avoid repeating sub-solutions we can label all new solutions found, record these

labels, then return the label if these states are visited again. Post-processing can prune off
unused labels. Alternatively, we can output a direct acyclic graph structure rather than a tree.

See (Bertoliet al., 2001) for further details.

4.6
The question statement describes the required changes in detail, see Figure S4.2 for the

modified algorithm. When OR-SEARCH cycles back to a state onpath it returns a tokenloop
which means to loop back to the most recent time this state wasreached along the path to
it. Sincepath is implicitly stored in the returned plan, there is sufficient information for later
processing, or a modified implementation, to replace these with labels.

The plan representation is implicitly augmented to keep track of whether the plan is
cyclic (i.e., contains aloop) so that OR-SEARCH can prefer acyclic solutions.

AND-SEARCH returns failure if all branches lead directly to aloop, as in this case the
plan will always loop forever. This is the only case it needs to check as if all branches in a
finite plan loop there must be some And-node whose children all immediately loop.

4.7 A sequence of actions is a solution to a belief state problem if it takes every initial
physical state to a goal state. We can relax this problem by requiring it take onlysomeinitial
physical state to a goal state. To make this well defined, we’ll require that it finds a solution

30 Chapter 4. Beyond Classical Search

function AND-OR-GRAPH-SEARCH(problem) returns a conditional plan, or failure

OR-SEARCH(problem .INITIAL -STATE,problem , [])

function OR-SEARCH(state,problem ,path) returns a conditional plan, or failure

if problem .GOAL-TEST(state) then return the empty plan
if state has previously been solvedthen return RECALL-SUCCESS(state)
if state has previously failed for a subset ofpath then return failure

if state is onpath then
RECORD-FAILURE(state, path)
return failure

for eachaction in problem .ACTIONS(state) do
plan←AND-SEARCH(RESULTS(state,action),problem , [state | path])
if plan 6= failure then

RECORD-SUCCESS(state, [action | plan])
return [action | plan]

return failure

function AND-SEARCH(states,problem ,path) returns a conditional plan, or failure

for each si in states do
plan i←OR-SEARCH(si,problem ,path)
if plan i = failure then return failure

return [if s1 then plan1 else ifs2 then plan2 else . . . if sn−1 then plann−1 elseplann]

Figure S4.1 AND-OR search with repeated state checking.

for the physical state with the most costly solution. Ifh∗(s) is the optimal cost of solution
starting from the physical states, then

h(S) = max
s∈S

h∗(s)

is the heuristic estimate given by this relaxed problem. This heuristic assumes any solution
to the most difficult state the agent things possible will solve all states.

On the sensorless vacuum cleaner problem in Figure 4.14,h correctly determines the
optimal cost for all states except the central three states (those reached by[suck], [suck, left]
and [suck, right]) and the root, for whichh estimates to be 1 unit cheaper than they really
are. This means A∗ will expand these three central nodes, before marching towards the
solution.

4.8

a. An action sequence is a solution for belief stateb if performing it starting in any state
s ∈ b reaches a goal state. Since any state in a subset ofb is in b, the result is immediate.

Any action sequence which isnot a solution for belief stateb is also not a solution
for any superset; this is the contrapositive of what we’ve just proved. One cannot, in
general, say anything about arbitrary supersets, as the action sequence need not lead to
a goal on the states outside ofb. One can say, for example, that if an action sequence

31

function AND-OR-GRAPH-SEARCH(problem) returns a conditional plan, or failure

OR-SEARCH(problem .INITIAL -STATE,problem , [])

function OR-SEARCH(state,problem ,path) returns a conditional plan, or failure

if problem .GOAL-TEST(state) then return the empty plan
if state is onpath then return loop

cyclic − plan←None

for eachaction in problem .ACTIONS(state) do
plan←AND-SEARCH(RESULTS(state,action),problem , [state | path])
if plan 6= failure then

if plan is acyclicthen return [action | plan]
cyclic − plan← [action | plan]

if cyclic − plan 6= None then return cyclic − plan

return failure

function AND-SEARCH(states,problem ,path) returns a conditional plan, or failure

loopy←True

for each si in states do
plan i←OR-SEARCH(si,problem ,path)
if plan i = failure then return failure

if plan i 6= loop then loopy←False

if not loopy then
return [if s1 then plan1 else ifs2 thenplan2 else . . . if sn−1 thenplann−1 elseplann]

return failure

Figure S4.2 AND-OR search with repeated state checking.

solves a belief stateb and a belief stateb′ then it solves the union belief stateb ∪ b′.
b. On expansion of a node, do not add to the frontier any child belief state which is a

superset of a previously explored belief state.
c. If you keep a record of previously solved belief states, adda check to the start of OR-

search to check whether the belief state passed in is a subsetof a previously solved
belief state, returning the previous solution in case it is.

4.9
Consider a very simple example: an initial belief state{S1, S2}, actionsa andb both

leading to goal stateG from either initial state, and

c(S1, a,G) = 3 ; c(S2, a,G) = 5 ;
c(S1, b,G) = 2 ; c(S2, b,G) = 6 .

In this case, the solution[a] costs 3 or 5, the solution[b] costs 2 or 6. Neither is “optimal” in
any obvious sense.

In some cases, therewill be an optimal solution. Let us consider just the deterministic
case. For this case, we can think of the cost of a plan as a mapping from each initial phys-
ical state to the actual cost of executing the plan. In the example above, the cost for[a] is

32 Chapter 4. Beyond Classical Search

{S1:3, S2:5} and the cost for[b] is {S1:2, S2:6}. We can say that planp1 weakly dominates
p2 if, for each initial state, the cost forp1 is no higher than the cost forp2. (Moreover,p1

dominatesp2 if it weakly dominates itandhas a lower cost for some state.) If a planpweakly
dominates all others, it is optimal. Notice that this definition reduces to ordinary optimality in
the observable case where every belief state is a singleton.As the preceding example shows,
however, a problem may have no optimal solution in this sense. A perhaps acceptable version
of A∗ would be one that returns any solution that is not dominated by another.

To understand whether it is possible to apply A∗ at all, it helps to understand its depen-
dence on Bellman’s (1957)principle of optimality : An optimal policy has the property thatPRINCIPLE OF

OPTIMALITY

whatever the initial state and initial decision are, the remaining decisions must constitute an
optimal policy with regard to the state resulting from the first decision. It is important to
understand that this is a restriction on performance measures designed to facilitate efficient
algorithms, not a general definition of what it means to be optimal.

In particular, if we define the cost of a plan in belief-state space as the minimum cost
of any physical realization, we violate Bellman’s principle. Modifying and extending the
previous example, suppose thata andb reachS3 from S1 andS4 from S2, and then reachG
from there:

c(S1, a, S3) = 6 ; c(S2, a, S4) = 2 ;
c(S1, b, S3) = 6 ; c(S2, b, S4) = 1 .c(S3, a,G) = 2 ; c(S4, a,G) = 2 ;
c(S3, b,G) = 1 ; c(S4, b,G) = 9 .

In the belief state{S3, S4}, the minimum cost of[a] is min{2, 2}= 2 and the minimum cost
of [b] is min{1, 9}= 1, so the optimal plan is[b]. In the initial belief state{S1, S2}, the four
possible plans have the following costs:

[a, a] : min{8, 4} = 4 ; [a, b] : min{7, 11} = 7 ; [b, a] : min{8, 3} = 3 ; [b, b] : min{7, 10} = 7 .

Hence, the optimal plan in{S1, S2} is [b, a], which doesnotchooseb in {S3, S4} even though
that is the optimal plan at that point. This counterintuitive behavior is a direct consequence
of choosing the minimum of the possible path costs as the performance measure.

This example gives just a small taste of what might happen with nonadditive perfor-
mance measures. Details of how to modify and analyze A∗ for general path-dependent cost
functions are give by Dechter and Pearl (1985). Many aspectsof A∗ carry over; for example,
we can still derive lower bounds on the cost of a path through agiven node. For a belief state
b, the minimum value ofg(s) + h(s) for each states in b is a lower bound on the minimum
cost of a plan that goes throughb.

4.10 The belief state space is shown in Figure S4.3. No solution ispossible because no path
leads to a belief state all of whose elements satisfy the goal. If the problem is fully observable,
the agent reaches a goal state by executing a sequence such thatSuck is performed only in a
dirty square. This ensures deterministic behavior and every state is obviously solvable.

4.11
The student needs to make several design choices in answering this question. First,

how will the vertices of objects be represented? The problemstates the percept is a list of
vertex positions, but that is not precise enough. Here is onegood choice: The agent has an

33

L

R

L R

S SS

Figure S4.3 The belief state space for the sensorless vacuum world underMurphy’s law.

orientation (a heading in degrees). The visible vertexes are listed in clockwise order, starting
straight ahead of the agent. Each vertex has a relative angle(0 to 360 degrees) and a distance.
We also want to know if a vertex represents the left edge of an obstacle, the right edge, or an
interior point. We can use the symbols L, R, or I to indicate this.

The student will need to do some basic computational geometry calculations: intersec-
tion of a path and a set of line segments to see if the agent willbump into an obstacle, and
visibility calculations to determine the percept. There are efficient algorithms for doing this
on a set of line segments, but don’t worry about efficiency; anexhaustive algorithm is ok. If
this seems too much, the instructor can provide an environment simulator and ask the student
only to program the agent.

To answer (c), the student will need some exchange rate for trading off search time with
movement time. It is probably too complex to make the simulation asynchronous real-time;
easier to impose a penalty in points for computation.

For (d), the agent will need to maintain a set of possible positions. Each time the agent
moves, it may be able to eliminate some of the possibilities.The agent may consider moves
that serve to reduce uncertainty rather than just get to the goal.

4.12 This question is slightly ambiguous as to what the percept is—either the percept is just
the location, or it gives exactly the set of unblocked directions (i.e., blocked directions are
illegal actions). We will assume the latter. (Exercise may be modified in future printings.)
There are 12 possible locations for internal walls, so thereare212 = 4096 possible environ-
ment configurations. A belief state designates asubsetof these as possible configurations;
for example, before seeing any percepts all 4096 configurations are possible—this is a single
belief state.

a. Online search is equivalent to offline search in belief-state space where each action
in a belief-state can have multiple successor belief-states: one for each percept the
agent could observe after the action. A successor belief-state is constructed by taking
the previous belief-state, itself a set of states, replacing each state in this belief-state
by the successor state under the action, and removing all successor states which are
inconsistent with the percept. This is exactly the construction in Section 4.4.2. AND-OR

search can be used to solve this search problem. The initial belief state has210= 1024
states in it, as we know whether two edges have walls or not (the upper and right edges
have no walls) but nothing more. There are2212

possible belief states, one for each set
of environment configurations.

34 Chapter 4. Beyond Classical Search

? ??

? ??

?

?

?

?

?

?

? ??

??

?

?

?

?

?

? ??

??

?

?

?

?

?

? ??

??

?

?

?

?

?

? ??

??

?

?

?

?

?

? ??

?

?

?

?

?

? ??

?

?

?

?

?

? ??

?

?

?

?

?

? ??

?

?

?

?

?

NoOp

Right

Figure S4.4 The3× 3 maze exploration problem: the initial state, first percept,and one
selected action with its perceptual outcomes.

We can view this as a contingency problem in belief state space. After each ac-
tion and percept, the agent learns whether or not an internalwall exists between the
current square and each neighboring square. Hence, each reachable belief state can be
represented exactly by a list of status values (present, absent, unknown) for each wall
separately. That is, the belief state is completely decomposable and there are exactly312

reachable belief states. The maximum number of possible wall-percepts in each state
is 16 (24), so each belief state has four actions, each with up to 16 nondeterministic
successors.

b. Assuming the external walls are known, there are two internal walls and hence22 =4
possible percepts.

c. The initial null action leads to four possible belief states, as shown in Figure S4.4. From
each belief state, the agent chooses a single action which can lead to up to 8 belief states
(on entering the middle square). Given the possibility of having to retrace its steps at
a dead end, the agent can explore the entire maze in no more than 18 steps, so the
complete plan (expressed as a tree) has no more than818 nodes. On the other hand,
there are just312 reachable belief states, so the plan could be expressed moreconcisely
as a table of actions indexed by belief state (apolicy in the terminology of Chapter 17).

4.13 Hillclimbing is surprisingly effective at finding reasonable if not optimal paths for very
little computational cost, and seldom fails in two dimensions.

35

Current
position

Goal

(a) (b)

Current
position

Goal

Figure S4.5 (a) Getting stuck with a convex obstacle. (b) Getting stuck with a nonconvex
obstacle.

a. It is possible (see Figure S4.5(a)) but very unlikely—the obstacle has to have an unusual
shape and be positioned correctly with respect to the goal.

b. With nonconvex obstacles, getting stuck is much more likely to be a problem (see Fig-
ure S4.5(b)).

c. Notice that this is just depth-limited search, where you choose a step along the best path
even if it is not a solution.

d. Setk to the maximum number of sides of any polygon and you can always escape.

e. LRTA* always makes a move, but may move back if the old state looks better than the
new state. But then the old state is penalized for the cost of the trip, so eventually the
local minimum fills up and the agent escapes.

4.14
Since we can observe successor states, we always know how to backtrack from to a

previous state. This means we can adapt iterative deepeningsearch to solve this problem.
The only difference is backtracking must be explicit, following the action which the agent
can see leads to the previous state.

The algorithm expands the following nodes:
Depth 1:(0, 0), (1, 0), (0, 0), (−1, 0), (0, 0)
Depth 2:(0, 1), (0, 0), (0,−1), (0, 0), (1, 0), (2, 0), (1, 0), (0, 0), (1, 0), (1, 1), (1, 0), (1,−1)

Solutions for Chapter 5
Adversarial Search

5.1 The translation uses the model of the opponentOM(s) to fill in the opponent’s actions,
leaving our actions to be determined by the search algorithm. LetP (s) be the state predicted
to occur after the opponent has made all their moves according toOM . Note that the op-
ponent may take multiple moves in a row before we get a move, sowe need to define this
recursively. We haveP (s) = s if PLAYERs is us or TERMINAL -TESTs is true, otherwise
P (s) = P (RESULT(s,OM(s)).

The search problem is then given by:

a. Initial state:P (S0) whereS0 is the initial game state. We applyP as the opponent may
play first

b. Actions: defined as in the game by ACTIONSs.

c. Successor function: RESULT′(s, a) = P (RESULT(s, a))

d. Goal test: goals are terminal states

e. Step cost: the cost of an action is zero unless the resultingstates′ is terminal, in which
case its cost isM − UTILITY (s′) whereM = maxs UTILITY (s). Notice that all costs
are non-negative.

Notice that the state space of the search problem consists ofgame state where we are to
play and terminal states. States where the opponent is to play have been compiled out. One
might alternatively leave those states in but just have a single possible action.

Any of the search algorithms of Chapter 3 can be applied. For example, depth-first
search can be used to solve this problem, if all games eventually end. This is equivalent to
using the minimax algorithm on the original game ifOM(s) always returns the minimax
move ins.

5.2

a. Initial state: two arbitrary 8-puzzle states. Successor function: one move on an unsolved
puzzle. (You could also have actions that change both puzzles at the same time; this is
OK but technically you have to say what happens when one is solved but not the other.)
Goal test: both puzzles in goal state. Path cost: 1 per move.

b. Each puzzle has9!/2 reachable states (remember that half the states are unreachable).
The joint state space has(9!)2/4 states.

c. This is like backgammon; expectiminimax works.

36

37

bd

cd ad

ce cf cc

de be df bf

ae af ac

dd dd−4 −4

−2

−4 −4
<=−6

<=−6<=−6

<=−6

<=−4
−4 −4

−4 <=−6

−4

Figure S5.1 Pursuit-evasion solution tree.

d. Actually the statement in the question is not true (it applies to a previous version of part
(c) in which the opponent is just trying to prevent you from winning—in that case, the
coin tosses will eventually allow you to solve one puzzle without interruptions). For the
game described in (c), consider a state in which the coin has come up heads, say, and
you get to work on a puzzle that is 2 steps from the goal. Shouldyou move one step
closer? If you do, your opponent wins if he tosses heads; or ifhe tosses tails, you toss
tails, and he tosses heads; or any sequence where both toss tails n times and then he
tosses heads. So his probability of winning isat least1/2+1/8+1/32+ · · · = 2/3. So
it seems you’re better off movingawayfrom the goal. (There’s no way to stay the same
distance from the goal.) This problem unintentionally seems to have the same kind of
solution as suicide tictactoe with passing.

5.3

a. See Figure S5.1; the values are just (minus) the number of steps along the path from the
root.

b. See Figure S5.1; note that there is both an upper bound and a lower bound for the left
child of the root.

c. See figure.

d. The shortest-path length between the two players is a lowerbound on the total capture
time (here the players take turns, so no need to divide by two), so the “?” leaves have a
capture time greater than or equal to the sum of the cost from the root and the shortest-
path length. Notice that this bound is derived when the Evader plays very badly. The
true value of a node comes from best play by both players, so wecan get better bounds
by assuming better play. For example, we can get a better bound from the cost when the
Evader simply moves backwards and forwards rather than moving towards the Pursuer.

e. See figure (we have used the simple bounds). Notice that oncethe right child is known

38 Chapter 5. Adversarial Search

to have a value below –6, the remaining successors need not beconsidered.
f. The pursuer always wins if the tree is finite. To prove this, let the tree be rooted as

the pursuer’s current node. (I.e., pick up the tree by that node and dangle all the other
branches down.) The evader must either be at the root, in which case the pursuer has
won, or in some subtree. The pursuer takes the branch leadingto that subtree. This
process repeats at mostd times, whered is the maximum depth of the original subtree,
until the pursuer either catches the evader or reaches a leafnode. Since the leaf has no
subtrees, the evader must be at that node.

5.4 The basic physical state of these games is fairly easy to describe. One important thing
to remember for Scrabble and bridge is that the physical state is not accessible to all players
and so cannot be provided directly to each player by the environment simulator. Particularly
in bridge, each player needs to maintain some best guess (or multiple hypotheses) as to the
actual state of the world. We expect to be putting some of the game implementations online
as they become available.

5.5 Code not shown.

5.6 The most obvious change is that the space of actions is now continuous. For example,
in pool, the cueing direction, angle of elevation, speed, and point of contact with the cue ball
are all continuous quantities.

The simplest solution is just to discretize the action spaceand then apply standard meth-
ods. This might work for tennis (modelled crudely as alternating shots with speed and direc-
tion), but for games such as pool and croquet it is likely to fail miserably because small
changes in direction have large effects on action outcome. Instead, one must analyze the
game to identify a discrete set of meaningful local goals, such as “potting the 4-ball” in pool
or “laying up for the next hoop” in croquet. Then, in the current context, a local optimization
routine can work out the best way to achieve each local goal, resulting in a discrete set of pos-
sible choices. Typically, these games are stochastic, so the backgammon model is appropriate
provided that we use sampled outcomes instead of summing over all outcomes.

Whereas pool and croquet are modelled correctly as turn-taking games, tennis is not.
While one player is moving to the ball, the other player is moving to anticipate the opponent’s
return. This makes tennis more like the simultaneous-action games studied in Chapter 17. In
particular, it may be reasonable to deriverandomizedstrategies so that the opponent cannot
anticipate where the ball will go.

5.7 Consider aMIN node whose children are terminal nodes. IfMIN plays suboptimally,
then the value of the node is greater than or equal to the valueit would have ifMIN played
optimally. Hence, the value of theMAX node that is theMIN node’s parent can only be
increased. This argument can be extended by a simple induction all the way to the root.If
the suboptimal play byMIN is predictable, then one can do better than a minimax strategy.
For example, ifMIN always falls for a certain kind of trap and loses, then setting the trap
guarantees a win even if there is actually a devastating response forMIN . This is shown in
Figure S5.2.

5.8

39

MAX

MIN

a1

A

B D

−101000 1000

2b 3b1b 2d1d 3d

−5−5−5

a2

Figure S5.2 A simple game tree showing that setting a trap forMIN by playingai is a win
if MIN falls for it, but may also be disastrous. The minimax move is of coursea2, with value
−5.

(1,4)

(2,4)

(2,3)

(1,3)

(1,2)

(3,2)

(3,4)

(4,3)

(3,1)

(2,4)

(1,4)

+1

−1

?

?

?

−1

−1

−1

+1

+1

+1

Figure S5.3 The game tree for the four-square game in Exercise 5.8. Terminal states are
in single boxes, loop states in double boxes. Each state is annotated with its minimax value
in a circle.

a. (5) The game tree, complete with annotations of all minimaxvalues, is shown in Fig-
ure S5.3.

b. (5) The “?” values are handled by assuming that an agent witha choice between win-
ning the game and entering a “?” state will always choose the win. That is, min(–1,?)
is –1 and max(+1,?) is +1. If all successors are “?”, the backed-up value is “?”.

c. (5) Standard minimax is depth-first and would go into an infinite loop. It can be fixed

40 Chapter 5. Adversarial Search

by comparing the current state against the stack; and if the state is repeated, then return
a “?” value. Propagation of “?” values is handled as above. Although it works in this
case, it does notalwayswork because it is not clear how to compare “?” with a drawn
position; nor is it clear how to handle the comparison when there are wins of different
degrees (as in backgammon). Finally, in games with chance nodes, it is unclear how to
compute the average of a number and a “?”. Note that it isnot correct to treat repeated
states automatically as drawn positions; in this example, both (1,4) and (2,4) repeat in
the tree but they are won positions.

What is really happening is that each state has a well-definedbut initially unknown
value. These unknown values are related by the minimax equation at the bottom of
164. If the game tree is acyclic, then the minimax algorithm solves these equations by
propagating from the leaves. If the game tree has cycles, then a dynamic programming
method must be used, as explained in Chapter 17. (Exercise 17.7 studies this problem in
particular.) These algorithms can determine whether each node has a well-determined
value (as in this example) or is really an infinite loop in thatboth players prefer to stay
in the loop (or have no choice). In such a case, the rules of thegame will need to define
the value (otherwise the game will never end). In chess, for example, a state that occurs
3 times (and hence is assumed to be desirable for both players) is a draw.

d. This question is a little tricky. One approach is a proof by induction on the size of the
game. Clearly, the base casen=3 is a loss for A and the base casen=4 is a win for
A. For anyn > 4, the initial moves are the same: A and B both move one step towards
each other. Now, we can see that they are engaged in a subgame of sizen − 2 on the
squares[2, . . . , n − 1], exceptthat there is an extra choice of moves on squares2 and
n − 1. Ignoring this for a moment, it is clear that if the “n − 2” is won for A, then A
gets to the squaren − 1 before B gets to square2 (by the definition of winning) and
therefore gets ton before B gets to1, hence the “n” game is won for A. By the same
line of reasoning, if “n − 2” is won for B then “n” is won for B. Now, the presence of
the extra moves complicates the issue, but not too much. First, the player who is slated
to win the subgame[2, . . . , n − 1] never moves back to his home square. If the player
slated to lose the subgame does so, then it is easy to show thathe is bound to lose the
game itself—the other player simply moves forward and a subgame of sizen − 2k is
played one step closer to the loser’s home square.

5.9 Fora, there are at most 9! games. (This is the number of move sequences that fill up the
board, but many wins and losses end before the board is full.)Forb–e, Figure S5.4 shows the
game tree, with the evaluation function values below the terminal nodes and the backed-up
values to the right of the non-terminal nodes. The values imply that the best starting move for
X is to take the center. The terminal nodes with a bold outlineare the ones that do not need
to be evaluated, assuming the optimal ordering.

5.10

a. An upper bound on the number of terminal nodes isN !, one for each ordering of
squares, so an upper bound on the total number of nodes is

∑N
i=1 i!. This is not much

41

x
x

x

x o x

o

x o x

o

x

o

x

o

x

o

x o x

o

x

o

x

o

x

o

1

−1 1 −2

1 −1 0 0 1 −1 −2 0 −1 0

1 2

Figure S5.4 Part of the game tree for tic-tac-toe, for Exercise 5.9.

bigger thanN ! itself as the factorial function grows superexponentially. This is an
overestimate because some games will end early when a winning position is filled.

This count doesn’t take into account transpositions. An upper bound on the number
of distinct game states is3N , as each square is either empty or filled by one of the two
players. Note that we can determine who is to play just from looking at the board.

b. In this case no games terminate early, and there areN ! different games ending in a draw.
So ignoring repeated states, we have exactly

∑N
i=1 i! nodes.

At the end of the game the squares are divided between the two players: ⌈N/2⌉ to
the first player and⌊N/2⌋ to the second. Thus, a good lower bound on the number of
distinct states is

(N
⌈N/2⌉

)

, the number of distinct terminal states.

c. For a states, letX(s) be the number of winning positions containing noO’s andO(s)
the number of winning positions containing noX ’s. One evaluation function is then
Eval(s) = X(s) − O(S). Notice that empty winning positions cancel out in the eval-
uation function.

Alternatively, we might weight potential winning positions by how close they are to
completion.

d. Using the upper bound ofN ! from (a), and observing that it takes100NN ! instructions.
At 2GHz we have 2 billion instructions per second (roughly speaking), so solve for the
largestN using at most this many instructions. For one second we getN = 9, for one
minuteN = 11, and for one hourN = 12.

5.11 See"search/algorithms/games.lisp" for definitions of games, game-playing
agents, and game-playing environments."search/algorithms/minimax.lisp" con-
tains the minimax and alpha-beta algorithms. Notice that the game-playing environment is
essentially a generic environment with the update functiondefined by the rules of the game.
Turn-taking is achieved by having agents do nothing until itis their turn to move.

See"search/domains/cognac.lisp" for the basic definitions of a simple game
(slightly more challenging than Tic-Tac-Toe). The code forthis contains only a trivial eval-
uation function. Students can use minimax and alpha-beta tosolve small versions of the
game to termination (probably up to4 × 3); they should notice that alpha-beta is far faster

42 Chapter 5. Adversarial Search

than minimax, but still cannot scale up without an evaluation function and truncated horizon.
Providing an evaluation function is an interesting exercise. From the point of view of data
structure design, it is also interesting to look at how to speed up the legal move generator by
precomputing the descriptions of rows, columns, and diagonals.

Very few students will have heard of kalah, so it is a fair assignment, but the game
is boring—depth 6 lookahead and a purely material-based evaluation function are enough
to beat most humans. Othello is interesting and about the right level of difficulty for most
students. Chess and checkers are sometimes unfair because usually a small subset of the
class will be experts while the rest are beginners.

5.12 The minimax algorithm for non-zero-sum games works exactlyas for multiplayer
games, described on p.165–6; that is, the evaluation function is a vector of values, one for
each player, and the backup step selects whichever vector has the highest value for the player
whose turn it is to move. The example at the end of Section 5.2.2 (p.165) shows that alpha-
beta pruning is not possible in general non-zero-sum games,because an unexamined leaf
node might be optimal for both players.

5.13 This question is not as hard as it looks. The derivation belowleads directly to a defini-
tion of α andβ values. The notationni refers to (the value of) the node at depthi on the path
from the root to the leaf nodenj. Nodesni1 . . . nibi

are the siblings of nodei.

a. We can writen2 = max(n3, n31, . . . , n3b3), giving

n1 = min(max(n3, n31, . . . , n3b3), n21, . . . , n2b2)

Thenn3 can be similarly replaced, until we have an expression containing nj itself.

b. In terms of thel andr values, we have

n1 = min(l2,max(l3, n3, r3), r2)

Again, n3 can be expanded out down tonj. The most deeply nested term will be
min(lj , nj , rj).

c. If nj is a max node, then the lower bound on its value only increasesas its successors
are evaluated. Clearly, if it exceedslj it will have no further effect onn1. By extension,
if it exceedsmin(l2, l4, . . . , lj) it will have no effect. Thus, by keeping track of this
value we can decide when to prunenj. This is exactly whatα-β does.

d. The corresponding bound for min nodesnk is max(l3, l5, . . . , lk).

5.14 The result is given in Section 6 of Knuth (1975). The exact statement (Corollary 1 of
Theorem 1) is that the algorithms examinesb⌊m/2⌋ + b⌈m/2⌉ − 1 nodes at levelm. These
are exactly the nodes reached when Min plays only optimal moves and/or Max plays only
optimal moves. The proof is by induction onm.

5.15 With 32 pieces, each needing 6 bits to specify its position onone of 64 squares, we
need 24 bytes (6 32-bit words) to store a position, so we can store roughly 80 million positions
in the table (ignoring pointers for hash table bucket lists). This is about 1/22 of the 1800
million positions generated during a three-minute search.

43

0.5 0.50.5 0.5

2 2 221 0 −1 0

2 1 0 −1

1.5 −0.5

1.5

Figure S5.5 Pruning with chance nodes solution.

Generating the hash key directly from an array-based representation of the position
might be quite expensive. Modern programs (see, e.g., Heinz, 2000) carry along the hash
key and modify it as each new position is generated. Suppose this takes on the order of 20
operations; then on a 2GHz machine where an evaluation takes2000 operations we can do
roughly 100 lookups per evaluation. Using a rough figure of one millisecond for a disk seek,
we could do 1000 evaluations per lookup. Clearly, using a disk-resident table is of dubious
value, even if we can get some locality of reference to reducethe number of disk reads.

5.16

a. See Figure S5.5.

b. Given nodes 1–6, we would need to look at 7 and 8: if they were both +∞ then the
values of the min node and chance node above would also be+∞ and the best move
would change. Given nodes 1–7, we do not need to look at 8. Evenif it is +∞, the min
node cannot be worth more than−1, so the chance node above cannot be worth more
than−0.5, so the best move won’t change.

c. The worst case is if either of the third and fourth leaves is−2, in which case the chance
node above is 0. The best case is where they are both 2, then thechance node has value
2. So it must lie between 0 and 2.

d. See figure.

5.18 The general strategy is to reduce a general game tree to a one-ply tree by induction on
the depth of the tree. The inductive step must be done for min,max, and chance nodes, and
simply involves showing that the transformation is carriedthough the node. Suppose that the
values of the descendants of a node arex1 . . . xn, and that the transformation isax+b, where

44 Chapter 5. Adversarial Search

a is positive. We have

min(ax1 + b, ax2 + b, . . . , axn + b) = amin(x1, x2, . . . , xn) + b

max(ax1 + b, ax2 + b, . . . , axn + b) = amin(x1, x2, . . . , xn) + b

p1(ax1 + b) + p2(ax2 + b) + · · · + pn(axn + b) = a(p1x1 + p2x2 + · · · pnxn) + b

Hence the problem reduces to a one-ply tree where the leaves have the values from the original
tree multiplied by the linear transformation. Sincex > y ⇒ ax + b > ay + b if a > 0, the
best choice at the root will be the same as the best choice in the original tree.

5.19 This procedure will give incorrect results. Mathematically, the procedure amounts to
assuming that averaging commutes with min and max, which it does not. Intuitively, the
choices made by each player in the deterministic trees are based on full knowledge of future
dice rolls, and bear no necessary relationship to the moves made without such knowledge.
(Notice the connection to the discussion of card games in Section 5.6.2 and to the general
problem of fully and partially observable Markov decision problems in Chapter 17.) In prac-
tice, the method works reasonably well, and it might be a goodexercise to have students
compare it to the alternative of using expectiminimax with sampling (rather than summing
over) dice rolls.

5.20

a. No pruning. In a max tree, the value of the root is the value ofthe best leaf. Any unseen
leaf might be the best, so we have to see them all.

b. No pruning. An unseen leaf might have a value arbitrarily higher or lower than any other
leaf, which (assuming non-zero outcome probabilities) means that there is no bound on
the value of any incompletely expanded chance or max node.

c. No pruning. Same argument as in (a).

d. No pruning. Nonnegative values allowlowerbounds on the values of chance nodes, but
a lower bound does not allow any pruning.

e. Yes. If the first successor has value 1, the root has value 1 and all remaining successors
can be pruned.

f. Yes. Suppose the first action at the root has value 0.6, and the first outcome of the
second action has probability 0.5 and value 0; then all otheroutcomes of the second
action can be pruned.

g. (ii) Highest probability first. This gives the strongest bound on the value of the node,
all other things being equal.

5.21

a. In a fully observable, turn-taking, zero-sum game between two perfectly rational play-
ers, it does not help the first player to know what strategy thesecond player is using—
that is, what move the second player will make, given the firstplayer’s move.
True. The second player will play optimally, and so is perfectly predictable up to ties.
Knowing which of two equally good moves the opponent will make does not change
the value of the game to the first player.

45

b. In a partially observable, turn-taking, zero-sum game between two perfectly rational
players, it does not help the first player to know what move thesecond player will
make, given the first player’s move.
False. In a partially observable game, knowing the second player’s move tells the first
player additional information about the game state that would otherwise be available
only to the second player. For example, in Kriegspiel, knowing the opponent’s future
move tells the first player where one of the opponent’s piecesis; in a card game, it tells
the first player one of the opponent’s cards.

c. A perfectly rational backgammon agent never loses.
False. Backgammon is a game of chance, and the opponent may consistently roll much
better dice. The correct statement is that theexpectedwinnings are optimal. It is sus-
pected, but not known, that when playing first the expected winnings are positive even
against an optimal opponent.

5.22 One can think of chance events during a game, such as dice rolls, in the same way
as hidden but preordained information (such as the order of the cards in a deck). The key
distinctions are whether the players can influence what information is revealed and whether
there is any asymmetry in the information available to each player.

a. Expectiminimax is appropriate only for backgammon and Monopoly. In bridge and
Scrabble, each player knows the cards/tiles he or she possesses but not the opponents’.
In Scrabble, the benefits of a fully rational, randomized strategy that includes reasoning
about the opponents’ state of knowledge are probably small,but in bridge the questions
of knowledge and information disclosure are central to goodplay.

b. None, for the reasons described earlier.

c. Key issues include reasoning about the opponent’s beliefs, the effect of various actions
on those beliefs, and methods for representing them. Since belief states for rational
agents are probability distributions over all possible states (including the belief states of
others), this is nontrivial.

Solutions for Chapter 6
Constraint Satisfaction Problems

6.1 There are 18 solutions for coloring Australia with three colors. Start withSA, which
can have any of three colors. Then moving clockwise,WAcan have either of the other two
colors, and everything else is strictly determined; that makes 6 possibilities for the mainland,
times 3 for Tasmania yields 18.

6.2

a. Solution A: There is a variable corresponding to each of then2 positions on the board.
Solution B: There is a variable corresponding to each knight.

b. Solution A: Each variable can take one of two values,{occupied,vacant}
Solution B: Each variable’s domain is the set of squares.

c. Solution A: every pair of squares separated by a knight’s move is constrained, such that
both cannot be occupied. Furthermore, the entire set of squares is constrained, such that
the total number of occupied squares should bek.
Solution B: every pair of knights is constrained, such that no two knights can be on the
same square or on squares separated by a knight’s move. Solution B may be preferable
because there is no global constraint, although Solution A has the smaller state space
whenk is large.

d. Any solution must describe acomplete-stateformulation because we are using a local
search algorithm. For simulated annealing, the successor function must completely
connect the space; for random-restart, the goal state must be reachable by hillclimbing
from some initial state. Two basic classes of solutions are:
Solution C: ensure no attacks at any time. Actions are to remove any knight, add a
knight in any unattacked square, or move a knight to any unattacked square.
Solution D: allow attacks but try to get rid of them. Actions are to remove any knight,
add a knight in any square, or move a knight to any square.

6.3 a. Crossword puzzle construction can be solved many ways. One simple choice is
depth-first search. Each successor fills in a word in the puzzle with one of the words in the
dictionary. It is better to go one word at a time, to minimize the number of steps.

b. As a CSP, there are even more choices. You could have a variable for each box in
the crossword puzzle; in this case the value of each variableis a letter, and the constraints are

46

