https://selldocx.com/products
/solution-manual-artificial-intelligence-a-modern-approach-3e-russell

Instructor’'s Manual:

Exercise Solutions
for

Artificial Intelligence

A Modern Approach
Third Edition (International Version)

Stuart J. Russell and Peter Norvig

with contributions from
Ernest Davis, Nicholas J. Hay, and Mehran Sahami

Prentice Hall
Upper Saddle River Boston Columbus San Francisco New York
Indianapolis London Toronto Sydney Singapore Tokyo Mailtre
Dubai Madrid Hong Kong Mexico City Munich Paris Amsterdam p&aown

https://selldocx.com/products/solution-manual-artificial-intelligence-a-modern-approach-3e-russell

Editor-in-Chief: Michael Hirsch

Executive Editor: Tracy Dunkelberger

Assistant Editor: Melinda Haggerty

Editorial Assistant: Allison Michael

Vice President, Production: Vince O’Brien

Senior Managing Editor: Scott Disanno

Production Editor: Jane Bonnell

Interior Designers: Stuart Russell and Peter Norvig

Copyright © 2010, 2003, 1995 by Pearson Education, Inc.,

Upper Saddle River, New Jersey 07458.

All rights reserved. Manufactured in the United States ofekita. This publication is protected by
Copyright and permissions should be obtained from the phbliprior to any prohibited reproduction,
storage in a retrieval system, or transmission in any forrhyoany means, electronic, mechanical,
photocopying, recording, or likewise. To obtain permiggg) to use materials from this work, please
submit a written request to Pearson Higher Education, Rsionis Department, 1 Lake Street, Upper
Saddle River, NJ 07458.

The author and publisher of this book have used their bestteffn preparing this book. These
efforts include the development, research, and testingeottieories and programs to determine their
effectiveness. The author and publisher make no warrangngfkind, expressed or implied, with
regard to these programs or the documentation containdisithbok. The author and publisher shall
not be liable in any event for incidental or consequentiahdges in connection with, or arising out
of, the furnishing, performance, or use of these programs.

Library of Congress Cataloging-in-Publication Data on File

Prentice Hall
is an imprint of

10 987 65 4321
PEARSON ISBN-13: 978-0-13-606738-2
www.pearsonhighered.com ISBN-10: 0-13-606738-7

Preface

This Instructor’s Solution Manual provides solutions (bfemst solution sketches) for
almost all of the 400 exercises Attificial Intelligence: A Modern Approach (Third Edition)
We only give actual code for a few of the programming exes;iseiting a lot of code would
not be that helpful, if only because we don’t know what larggugou prefer.

In many cases, we give ideas for discussion and follow-ugstipres, and we try to
explainwhywe designed each exercise.

There is more supplementary material that we want to offeh&instructor, but we
have decided to do it through the medium of the World Wide Wahar than through a CD
or printed Instructor's Manual. The idea is that this s@otmanual contains the material that
must be kept secret from students, but the Web site contaitsrial that can be updated and
added to in a more timely fashion. The address for the webssite

http://aima.cs.berkeley.edu
and the address for the online Instructor’'s Guide is:
http://aima.cs.berkeley.edu/instructors.html
There you will find:

« Instructions on how to join thaima-instructors discussion list. We strongly recom-
mend that you join so that you can receive updates, corretinotification of new
versions of this Solutions Manual, additional exercised exam questions, etc., in a
timely manner.

» Source code for programs from the text. We offer code in L Bgthon, and Java, and
point to code developed by others in C++ and Prolog.

» Programming resources and supplemental texts.

* Figures from the text, for making your own slides.

« Terminology from the index of the book.

« Other courses using the book that have home pages on theYdlzan see example
syllabi and assignments here. Pledsenotput solution sets for AIMA exercises on
public web pages!

Al Education information on teaching introductory Al cees.

* Other sites on the Web with information on Al. Organized bgjter in the book; check
this for supplemental material.

We welcome suggestions for new exercises, new environmardsagents, etc. The
book belongs to you, the instructor, as much as us. We hopgadbieenjoy teaching from it,
that these supplemental materials help, and that you valesitour supplements and experi-
ences with other instructors.

Solutions for Chapter 1
Introduction

1.2

Dictionary definitions ofintelligence talk about “the capacity to acquire and apply
knowledge” or “the faculty of thought and reason” or “the lapito comprehend and
profit from experience.” These are all reasonable answertsif ve want something
guantifiable we would use something like “the ability to apkhowledge in order to
perform better in an environment.”

. We defineartificial intelligence as the study and construction of agent programs that

perform well in a given environment, for a given agent arettitire.
We define aragentas an entity that takes action in response to percepts froemén
ronment.

. We definerationality as the property of a system which does the “right thing” given

what it knows. See Section 2.2 for a more complete discus®aith describe perfect
rationality, however; see Section 27.3.

We defindogical reasoningas the a process of deriving new sentences from old, such
that the new sentences are necessarily true if the old oeesus. (Notice that does
not refer to any specific syntax oor formal language, but édequire a well-defined
notion of truth.)

See the solution for exercise 26.1 for some discussion @npiall objections.
The probability of fooling an interrogator depends on justvtunskilled the interroga-

tor is. One entrant in the 2002 Loebner prize competitionigiviis not quite a real Turing
Test) did fool one judge, although if you look at the transgrit is hard to imagine what
that judge was thinking. There certainly have been examplies chatbot or other online
agent fooling humans. For example, see See Lenny Fonermuatof the Julia chatbot
at foner.www.media.mit.edu/people/foner/Julia/. Weay she chance today is something
like 10%, with the variation depending more on the skill o# interrogator rather than the
program. In 50 years, we expect that the entertainment tnd(rsovies, video games, com-
mercials) will have made sufficient investments in artifi@ators to create very credible
impersonators.

13

Yes, they are rational, because slower, deliberative metieould tend to result in more

damage to the hand. If “intelligent” means “applying knogde” or “using thought and
reasoning” then it does not require intelligence to makdlaxection.

1

Chapter 1. Introduction

1.4 No. IQ test scores correlate well with certain other measgech as success in college,
ability to make good decisions in complex, real-world diitoras, ability to learn new skills
and subjects quickly, and so on, tartly if they're measuring fairly normal humans. The 1Q
test doesn’'t measure everything. A program that is speeilonly for 1Q tests (and special-
ized further only for the analogy part) would very likely pe&m poorly on other measures

of intelligence. Consider the following analogy: if a hunrans the 100m in 10 seconds, we
might describe him or her agery athleticand expect competent performance in other areas
such as walking, jumping, hurdling, and perhaps throwini¢gsblut we would not desscribe

a Boeing 747 asery athleticbecause it can cover 100m in 0.4 seconds, nor would we expect
it to be good at hurdling and throwing balls.

Even for humans, 1Q tests are controversial because ofttheiretical presuppositions
about innate ability (distinct from training effects) admetgeneralizability of results. See
The Mismeasure of Maoy Stephen Jay Gould, Norton, 1981 Multiple intelligences: the
theory in practiceby Howard Gardner, Basic Books, 1993 for more on 1Q tests,twhiey
measure, and what other aspects there are to “intelligence.

1.5 In order of magnitude figures, the computational power ofdbeputer is 100 times
larger.

1.6 Just as you are unaware of all the steps that go into making lyeart beat, you are
also unaware of most of what happens in your thoughts. Youasle b conscious awareness
of some of your thought processes, but the majority remai@sjoe to your consciousness.
The field of psychoanalysis is based on the idea that one rieeded professional help to
analyze one’s own thoughts.

1.7

* Although bar code scanning is in a sense computer visi@settare not Al systems.
The problem of reading a bar code is an extremely limited atifiicgal form of visual
interpretation, and it has been carefully designed to bénasls as possible, given the
hardware.

« In many respects. The problem of determining the relevarfigeweb page to a query
is a problem in natural language understanding, and thaigebs are related to those
we will discuss in Chapters 22 and 23. Search engines likecask which group
the retrieved pages into categories, use clustering tqubsi analogous to those we
discuss in Chapter 20. Likewise, other functionalitiesvided by a search engines use
intelligent techniques; for instance, the spelling caweases a form of data mining
based on observing users’ corrections of their own spebfimgrs. On the other hand,
the problem of indexing billions of web pages in a way thata$ retrieval in seconds
is a problem in database design, not in artificial intelligen

» To a limited extent. Such menus tends to use vocabulariéshvare very limited —
e.g. the digits, “Yes”, and “No” — and within the designersintrol, which greatly
simplifies the problem. On the other hand, the programs negdtwlith an uncontrolled
space of all kinds of voices and accents.

The voice activated directory assistance programs usecelbpione companies,
which must deal with a large and changing vocabulary araicgytAl programs.

 This is borderline. There is something to be said for vigytimese as intelligent agents
working in cyberspace. The task is sophisticated, the in&tion available is partial, the
techniques are heuristic (not guaranteed optimal), andttte of the world is dynamic.
All of these are characteristic of intelligent activiti€d3n the other hand, the task is very
far from those normally carried out in human cognition.

1.8 Presumably the brain has evolved so as to carry out this tipesaon visual images,
but the mechanism is only accessible for one particular gaepn this particular cognitive
task of image processing. Until about two centuries agaethers no advantage in people (or
animals) being able to compute the convolution of a Gaudsiaany other purpose.

The really interesting question here is what we mean by gayiat the “actual person”
can do something. The person can see, but he cannot computertvolution of a Gaussian;
but computing that convolution isart of seeing. This is beyond the scope of this solution
manual.

1.9 Evolution tends to perpetuate organisms (and combinaimus mutations of organ-

isms) that are successful enough to reproduce. That isytewolfavors organisms that can
optimize their performance measure to at least survived@te of sexual maturity, and then
be able to win a mate. Rationality just means optimizing gremiince measure, so this is in
line with evolution.

1.10 This question is intended to be about the essential natuhedfl problem and what is
required to solve it, but could also be interpreted as a $agical question about the current
practice of Al research.

A scienceis a field of study that leads to the acquisition of empiricabkledge by the
scientific method, which involves falsifiable hypothesesulwhat is. A puresngineering
field can be thought of as taking a fixed base of empirical kedggé and using it to solve
problems of interest to society. Of course, engineers dgadfiscience—e.g., they measure the
properties of building materials—and scientists do bitemgineering to create new devices
and so on.

As described in Section 1.1, the “human” side of Al is cleatyempirical science—
called cognitive science these days—because it involwashptogical experiments designed
out to find out how human cognition actually works. What abitt the “rational” side?
If we view it as studying the abstract relationship among doitrary task environment, a
computing device, and the program for that computing detviatyields the best performance
in the task environment, then the rational side of Al is feaflathematics and engineering;
it does not require any empirical knowledge about #imtual world—and theactual task
environment—that we inhabit; that a given program will ddhirea given environment is a
theorem (The same is true of pure decision theory.) In practice,dw@r we are interested
in task environments that do approximate the actual woddgewen the rational side of Al
involves finding out what the actual world is like. For examgh studying rational agents
that communicate, we are interested in task environmeutscttntain humans, so we have

Chapter 1. Introduction

to find out what human language is like. In studying perceptwe tend to focus on sensors
such as cameras that extract useful information from theaaetorld. (In a world without
light, cameras wouldn’t be much use.) Moreover, to desigiowi algorithms that are good
at extracting information from camera images, we need teetstdnd the actual world that
generates those images. Obtaining the required undenstpofiscene characteristics, object
types, surface markings, and so on is a quite different kireti@nce from ordinary physics,
chemistry, biology, and so on, but it is still science.

In summary, Al is definitely engineering but it would not bgesially useful to us if it
were not also an empirical science concerned with thosecespéthe real world that affect
the design of intelligent systems for that world.

1.11 This depends on your definition of “intelligent” and “tellfi one sense computers only
do what the programmers command them to do, but in anotheesehat the programmers
consciously tells the computer to do often has very littlddavith what the computer actually
does. Anyone who has written a program with an ornery bug lenthis, as does anyone
who has written a successful machine learning program. $oénsense Samuel “told” the
computer “learn to play checkers better than | do, and they that way,” but in another

sense he told the computer “follow this learning algorithamit it learned to play. So we're
left in the situation where you may or may not consider leagrib play checkers to be s sign
of intelligence (or you may think that learning to play in thght way requires intelligence,

but not in this way), and you may think the intelligence residéh the programmer or in the
computer.

1.12 The point of this exercise is to notice the parallel with tlievious one. Whatever

you decided about whether computers could be intelligert.ii, you are committed to

making the same conclusion about animals (including humangessyour reasons for de-

ciding whether something is intelligent take into accodm& mechanism (programming via
genes versus programming via a human programmer). Not&tate makes this appeal to
mechanism in his Chinese Room argument (see Chapter 26).

1.13 Again, the choice you make in 1.11 drives your answer to thestjon.

1.14

a. (ping-pong) A reasonable level of proficiency was achidwedndersson’s robot (An-
dersson, 1988).

b. (driving in Cairo) No. Although there has been a lot of pexg in automated driving,
all such systems currently rely on certain relatively canstclues: that the road has
shoulders and a center line, that the car ahead will travetdigtable course, that cars
will keep to their side of the road, and so on. Some lane clsaagd turns can be made
on clearly marked roads in light to moderate traffic. Drivingdowntown Cairo is too
unpredictable for any of these to work.

c. (driving in Victorville, California) Yes, to some exterds demonstrated in DARPA's
Urban Challenge. Some of the vehicles managed to negotistets intersections,
well-behaved traffic, and well-behaved pedestrians in gaggal conditions.

d. (shopping at the market) No. No robot can currently put tiegiethe tasks of moving in
a crowded environment, using vision to identify a wide vigrief objects, and grasping
the objects (including squishable vegetables) withoutatsing them. The component
pieces are nearly able to handle the individual tasks, bubitld take a major integra-
tion effort to put it all together.

e. (shopping on the web) Yes. Software robots are capable rallimg such tasks, par-
ticularly if the design of the web grocery shopping site dneschange radically over
time.

f. (bridge) Yes. Programs such as GIB now play at a solid level.

g. (theorem proving) Yes. For example, the proof of Robbimglhfa described on page
360.

h. (funny story) No. While some computer-generated prose @oetry is hysterically
funny, this is invariably unintentional, except in the cadgrograms that echo back
prose that they have memorized.

i. (legal advice) Yes, in some cases. Al has a long history séarch into applications
of automated legal reasoning. Two outstanding examplethar®rolog-based expert
systems used in the UK to guide members of the public in dgalith the intricacies of
the social security and nationality laws. The social ség@sistem is said to have saved
the UK government approximately $150 million in its first ye@operation. However,
extension into more complex areas such as contract law savaiatisfactory encoding
of the vast web of common-sense knowledge pertaining to cential transactions and
agreement and business practices.

j. (translation) Yes. In a limited way, this is already beirand. See Kay, Gawron and
Norvig (1994) and Wahlster (2000) for an overview of the fiefdspeech translation,
and some limitations on the current state of the art.

k. (surgery) Yes. Robots are increasingly being used foresyralthough always under
the command of a doctor. Robotic skills demonstrated atrbupean levels include
drilling holes in bone to insert artificial joints, suturingnd knot-tying. They are not
yet capable of planning and carrying out a complex operadiggonomously from start
to finish.

1.15
The progress made in this contests is a matter of fact, butrthact of that progress is
a matter of opinion.

* DARPA Grand Challenge for Robotic CarsIn 2004 the Grand Challenge was a 240
km race through the Mojave Desert. It clearly stressed tite sif the art of autonomous
driving, and in fact no competitor finished the race. The lbeain, CMU, completed
only 12 of the 240 km. In 2005 the race featured a 212km couitefewer curves
and wider roads than the 2004 race. Five teams finished, wathf@&d finishing first,
edging out two CMU entries. This was hailed as a great achiew for robotics and
for the Challenge format. In 2007 the Urban Challenge puw taa city setting, where
they had to obey traffic laws and avoid other cars. This timedCddged out Stanford.

Chapter 1. Introduction

The competition appears to have been a good testing groysut tbeory into practice,
something that the failures of 2004 showed was needed. Bsiintportant that the
competition was done at just the right time, when there wasrttical work to con-
solidate, as demonstrated by the earlier work by Dickmamri®$e VaMP car drove
autonomously for 158km in 1995) and by Pomerleau (whoseadtesér drove 5000km
across the USA, also in 1995, with the steering controllédrmamously for 98% of the
trip, although the brakes and accelerator were controljed buman driver).

International Planning Competition In 1998, five planners competed: Blackbox,
HSP, IPP, SGP, and STAN. The result pafip:{/ftp.cs.yale.edu/pub/
mcdermott/aipscomp-results.html) stated “all of these planners performed
very well, compared to the state of the art a few years ago Sthdtans found were 30 or
40 steps, with some over 100 steps. In 2008, the competiadreRpanded quite a bit:
there were more tracks (satisficing vs. optimizing; segakmts. temporal; static vs.
learning). There were about 25 planners, including suliorissfrom the 1998 groups
(or their descendants) and new groups. Solutions found merh longer than in 1998.
In sum, the field has progressed quite a bit in participatiotreadth, and in power of
the planners. In the 1990s it was possible to publish a Rignpaper that discussed
only a theoretical approach; now it is necessary to show tifative evidence of the
efficacy of an approach. The field is stronger and more matowe and it seems that
the planning competition deserves some of the credit. Heweome researchers feel
that too much emphasis is placed on the particular classpsobfems that appear in
the competitions, and not enough on real-world application

Robocup Robotics Soccefhis competition has proved extremely popular, attracting
407 teams from 43 countries in 2009 (up from 38 teams from 1hties in 1997).
The robotic platform has advanced to a more capable humdoirig and the strategy
and tactics have advanced as well. Although the competitasspurred innovations
in distributed control, the winning teams in recent yeargehalied more on individual
ball-handling skills than on advanced teamwork. The coitipethas served to increase
interest and participation in robotics, although it is nete how well they are advancing
towards the goal of defeating a human team by 2050.

TREC Information Retrieval Conference This is one of the oldest competitions,
started in 1992. The competitions have served to bring beyed community of re-
searchers, have led to a large literature of publicationd, reave seen progress in par-
ticipation and in quality of results over the years. In thel\egears, TREC served
its purpose as a place to do evaluations of retrieval alymston text collections that
were large for the time. However, starting around 2000 TRECame less relevant as
the advent of the World Wide Web created a corpus that wasaélaito anyone and
was much larger than anything TREC had created, and theageweint of commercial
search engines surpassed academic research.

NIST Open Machine Translation Evaluation This series of evaluations (explicitly
not labelled a “competition”) has existed since 2001. Sithem we have seen great
advances in Machine Translation quality as well as in thelvemof languages covered.

The dominant approach has switched from one based on gracahrales to one that
relies primarily on statistics. The NIST evaluations seentrack these changes well,
but don't appear to be driving the changes.

Overall, we see that whatever you measure is bound to inei@ae time. For most of
these competitions, the measurement was a useful one, @sthth of the art has progressed.
In the case of ICAPS, some planning researchers worry tlatrtoch attention has been
lavished on the competition itself. In some cases, prognasdeft the competition behind,
as in TREC, where the resources available to commerciatlseamgines outpaced those
available to academic researchers. In this case the TRE@atdion was useful—it helped
train many of the people who ended up in commercial searchnesg-and in no way drew
energy away from new ideas.

Solutions for Chapter 2
Intelligent Agents

2.1 This question tests the student’s understanding of erwiemts, rational actions, and
performance measures. Any sequential environment in wieishrds may take time to arrive
will work, because then we can arrange for the reward to ber‘twe horizon.” Suppose that
in any state there are two action choicegndb, and consider two cases: the agent is in state
s attimeT or attimeT' — 1. In states, actiona reaches state’ with reward 0, while action

b reaches state again with reward 1; irs’ either action gains reward 10. At tinié — 1,

it's rational to doa in s, with expected total reward 10 before time is up; but at tilet's
rational to dob with total expected reward 1 because the reward of 10 cammatbbained
before time is up.

Students may also provide common-sense examples fromfeahvestments whose
payoff occurs after the end of life, exams where it doesn’kemsense to start the high-value
question with too little time left to get the answer, and so on

The environment state can include a clock, of course; thesdd change the gist of
the answer—now the action will depend on the clock as wellrathe non-clock part of the
state—but it does mean that the agent can never be in the sat@dvece.

2.2 Notice that for our simple environmental assumptions wedmes worry about quanti-
tative uncertainty.

a. It suffices to show that for all possible actual environrsdne., all dirt distributions and
initial locations), this agent cleans the squares at leafdsd as any other agent. This is
trivially true when there is no dirt. When there is dirt in timitial location and none in
the other location, the world is clean after one step; no tg@mdo better. When there
is no dirt in the initial location but dirt in the other, the vidis clean after two steps; no
agent can do better. When there is dirt in both locationswbed is clean after three
steps; no agent can do better. (Note: in general, the conditated in the first sentence
of this answer is much stricter than necessary for an agdre tational.)

b. The agent in (a) keeps moving backwards and forwards eventhe world is clean.
It is better to doNoOp once the world is clean (the chapter says this). Now, since
the agent’s percept doesn't say whether the other squaleds,dt would seem that
the agent must have some memory to say whether the othereshjaaralready been
cleaned. To make this argument rigorous is more difficult—dgample, could the
agent arrange things so that it would only be in a clean lefasgwhen the right square

8

was already clean? As a general strategy, an aggmtise the environment itself as

EXTERNAL MEMORY a form of external memory—a common technique for humans who use things like
appointment calendars and knots in handkerchiefs. In triscplar case, however, that
is not possible. Consider the reflex actions [fdr Clean] and[B, Clean]. If either of
these isNoOp, then the agent will fail in the case where that is the inipiaicept but
the other square is dirty; hence, neither canNag)p and therefore the simple reflex
agent is doomed to keep moving. In general, the problem witlx agents is that they
have to do the same thing in situations that look the same) e¥ven the situations
are actually quite different. In the vacuum world this is g bability, because every
interior square (except home) looks either like a squaré ditt or a square without
dirt.

c. If we consider asymptotically long lifetimes, then it iseat that learning a map (in
some form) confers an advantage because it means that thecageavoid bumping
into walls. It can also learn where dirt is most likely to agulate and can devise
an optimal inspection strategy. The precise details of #poeation method needed
to construct a complete map appear in Chapter 4; methodseiwrirtg an optimal
inspection/cleanup strategy are in Chapter 21.

a. An agent that senses only partial information about theestatnnot be perfectly ra-
tional.
False. Perfect rationality refers to the ability to make djolecisions given the sensor
information received.

b. There exist task environments in which no pure reflex agenbehave rationally.
True. A pure reflex agent ignores previous percepts, so ¢astain an optimal state
estimate in a partially observable environment. For exampbrrespondence chess is
played by sending moves; if the other player's move is thestuipercept, a reflex agent
could not keep track of the board state and would have to respm say, “a4” in the
same way regardless of the position in which it was played.

c. There exists a task environment in which every agent ismatio
True. For example, in an environment with a single statel ¢hat all actions have the
same reward, it doesn’t matter which action is taken. Moreegaly, any environment
that is reward-invariant under permutation of the actionissatisfy this property.

d. The input to an agent program is the same as the input to thetdgaction.
False. The agent function, notionally speaking, takes pstithe entire percept se-
quence up to that point, whereas the agent program takesitient percept only.

e. Every agent function is implementable by some program/maaombination.
False. For example, the environment may contain Turing mashand input tapes and
the agent’s job is to solve the halting problem; there is anéfyinctionthat specifies
the right answers, but no agent program can implement it.tiAarcexample would be
an agent function that requires solving intractable pnobilestances of arbitrary size in
constant time.

10

Chapter 2. Intelligent Agents

MOBILE AGENT

2.4

Suppose an agent selects its action uniformly at random therset of possible actions.
There exists a deterministic task environment in whichagent is rational.

True. This is a special case of (c); if it doesn’t matter whaciion you take, selecting
randomly is rational.

Itis possible for a given agent to be perfectly rational irotdistinct task environments.
True. For example, we can arbitrarily modify the parts of gmironment that are
unreachable by any optimal policy as long as they stay uhedse.

. Every agent is rational in an unobservable environment.

False. Some actions are stupid—and the agent may know thikdé a model of the
environment—even if one cannot perceive the environmexté st

. A perfectly rational poker-playing agent never loses.

False. Unless it draws the perfect hand, the agent can allwagsf an opponent has
better cards. This can happen for game after game. The tataement is that the
agent’s expected winnings are nonnegative.

Many of these can actually be argued either way, dependirtheitevel of detail and

abstraction.

A.
B.

IO 7 m

2.5

Partially observable, stochastic, sequential, dynagoatinuous, multi-agent.

Partially observable, stochastic, sequential, dynagoatinuous, single agent (unless
there are alien life forms that are usefully modeled as ajent

. Partially observable, deterministic, sequentialistdiscrete, single agent. This can be

multi-agent and dynamic if we buy books via auction, or dyitaiffiwe purchase on a
long enough scale that book offers change.

. Fully observable, stochastic, episodic (every pointeigasate), dynamic, continuous,

multi-agent.

. Fully observable, stochastic, episodic, dynamic, ommttiis, single agent.

. Fully observable, stochastic, sequential, static,inants, single agent.

. Fully observable, deterministic, sequential, statntimuous, single agent.
. Fully observable, strategic, sequential, static, @sgrmulti-agent.

The following are just some of the many possible definitidreg tan be written:

Agent an entity that perceives and acts; or, one tteat be vieweds perceiving and
acting. Essentially any object qualifies; the key point &swway the object implements
an agent function. (Note: some authors restrict the terpréagramsthat operateon
behalf ofa human, or to programs that can cause some or all of their woden on
other machines on a network, asnmobile agents)

Agent function a function that specifies the agent’s action in responsedrygossible
percept sequence.

Agent program that program which, combined with a machine architecturgle-
ments an agent function. In our simple designs, the progekmsta new percept on
each invocation and returns an action.

11

« Rationality a property of agents that choose actions that maximize ¢ixpected util-
ity, given the percepts to date.

« Autonomy a property of agents whose behavior is determined by their experience
rather than solely by their initial programming.

* Reflex agentan agent whose action depends only on the current percept.

* Model-based agentan agent whose action is derived directly from an internatet
of the current world state that is updated over time.

» Goal-based agentan agent that selects actions that it believes will achesymicitly
represented goals.

« Utility-based agent an agent that selects actions that it believes will maxarttze
expected utility of the outcome state.

« Learning agentan agent whose behavior improves over time based on itgiexpe.

2.6 Although these questions are very simple, they hint at soemg fundamental issues.
Our answers are for the simple agent designsstatic environments where nothing happens
while the agent is deliberating; the issues get even moerdsting for dynamic environ-
ments.

a. Yes; take any agent program and insert null statementslthaot affect the output.

b. Yes; the agent function might specify that the agent print when the percept is a
Turing machine program that halts, afidse otherwise. (Note: in dynamic environ-
ments, for machines of less than infinite speed, the ratiagaht function may not be
implementable; e.g., the agent function that always playgnaing move, if any, in a
game of chess.)

c. Yes; the agent’s behavior is fixed by the architecture andnam.

d. There are2™ agent programs, although many of these will not run at alloté@N Any
given program can devote at mosbits to storage, so its internal state can distinguish
among onh2™ past histories. Because the agent function specifies adi@sed on per-
cept histories, there will be many agent functions that oaibe implemented because
of lack of memory in the machine.)

e. It depends on the program and the environment. If the emwiemt is dynamic, speed-
ing up the machine may mean choosing different (perhapsmpeittions and/or acting
sooner. If the environment is static and the program paydteat&on to the passage of
elapsed time, the agent function is unchanged.

2.7

The design of goal- and utility-based agents depends ontthetugre of the task en-
vironment. The simplest such agents, for example thoseaptelns 3 and 10, compute the
agent’s entire future sequence of actions in advance baftneg at all. This strategy works
for static and deterministic environments which are eifay-known or unobservable

For fully-observable and fully-known static environmeatpolicy can be computed in
advance which gives the action to by taken in any given state.

12

Chapter 2. Intelligent Agents

function GOAL-BASED-AGENT(percept) returns an action
persistent state, the agent’s current conception of the world state
model, a description of how the next state depends on currentatat@ction
goal, a description of the desired goal state
plan, a sequence of actions to take, initially empty
action, the most recent action, initially none

state « UPDATE-STATE(state, action, percept, model)
if GOAL-ACHIEVED(state,goal) then return a null action
if plan is emptythen
plan < PLAN (state,goal,model)
action <« FIRST(plan)
plan «— REST(plan)
return action

Figure S2.1 A goal-based agent.

For partially-observable environments the agent can ceengeonditional plan, which
specifies the sequence of actions to take as a function ofginat'a perception. In the ex-
treme, a conditional plan gives the agent’s response ty@agtingency, and so it is a repre-
sentation of the entire agent function.

In all cases it may be either intractable or too expensiveotopute everything out in
advance. Instead of a conditional plan, it may be better topetge a single sequence of
actions which is likely to reach the goal, then monitor theiemment to check whether the
plan is succeeding, repairing or replanning if it is not. liyrbe even better to compute only
the start of this plan before taking the first action, coritiguio plan at later time steps.

Pseudocode for simple goal-based agent is given in Figure. S30AL-ACHIEVED
tests to see whether the current state satisfies the goat,atoing nothing if it does. PAN
computes a sequence of actions to take to achieve the goisl.might return only a prefix
of the full plan, the rest will be computed after the prefix ¥@euted. This agent will act to
maintain the goal: if at any point the goal is not satisfiediit @ventually) replan to achieve
the goal again.

At this level of abstraction the utility-based agent is nataim different than the goal-
based agent, except that action may be continuously retj(titere is not necessarily a point
where the utility function is “satisfied”). Pseudocode igagi in Figure S2.2.

2.8 The file"agents/environments/vacuum.lisp” in the code repository imple-
ments the vacuum-cleaner environment. Students can eadéynd it to generate different
shaped rooms, obstacles, and so on.

2.9 Areflex agent program implementing the rational agent fianctlescribed in the chap-
ter is as follows:

(defun reflex-rational-vacuum-agent (percept)
(destructuring-bind (location status) percept

13

function UTILITY-BASED-AGENT(percept) returns an action
persistent state, the agent’s current conception of the world state
model, a description of how the next state depends on currentatat@ction
utility — function, a description of the agent’s utility function
plan, a sequence of actions to take, initially empty
action, the most recent action, initially none

state « UPDATE-STATE(state, action, percept, model)
if plan is emptythen

plan <— PLAN (state,utility — function,model)

action < FIRST(plan)

plan «— REST(plan)

return action

Figure S2.2 A utility-based agent.

(cond ((eq status ’Dirty) 'Suck)
((eq location 'A) 'Right)
(t 'Left))))
For states 1, 3, 5, 7 in Figure 4.9, the performance measuee$396, 1999, 1998, 2000
respectively.

2.10

a. No; see answer to 2.4(b).

b. See answer to 2.4(b).

c. In this case, a simple reflex agent can be perfectly ratiombke agent can consist of
a table with eight entries, indexed by percept, that spac#ieaction to take for each
possible state. After the agent acts, the world is updatedtza next percept will tell
the agent what to do next. For larger environments, constigi@ table is infeasible.
Instead, the agent could run one of the optimal search #tgosi in Chapters 3 and 4
and execute the first step of the solution sequence. Agaimtamal state isequired
but it would help to be able to store the solution sequendeaalsof recomputing it for
each new percept.

2.11

a. Because the agent does not know the geography and peroailyelocation and local
dirt, and cannot remember what just happened, it will getlisfarever against a wall
when it tries to move in a direction that is blocked—that isless it randomizes.

b. One possible design cleans up dirt and otherwise movesnalyd

(defun randomized-reflex-vacuum-agent (percept)
(destructuring-bind (location status) percept
(cond ((eq status ’Dirty) 'Suck)
(t (random-element ’(Left Right Up Down))))))

14

Chapter 2. Intelligent Agents

Figure S2.3 An environment in which random motion will take a long timedaver all
the squares.

This is fairly close to what the Roomb¥ vacuum cleaner does (although the Roomba
has a bump sensor and randomizes only when it hits an obstéoeorks reasonably
well in nice, compact environments. In maze-like environtseor environments with
small connecting passages, it can take a very long time teraithe squares.

. An example is shown in Figure S2.3. Students may also wishe@sure clean-up time

for linear or square environments of different sizes, anchjgare those to the efficient
online search algorithms described in Chapter 4.

. A reflex agent with state can build a map (see Chapter 4 faildgt An online depth-

first exploration will reach every state in time linear in teige of the environment;
therefore, the agent can do much better than the simple rafient.

The question of rational behavior in unknown environmesigséomplex one but itis
worth encouraging students to think about it. We need to kawee notion of the prior
probability distribution over the class of environmentall this the initialbelief state
Any action yields a new percept that can be used to updateditisbution, moving
the agent to a new belief state. Once the environment is aigiplexplored, the belief
state collapses to a single possible environment. Theretbe problem of optimal
exploration can be viewed as a search for an optimal strategye space of possible
belief states. This is a well-defined, if horrendously iotedle, problem. Chapter 21
discusses some cases where optimal exploration is possilgher concrete example
of exploration is the Minesweeper computer game (see EBeiti22). For very small
Minesweeper environments, optimal exploration is feasdthough the belief state

15

update is nontrivial to explain.

2.12 The problem appears at first to be very similar; the main dhffiee is that instead of
using the location percept to build the map, the agent haswverit” its own locations (which,
after all, are just nodes in a data structure representiagtidite space graph). When a bump
is detected, the agent assumes it remains in the same loeattbcan add a wall to its map.
For grid environments, the agent can keep track ofats) location and so can tell when it
has returned to an old state. In the general case, howeeeg igno simple way to tell if a
state is new or old.

2.13

a. Forareflex agent, this presentsamditionalchallenge, because the agent will continue
to Suck as long as the current location remains dirty. For an ageattdbnstructs a
sequential plan, ever§uck action would need to be replaced bguck until clean.”

If the dirt sensor can be wrong on each step, then the agett mignt to wait for a
few steps to get a more reliable measurement before deoidhether toSuck or move
on to a new square. Obviously, there is a trade-off becausingadoo long means
that dirt remains on the floor (incurring a penalty), but agtimmediately risks either
dirtying a clean square or ignoring a dirty square (if thesseris wrong). A rational
agent must also continue touring and checking the squareasi it missed one on a
previous tour (because of bad sensor readings). it is noteidietely obvious how the
waiting time at each square should change with each new fDuese issues can be
clarified by experimentation, which may suggest a geneeaidirthat can be verified
mathematically. This problem is a partially observable kéardecision process—see
Chapter 17. Such problems are hard in general, but someaspases may yield to
careful analysis.

b. In this case, the agent must keep touring the squares iitdsfinThe probability that
a square is dirty increases monotonically with the timeesiihgvas last cleaned, so the
rational strategy is, roughly speaking, to repeatedly eteethe shortest possible tour of
all squares. (We say “roughly speaking” because there amplications caused by the
fact that the shortest tour may visit some squares twicegmidipg on the geography.)
This problem is also a partially observable Markov decigioocess.

Solutions for Chapter 3
Solving Problems by Searching

3.1 In goal formulation, we decide which aspects of the world we iaterested in, and
which can be ignored or abstracted away. Then in problem dtation we decide how to

manipulate the important aspects (and ignore the othdngke tid problem formulation first

we would not know what to include and what to leave out. That, scan happen that there
is a cycle of iterations between goal formulation, problemmfulation, and problem solving
until one arrives at a sufficiently useful and efficient sint

3.2

a. We'll define the coordinate system so that the center ofithee is a0, 0), and the
maze itself is a square fro-1,—1) to (1,1).
Initial state: robot at coordinat@, 0), facing North.
Goal test: eithefzr| > 1 or |y| > 1 where(z, y) is the current location.
Successor function: move forwards any distadcehange direction robot it facing.
Cost function: total distance moved.

The state space is infinitely large, since the robot’s pmsits continuous.

b. The state will record the intersection the robot is cuiyeat, along with the direction
it's facing. At the end of each corridor leaving the maze wé have an exit node.
We'll assume some node corresponds to the center of the maze.

Initial state: at the center of the maze facing North.
Goal test: at an exit node.
Successor function: move to the next intersection in frdnisg if there is one; turn to
face a new direction.
Cost function: total distance moved.

There arein states, where is the number of intersections.

c. Initial state: at the center of the maze.
Goal test: at an exit node.
Successor function: move to next intersection to the N@tuth, East, or West.
Cost function: total distance moved.

We no longer need to keep track of the robot’s orientatioresi is irrelevant to

16

17

predicting the outcome of our actions, and not part of thd tgs. The motor system
that executes this plan will need to keep track of the rolmtisent orientation, to know
when to rotate the robot.

d. State abstractions:

(i) Ignoring the height of the robot off the ground, whethigsitilted off the vertical.
(i) The robot can face in only four directions.
(iif) Other parts of the world ignored: possibility of otheobots in the maze, the
weather in the Caribbean.

Action abstractions:

(i) We assumed all positions we safely accessible: the robatdn't get stuck or
damaged.
(i) The robot can move as far as it wants, without having thegge its batteries.
(iii) Simplified movement system: moving forwards a certdistance, rather than con-
trolled each individual motor and watching the sensors teaeollisions.

a. State space: States are all possible city pairg). The map imotthe state space.
Successor function: The successorgiof) are all pairgz, y) such thatddjacent(z, i)
and Adjacent(y, j).
Goal: Be at(i, i) for somei.
Step cost function: The cost to go frof j) to (x, y) is max(d(i, z), d(j,y)).
b. In the best case, the friends head straight for each otlsteps of equal size, reducing
their separation by twice the time cost on each step. Heinges @dmissible.

c. Yes: e.g., a map with two nodes connected by one link. Theftigads will swap
places forever. The same will happen on any chain if they ataodd number of steps
apart. (One can see this best on the graph that represergsmtaepace, which has two
disjoint sets of nodes.) The same even holds for a grid of @®y@ shape, because
every move changes the Manhattan distance between theiemdgrby 0 or 2.

d. Yes: take any of the unsolvable maps from part (c) and addf-4oep to any one of
the nodes. If the friends start an odd number of steps apartve in which one of the
friends takes the self-loop changes the distance by 1, riexgdilhe problem solvable. If
the self-loop is not taken, the argument from (c) appliesramdolution is possible.

3.4 From http://www.cut-the-knot.com/pythagoras/fiftedstinsl, this proof applies to the
fifteen puzzle, but the same argument works for the eightlpuzz

Definition: The goal state has the numbers in a certain order, which Weneasure as
starting at the upper left corner, then proceeding leftgbt;iiand when we reach the end of a
row, going down to the leftmost square in the row below. Foraiter configuration besides
the goal, whenever a tile with a greater number on it precedile with a smaller number,
the two tiles are said to baverted.

Proposition: For a given puzzle configuration, 18t denote the sum of the total number
of inversions and the row number of the empty square. Thémod2) is invariant under any

18

Chapter 3. Solving Problems by Searching

legal move. In other words, after a legal move an dddemains odd whereas an evah
remains even. Therefore the goal state in Figure 3.4, witmversions and empty square in
the first row, hasV = 1, and can only be reached from starting states with &gaot from
starting states with eveN.

Proof: First of all, sliding a tile horizontally changes neithéettotal number of in-
versions nor the row number of the empty square. Therefdradeconsider sliding a tile
vertically.

Let's assume, for example, that the tifeis located directly over the empty square.
Sliding it down changes the parity of the row number of the gnsguare. Now consider the
total number of inversions. The move only affects relatiesipons of tilesA, B, C, andD.

If none of theB, C, D caused an inversion relative tb(i.e., all three are larger tha#) then
after sliding one gets three (an odd number) of additiomarsions. If one of the three is
smaller thanA, then before the movB, C', and D contributed a single inversion (relative to
A) whereas after the move they’ll be contributing two invers - a change of 1, also an odd
number. Two additional cases obviously lead to the samédtrégws the change in the sum
N is always even. This is precisely what we have set out to show.

So before we solve a puzzle, we should computeNhealue of the start and goal state
and make sure they have the same parity, otherwise no soistfmossible.

3.5 The formulation puts one queen per column, with a new quegeepl only in a square
that is not attacked by any other queen. To simplify matieesl| first consider then—rooks
problem. The first rook can be placed in any square in columm dhgices), the second in
any square in column 2 except the same row that as the rookuimedl ¢(» — 1 choices), and
so on. This gives! elements of the search space.

Forn gueens, notice that a queen attacks at most three squamsgivan column, so
in column 2 there are at leagt — 3) choices, in column at leagt — 6) choices, and so on.
Thus the state space sige> n - (n — 3) - (n — 6) - - . Hence we have

S >n-n-n-(n-3)-m-3)-n—=3-(n—6)-(n—=6)-(n—6) -
>n-(n—1)-n—=2)-(n—=3)-(n—4)-n=5)-(n—6)-(n—=T7)-(n—8)----
= n!
orS > v/nl
3.6
a. Initial state: No regions colored.
Goal test: All regions colored, and no two adjacent regicagetthe same color.

Successor function: Assign a color to a region.
Cost function: Number of assignments.

b. Initial state: As described in the text.
Goal test: Monkey has bananas.
Successor function: Hop on crate; Hop off crate; Push crata bne spot to another;
Walk from one spot to another; grab bananas (if standing atekr
Cost function: Number of actions.

19

c. Initial state: considering all input records.

Goal test: considering a single record, and it gives “illegput” message.

Successor function: run again on the first half of the reganas again on the second
half of the records.

Cost function: Number of runs.

Note: This is acontingency problent you need to see whether a run gives an error
message or not to decide what to do next.

. Initial state: jugs have valueg, 0, 0].

Successor function: given valués y, z|, generatél12, y, z|, [z, 8, 2], [z, y, 3] (by fill-
ing); [0,v, 2], [x,0,z2], [x,y,0] (by emptying); or for any two jugs with current values
x andy, poury into z; this changes the jug with to the minimum ofx + y and the
capacity of the jug, and decrements the jug withy by the amount gained by the first
jug.

Cost function: Number of actions.

. If we consider allz, y) points, then there are an infinite number of states, and bfpat
. (For this problem, we consider the start and goal pointsetovdrtices.) The shortest

distance between two points is a straight line, and if it is possible to travel in a
straight line because some obstacle is in the way, then thieshertest distance is a
sequence of line segments, end-to-end, that deviate frenstthight line by as little

as possible. So the first segment of this sequence must gotheratart point to a
tangent point on an obstacle — any path that gave the obstagider girth would be

longer. Because the obstacles are polygonal, the tangarts poust be at vertices of
the obstacles, and hence the entire path must go from verteertex. So now the state
space is the set of vertices, of which there are 35 in Figug#.3.

. Code not shown.
. Implementations and analysis not shown.

a. Any path, no matter how bad it appears, might lead to anrarbit large reward (nega-

tive cost). Therefore, one would need to exhaust all posgibths to be sure of finding
the best one.

. Suppose the greatest possible reward iBhen if we also know the maximum depth of

the state space (e.g. when the state space is a tree), thpatamnyithd levels remaining
can be improved by at moeat/, so any paths worse thad less than the best path can be
pruned. For state spaces with loops, this guarantee ddespt because it is possible
to go around a loop any number of times, pickinganeward each time.

. The agent should plan to go around this loop forever (unitesan find another loop

with even better reward).

. The value of a scenic loop is lessened each time one reitisdsnovel scenic sight

is a great reward, but seeing the same one for the tenth tirae hour is tedious, not

20

Chapter 3. Solving Problems by Searching

rewarding. To accommodate this, we would have to expandt#ite space to include
a memory—a state is now represented not just by the curreatitm, but by a current
location and a bag of already-visited locations. The reviardisiting a new location
is now a (diminishing) function of the number of times it h&eh seen before.

e. Real domains with looping behavior include eating junkd@md going to class.

a. Here is one possible representation: A state is a six-tofpletegers listing the number
of missionaries, cannibals, and boats on the first side, lzewl the second side of the
river. The goal is a state with 3 missionaries and 3 cannibalthe second side. The
cost function is one per action, and the successors of aatal the states that move
1 or 2 people and 1 boat from one side to another.

b. The search space is small, so any optimal algorithm works.aR example, see the
file "search/domains/cannibals.lisp” . It suffices to eliminate moves that
circle back to the state just visited. From all but the firstl #ast states, there is only
one other choice.

c. Itis not obvious that almost all moves are either illegatewert to the previous state.
There is a feeling of a large branching factor, and no clear twgroceed.

3.10 A stateis a situation that an agent can find itself in. We distingtieb types of states:
world states (the actual concrete situations in the realdyand representational states (the
abstract descriptions of the real world that are used bygleatin deliberating about what to
do).

A state spaceis a graph whose nodes are the set of all states, and whosedmek
actions that transform one state into another.

A search treeis a tree (a graph with no undirected loops) in which the ramienis the
start state and the set of children for each node consisteedtates reachable by taking any
action.

A search nodeés a node in the search tree.

A goalis a state that the agent is trying to reach.

An action is something that the agent can choose to do.

A successor functiondescribed the agent’s options: given a state, it returng afse
(action, state) pairs, where each state is the state relachylaking the action.

Thebranching factor in a search tree is the number of actions available to thetagen

3.11 A world state is how reality is or could be. In one world statere in Arad, in another
we're in Bucharest. The world state also includes whichestwee’re on, what's currently on
the radio, and the price of tea in China. A state descript®an agent’s internal descrip-
tion of a world state. Examples afe.(Arad) and In(Bucharest). These descriptions are
necessarily approximate, recording only some aspect dfttte.

We need to distinguish between world states and state gdenos because state de-
scription are lossy abstractions of the world state, bez#us agent could be mistaken about

21

how the world is, because the agent might want to imaging¢hihat aren’t true but it could
make true, and because the agent cares about the world imdeitsal representation of it.

Search nodes are generated during search, representeig shet search process knows
how to reach. They contain additional information asiderfrihe state description, such as
the sequence of actions used to reach this state. Thisdalistinis useful because we may
generate different search nodes which have the same stdtbeaause search nodes contain
more information than a state representation.

3.12 The state space is a tree of depth one, with all states suesesthe initial state.
There is no distinction between depth-first search and thefrdt search on such a tree. If
the sequence length is unbounded the root node will havetaifimany successors, so only
algorithms which test for goal nodes as we generate suasesan work.

What happens next depends on how the composite actions réed.sdf there is no
particular ordering, then a random but systematic seargotehtial solutions occurs. If they
are sorted by dictionary order, then this implements déjpsh-search. If they are sorted by
length first, then dictionary ordering, this implementsdatth-first search.

A significant disadvantage of collapsing the search sp&edtiis is if we discover that
a plan starting with the action “unplug your battery” caret & solution, there is no easy way
to ignore all other composite actions that start with thigosc This is a problem in particular
for informed search algorithms.

Discarding sequence structure is not a particularly pratapproach to search.

3.13

The graph separation property states that “every path framirtitial state to an unex-
plored state has to pass through a state in the frontier.”

At the start of the search, the frontier holds the initiatestdence, trivially, every path
from the initial state to an unexplored state includes a rindbe frontier (the initial state
itself).

Now, we assume that the property holds at the beginning ofrlaitraxy iteration of
the GRAPH-SEARCH algorithm in Figure 3.7. We assume that the iteration coteplei.e.,
the frontier is not empty and the selected leaf nads not a goal state. At the end of the
iteration,n has been removed from the frontier and its successors (#lresdy explored or in
the frontier) placed in the frontier. Consider any path frtma initial state to an unexplored
state; by the induction hypothesis such a path (at the biegjrof the iteration) includes
at least one frontier node; except wheris the only such node, the separation property
automatically holds. Hence, we focus on paths passing gfrau(and no other frontier
node). By definition, the next nod€ along the path fromn must be a successor afthat
(by the preceding sentence) is already not in the frontiemtiiérmore,n’ cannot be in the
explored set, since by assumption there is a path ftbte an unexplored node not passing
through the frontier, which would violate the separationgarty as every explored node is
connected to the initial state by explored nodes (see lemetaifor proof this is always
possible). Hencey' is not in the explored set, hence it will be added to the feanthen the
path will include a frontier node and the separation propisrtestored.

The property is violated by algorithms that move nodes from ftontier into the ex-

22

Chapter 3. Solving Problems by Searching

plored set before all of their successors have been gededevell as by those that fail to
add some of the successors to the frontier. Note that it i;eocessary to generasdl suc-
cessors of a node at once before expanding another nodegaadgartially expanded nodes
remain in the frontier.

Lemma: Every explored node is connected to the initial dbgte path of explored
nodes.

Proof: This is true initially, since the initial state is gmtted to itself. Since we never
remove nodes from the explored region, we only need to cheek modes we add to the
explored list on an expansion. Letbe such a new explored node. This is previously on
the frontier, so it is a neighbor of a nodé previously explored (i.e., its parent)’ is, by
hypothesis is connected to the initial state by a path ofarpl nodes. This path with
appended is a path of explored nodes conneatirtg the initial state.

3.14
a. False a lucky DFS might expand exactti/nodes to reach the goal.*Aargely domi-

nates any graph-search algorithm thagisranteed to find optimal solutions
True h(n) = 0is always an admissible heuristic, since costs are noniwegat
True A* search is often used in robotics; the space can be digerkbr skeletonized.
. True depth of the solution matters for breadth-first search cost.
. False a rook can move across the board in move one, although thédttan distance

from start to finish is 8.

® 20 T

3.15

Figure S3.1 The state space for the problem defined in Ex. 3.15.

a. See Figure S3.1.

b. Breadth-first: 1234567891011
Depth-limited: 1248951011
Iterative deepening: 1;123;1245367;1248951011

c. Bidirectional search is very useful, because the onlysssar ofr in the reverse direc-
tion is | (n/2)]. This helps focus the search. The branching factor is 2 irfidheard
direction; 1 in the reverse direction.

23

d. Yes; start at the goal, and apply the single reverse sumcaston until you reach 1.

e. The solution can be read off the binary numeral for the gaehiper. Write the goal
number in binary. Since we can only reach positive integthis, binary expansion
beings with a 1. From most- to least- significant bit, skigpthe initial 1, go Left to
the node2n if this bit is 0 and go Right to nod2n + 1 if it is 1. For example, suppose
the goal isl1, which is1011 in binary. The solution is therefore Left, Right, Right.

3.16

a. Initial state: one arbitrarily selected piece (say a straight piece).

Successor function for any open peg, add any piece type from remaining typesu (Y
can add to open holes as well, but that isn't necessary a®@plete tracks can be
made by adding to pegs.) For a curved piece, iadelther orientation for a fork, add
in either orientationand (if there are two holes) connectiageither hole It's a good
idea to disallow any overlapping configuration, as this ieates hopeless configura-
tions early. (Note: there is no need to consider open hotxsause in any solution these
will be filled by pieces added to open pegs.)

Goal test all pieces used in a single connected track, no open pegsles,mo over-
lapping tracks.

Step cost one per piece (actually, doesn'’t really matter).

b. All solutions are at the same depth, so depth-first searailddoe appropriate. (One
could also use depth-limited search with limit- 1, but strictly speaking it's not neces-
sary to do the work of checking the limit because states ahdep- 1 have no succes-
sors.) The space is very large, so uniform-cost and brefadthwould fail, and iterative
deepening simply does unnecessary extra work. There arg rappated states, so it
might be good to use a closed list.

¢. A solution has no open pegs or holes, so every peg is in a olidere must be equal
numbers of pegs and holes. Removing a fork violates thisgstgpThere are two other
“proofs” that are acceptable: 1) a similar argument to thHieatfthat there must be an
even number of “ends”; 2) each fork creates two tracks, amgafork can rejoin those
tracks into one, so if a fork is missing it won't work. The angent using pegs and holes
is actually more general, because it also applies to theafaséhree-way fork that has
one hole and three pegs or one peg and three holes. The “emgdshant fails here, as
does the fork/rejoin argument (which is a bit handwavy angwa

d. The maximum possible humber of open pegs is 3 (starts atdingé two-peg fork
increases it by one). Pretending each piece is unique, & gian be added to a peg,
giving at mostl2 + (2 - 16) + (2 - 2) + (2 - 2 - 2) = 56 choices per peg. The total
depth is 32 (there are 32 pieces), so an upper bouh@si& /(12! - 16! - 2! - 2!) where
the factorials deal with permutations of identical piec@sne could do a more refined
analysis to handle the fact that the branching factor skratkwe go down the tree, but
it is not pretty.

3.17 a. The algorithm expands nodes in order of increasing path thstefore the first
goal it encounters will be the goal with the cheapest cost.

24

Chapter 3. Solving Problems by Searching

b. It will be the same as iterative deepeningjterations, in whichO(bd) nodes are
generated.

c.d/e

d. Implementation not shown.

3.18 Consider a domain in which every state has a single succesubthere is a single goal
at depthn. Then depth-first search will find the goalinsteps, whereas iterative deepening
search will takel +2 + 3 + - -- + n = O(n?) steps.

3.19 As an ordinary person (or agent) browsing the web, we can gaherate the suc-
cessors of a page by visiting it. We can then do breadth-faatch, or perhaps best-search
search where the heuristic is some function of the numberosflsvin common between the
start and goal pages; this may help keep the links on target.cB engines keep the complete
graph of the web, and may provide the user access to all (eaat some) of the pages that
link to a page; this would allow us to do bidirectional search

3.20 Code not shown, but a good start is in the code repository.arylegraph search
must be used—this is a classic grid world with many altereatths to each state. Students
will quickly find that computing the optimal solution sequeris prohibitively expensive for
moderately large worlds, because the state space far-an world hasn? - 2" states. The
completion time of the random agent grows less than expa@llgrih », so for any reasonable
exchange rate between search cost ad path cost the randatwalgeventually win.

3.21

a. When all step costs are equaln) o depth(n), so uniform-cost search reproduces
breadth-first search.

b. Breadth-first search is best-first search witth) = depth(n); depth-first search is
best-first search witlf (n) = —depth(n); uniform-cost search is best-first search with
f(n) = g(n).

c. Uniform-cost search isAsearch withh(n) = 0.

3.22 The student should find that on the 8-puzzle, RBFS expands mmies (because
it does not detect repeated states) but has lower cost per bexhuse it does not need to
maintain a queue. The number of RBFS node re-expansionst iadigh because the
presence of many tied values means that the best path chsgldem. When the heuristic is
slightly perturbed, this advantage disappears and RBFSfsgnance is much worse.

For TSP, the state space is a tree, so repeated states areissit@ On the other hand,
the heuristic is real-valued and there are essentially etbvalues, so RBFS incurs a heavy
penalty for frequent re-expansions.

3.23 The sequence of queues is as follows:
L[0+244=244]

M[70+241=311], T[111+329=440]

L[140+244=384], D[145+242=387], T[111+329=440]
D[145+242=387], T[111+329=440], M[210+241=451], T[2228=580]

25

C[265+160=425], T[111+329=440], M[210+241=451], M[222.=461], T[251+329=580]
T[111+329=440], M[210+241=451], M[220+241=461], P[4QB0=503], T[251+329=580], R[411+193=604],
D[385+242=627]

M[210+241=451], M[220+241=461], L[222+244=466], P[40B0=503], T[251+329=580], A[229+366=595],
R[411+193=604], D[385+242=627]

M[220+241=461], L[222+244=466], P[403+100=503], L[2@2=524], D[285+242=527], T[251+329=580],
A[229+366=595], R[411+193=604], D[385+242=627]

L[222+244=466], P[403+100=503], L[280+244=524], D[2@82=527], L[290+244=534], D[295+242=537],
T[251+329=580], A[229+366=595], R[411+193=604], D[3@82=627]

P[403+100=503], L[280+244=524], D[285+242=527], M[2@24=533], L[290+244=534], D[295+242=537],
T[251+329=580], A[229+366=595], R[411+193=604], D[3882=627], T[333+329=662]

B[504+0=504], L[280+244=524], D[285+242=527], M[292-42%633], L[290+244=534], D[295+242=537], T[251+329=58(
A[229+366=595], R[411+193=604], D[385+242=627], T[3320=662], R[500+193=693], C[541+160=701]

Figure S3.2 A graph with an inconsistent heuristic on whiclR@H-SEARCH fails to
return the optimal solution. The successorssadre A with f =5 and B with f=7. A is
expanded first, so the path viawill be discarded becausé will already be in the closed

list.

3.24 See Figure S3.2.

3.25 Itis complete whenever < w < 2. w = 0 givesf(n) = 2g(n). This behaves exactly
like uniform-cost search—the factor of two makes no diffexein theordering of the nodes.

w = 1 gives X search.w = 2 gives f(n) = 2h(n), i.e., greedy best-first search. We also
have

Fm) = 2= w)lg(n) + 5——h(n)]

which behaves exactly like*Asearch with a heuristig®-h(n). Forw < 1, this is always
less tham.(n) and hence admissible, providéedn) is itself admissible.

3.26

a. The branching factor is 4 (number of neighbors of each lonat

b. The states at depthform a square rotated at 45 degrees to the grid. Obvioushe the
are a linear number of states along the boundary of the sgs@the answer igk.

Chapter 3. Solving Problems by Searching

c. Without repeated state checking, BFS expends expongntielny nodes: counting
precisely, we get(4*t¥*+1 —1)/3) — 1.

d. There are quadratically many states within the squaredpthdr + y, so the answer is
2@ +y)(z+y+1) -1

e. True; this is the Manhattan distance metric.

f. False; all nodes in the rectangle defined (by0) and (z,y) are candidates for the
optimal path, and there are quadratically many of them,falllich may be expended
in the worst case.

g. True; removing links may induce detours, which require ensteps, sa is an under-
estimate.

h. False; nonlocal links can reduce the actual path lengitwbtie Manhattan distance.

3.27

a. n?". There aren vehicles inn? locations, so roughly (ignoring the one-per-square
constraint)(n?)" = n?" states.

b. 5™
c. Manhattan distance, i.e(n — i + 1) — x;| + |n — y;|. This is exact for a lone vehicle.
d. Only (iii) min{h4,...,h,}. The explanation is nontrivial as it requires two observa-

tions. First, let thework W in a given solution be the totalistancemoved by all
vehicles over their joint trajectories; that is, for eaclniede, add the lengths of all the
steps taken. We haw& > > h; >> n - min{hy, ..., hy,}. Second, the total work we
can get done per step & n. (Note that for every car that jumps 2, another car has to
stay put (move 0), so the total work per step is bounded.pyHence, completing all
the work requires at least- min{hy, ..., hy, } /n = min{hq, ..., h,, } Steps.

3.28 The heuristich = hy + ho (adding misplaced tiles and Manhattan distance) sometimes
overestimates. Now, suppog€n) < h*(n) + c (as given) and letG; be a goal that is
suboptimal by more thaa i.e.,g(G2) > C* + ¢. Now consider any node on a path to an
optimal goal. We have

f(n) = g(n) + h(n)

g(n)+h*(n)+c

C*+c

9(G2)

soG» will never be expanded before an optimal goal is expanded.

ININ TN

3.29 A heuristic is consistent iff, for every nodeand every successef of n generated by
any actiona,

h(n) < c(n,a,n’) + h(n')

One simple proof is by induction on the numldeof nodes on the shortest path to any goal
from n. Fork = 1, letn’ be the goal node; theh(n) < ¢(n,a,n’). For the inductive

27

case, assume’ is on the shortest path steps from the goal and thatn') is admissible by
hypothesis; then

h(n) < c(n,a,n') + h(n') < c(n,a,n') + h*(n') = h*(n)
soh(n) atk + 1 steps from the goal is also admissible.
3.30 This exercise reiterates a small portion of the classic vadiHeld and Karp (1970).

a. The TSP problem is to find a minimal (total length) path tlgyloahe cities that forms
a closed loop. MST is a relaxed version of that because it fsska minimal (total
length) graph that need not be a closed loop—it can be any-dolhnected graph. As
a heuristic, MST is admissible—it is always shorter thanaurad to a closed loop.

b. The straight-line distance back to the start city is a natheak heuristic—it vastly
underestimates when there are many cities. In the latee stbg search when there are
only a few cities left it is not so bad. To say that MST domisataight-line distance
is to say that MST always gives a higher value. This is ob\Wotrae because a MST
that includes the goal node and the current node must eithitrdsstraight line between
them, or it must include two or more lines that add up to mofénig all assumes the
triangle inequality.)

c. Seé'search/domains/tsp.lisp" for a start at this. The file includes a heuristic
based on connecting each unvisited city to its nearest heigla close relative to the
MST approach.

d. See (Cormeet al, 1990, p.505) for an algorithm that runs@n E log E) time, where
E is the number of edges. The code repository currently costai somewhat less
efficient algorithm.

3.31 The misplaced-tiles heuristic is exact for the problem whartile can move from
square A to square B. As this is a relaxation of the conditivett &a tile can move from
square A to square B if B is blank, Gaschnig’s heuristic catmoless than the misplaced-
tiles heuristic. As it is also admissible (being exact foekxation of the original problem),
Gaschnig’s heuristic is therefore more accurate.

If we permute two adjacent tiles in the goal state, we havata sthere misplaced-tiles
and Manhattan both return 2, but Gaschnig’'s heuristic nstGr

To compute Gaschnig’s heuristic, repeat the following Iuh& goal state is reached:
let B be the current location of the blank; if B is occupied bg X (not the blank) in the
goal state, move X to B; otherwise, move any misplaced tiB.tS8tudents could be asked to
prove that this is the optimal solution to the relaxed proble

3.32 Students should provide results in the form of graphs andiaes showing both run-
time and number of nodes generated. (Different heuristie® lifferent computation costs.)
Runtimes may be very small for 8-puzzles, so you may wants$maghe 15-puzzle or 24-
puzzle instead. The use of pattern databases is also wqtbreg experimentally.

Solutions for Chapter 4
Beyond Classical Search

a. Local beam search with = 1 is hill-climbing search.

b. Local beam search with one initial state and no limit on thmber of states retained,
resembles breadth-first search in that it adds one compigée bf nodes before adding
the next layer. Starting from one state, the algorithm wdddessentially identical to
breadth-first search except that each layer is generatad @tice.

c. Simulated annealing with' = 0 at all times: ignoring the fact that the termination step
would be triggered immediately, the search would be idahtifirst-choice hill climb-
ing because every downward successor would be rejectedovabiability 1. (Exercise
may be modified in future printings.)

d. Simulated annealing witii® = oo at all times is a random-walk search: it always
accepts a new state.

e. Genetic algorithm with population siz& = 1: if the population size is 1, then the
two selected parents will be the same individual; crossgigds an exact copy of the
individual; then there is a small chance of mutation. Thbs, dlgorithm executes a
random walk in the space of individuals.

4.2 Despite its humble origins, this question raises many oftme issues as the scientifi-
cally important problem of protein design. There is a diszgssembly space in which pieces
are chosen to be added to the track and a continuous configusgtace determined by the
“joint angles” at every place where two pieces are linkedudive can define a state as a set of
oriented, linked pieces and the associated joint angldseinstngg —10, 10], plus a set of un-
linked pieces. The linkage and joint angles exactly deteentihe physical layout of the track;
we can allow for (and penalize) layouts in which tracks lietop of one another, or we can
disallow them. The evaluation function would include terdimshow many pieces are used,
how many loose ends there are, and (if allowed) the degregeasfap. We might include a
penalty for the amount of deviation from 0-degree joint asgl(\We could also include terms
for “interestingness” and “traversability"—for examplig,is nice to be able to drive a train
starting from any track segment to any other, ending up hmeeitlirection without having to
lift up the train.) The tricky part is the set of allowed mové3bviously we can unlink any
piece or link an unlinked piece to an open peg with eitherrdation at any allowed angle
(possibly excluding moves that create overlap). More mwolatic are moves to join a peg

28

29

and hole on already-linked pieces and moves to change tHe ahg joint. Changing one
angle may force changes in others, and the changes will \epgraling on whether the other
pieces are at their joint-angle limit. In general there Ww#élno unique “minimal” solution for

a given angle change in terms of the consequent changesdoastgles, and some changes
may be impossible.

4.3 Here is one simple hill-climbing algorithm:

« Connect all the cities into an arbitrary path.
 Pick two points along the path at random.
Split the path at those points, producing three pieces.

Try all six possible ways to connect the three pieces.

Keep the best one, and reconnect the path accordingly.

Iterate the steps above until no improvement is observed fehile.

4.4 Code not shown.

4.5 See Figure S4.1 for the adapted algorithm. For states tRaBENRCH finds a solution
for it records the solution found. If it later visits that saagain it immediately returns that
solution.

When QrR-SEARCH fails to find a solution it has to be careful. Whether a statelma
solved depends on the path taken to that solution, as we dalloat cycles. So on failure
OR-SEARCH records the value ofath. If a state is which has previously failed wheath
contained any subset of its present value-8EARCH returns failure.

To avoid repeating sub-solutions we can label all new sahgtifound, record these
labels, then return the label if these states are visitethag?ost-processing can prune off
unused labels. Alternatively, we can output a direct acygtaph structure rather than a tree.

See (Bertoliet al,, 2001) for further details.

4.6

The question statement describes the required changetaih dee Figure S4.2 for the
modified algorithm. When @ SEARCH cycles back to a state gmith it returns a tokeroop
which means to loop back to the most recent time this statergahed along the path to
it. Sincepath is implicitly stored in the returned plan, there is suffidierformation for later
processing, or a modified implementation, to replace thedelabels.

The plan representation is implicitly augmented to keepktraf whether the plan is
cyclic (i.e., contains @op) so that QR-SEARCH can prefer acyclic solutions.

AND-SEARCH returns failure if all branches lead directly td@p, as in this case the
plan will always loop forever. This is the only case it needlgheck as if all branches in a
finite plan loop there must be some And-node whose childdeématediately loop.

4.7 A sequence of actions is a solution to a belief state probfeintakes every initial
physical state to a goal state. We can relax this problem dpyitieg it take onlysomeinitial
physical state to a goal state. To make this well defined,| wesjuire that it finds a solution

30

Chapter 4. Beyond Classical Search

function AND-OR-GRAPH-SEARCH(problem) returns a conditional plan, or failure
OR-SEARCH(problem.INITIAL -STATE, problem, [])

function OR-SEARCH(state, problem, path) returns a conditional plan, or failure
if problem.GOAL-TEST(state) then return the empty plan
if state has previously been solvelen return RECALL-SUCCESSstate)
if state has previously failed for a subset pith then return failure
if state is onpath then
RECORD-FAILURE (state, path)
return failure
for each action in problem.ACTIONS(state) do
plan — AND-SEARCH(RESULTY(state, action), problem, [state | path])
if plan # failure then
RECORD-SUCCESYstate, [action | plan])
return [action | plan]
return failure

function AND-SEARCH(states, problem, path) returns a conditional plan, or failure
for each s; in states do
plan,; < OR-SEARCH(s;, problem, path)
if plan; = failure then return failure
return [if s; then plan, else ifs; then plan, else. .. if s,_1 then plan,,_, elseplan,,]

Figure S4.1 AND-OR search with repeated state checking.

for the physical state with the most costly solution.k1f(s) is the optimal cost of solution
starting from the physical state then

h(S) = max h*(s)

is the heuristic estimate given by this relaxed problem.sTguristic assumes any solution
to the most difficult state the agent things possible wil/sall states.

On the sensorless vacuum cleaner problem in Figure 4.Térrectly determines the
optimal cost for all states except the central three stétesé reached biguck]|, [suck, le ft]
and[suck, right]) and the root, for whichh estimates to be 1 unit cheaper than they really
are. This means Awill expand these three central nodes, before marching ritsvthe
solution.

4.8

a. An action sequence is a solution for belief staié performing it starting in any state
s € breaches a goal state. Since any state in a subses @f b, the result isimmediate.
Any action sequence which it a solution for belief staté is also not a solution
for any superset; this is the contrapositive of what we'va proved. One cannot, in
general, say anything about arbitrary supersets, as tienasquence need not lead to
a goal on the states outside ifOne can say, for example, that if an action sequence

31

function AND-OR-GRAPH-SEARCH(problem) returns a conditional plan, or failure
OR-SEARCH(problem.INITIAL -STATE, problem, [])

function OR-SEARCH(state, problem, path) returns a conditional plan, or failure
if problem.GOAL-TEST(state) then return the empty plan
if state is onpath then return loop
cyclic — plan < None
for each action in problem.ACTIONS(state) do
plan — AND-SEARCH(RESULTYstate, action), problem, [state | path])
if plan # failure then
if plan is acyclicthen return [action | plan]
cyclic — plan — [action | plan]
if cyclic — plan # None then return cyclic — plan
return failure

function AND-SEARCH(states, problem, path) returns a conditional plan, or failure
loopy «— True
for each s; in states do
plan,; < OR-SEARCH(s;, problem, path)
if plan; = failure then return failure
if plan, # loop then loopy < False
if notloopy then
return [if s; then plan, else ifsy then plan, else. . .if s,_; thenplan,,_, elseplan,,]
return failure

Figure S4.2 AND-OR search with repeated state checking.

solves a belief statkand a belief stat& then it solves the union belief staie) v'.

b. On expansion of a node, do not add to the frontier any chilgebstate which is a
superset of a previously explored belief state.

c. If you keep a record of previously solved belief states, adtheck to the start of OR-
search to check whether the belief state passed in is a sobaepreviously solved
belief state, returning the previous solution in case it is.

4.9

Consider a very simple example: an initial belief stétg, S, }, actionsa andb both
leading to goal staté&' from either initial state, and

c(S1,a,G) = 3; c(S2,a,G) =5;

C(Sl,b,G) :2; C(SQ,b,G):ﬁ.
In this case, the solutioja] costs 3 or 5, the solutiojb] costs 2 or 6. Neither is “optimal” in
any obvious sense.

In some cases, thewill be an optimal solution. Let us consider just the determmist
case. For this case, we can think of the cost of a plan as a n@afmeim each initial phys-
ical state to the actual cost of executing the plan. In thengta above, the cost fdu| is

32 Chapter 4. Beyond Classical Search

{51:3, S2:5} and the cost fofb] is {51:2, 52:6}. We can say that plap; weakly dominates
po if, for each initial state, the cost fgr, is no higher than the cost for. (Moreover,p;
dominates if it weakly dominates iandhas a lower cost for some state.) If a pfaweakly
dominates all others, it is optimal. Notice that this defamtreduces to ordinary optimality in
the observable case where every belief state is a singléwthe preceding example shows,
however, a problem may have no optimal solution in this seAggerhaps acceptable version
of A* would be one that returns any solution that is not dominajedrwother.

To understand whether it is possible to applyadall, it helps to understand its depen-

o dence on Bellman’s (1957rinciple of optimality : An optimal policy has the property that
whatever the initial state and initial decision are, the @mng decisions must constitute an
optimal policy with regard to the state resulting from thesfidecision. It is important to
understand that this is a restriction on performance meastesigned to facilitate efficient
algorithms, not a general definition of what it means to bénogit

In particular, if we define the cost of a plan in belief-stgpace as the minimum cost
of any physical realization, we violate Bellman’s prin@pl Modifying and extending the
previous example, suppose thahndb reachSs from S; andS, from Ss, and then reacli
from there:

c(S1,a,S3) =6; c(S2,a,8;1) = 2;

c(S1,b,53) =6; c(S2,b,54) =1.¢(53,a,G) = 2; c(S4,a,G) = 2;

C(Sg,b,G) = 1; C(S4,b,G) =9.

In the belief statg S3, S4}, the minimum cost ofa] is min{2, 2} = 2 and the minimum cost
of [b] ismin{1,9} =1, so the optimal plan i®]. In the initial belief statg 51, S2}, the four
possible plans have the following costs:

[a,a] : min{8,4} = 4;[a,b] : min{7,11} = 7;[b,a] : min{8,3} = 3;[b,b] : min{7,10} = 7.
Hence, the optimal plan iiSy, S2} is [b, a], which doesiotchoosé in {S3, Sy} even though
that is the optimal plan at that point. This counterint@tivehavior is a direct consequence
of choosing the minimum of the possible path costs as th@pednce measure.

This example gives just a small taste of what might happeh winadditive perfor-
mance measures. Details of how to modify and analyzéoAgeneral path-dependent cost
functions are give by Dechter and Pearl (1985). Many aspe#ds carry over; for example,
we can still derive lower bounds on the cost of a path througiven node. For a belief state
b, the minimum value of(s) + h(s) for each state in b is a lower bound on the minimum
cost of a plan that goes through

4.10 The belief state space is shown in Figure S4.3. No solutipossible because no path
leads to a belief state all of whose elements satisfy the d¢fdk problem is fully observable,
the agent reaches a goal state by executing a sequence atiSlath is performed only in a
dirty square. This ensures deterministic behavior andyestatte is obviously solvable.

4.11

The student needs to make several design choices in angwhlimquestion. First,
how will the vertices of objects be represented? The proldttes the percept is a list of
vertex positions, but that is not precise enough. Here isgmoel choice: The agent has an

33

Figure S4.3 The belief state space for the sensorless vacuum world Whdgghy’s law.

orientation (a heading in degrees). The visible vertexedisted in clockwise order, starting

straight ahead of the agent. Each vertex has a relative éhghe360 degrees) and a distance.
We also want to know if a vertex represents the left edge oftetagle, the right edge, or an

interior point. We can use the symbols L, R, or | to indicais.th

The student will need to do some basic computational gegmeatculations: intersec-
tion of a path and a set of line segments to see if the agenbwiitlp into an obstacle, and
visibility calculations to determine the percept. There afficient algorithms for doing this
on a set of line segments, but don’t worry about efficiencyedmaustive algorithm is ok. If
this seems too much, the instructor can provide an envirohgimulator and ask the student
only to program the agent.

To answer (c), the student will need some exchange rateddinty off search time with
movement time. It is probably too complex to make the sinmeasynchronous real-time;
easier to impose a penalty in points for computation.

For (d), the agent will need to maintain a set of possibletjprs. Each time the agent
moves, it may be able to eliminate some of the possibilifidse agent may consider moves
that serve to reduce uncertainty rather than just get to dla¢ g

4.12 This question is slightly ambiguous as to what the percepkisher the percept is just
the location, or it gives exactly the set of unblocked dimt (i.e., blocked directions are
illegal actions). We will assume the latter. (Exercise maynodified in future printings.)
There are 12 possible locations for internal walls, so tleee'? = 4096 possible environ-
ment configurations. A belief state designatesubsetof these as possible configurations;
for example, before seeing any percepts all 4096 configuratare possible—this is a single
belief state.

a. Online search is equivalent to offline search in beliefesigpace where each action
in a belief-state can have multiple successor beliefstatse for each percept the
agent could observe after the action. A successor bebdé-$t constructed by taking
the previous belief-state, itself a set of states, reptpeiach state in this belief-state
by the successor state under the action, and removing atessor states which are
inconsistent with the percept. This is exactly the consibadn Section 4.4.2. AD-OR
search can be used to solve this search problem. The ingii@fistate hag'0 = 1024
states in it, as we know whether two edges have walls or netygiper and right edges
have no walls) but nothing more. There afe’ possible belief states, one for each set
of environment configurations.

Chapter 4. Beyond Classical Search

(6]
NoOp
6] 6] 6] 6]
Right
(@) (@) (@) (@)
Figure S4.4 The3 x 3 maze exploration problem: the initial state, first percapt] one
selected action with its perceptual outcomes.

We can view this as a contingency problem in belief state espafter each ac-
tion and percept, the agent learns whether or not an inteva#lexists between the
current square and each neighboring square. Hence, eadfalda belief state can be
represented exactly by a list of status values (presengnabsnknown) for each wall
separately. That s, the belief state is completely dec@aiple and there are exacty?
reachable belief states. The maximum number of possiblepgatepts in each state
is 16 %), so each belief state has four actions, each with up to 1@eterministic
successors.

b. Assuming the external walls are known, there are two iratewalls and hence? =4
possible percepts.

c. The initial null action leads to four possible belief sitas shown in Figure S4.4. From
each belief state, the agent chooses a single action whidiead to up to 8 belief states
(on entering the middle square). Given the possibility ofitig to retrace its steps at
a dead end, the agent can explore the entire maze in no moreléhateps, so the
complete plan (expressed as a tree) has no moreghanodes. On the other hand,
there are jusB!'? reachable belief states, so the plan could be expressedamocisely
as a table of actions indexed by belief statpd@écy in the terminology of Chapter 17).

4.13 Hillclimbing is surprisingly effective at finding reasorialif not optimal paths for very
little computational cost, and seldom fails in two dimemnsio

35

Current
positi

Current Goal
positio

Goal

(@ (b)

Figure S4.5 (a) Getting stuck with a convex obstacle. (b) Getting stuitk @ nonconvex
obstacle.

a. Itis possible (see Figure S4.5(a)) but very unlikely—thstacle has to have an unusual
shape and be positioned correctly with respect to the goal.

b. With nonconvex obstacles, getting stuck is much moreyikelbe a problem (see Fig-
ure S4.5(b)).

c. Notice that this is just depth-limited search, where yooiag® a step along the best path
even if it is not a solution.

d. Setk to the maximum number of sides of any polygon and you can aweagape.
e. LRTA* always makes a move, but may move back if the old stadéd better than the

new state. But then the old state is penalized for the cogieofrtp, so eventually the
local minimum fills up and the agent escapes.

4.14

Since we can observe successor states, we always know hoackérdrck from to a
previous state. This means we can adapt iterative deepseiugh to solve this problem.
The only difference is backtracking must be explicit, fallng the action which the agent
can see leads to the previous state.

The algorithm expands the following nodes:
Depth 1:(0,0), (1,0), (0,0), (—1,0), (0,0)
Depth 2:(0,1), (0,0), (0,—-1), (0,0), (1,0), (2,0), (1,0), (0,0), (1,0), (1,1), (1,0), (1,—1)

Solutions for Chapter 5
Adversarial Search

5.1 The translation uses the model of the oppor@# (s) to fill in the opponent’s actions,
leaving our actions to be determined by the search algorittehP(s) be the state predicted
to occur after the opponent has made all their moves acaptdid M. Note that the op-
ponent may take multiple moves in a row before we get a moveyesaeed to define this
recursively. We haveP(s) = s if PLAYERs is us or TERMINAL-TESTs is true, otherwise
P(s) = P(RESULT(s,OM(s)).
The search problem is then given by:

a. Initial state: P(Sy) whereS) is the initial game state. We apply as the opponent may
play first
Actions: defined as in the game byCAIONSs.
Successor function: BSULT (s, a) = P(RESULT(s,a))
Goal test: goals are terminal states

Step cost: the cost of an action is zero unless the residtatgs’ is terminal, in which
case its cost i9/ — UTILITY (s') whereM = max, UTILITY (s). Notice that all costs
are non-negative.

2o T

Notice that the state space of the search problem consigemoé state where we are to
play and terminal states. States where the opponent is ydhplee been compiled out. One
might alternatively leave those states in but just have glsipossible action.

Any of the search algorithms of Chapter 3 can be applied. Kamgle, depth-first
search can be used to solve this problem, if all games evgnerad. This is equivalent to
using the minimax algorithm on the original gameQf\/ (s) always returns the minimax
move ins.

5.2

a. Initial state: two arbitrary 8-puzzle states. Successoction: one move on an unsolved
puzzle. (You could also have actions that change both peiztlthe same time; this is
OK but technically you have to say what happens when oneveddiut not the other.)
Goal test: both puzzles in goal state. Path cost: 1 per move.

b. Each puzzle has!/2 reachable states (remember that half the states are uat#gagh
The joint state space h&s!)? /4 states.

c. This is like backgammon; expectiminimax works.

36

37

Figure S5.1 Pursuit-evasion solution tree.

d. Actually the statement in the question is not true (it aggpto a previous version of part
(c) in which the opponent is just trying to prevent you frommning—in that case, the
coin tosses will eventually allow you to solve one puzzlehwitt interruptions). For the
game described in (c), consider a state in which the coin baseap heads, say, and
you get to work on a puzzle that is 2 steps from the goal. Shpoldmove one step
closer? If you do, your opponent wins if he tosses heads; lug ibsses tails, you toss
tails, and he tosses heads; or any sequence where bothitess times and then he
tosses heads. So his probability of winningiseastl /2+1/8+1/32+--- = 2/3. So
it seems you're better off movingwayfrom the goal. (There’s no way to stay the same
distance from the goal.) This problem unintentionally se¢mhave the same kind of
solution as suicide tictactoe with passing.

5.3

a. See Figure S5.1; the values are just (minus) the numbeep$ stlong the path from the
root.

b. See Figure S5.1; note that there is both an upper bound awlea bound for the left
child of the root.

c. See figure.

d. The shortest-path length between the two players is a lbaend on the total capture
time (here the players take turns, so no need to divide by, tsambdhe “?” leaves have a
capture time greater than or equal to the sum of the cost fr@mdot and the shortest-
path length. Notice that this bound is derived when the Evatie/s very badly. The
true value of a node comes from best play by both players, scaneet better bounds
by assuming better play. For example, we can get a betterddoom the cost when the
Evader simply moves backwards and forwards rather thanmgyaewards the Pursuer.

e. See figure (we have used the simple bounds). Notice thattbeagght child is known

38

Chapter 5. Adversarial Search

to have a value below -6, the remaining successors need onksalered.

f. The pursuer always wins if the tree is finite. To prove th&d,the tree be rooted as
the pursuer’s current node. (l.e., pick up the tree by thaerand dangle all the other
branches down.) The evader must either be at the root, inhndase the pursuer has
won, or in some subtree. The pursuer takes the branch leadlititat subtree. This
process repeats at mastimes, wherel is the maximum depth of the original subtree,
until the pursuer either catches the evader or reaches adglaf. Since the leaf has no
subtrees, the evader must be at that node.

5.4 The basic physical state of these games is fairly easy taides@®ne important thing

to remember for Scrabble and bridge is that the physicat $¢atot accessible to all players
and so cannot be provided directly to each player by the enrient simulator. Particularly
in bridge, each player needs to maintain some best guessultipl® hypotheses) as to the
actual state of the world. We expect to be putting some of #meegimplementations online
as they become available.

5.5 Code not shown.

5.6 The most obvious change is that the space of actions is notinaons. For example,
in pool, the cueing direction, angle of elevation, speed, @oint of contact with the cue ball
are all continuous quantities.

The simplest solution is just to discretize the action sakthen apply standard meth-
ods. This might work for tennis (modelled crudely as altéingashots with speed and direc-
tion), but for games such as pool and croquet it is likely b Haiserably because small
changes in direction have large effects on action outcomste&d, one must analyze the
game to identify a discrete set of meaningful local goalshsas “potting the 4-ball” in pool
or “laying up for the next hoop” in croquet. Then, in the cumreontext, a local optimization
routine can work out the best way to achieve each local gesiliiting in a discrete set of pos-
sible choices. Typically, these games are stochastic,esbabkgammon model is appropriate
provided that we use sampled outcomes instead of summingath\aitcomes.

Whereas pool and croquet are modelled correctly as tuingagames, tennis is not.
While one player is moving to the ball, the other player is mguo anticipate the opponent’s
return. This makes tennis more like the simultaneous-agiEmes studied in Chapter 17. In
particular, it may be reasonable to derfadomizedstrategies so that the opponent cannot
anticipate where the ball will go.

5.7 Consider aviN node whose children are terminal nodes.mIfN plays suboptimally,
then the value of the node is greater than or equal to the valueuld have ifmIN played
optimally. Hence, the value of theax node that is theviN node’s parent can only be
increased. This argument can be extended by a simple ioduali the way to the rootlf

the suboptimal play bwiiN is predictable then one can do better than a minimax strategy.
For example, ifMIN always falls for a certain kind of trap and loses, then sgtthme trap
guarantees a win even if there is actually a devastatingorespformIN. This is shown in
Figure S5.2.

5.8

39

MAX

MIN

1000 1000 -10 -5 -5 -5

Figure S5.2 A simple game tree showing that setting a trapsiax by playinga; is a win
if MIN falls for it, but may also be disastrous. The minimax movefisaurseas, with value
—5.

Figure S5.3 The game tree for the four-square game in Exercise 5.8. Tdrstates are
in single boxes, loop states in double boxes. Each statenistated with its minimax value
in a circle.

. () The game tree, complete with annotations of all minimalxes, is shown in Fig-
ure S5.3.

. () The “?” values are handled by assuming that an agentamithmoice between win-
ning the game and entering a “?” state will always choose fine What is, min(-1,?)
is —1 and max(+1,?) is +1. If all successors are “?”, the backevalue is “?”.

. (5) Standard minimax is depth-first and would go into an itdifoop. It can be fixed

40

Chapter 5. Adversarial Search

by comparing the current state against the stack; and iftie & repeated, then return
a “?” value. Propagation of “?” values is handled as abovehadiigh it works in this
case, it does nalwayswork because it is not clear how to compare “?” with a drawn
position; nor is it clear how to handle the comparison whemdtare wins of different
degrees (as in backgammon). Finally, in games with chandesiat is unclear how to
compute the average of a number and a “?”. Note thatribisorrect to treat repeated
states automatically as drawn positions; in this examméh (il,4) and (2,4) repeat in
the tree but they are won positions.

What is really happening is that each state has a well-deboeahitially unknown
value. These unknown values are related by the minimax equat the bottom of
164. If the game tree is acyclic, then the minimax algoritlotvess these equations by
propagating from the leaves. If the game tree has cycles,dldynamic programming
method must be used, as explained in Chapter 17. (ExercigestlLidies this problem in
particular.) These algorithms can determine whether eade mas a well-determined
value (as in this example) or is really an infinite loop in thath players prefer to stay
in the loop (or have no choice). In such a case, the rules ajdhge will need to define
the value (otherwise the game will never end). In chess,¥ample, a state that occurs
3 times (and hence is assumed to be desirable for both p)agexsiraw.

. This question is a little tricky. One approach is a proof bgtiction on the size of the

game. Clearly, the base case-3 is a loss for A and the base case-4 is a win for
A. For anyn > 4, the initial moves are the same: A and B both move one steprttswva
each other. Now, we can see that they are engaged in a subdaime © — 2 on the
squareg2,...,n — 1], exceptthat there is an extra choice of moves on squaresd

n — 1. Ignoring this for a moment, it is clear that if the - 2” is won for A, then A
gets to the square — 1 before B gets to square (by the definition of winning) and
therefore gets ta before B gets td, hence the #i” game is won for A. By the same
line of reasoning, if — 2” is won for B then "n” is won for B. Now, the presence of
the extra moves complicates the issue, but not too mucht, &iesplayer who is slated
to win the subgam@, ..., n — 1] never moves back to his home square. If the player
slated to lose the subgame does so, then it is easy to showetimbound to lose the
game itself—the other player simply moves forward and a aoigyof sizen — 2k is
played one step closer to the loser's home square.

5.9 Fora, there are at most 9! games. (This is the number of move segaehat fill up the
board, but many wins and losses end before the board is fdth—e Figure S5.4 shows the
game tree, with the evaluation function values below thmitesl nodes and the backed-up
values to the right of the non-terminal nodes. The valuegyirtihyat the best starting move for
X is to take the center. The terminal nodes with a bold outlireethe ones that do not need
to be evaluated, assuming the optimal ordering.

a. An upper bound on the number of terminal nodesM§ one for each ordering of

squares, so an upper bound on the total number of nodeytis i!. This is not much

41

1 2

Figure S5.4 Part of the game tree for tic-tac-toe, for Exercise 5.9.

bigger thanN'! itself as the factorial function grows superexponentialljhis is an
overestimate because some games will end early when a wgiposition is filled.

This count doesn't take into account transpositions. Areafgound on the number
of distinct game states B, as each square is either empty or filled by one of the two
players. Note that we can determine who is to play just frookilog at the board.

b. In this case no games terminate early, and ther&aefferent games ending in a draw.
Soignoring repeated states, we have exa@&1 7! nodes.
At the end of the game the squares are divided between thelayerp: [N/2] to
the first player and N/2] to the second. Thus, a good lower bound on the number of
distinct states iiwj\/fﬂ), the number of distinct terminal states.

c. For a states, let X (s) be the number of winning positions containing @& andO(s)
the number of winning positions containing dgs. One evaluation function is then
FEval(s) = X(s) — O(S). Notice that empty winning positions cancel out in the eval-
uation function.
Alternatively, we might weight potential winning positigtyy how close they are to
completion.

d. Using the upper bound df! from (a), and observing that it také80/N V! instructions.
At 2GHz we have 2 billion instructions per second (roughlgang), so solve for the
largestN using at most this many instructions. For one second wé\Vget 9, for one
minute N = 11, and for one houN = 12.

5.11 See€'search/algorithms/games.lisp” for definitions of games, game-playing
agents, and game-playing environmefitgarch/algorithms/minimax.lisp” con-
tains the minimax and alpha-beta algorithms. Notice thatgame-playing environment is
essentially a generic environment with the update fundiiefined by the rules of the game.
Turn-taking is achieved by having agents do nothing unidl iheir turn to move.
See'search/domains/cognac.lisp” for the basic definitions of a simple game
(slightly more challenging than Tic-Tac-Toe). The codetfos contains only a trivial eval-
uation function. Students can use minimax and alpha-betoliee small versions of the
game to termination (probably up tox 3); they should notice that alpha-beta is far faster

42

Chapter 5. Adversarial Search

than minimax, but still cannot scale up without an evaluafimction and truncated horizon.
Providing an evaluation function is an interesting exercisrom the point of view of data
structure design, it is also interesting to look at how toespep the legal move generator by
precomputing the descriptions of rows, columns, and diatgon

Very few students will have heard of kalah, so it is a fair gssient, but the game
is boring—depth 6 lookahead and a purely material-basetli@ian function are enough
to beat most humans. Othello is interesting and about the kyel of difficulty for most
students. Chess and checkers are sometimes unfair becsueséy i small subset of the
class will be experts while the rest are beginners.

5.12 The minimax algorithm for non-zero-sum games works exaalyfor multiplayer
games, described on p.165-6; that is, the evaluation fumési a vector of values, one for
each player, and the backup step selects whichever vecdhbadighest value for the player
whose turn it is to move. The example at the end of Sectior2 §2165) shows that alpha-
beta pruning is not possible in general non-zero-sum gatresause an unexamined leaf
node might be optimal for both players.

5.13 This question is not as hard as it looks. The derivation béémads directly to a defini-
tion of & and3 values. The notation; refers to (the value of) the node at depttn the path
from the root to the leaf node;. Nodesn;; ... n;, are the siblings of nodée

a. We can writeny = max(ns, na1, . . . , N3,), giving
ny = min(max(ns, nai, ..., N3ps), 21, - - - , N2by)

Thenng can be similarly replaced, until we have an expression aantan; itself.
b. Interms of thd andr values, we have

ny = min(lg, max(lg, ns, ?”3), ?”2)

Again, n3 can be expanded out down tg. The most deeply nested term will be
min(l;, nj,r;).

c. If n; is a max node, then the lower bound on its value only increasets successors
are evaluated. Clearly, if it exceedisit will have no further effect om,. By extension,
if it exceedsmin(ly,l4,...,1;) it will have no effect. Thus, by keeping track of this
value we can decide when to prung This is exactly what-3 does.

d. The corresponding bound for min nodesis max(ls, s, . .., k).

5.14 The result is given in Section 6 of Knuth (1975). The exadestent (Corollary 1 of
Theorem 1) is that the algorithms examirte®/2 + b[™/2] — 1 nodes at leveln. These
are exactly the nodes reached when Min plays only optimalas@nd/or Max plays only
optimal moves. The proof is by induction .

5.15 With 32 pieces, each needing 6 bits to specify its positioroa of 64 squares, we
need 24 bytes (6 32-bit words) to store a position, so we @aa sbughly 80 million positions
in the table (ignoring pointers for hash table bucket listghis is about 1/22 of the 1800
million positions generated during a three-minute search.

43

Figure S5.5 Pruning with chance nodes solution.

Generating the hash key directly from an array-based reptatson of the position
might be quite expensive. Modern programs (see, e.g., Hed@0) carry along the hash
key and modify it as each new position is generated. Suppiséakes on the order of 20
operations; then on a 2GHz machine where an evaluation #3@3 operations we can do
roughly 100 lookups per evaluation. Using a rough figure @& omllisecond for a disk seek,
we could do 1000 evaluations per lookup. Clearly, using &-isident table is of dubious
value, even if we can get some locality of reference to redaeeaumber of disk reads.

5.16

a. See Figure S5.5.

b. Given nodes 1-6, we would need to look at 7 and 8: if they weth B oo then the
values of the min node and chance node above would alsecbeand the best move
would change. Given nodes 1-7, we do not need to look at 8. iEités +oo, the min
node cannot be worth more thanl, so the chance node above cannot be worth more
than—0.5, so the best move won't change.

c. The worst case is if either of the third and fourth leaves s in which case the chance
node above is 0. The best case is where they are both 2, thehahee node has value
2. So it must lie between 0 and 2.

d. See figure.

5.18 The general strategy is to reduce a general game tree to plpt@e by induction on
the depth of the tree. The inductive step must be done for mé&x, and chance nodes, and
simply involves showing that the transformation is carfiledugh the node. Suppose that the
values of the descendants of a nodeaare. . z,,, and that the transformationds + b, where

44

Chapter 5. Adversarial Search

a is positive. We have
min(axy + b,axs + b, ..., ax, +b) = amin(ry,zo,...,2,) + b
max(axy +b,axs +b,...,ax, +b) = amin(xy,x2,...,2,) +b
pi(axy +b) + pa(axe +b) + -+ - + pp(ax, +b) = a(p1z1 + pexa+ - Pptyn) + b
Hence the problem reduces to a one-ply tree where the leavestine values from the original

tree multiplied by the linear transformation. Since> y = ax +b > ay + bif a > 0, the
best choice at the root will be the same as the best choiceiartginal tree.

5.19 This procedure will give incorrect results. Mathematigathe procedure amounts to
assuming that averaging commutes with min and max, whicleéschot. Intuitively, the

choices made by each player in the deterministic trees aedban full knowledge of future
dice rolls, and bear no necessary relationship to the mowsenwithout such knowledge.
(Notice the connection to the discussion of card games itic®eb.6.2 and to the general
problem of fully and partially observable Markov decisiomiplems in Chapter 17.) In prac-
tice, the method works reasonably well, and it might be a gexelcise to have students
compare it to the alternative of using expectiminimax widmpling (rather than summing
over) dice rolls.

5.20

a. No pruning. In a max tree, the value of the root is the valughetbest leaf. Any unseen
leaf might be the best, so we have to see them all.

b. No pruning. An unseen leaf might have a value arbitrarihier or lower than any other
leaf, which (assuming non-zero outcome probabilities) msehat there is no bound on
the value of any incompletely expanded chance or max node.

¢. No pruning. Same argument as in (a).

d. No pruning. Nonnegative values alldawer bounds on the values of chance nodes, but
a lower bound does not allow any pruning.

e. Yes. If the first successor has value 1, the root has valuel Alaremaining successors
can be pruned.

f. Yes. Suppose the first action at the root has value 0.6, andirst outcome of the
second action has probability 0.5 and value 0O; then all otlscomes of the second
action can be pruned.

g. (ii) Highest probability first. This gives the strongestulbd on the value of the node,
all other things being equal.

5.21

a. In a fully observable, turn-taking, zero-sum game betwaangerfectly rational play-
ers, it does not help the first player to know what strategystiond player is using—
that is, what move the second player will make, given thefiester’'s move.

True. The second player will play optimally, and so is petfepredictable up to ties.
Knowing which of two equally good moves the opponent will maloes not change
the value of the game to the first player.

45

b. In a partially observable, turn-taking, zero-sum game lestvtwo perfectly rational

players, it does not help the first player to know what movesteond player will
make, given the first player's move.
False. In a partially observable game, knowing the secoagepk move tells the first
player additional information about the game state thatlvotherwise be available
only to the second player. For example, in Kriegspiel, kmmihe opponent’s future
move tells the first player where one of the opponent’s piégn a card game, it tells
the first player one of the opponent’s cards.

c. A perfectly rational backgammon agent never loses.

False. Backgammon is a game of chance, and the opponent msigteatly roll much
better dice. The correct statement is that élxpectedvinnings are optimal. It is sus-
pected, but not known, that when playing first the expectathings are positive even
against an optimal opponent.

5.22 One can think of chance events during a game, such as dicg ilthe same way
as hidden but preordained information (such as the ordeneotards in a deck). The key
distinctions are whether the players can influence whatmméion is revealed and whether
there is any asymmetry in the information available to edakep.

a. Expectiminimax is appropriate only for backgammon and bjmoiy. In bridge and
Scrabble, each player knows the cards/tiles he or she Eessbat not the opponents’.
In Scrabble, the benefits of a fully rational, randomizedtstyy that includes reasoning
about the opponents’ state of knowledge are probably simalin bridge the questions
of knowledge and information disclosure are central to gplag.

b. None, for the reasons described earlier.

c. Key issues include reasoning about the opponent’s bettedseffect of various actions
on those beliefs, and methods for representing them. Siakef Istates for rational
agents are probability distributions over all possibléestdincluding the belief states of
others), this is nontrivial.

Constraint Satisfaction Problems

Solutions for Chapter 6

6.1

There are 18 solutions for coloring Australia with threeazsl Start withSA which

can have any of three colors. Then moving clockwl can have either of the other two
colors, and everything else is strictly determined; thakess possibilities for the mainland,
times 3 for Tasmania yields 18.

6.2

a.

6.3

Solution A: There is a variable corresponding to each ofithpositions on the board.
Solution B: There is a variable corresponding to each knight

. Solution A: Each variable can take one of two valugs;cupied,vacant

Solution B: Each variable’s domain is the set of squares.

Solution A: every pair of squares separated by a knight'senie constrained, such that
both cannot be occupied. Furthermore, the entire set ofsguisconstrained, such that
the total number of occupied squares should:be

Solution B: every pair of knights is constrained, such thatwo knights can be on the
same square or on squares separated by a knight's moveioBdduinay be preferable
because there is no global constraint, although Solutiorag\the smaller state space
whenk is large.

. Any solution must describe @mplete-statéormulation because we are using a local

search algorithm. For simulated annealing, the successmtibn must completely
connect the space; for random-restart, the goal state neustazhable by hillclimbing
from some initial state. Two basic classes of solutions are:

Solution C: ensure no attacks at any time. Actions are to venamy knight, add a
knight in any unattacked square, or move a knight to any ackid square.

Solution D: allow attacks but try to get rid of them. Actiong&o remove any knight,
add a knight in any square, or move a knight to any square.

a. Crossword puzzle construction can be solved many ways. @mgleschoice is

depth-first search. Each successor fills in a word in the puzith one of the words in the
dictionary. It is better to go one word at a time, to minimibe humber of steps.

b. As a CSP, there are even more choices. You could have a wafimbéach box in

the crossword puzzle; in this case the value of each varialsléetter, and the constraints are

46

