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Problem solutions – Chapter 1

Kepler, Newton, & the mass function

Problem 1.21. External force on binary; collisions in globular cluster
(a) Consider external forces on a binary

Assume wide binary, rs = 10 AU = 1.5 � 1012 m. Find ratio of external force difference on the
two partners to the force exerted by the binary partners on each other. Each star has mass Ms = 1
M�.

(i) Effect of galactic center.  Mg � 106 M�, point source at rg = 25 000 LY = 2.4 � 1020 m. The
disruptive effect is due to the difference of the external force on the two stars in the binary. It will be
maximum when the two stars are aligned with the galactic center.

First consider the ratio of the two forces on one of the two stars,

Fg
Fs

  =  
Mg

rg2
  Ms

rs2
–1

 =  
Mg

Ms
  rs
2

rg2
 

(1.21.s1)

The radial component of Fg is krg–2 and its gradient is dFg/dr = –2kr–3. The ratio of the latter to the
former is

dFg/dr
Fg

  =  – 2 rg
–1 

or

dFg

Fg
  =  – 2 dr

rg
  =  –2 rs

rg
 

(1.21.s2)

where dr = rs when all three objects are coaligned.

Multiply (s1) and (s2) to find the desired ratio,

dFg
Fs

  =  –2 
Mg

Ms
  rs
3

rg3
  = 106  1.5 �1012

2.4 � 1020

3
 =  4.9 � 10–19 

(1.21.s3)

The difference force is negligible compared to that holding the binary together.

(ii) Effect of nearby star in spherical Globular cluster of N = 106 stars and radius Rglob = 15 LY.
= 1.42 � 1017 m.

Average distance d between adjacent stars is (volume per star)1/3,

d = Vs
1/3  = 

4�
3N

1/3
Rglob   =   2.29 � 1015 m = 15 000 AU

(1.21.s4)
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The force ratio is thus, from (s3),

Fn-s
Fs

   =   M�

M�
 1.5 � 1012

2.3 �1015

3
 = 5.6 � 10–10 

 

Again, the external difference  force is negligible for our assumption of uniform star density. But, in
the more dense center of a globular cluster, occasional close encounters can occur that could disrupt
the binary.

(b) Time for collision, within 10 AU, to occur in globular cluster, on average.

Find typical speed of star in globular cluster of radius Rglob = 1.4 � 1017 m and mass Mglob= 2
� 1036 kg. From virial theorem (2.14),

GMglob m
Rglob

  �  mv2

   v  � 
GMglob

Rglob
 =  3.0 � 104 m/s

Cross section for collision, � = �(10 AU)2 = 7.0 � 1024 m2.

The spatial density of stars, from (s4), is n = d–3 = 8.3 � 10–47 m–3.

Now the flux of stars is nv, and the number of collisions per second with a single binary is nv�.
Hence the time between collisions is the inverse of this, t = (n       v          �   )–1 = 5.7      �    1016 s = 1.8      �  109 yr,
which is ~1/10 the age of the globular cluster.

This is the typical time for a given star (or binary) to suffer such a collision. Since there are 106

stars, one expects an encounter every 2      �    103 years, for our assumptions. The increased density at
the center would markedly decrease the collision time.

– – –

Problem 1.22 – Finding and observing binary star systems (no solution)
– – –

Problem 1.23 – Find distance range where binary system is detectable as
both a visual and a spectroscopic binary.

Two 1-M� stars in circular binary orbit with i = 90° at distance D. Star separation s. Each star
orbits the barycenter with radius s/2 with period P. Let M be the system mass, M = 2M�.

Spectroscopy

Require line shift during the course of an entire orbit be at least (��/�)min = 3 � 10–5. From
classical Doppler shift (2),

��
�

  =  2 vc      =  2c   
2�(s/2)

P
(1.23.s1)
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From Kepler III (76), GMP2 = 4�2s3. Solve for the period, P = 2� (GM)–1/2 s3/2. Substitute into
(s1), to find

3 � 10–5  <   
GM 1/2

c   s–1/2

Solve for s,

s  <   105

3

2
  GM

c2
  = 3.3 � 1012 m = 22 AU

(1.23.s2)

Separation s must be small so velocities are high enough to get the required ��/�.

Imaging

Require the angular separation of the images at greatest separation to be ��  1.45 � 10–5 rad
(=3	). Since �� = s/D,

s  > 1.45 � 10–5 D (1.23.s3)

The separation s must be large so the images are resolved. The requirement is most severe at
large D. At the largest separation allowed by spectroscopy (s2), the maximum distance for imaging
is, equating (s1) and (s2),

3.3 � 1012  =  1.45 � 10–5 D
  

D = 2.2 � 1017 m  = 23 LY

Since the nearest stars are about 4 LY distant, the range where it might be observed as both a visual
and spectroscopic binary is only 4 to 23 LY. The latter distance is attained only if the separation is
at the maximum value allowed by spectroscopy.

Optical interferometry with resolution 10–3 arc second (1 mas), increases this distance to 23 000
LY, but since interferometry requires bright stars, the distance is much more limited. See Armstrong
et al. AJ 104, 2217 (1992) for an example (
 Cygni).

– – –

Problem 1.24 – Doppler shifts – 1st and 2nd order.
(a) What is range of fractional frequency shift around orbit, for Fig. 6?

Data: Circular orbit, observer in plane of orbit.

Star 1:  Max. frequency is when m1 approaches observer, at time t1. Minimum frequency is at
t3. From (2)

�max – �0
�0

  =  –  
vr t1  

c    ;   
�min – �0

�0
  =  –  

vr t3  
c

Thus,

�max – �min
�0

  =  –  
vr t1  – vr t3  

c
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Noting the 30 km/s speed of Star 1 in the diagram and the 50 km/s speed of the barycenter, the
radial velocity curve in the figure yields

��
� 1

  =  –  
20 – 80  � 103

3 � 108
  =  2.0 � 10–4

(1.24.s1)

Star 2: Similarly,

��
� 2

  =  –  
–40  – 140  � 103

3 � 108
  =  6.0 � 10–4

(1.24.s2)

(b)Second order Doppler for Star 2

Apply (7.40) to Star 2 to find fractional second order frequency shift during its transverse
motion,

�  =  1 – v
2

c2

1/2
 �0  =  1 – 90 � 103

3 �  108

2 1/2
 �0  � 1 – 1

2
3 � 10–4 2�0

 

� – �0
�0 rel

 =  – 4.5 � 10–8
(1.24.s3)

This is minuscule compared to the normal Doppler shifts from (a).

(c) Inclination required so 1/2 the reduced normal Doppler range of Star 2 (s2) matches
the transverse relativistic shift (s3)

At inclinition angle i, the maximum radial velocity shift is reduced by the factor sin i (Fig. 3).
Thus, from (s2) and (s3),

1
2

 ��
� 2

  sin i  =  
� – �0

�0 rel
 

i � sin i  = 4.5 � 10–8

3 � 10–4
 = 1.5 � 10–4 rad

 

The approximation is sufficiently precise for us to write,

i = 31	

The orbit must be almost exactly in the plane of the sky, within 31	, to sufficiently reduce the
normal Doppler effect to that of the second order. This is highly improbable.

One could ask students to explicitly calculate this latter probability. This would involve finding
the solid angle occupied by the normals to the allowed orbital planes and relating it to 4��

Note: In this question and solution, we sidestep the role of the 50 km/s system recession in
masking the second order effect.

– – –
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Problem 1.31 – Ellipse. Prove sum of two radii equals twice semi-major axis.
Sketch A is a simplified version of Fig., 8a.

(1.31A)

θ

b

a

 r

ae

 r�
h

x

Prove that

r + r
  = 2a (1.31.s1)

where the radial coordinate is defined as

 r(�)   =   a  1  e2
1 + e cos �

 (1.31.s2)

Find r
 in terms of ellipse parameters and r. From Sketch A,

r
2 = h2 + x2 (1.31.s3)

where h = r sin � and x = 2 ae + r cos �. Substitute into (s3) to find

r
2 = r2 + 4aer  cos �   + 4a2e2 (1.31.s4)

Now, from the analytical description of an ellipse (s2),

e cos �  = 
a 1–e2

r   – 1
(1.31.s5)

Substitute into (s4) to find that r
2 = (r – 2a)2, or

r
 = ±(r – 2a)

The negative root yields the required expression.

– – –



Problem solutions, Ch. 1 Astrophysics Processes
“Kepler, Newton, and the mass function” ©8/8/08 Hale Bradt

1–6

Table 1.32.s1 Ellipse parameters

Eccentricity e b/a rmin a

0.0 1.0 1.0

0.2 0.98 0.80

0.4 0.93 0.60

0.6 0.80 0.40

0.8 0.60 0.20

0.9 0.44 0.10

0.95 0.312 0.05

0.99 0.141 0.01

0.999 0.045 0.001

1.0 0.0 0.0

aFor a = 1

Problem 1.32 – Shape and focus location of ellipse
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(1.32A)

(a) Plot ellipse shape for several eccentricities,
using common major axis.

From (12), b/a = (1 – e2)1/2. We set a = 1.
Tabulate values in table and plot; see Sketch A.

 (b) Tabulate and plot the positions of the
focus  distance rmin (5).

The focus distance (5) from one end of the ellipse
is rmin = a(1 – e). Tabulate and plot positions on the
figure.

Eccentricities don’t have much effect on
appearance until e � 0.4. In the regime e � 0.4, the
focus position is a better indicator of eccentricity than
the ration b/a. But, in viewing an ellipse, the focus is
not visible!
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Problem 1.33 – Radial velocity curves for Phi Cygni (Fig. 7)
 (a) Ratio of masses

This ratio is the inverse of the ratio of amplitudes in the figure relative to the barycenter velocity
(solid horizontal line).

The value from the figure is about unity; the literature value of the mass ratio is: m1 /m2  = 1.04

Refs: Rach & Herbig ApJ 133 143 (1961). Armstrong et al. AJ 104, 2217 (1992).

(b) Period of orbit

Measure length of full cycle. The published value is P = 434.1 d

(c) Radial velocity of barycenter

The solid line indicates the barycenter is receding at 5.0 km/s

(d) Fractional frequency shift due to barycenter motion and “resolution” to detect it

��
�   =  – vr

c  =  –  5.0 � 103

3 � 108
  =  –1.7 � 10–5

Since ��/� = – ��/�, the required resolution is

 �
��

 =   1
–1.7 � 10–5

  = 6 � 104

(e) Actual speed of barycenter (not just radial component)

These data do not yield the actual value. Neither do they yield of individual masses.

(f) Do the data points indicate the presence of an eclipse?

One can not tell from the data of Fig. 7. An eclipse would be expected at radial velocity zero
(relative to barycenter) and there are no data points in these regions, which is not surprising because
the spectral lines from the two stars must merge as they approach a common wavelength.

The two stars have been resolved with optical interferometry and their separations range from  5
to 21 milliarcsec (mas), so they do not eclipse. At the distance of 234 LY, the 5 mas corresponds to
23 AU.

 (g) Explain the similar appearance of the two light curves.

Momentum conservation dictates the ratios of radial velocities relative to the barycenter always be
in the same ratio,

mlvr,1+ m2vr,2 =  0

vr,2
vr,1

 =  m1
m2

 (h) About when are stars closest together.

Stars have the maximum speed and greatest acceleration (force is greatest) at the closest point of
approach. The radial components of these quantities depend on the view direction. If one is viewing
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directly along the major axis, the radial component of the velocity will be zero at closest approach
with a large rate of change (steep slope or large radial acceleration). If viewing along the minor axis,
it would be at maximum with steep rise and fall (zero but rapidly changing radial acceleration). The
greatest radial speed and steepest slope are at and just after the first peak. The slope is markedly
steeper on the late (right) side of the peak than on the earlier (left) side. Thus the point of closest
approach must be just after the M1 peak.

(i) Find direction of observer (roughly).

+

Orbit of Star 2

Barycenter

Periastron
Apastron

v

v

v

v

M1
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Plane of sky
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R
ad

ia
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el
oc

ity
 (

km
/s

)

M1

Z1 Z2

M2

Time

M1

Z1

Radial velocity Star 2(1.33A)

(1.33B)

Assume the observer in the plane of the orbit. Sketch A defines two zeros Z1,2 and two maxima
M1,2. Sketch B shows their postulated approximate locations in a top view of the orbit.  The zeros
are where the line of sight (los) is normal to the track and the maxima are when the star is on the
line of nodes. At these points, the gravitational force (between them) has no radial (los) component.
Hence there is no radial (los) acceleration and the velocity curve will have zero slope. The line of
nodes, by definition, is the intersection of the sky and orbit that passes through the orbit focus
(barycenter in this case) and is normal to the view direction; see Fig. 11.

We have argued in Part h above that M1 must be just before periastron. Also the velocity at M1
is positive and hence receding. The observer must therefore be in the quadrant shown. Note also
that the times between zeros are unequal: Z1 Z2 > Z2 1. Thus periastron must be in the
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Z2 1 interval because Kepler II tells us the star velocity is greatest at periastron and least at
apastron.

 (j) Longitude of periastron

The longitude of periastron is defined as the angle from the line of nodes to the periastron
measured in the orbital plane in the direction of the receding object; see �p in Sketch B. (The
photographic and spectroscopic definitions differ by 180 deg; we quote the latter.) If M1 is to be
just prior to periastron as shown, the angle must be on the order of 30° (±15°??) as drawn. The
actual value is ~30° (Armstrong et al. AJ 104, 2217 (1992)).

– – –

Problem 1.34 – Satellite in orbit for photographing earth surface in 12 h.

(a) What kind of orbit?

A polar orbit (inclination 90°) would potentially do it as each bit of the earth’ surface would pass
under the orbit (not necessarily the satellite) each 12 hours so the scans are along the north-south
meridians. (Lower inclinations could work if the field of view (FOV) were sufficiently wide.) The
satellite must therefore be launched with an insertion velocity due north in the frame of the earth
center motion about the sun.  The earth’s rotation about its own axis carries the earth’s surface
eastward, so, relative to the surface, the satellite would have to be launched to the northwest. To
avoid populated areas, a launch over the ocean from the west coast, e.g. Vandenberg Air Force Base,
would be required.

(b) Altitude required to fully photograph earth surface if camera FOV is  circular with
angular radius, �c = 30°

As satellite altitude h increases, its orbital period P increases and the earth rotation angle in one
satellite orbit increases. To cover the entire surface along the earth’s equator with no overlapping at
the equator, the physical length along the equator encompassed in the FOV on a given transit must
equal the equatorial distance passing under the orbit in the time P. The earth rotation angle in the
time P is called �E. These statements lead us to two expressions relating h and �E which can be
solved for the two variables.

(i) Find an expression relating h and �E with the requirement that the time for the earth to rotate
�E matches the satellite period.

Apply Kepler III to satellite orbit and solve for P: GMP2 = 4�2(R + h)3
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P = 
2�

GM 1/2
 R + h 3/2 = k R + h 3/2 

(1.34.s1)

where  k = 2.285  10–11 (SI units). The earth rotation angle during a satellite orbit is

�E  =  PT
  2� (1.34.s2)

where T = 86164 s is the earth sidereal rotation period. Substitute (s1) into (s2) and solve for h,

h = �E
k
2/3

 – R (�E  in radians) (1.34.s3)

 (ii) Find another relation between h and �E with the constraint that the camera FOV just matches
the longitudinal angle �E along the equator. From the geometry, Sketch B,

 

sin �E
2

   = d
R

 

(1.34.s4)

tan �c  =   d
h + R 1 – cos �E

2

(1.34.s5)

Eliminate d from (s4) and (s5) and solve for h

h  = R 
sin �E/2

tan �c
 + cos �E

2
 – 1

 

(1.34.s6)

(iii) Solve, by trial and error, (s3) and (s6) for h and �E. Adopt trial values of �E to find that
which gives the same value for h from the two expressions. (I programmed my calculator to
calculate h1 – h2 and searched for a zero result.) The result is, for R = 6400 km and �c = 30°,

�E = 40.35°; h = 3430 km

From (s2), the orbital period of the satellite is 2.68 h which is intermediate between low earth orbit
(~1.5 h) and a synchronous orbit (~24 h).

– – –
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Problem 1.41 – Acceleration in polar coordinates

(1.41A)

(1.41B)

r2

r1

dr

r d� 

dr
d�

r2

r1

�1

�2

r1

r2
d�

r1

r2
dr�2

�1

d�

d�

From Sketch A,

dr = r d�  � + dr r 
 

where the hatted sybols are unit vectors. Take the time derivative, setting terms multiplied by a
differential quantity (d� or dr) to zero,

 dr
dt

  =  r d�
dt

 � + dr
dt

 r 

Take second derivative,

 d
2r

dt2
  =  dr

dt
 d�
dt

 �  +  r d
2�

dt2
 � + r d�

dt
 d� 
dt

  + d
2r

dt2
 r + dr

dt
dr
dt

 
(1.41.s1)

Now evaluate graphically the quantities d� and dr  (Sketch B),

 d�  = |�| d� –r   = – d�   r 

since the magnitude |� | is unity. Take the time derivative,

 d�
dt

  = – d� 
dt

  r (1.41.s2)

Similarly,

 dr = |r| d�  �  = d�  � 

so

 dr
dt

 = d� 
dt

 � (1.41.s3)

Substitute (s2) and (s3) into (s1), collect terms in r  and � , and let � = d�/dt, the angular velocity,
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  d
2r

dt2
  =  d2r

dt2
  – r�2  r + r d

2�
dt2

 + 2�  dr
dt

  �   

 

The left parenthesis contains the radial component of the acceleration while the right parenthesis
contains the azimuthal component. The expressions are in agreement with (16) and (17).

– – –

Problem 1.42 –Total energy and KIII for circular orbits.
(a) Derive Kepler III for circular orbit.

Fr = mar (Newton 2nd law)

–  GMm
r 2

    =  m –�2r (radial eq. of motion) (1.42.s1)

Rearrange terms and use �  2�	P, where P is the orbital period,

GMP2 = 4�2 r3 (KIII)

which agrees with the more general expresswion (45) for a = r.

(b) Find total energy ET of body in circular orbit

Sum kinetic and potential energies,

ET  =  1
2

 mv2   –  GMm
r  (1.42.s2)

From (s1) and � = v/r, one finds v2 = GM/r which, when used in (s2), gives

ET  = – 1
2

 GMm
r  

which agrees with the more general expression (52), again for a = r.

– – –

Problem 1.43 – Planets in elliptical orbits
Two planets of masses m1 and m2 orbiting massive object M with radii r2 = 9 r1 and identical

elliptical orbital shapes.

(a) Can planets have different angular momentum, and if so what is condition for
equality?

From (36),

 r( )   =   J2

G M m2
   1
1 + e cos
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In our case, the shapes are identical. Thus the eccentricity is the same for both cases. Thus we have
J2  rm2, so we see that J can indeed differ; it is proportional to the square of the planet mass. For
same angular momenta, we would require r1 m12 = r2m22 and thus, for our case,

 m2 = r1
r2

  m1  =  1
3

 m1 

 (b) Two objects of masses m1 and m2 in same orbit. What are their relative speeds?

There are three approaches.

(i) The speeds are the same. Gravitational acceleration is independent of mass. Thus if they start
out with equal velocities, the changes of velocity will be identical and hence so will the velocities at
later times. Think of Galileo and the Leaning Tower of Pisa.

(ii) Kepler III (45) tells us that P2  a3 with no dependence on mass. Thus with equal semi major
axes, the time to complete an orbit is the same for the two masses.

(iii) From Newton’s laws we found (37) that

 J   =    G M
a

1/2
  m b      m (Angular momentum of m;

M >> m)
(1.43.s1)

for fixed orbital shape and size (i.e. fixed a and  b.) We also know that, at periastron for example,
J = mvr for each mass. To satisfy (s1), J  m, the speed v must be the same for both masses.

(c) Increase central mass M a factor of 2. By what factor must v change so the orbital
track does not change.

From (s1), J  M1/2. At periastron, J = mvr. For fixed r and m, these two expressions tell us that
v  M1/2. In our case then, the speed must be increased a factor of  21/2.

– – –

Problem 1.44. Pluto energy, angular momentum, and period
Parameters:

a = 39.44 AU = 5.92   1012 m

e = 0.250 giving, from (12),  b/a = (1–e2)1/2 = 0.968

m = 0.17 mE =  1.0  10 24 kg.

M� = 2  1030 kg

(a) Total energy of planet.

From (52)

 Et  =  –  G M m
2a

  =  1.2 �1031  J 
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(b) Angular momentum with respect to sun

From (37),

 J   =    G M
a

1/2
  m b  = GM 1/2 m a1/2 b/a

 

= 2.7 � 1040 kg m2 s–1                              

(c) Orbital period

From (43),

 J
2m

  =  
�a b

P
   =   

�a2 1–e2 1/2

P
 

Solve for P

 P = 2m
J

 �a2 1–e2 1/2 
 

              = 7.9 � 102 s = 249 yr    

The actual value is 247.7 yr.

– – –

Problem 1.45 – Elliptical satellite orbit
A 200 kg satellite is in elliptical orbit with perigee at 400 km altitude and apogee at

geosynchronous altitude rs.

(a) Geosynchronous altitude

Require period of a circular orbit to be 1.0 sidereal day = 86164 s

From Newton and � = 2�/P,

–  GMm
r 2

    =  m –�2r

rs = GMP2

4�2

1/3

 
                    = 4.16 �107 m = 6.5 RE

(1.45.s1)

(b) Eccentricity of orbit

From (5) and (6),

rp = a 1–e ;  ra = a 1+e (1.45.s2)

Solve for eccentricity e,
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e  =  
rp – ra
rp + ra

  =  0.719
(1.45.s3)

where we used rp = RE + 400 km = 6.8  106 m and ra = rs = 4.2   107 m (from part (a)).

(c) Circularize the orbit at r = rs

Method: give forward boost when satellite at apogee. It will return to same point but the perigee
will be lifted. With just the proper amount of boost, it will become circular. The new greater semi
major axis represents the greater energy of the orbit, given it by the rocket boost.

Energy required:

From (52), write the final and initial energies of the orbit,

 Ef   =  –  G M m
2rs

 
  ;

 Ei   =  –  G M m
2ai

  =  –  G M m
2rs/ 1+e

 

where the initial semi-major axis ai = a = rs/(1+e), from (s2). The net energy required for the boost
is thus

Ef – Ei   =  +  G M m
2rs

 e   =    7.0  � 108 J

where M = 6 � 1024  kg is the earth mass, m = 200 kg is the satellite mass, rs from (s1) is the
synchronous radius, and e is from (s3).

(d) Decay of orbit

Impulses at perigee will lower the apogee without changing the perigee radius. The orbit thus
becomes less and less eccentric until it becomes circular at r = rp (under our idealized impulse
model). At this point the entire orbit is embedded in the atmosphere, so atmospheric drag (friction)
takes more and more energy from the satellite, always tending to keep the orbit circular because the
deepest portions of the orbit experience the greatest frictional forces. It thus spirals lower and lower
into the atmosphere (and faster and faster) toward re-entry.

Note that if system angular momentum is to be conserved during circularization, the perigee must
rise and the apogee decrease. See Prob. 4.54 and associated discussion in Sect. 4.5.

– – –

Problem 1.46 – Mass ejection by central object of binary.
Mass m orbits mass M with semimajor axis a and eccentricity e. Central mass M suddenly

becomes fM just when m is at periastron. The speed of the orbiting object m is maintained at that
moment. Also, M >> m.

(a) Find new semi-major axis, a
 in terms of a, e, f.

Write expressions for total energy, Et = Ek + Ep, before and after the change, from (52). Before
the mass loss,
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– GMm
2a

  =  1
2

mvp2 –  GMm
a 1–e

(Before) (1.46.s1)

and immediately after the mass loss,

– GfMm
2a


  =  1
2

mvp2 –  GfMm
a 1–e

(After) (1.46.s2)

Note that we choose to write the denominator of the rightmost term in terms of a and e rather than
a
 and e
 because the latter is unknown and because it would require we know whether, in the new
orbit, this orbital position is the periastron or apastron. Subtract (s2) from (s1) and solve for a
,

a
 = a 
f 1–e
2f –1–e

(1.46.s3)

As a check, for f = 1, a
 = a as it should. For a sudden increase to a huge mass, f >> 1, (s3) yields a

= a(1–e)/2. This is 1/2 the original periastron distance, as expected because the new periastron
would be right at the large mass.

(b) Find final eccentricity

Two cases: (i) final state periastron stays periastron and (ii) periastron becomes apastron.

(i) Periastron remains periastron

Equate the periastron distances before and after, from (5),

a 1–e   =  a
 1–e


Introduce (s3) for a
 and solve for e


 e
 =  
1 + e – f

f 
 

(1.46.s4)

Note that limits for f = 0, 1, and � give the expected results, as follows, respectively: e
 = �
(representing an unbound straight line), e
 = e (orbit does not change), and e
 = –1 (bound infinitely
narrow orbit). The latter was mentioned in the discussion above regarding the f >> 1 limit. See also
(ii) below.

(ii) Periastron becomes apastron.

This case occurs for large f which can be covered by (s4), but we do it separately. Again, equate
distances at time of mass change, from (6)

a 1 – e   =  a
 1 + e


Introduce (s3) for a
 and solve for e
,

 e
 =  
f – 1 + e 

f 
 

(1.46.s5)

Again limiting cases yield expected values. Note that (s5) and (s4) are the negative of each other.
Thus one can use (s4) for all cases if one interprets e
 < 0 as indicating the periastron became the
apastron.
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 (c) Tabulate examples, comment on trends and make sketches.

Evaluate (s3) and (s4) for the given values of e and f.

Table 1.46.s1 Semi major axes and eccentricities (a’/a)|e


f         e 0.0 0.0 0.5 0.5 0.7 0.7 0.9 0.9

0.5
a’/a =

�

e
 =

 1.0

a’/a =

<0.0a

e
 =

––

a’/a =
 <0.0

e
 =

––

a’/a =

<0.0a

e
 =

––

0.9 1.125 0.11 1.5 0.67 2.7 0.89 <0.0 ––

1.0 1.0 0.0 1.0 0.5 1.0 0.7 1.0 0.9

1.1 0.92 –0.09b 0.79 0.36 0.66 0.55 0.37 0.73

2.0 0.67 –0.5 0.40 –0.25b 0.26 –0.15 0.095 –0.05

100c 0.5 –0.990 0.25 –0.985 0.15 –0.983 0.05 –0.981
aa
	a < 0 or � signifies unbound orbit.

be
 < 0 indicates the periastron becomes the apastron.

cAt large f, the new semimajor axis is about half the original periastron distance because the orbit just grazes the
central mass at the new periastron. Such orbits are very narrow, with e
 � 1 (or –1 in table).

Compare f = 1.0 and 0.9. Decreasing the mass (i.e., f) at perisastron raises the apastron (thus
increasing a and e) until eventually the orbit becomes unbound (e
 = 1).

Compare f = 1.0 to f = 1.1. Increasing the mass (i.e., f) for an eccentric orbit lowers the original
apastron, reducing a and reducing eccentricity, until it becomes circular (e
 = 0). Thereafter, with
further mass increase) the apastron becomes the periastron as the orbit becomes increasingly
eccentric.

See sketch A of two final orbits for f = 0.9 and 1.1 that initially had e = 0.7 (dark ellipse).

f = 1.10
e� = 0.55

f = 0.90
e� = 0.89

f = 1.00
e = 0.70

Focus

(1.46A)

 (d) Find the condition for circularization of the orbit, fc(e), and tabulate values of fc
and a
/a for e = 0, 0.5, and 0.9, and comment.

The requirement is that the periastron distance become a
; see Sketch B.
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Table 1.46.s3. Mass parameter for
unbinding of orbit

e 0 0.5 0.9

fu,per 0.5 0.75 0.95

fu,ap 0.5 0.25 0.05

Before

After

a(1–e) = a�

a� a

(1.46B)

a(1 – e) = a


Substitute a
 from (s3),

1 – e  =  
fc 1–e
2fc –1–e

and solve for fc, the circularization factor

 fc = 1 + e (1.46.s6)

The factor is greater than 1, so mass must be added to the central object to circularize the orbit.

Tabulate:

Table 1.46.s2. Circularization mass
parameter and semimajor axes.

e 0 0.5 0.9

fc 1 1.5 1.9

a
/a 1 0.5 0.1

Comment: The more eccentric the original orbit, the more mass has to be added (to the central
object) to circularize it. The semi major axis decreases as mass is added.

(e) Find condition on f for orbit to become unbound and tabulate

This occurs when f is reduced to the point where a
  �, or, from (s3), when 2f –1 – e = 0, or

fu,per = 1 + e
2

(Unbinding
condition)

(1.46.s7)

where we add the subscript “per” to indicate
the mass loss takes place when m is at
periastron.

Tabulate (Table s3).

Comment: If the original orbit is eccentric, it
takes less mass decrease to unbind than if it is
initially circular.

Consider the mass loss at apogee. The
expressions (s1) and (s2) would have the apogee distance in the rightmost terms, or a(1+e). The
changed sign for e carries through the algebra so that, we find
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fu,ap = 
1 – e
2

(1.46.s8)

Tabulate this for the three values of e in Table s3. We find that more mass loss is necessary in this
case. A certain fractional mass loss, say 1/2, increases the (negative) potential energy by a factor of
2. For small negative potentials (as at apastron) this is a smaller absolute change of energy than it is
for large negative potentials (as at periastron). Thus the total energy is changed less, possibly not
enough to unbind the apastron case, so the central mass must be reduced to even smaller values to
unbind. The effect is even more pronounced for orbits of large eccentricity, because, for a given a,
the orbiting mass is even farther removed from the central mass at apogee.

(f) Consider unbinding for arbitrary masses and comment on relevance to supernovae.

Examine the expressions for total energy, Et = Ek + Ep, of such a system, given in (77) and (78),
for an elliptical orbit with eccentricity e and equate them as in (s1) for periastron passage just before
the mass loss (we assume the mass loss takes place at periastron),

 –  
G MT  


2as
  =   1

2
 
 vs,p

2   –  
G MT  

as 1–e

(1.46.s9)

We can treat the MT,
 problem exactly as the M,m problem solved above if we specify that the
mass change parameter f applies to MT rather than to only one (central) mass as before. Just after
the mass loss and following (s2), we write

 –  
G fMT  



2as

  =   1

2
 

 vs,p

2   –  
G fMT  



as 1–e
(1.46.s10)

In this case the kinetic energy terms are not identical in the two equations because 

  
, but since


 and 
 appear in all three terms of their respective equations, they cancel and hence do not enter
the algebra. Proceeding as before leads to an expression for the new semimajor axis ratio as
/as
identical to that for a
/a (s3). The unbinding is defined as before by as
  �, and this leads directly
to the unbinding results (s7) and (s8).

These two equations tell us that, for a system with circular orbits, the loss of 1/2 the total system
mass will result in the two stars becoming unbound. If the mass is lost in a supernova explosion,
our calculation would apply if the material is ejected isotropically in the frame of the collapsing star
so as not to change its velocity (via a jet effect). In addition the calculation is valid only if the ejected
mass is outside the two orbits and is spherically distributed. Otherwise it would have a residual
gravitational effect on the system.

– – –

Problem 1.47 – Express eccentricity in terms of constants of motion, Et and J
as given in (53).

From the definition of eccentricity (12), b/a = (1–e2)1/2, write eccentricity e in terms of a and b,

 e = 1 – b
2

a 
2

1/2 (1.47.s1)
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We found that our trial solution (an ellipse) would satisfy the equation of motion only if the
following condition was met (35),

 b
2

a2
    =    J2

G M m2a
 

(1.47.s2)

where we divided both sides by a. Invoke the expression for total energy (52), namely Et =
–GMm/a, and solve for a,

a = GMm
2 –Et

(1.47.s3)

Substitute (s3) into (s2), and then (s2) into (s1), to obtain

e = 1 + 2Et J2

GM 2 m3

1/2

as required. Note that Et < 0 for a bound system.

– – –

Problem 1.51 – Relative sizes of orbits from different reference frames.

r2

r1

rb

m1

m2

s = r2 – r1

s
Barycenter

Origin

(1.51A)

m1

m2 r2 r1

Origin at barycenter

s

(1.51B)

(a) Show expressions (57) and (58) relating position and separation vectors follow
from definition of barycenter, if the origin is chosen to be at the barycenter.

The definition of the barycenter is (Sketch A),

rb = m1r1 + m2r2m1  + m2
(1.51.s1)

where the origin is at an arbitrary location. In our case, rb = 0, so we have

0 = m1r1 + m2r2 (1.51.s2)

The separation vector is defined as

s  r2 – r1 (1.51.s3)

Eliminate r2 from (s2) and (s3) to obtain
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 r1  =  – m2
m1  + m2

  s (1.51.s4)

which is (57) and similarly,

r2  =  m1
m1  + m2

  s (1.51.s5)

which is (58).

(b) Compare sizes of orbits

m1 = 3 m2
m2

1
3

(1.51C)

The orbits are drawn for an eccentricity e = 0.74 in Sketch C. Both have the same eccentricity.
The masses are at a ratio of 3:1 from the barycenter at all times, by definition of the barycenter. The
orbit sizes for m2 and m1 are thus in the ratio 3:1 in the barycenter frame. In the frame of one of the
masses, the orbit size of the other mass relative to that of m1 in the barycenter frame is  4:1.

(i) m2 relative to m1: 4 units.

(ii) m1 relative to m2: 4 units

(iii)  m1 relative to barycenter: 1 unit

(iv) m2 relative to barycenter: 3  units

The requested relative sizes are thus 4:4:1:3

– – –

Problem 1.52. Angular momentum and energy.
(a) Demonstrate that the total angular momentum in the barycenter frame can be

written in terms of the reduced mass as 
s2 �. From (72),

J = m1 r12 � + m2 r22 � (1.52.s1)

Substitute (57) and (58), given above in (1.51.s4) and (1.51.s5), into (s1) to find

J  =  m1m2
m1  + m2

  s2 �  = 
 s2� (1.52.s2)

where we introduced the definition of the reduced mass (59), 
  m1 m2/(m1 + m2).

(b) Repeat for the total energy. Find (77) from (79).
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The total energy in the barycenter in the usual manner is (79)

Et   =   1
2

 m1  v1
2    +  1

2
 m2  v2

2    –   
G m1m2

s
(1.52.s3)

The definition of the relative velocity is

vs  =  v2  – v 1 (1.52.s4)

From the derivatives of r1 and r2 in terms of s, (57) and (58), or from the total momentum being
zero in the barycentric frame (see text), we have the velocity relations, (83) and (84),

v1  =  – m2
m1  + m2

   vs
(1.52.s5)

v2   =   m1
m1  + m2

   vs
(1.52.s6)

Substitute (s5) and (s6) in scalar form into (s3), or note that vs2  v · v, to find

Et   =   1
2

 
m1m2

2

m1 + m2 2
 +  

m2m1
2

m1 + m2 2
 vs2    –   

G m1m2
s

Et   =   1
2

 
m1m2

m1 + m2
  vs2    –   

G m1m2
s

Apply the definition of reduced mass (59), which also tells us that m1m2 = 
MT, to obtain the
desired result (77),

Et   =   1
2

 
 vs2    –   
G MT


s

– – –

Problem 1.53 – Total masses of binary systems
(a) Kruger 60.

Use data in caption to Fig. 1. P = 44.6 yr, as = 9.5 AU. From (75), Kp III is

G MT P2 = 4�2 as3 (1.53.s1)

Substitute given values for as and P in SI units and solve for MT, to find that

MT  =  
4�2 as3

GP2
                     

                  = 8.58 � 1029 kg = 0.43 M� 

(`1.53.s2)
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This is consistent with both stars being M stars. An M5V star has mass ~0.2 M� (Allen’s
Astrophysical Quantities, Fourth Edition, Ed. Cox).

 (b) Find sum of the masses MT (and the individual masses) of the binary in Fig. 6.

Given from figure: P = 30 d, v2 = 90 km/s, v1 = 30 km/s with circular orbits.
The velocities can be expressed in terms of the orbit radii,

v1  = 
2�r1

P
 ;  v2  = 

2�r2

P
 

(1.53.s3)

The relative semi-major axis is, from the figure,

as = r1 + r2 = P
2�

 v1  + v2
(1.53.s4)

where we eliminated the radii with (s3). Evaluate (s4) for as to find

as = 4.95 � 1010 m = 0.33 AU

We thus have the parameters needed to substitute into (s2). Doing so yields

MT = 1.07 � 1031 kg = 5.3 M�

Find m1 and m2. From barycenter definition, m1r1 = m2r2, so m1/m2 = 3, and MT/m2 = 4, so

 m1 = 3
4

 MT = 8.0 � 1030 kg = 4.0 M�

 m2 = 1
4

 MT = 1.7 � 1030 kg = 1.33 M�

where MT = m1 +m2.

(c) Find MT for � Cen (Fig. 2)

Given: the major axis is foreshortened 2/3 due to its projection on the sky. From the caption, we
find the distance to the system is D = 4.4 LY and the binary period P = 79.9 years.

First, find as. On the figure, measure the angle subtended by the projected major axis (periastron
to apastron, using the angular scale on the figure); it is about �� = 22.5�. Multiply by 3/2 to remove
the projection effect and by D get the physical major axis 2as. Then divide by 2 to obtain, finally

as = 3.43 � 1012 m = 23 AU.

where we took care to use SI units for the angle (rad) and distance (m).

Substitute as and P into (s2) to obtain

MT = 3.75 � 1030 kg = 1.9 M�
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This result may be accurate to ~5%. It is therefore roughly consistent with the stellar types for G2V
and K1V stars. The masses in Table 4.2 for G0V and K0V total 1.84 M� and the total for G5V and
K5V is 1.59 (Cox AQ4). We might therefore expect MT � 1.75 (by interpolation).
The actual masses are 1.09 M� and 0.90 M� to a precision of about 0.01 M� according to
Demarque et al. Ap J 300, 773 (1986). The total, 1.99 M�, is also roughly consistent with our
result. These masses do not agree with those tabulated for the stated stellar types, probably because
the masses for a specific spectral type depend on the evolutionary state of the star; see the
Demarque paper.

– –

Problem 1.54 – Moon’s orbit
Given:

Orbit: e = 0.0549, Psidereal =  27.32 d = 2.36 � 106 s

Masses:

mM = 1/(81.3) mE  where mE = 5.974 � 1024 kg

    = 7.353 � 1022 kg

Physical radii:

RE,mean = 6371 km

RM,mean = 1738 km

(a) Find percentage difference from unity:

(i) Ratio of major and minor axis compared to unity
From (12),

 a
b

  =  1
1 – e 

2 1/2
  =  1.0015

so the percentage difference is 0.15%.

(ii) Ratio of apogee and perigee distances compared to unity
From (5) and (6)

 rmaxrmin
  =  

a 1+e
a 1–e

   =  1.116

so the percentage difference is 11.6%.

Comment: The orbit is very close to circular, but the focus is substantially displaced.

 (b) Which orbit do these ratios describe?

They apply to both the orbit about the barycenter and the relative orbit about the earth center. The
elliptical orbits have different sizes but they have the same shapes. Hence the ratios based on shape
alone are the same for both.

(c) Absolute values of apogee and perigee distances

Find relative semi-major axes from Kp III (76). From (76), we have
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 as = GMTP2

4� 2

1/3
 = 3.848 � 108 m = 60.40 RE 

(1.54.s1)

where MT  = mE + mM = mE(1 + 0.01230). The relative apogee and perigee distances are thus

 rrel,a =  as 1+e  = 4.059 � 108 m = 63.71 RE 

 rrel,p =  as 1–e  = 3.637 � 108 m = 57.09 RE 

(1.54.s2)

These distances are between the centers of the earth and moon. They are relative to the earth (or
moon) center because Kepler’s third law contains the relative semi-major axis as, not that of the
orbit of one or the other body about the barycenter.

(d) Distance earth center to barycenter at apogee and perigee

mE

mM rM rE
s

(1.54A)
Barycenter

From definition of barycenter we have (58)

 rE = –  mM
MT

 s 

where rE is the varying distance of the earth from the barycenter and s is the relative radial
coordinate (distance between moon and earth centers).

At apogee, s = rrel,a = 63.71 RE where the latter value is from (s2). Hence

 rE,a   =  mM
MT

 rrel,a = 0.77 RE 

This is less than rE but it is a substantial fraction of it. The barycenter is within the earth.

At perigee, s = rp,rel = 57.09 RE. Hence

rE,p   =  mM
MT

 rrel,p = 0.67 RE

The two differ by ~640 km, a substantial distance.

 (e) Angular size of moon and relation to solar eclipses

(1.54B)
�M 2RM

rrel,a

RE

The full angle subtended by the moon from the closest point on the earth is, at apogee (Sketch
B), invoking again (s2),
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�M,a  =  2RM
rrel,a – RE

  = 8.701 � 10–3 rad = 1795�

At perigee,

�M,p  =  2RM
rrel,p – RE

  = 9.729 � 10–3 rad = 2007�

Compare to the sun’s diameter (at mean earth distance) 2 � 960� = 1920�. The moon can totally
cover the sun at the lunar perigee but not at the lunar apogee. Total solar eclipses can not occur at
apogee.

– – –

Problem 1.61 – Understanding the mass function
(a) Write the mass function for  star #2, similar to that for star #1 (88).

We interchange the subscripts 1 and 2 in (88) to obtain

m1
3  sin3i 

m1  +  m2
2
    =    

4�2

G P2
  a2  sin i 3 

 which is also in the text (90).

(b) Why is it appropriate to call this the mass function for star #2.

Because the measured quantity, a2 sin i is that of the orbit of star #2.

 (c) Show that the measured value of f2 is a lower limit on m1.

Examine the equivalent of (89)

  f2       
m1

3  sin3i 

m1  +  m2
2
 

Hold f2, the measured quantity, constant. The value of m1 depends on the value of sin i and of m2.
By inspection, the minimum value of m1 occurs when sin i is maximum (sin i = 1) and when the
denominator is at minimum, i.e., when m2 = 0. Hence

 f2   =    
m1,min

3   �1 

m1,min  +  0 2
  =  m1,min

Hence,

m1 > f2

– – –
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Problem 1.62 – Masses of stars in Fig. 6 binary for i = 30°
Use lower curve (data) only, not the upper sketches.

(a) By inspection, what can one say about the eccentricity of the orbit.

To the extent that it can be shown to be a pure sine curve, the orbit must be a circular. From the
geometry of Fig. 3a and (92), the radial component of velocity for a circular orbit is

vr(t) = v1 sin i sin �t

which shows that the temporal variation is strictly sinusoidal.

(b) Evaluate the mass functions for m1 and m2. Are they consistent with the masses
given in (98).

From (98), m1 = 4.0 M�, m2 = 1.3 M�. From the plot, P = 30 d, v1 sin i  = 30 � 103 m/s, v2 sin
i  = 90 � 103 m/s.

The mass function for m1 is given in (98), repeated with more precision here,

f1 =    P
2�G 

  v1  sin i 3 = 1.669 � 1029 kg  = 0.0839 M�
(1.62.s1)

This is less than the m2 = 1.3 M� quoted in (98), so it is consistent with it. (We aergued in the text
that the mass function gives a lower limit to the partner star mass.)

The mass function for m2 is

 f2 =    P
2�G 

  v2  sin i 3 = 4.506 � 1030 kg  = 2.266 M�
(1.62.s2)

This is less than the m1 = 4 M� quoted in (98), so it too is consistent with it.

 (c) Constraints on the masses if i < 30° (from absence of eclipse).

We have

 f1  =  
m2

3  sin3i 

m1  +  m2
2

(1.62.s3

and

 f2  =  
m1

3  sin3i 

m1  +  m2
2
  

(1.62.s4)

Consider f1. The smallest value of m2 occurs when sin i is at its largest allowed value, 0.5, and when
m1 << m2. Thus, invoking the value for f1 (s1),

0.0839  =  
m2

3 0.53 

 m2
2
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giving the minimum m2 as 8 f1, and similarly the minimum m1 as 8 f2,

m2 > 8 � 0.0839 M� = 0.67 M�

m1 > 8 � 2.266 M� = 18.1 M�

These are the requested new limits. They are much more stringent.

(d) If the inclination is exactly 30°, what are the masses.

Solve the mass functions (s3) and (s4) for the two masses, given i = 30°.
Take the ratio of the functions to find,

m1
3

 m2
3

   =  2.266 M�

0.0839 M�
 = 27

and hence m1 = 3 m2. Plug this into (s3), and solve for m2,

0.0839 M� =  
m2
3 0.5 3

 4 m2 2
 

m2 = 10.74 M�

while m1 is 3 times this,

m1 = 3 m2 = 32.2 M�

Inclination makes a big difference!
– – –

Problem 1.63. A0620–00 a neutron star or a black hole.
Given: the Doppler curve of the optical partner of a binary which yields P = 0.323014±0.000004

d, and ��/� = A sin (2�/P)t where A = 1.523 (± 0.027)  10–3, where barycenter motion has
already been removed. The optical mass is mo > 0.7 M� and the inclination i < 50°.

The curve is sinusoidal so the orbit is quite circular. Invoke the mass function equation for a
spectroscopic binary with a circular orbit (95),

 mx3  sin3i 

mo  +  mx
2
    =    P

2�G 
  vo  sin i 3 (1.63.s1)

where the subscripts refer to the x-ray and optical partners. The maximum of the Doppler curve
gives the speed modified by the inclination, according to the Doppler relation,

 ��
� max

 =   vo  sin i
c  
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The constant A = (��/�)max, so one has

 vo  sin i  = A c  = 4.57 � 105 m/s
     = 457 ± 8.1 km/s

(1.63.s2)

The error introduced by the period P (about 1 part in 105) contributes negligible error to the right
side of s1. (Recall that percentage errors get added in quadrature for the error of a product.)

Now examine the left side of (s1). The lowest possible value of mx is when sin i is at maximum,
sin imax = sin 50° = 0.766, and when mo is at a minimum, mo,min = 0.7 M�. The value of mx is
further lowered when vo sin i is 2� (= 16 km/s) below the measured value, so

 vo  sin i min  = 457 – 16 = 441 km/s (1.63.s3)

The mass function equation for lower limit on mx is thus

 mx3  sin3imax 

mo,min  +  mx
2
    =    P

2�G 
  vo  sin i min

3

The right hand side, fx, is completely determined from the given period and (s3), giving

f  = 5.66 � 1030 kg = 2.83 M�

so we have,  from sin imax and mo,min,

 
mx3  0.766 3 

0.7  +  mx
2
    =  2.83 

(1.63.s4)

where we have dropped the M�
 symbols so all values and unknowns are in units of solar masses.

This equation (s4) is cubic and is easily solved by trial and error, if you program your calculator
appropriately. The result turns out to be mx = 7.5 M�. Since we used values to force mx to its
lowest level consistent with the data, we conclude that

mx > 7.5 M�

which suggests strongly that it is a black hole according to the given criterion.

Reference: McClintock and Remillard, ApJ 308, 110 (1986).

– – –

Problem 1.64 – Find mass function for optical partner of Cyg X-1 from the
data of Fig. 12, and confirm that the compact partner is � 6 M�.

Given from text and fig. caption: Circular orbit, P = 5.60 d and amplitude of Doppler curve, vopt
sin i = 73.8 km/s and mopt = 30 M�.

The optical mass function for a circular orbit is, from (95),
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  fopt  =   P
2�G 

  vopt  sin i 3      

= 4.641 � 1029 kg 
 = 0.233 M�            

so that (95) becomes

 mx3  sin3i 

mopt  +  mx
2
    =    0.233 M�

Set mopt = 30 M� and sin i = 1.0 to find the lowest allowed value of mx. Solve, by trial and error,
for mx to find m    x     > 6.8 M    �    . The black-hole argument is quite strong.

– – –

Problem 1.71 – Detection limits in exoplanet searches.
Consider a distant star of 1 M� and find the strength of detectable signals for two cases: an

earth-like planet at 1 AU and a Jupiter-like planet at 5.2  AU. For each case, consider two detection
methods, timing and spectroscopy. In the former, the star is a radio pulsar with well defined pulses
and in the latter it has well defined spectral lines. Compare your results to the detectable limits given
in the text. Let i = 90° and assume a circular orbit.

(a) For the pulsing star of 1 M�  and earth-like planet at 1 AU, what is the range of
timing delays?

mE = 6 � 1024 kg; 1 M� = 2 � 1030 kg; 1 AU = 1.5 � 1011 m.

For the timing delays we need the radius of the orbit of the star about the barycenter. At one
instant of time, find the position xB of the barycenter relative to the star. Let x = 0 be at the center of
the star and xp the position of the planet. From the definition of the barycenter,

xB  =  
0 + mpxp

M  + mp
  �  mE

M�
 xAU

= 4.5 � 105 m       

(1.71.s1)

for a sun-earth system. This is radius of the star’s orbit about the barycenter, a modest 450 km. The
corresponding delay is

�� =  xB/c = ±1.5 ms (1.71.s2)

This is comparable to the changing delays of PSR 1257+12 (see text) and is much greater than the
~15 
s timing precision possible with a rapidly rotating pulsar such as this (spin period 6 ms).

 (b) Maximum radial velocity of the star

The velocity is the circumference of the orbit (of radius xB) divided by the 1-year period,

v = 
2�xB

Porb
 = 

2� 4.5 � 105 m

3.16 � 107 s
  = 0.089 m/s

 

(1.71.s3)
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This is much less than the spectroscopic ~3 m/s precision threshold mentioned in the text. An
earth-like planet would not be detected through the motions of its parent star with this threshold.

Note: the fractional shifts of the PSR 1257+12 spin period are tiny (Fig. 15a) because they are
esssentially a measure of the parent pulsar speed in its orbit, which is minute compared to c – as is
the star’s speed in (s3). The fractional spin period change is

 �P
P

 = – ��
�   =  vr

c

which in our case, from (s3), equals 3 � 10–10.

Each of the spin periods plotted in Fig. 15a was obtained over a ~2-day period, or 3 � 107 spin
periods. The 15-
s timing precision thus yields an average period over two days accurate to (15

s)/(3 � 107) = 5 � 10–13 s, which is comparable to the error bars in the figure.

(c) Repeat (a) and (b) for a Jupiter like planet

 mJ = 318 mE, PJ = 11.86, rJ = 5.2 AU.

The barycenter distance is, from (s1),

xB,J   �  mJ
M�

 x5.2 AU           

      = 7.4 � 108 m       

The barycenter is just barely outside the solar surface at 7.0 � 108 m.

�� =  xB,J/c = ± 2.5 s (1.71.s2)

which is also well above the detection limit for a 6-ms pulsar.

The orbital velocity of the star is

v = 
2�xB,J

PJ
 = 

2� 7.4 � 108 m

3.75 � 108 s
  = 12.4 m/s 

This is significantly, but not hugely, above the threshold mentioned in the text, ~ 3 m/s. Jupiters can
be detected with this technique and they are.

END


