Automata, Computability and
Complexity with Applications

Additional Exercises

Elaine Rich

Part I: Introduction
1 Why Study Automata Theory?
2 Languages and Strings

1) Let L be the language {Austin, Houston, Dallas}. How many elements are there in L*?
Countably infinitely many.

2) LetX={a, b, c}. How many elements are there in X*?
Countably infinitely many.

3) Let L ={w € {a, b}* : every a in w is immediately followed by a b}. List the first six elements in a
lexicographic enumeration of L.

€, b, ab, bb, abb, bab
4) LetL={we {1,2,3}*:|w|iseven}. List the first twelve elements in a lexicographic enumeration of L.
g 11,12,13,21, 22, 23,31,32,33,1111,1112

5) Are the following sets closed under the following operations? If not, what are their respective closures?
a) The even length strings over the alphabet {a, b} under Kleene star.

Closed.
b) The odd length strings over the alphabet {a, b} under concatenation.
Not closed. The closure is all strings over the alphabet {a, b} with length at least 1.

6) For each of the following statements, state whether it is 7rue or False. Prove your answer.
a) VL(LHY =L".

True.
b) VL((L*¥) =(L)*).
True.
©) VL(L*=L U D).
False. L' @ =L". If L= {a}, then L* contains &, but L' does not.
d) VL, Ly, Lz (L1L2Ls)* = Li*Lo*Ls*).
False.
e) VL, L, ((Li* U L*) = (L* U L*)*).

False.

Chapter 2 0

f) VL(L*L=L".
True.
g) VL, Ly, Ly (Li* (L2 Ls)" = (Li* Ly O Li* Ly)).
False.
h)y VL (D L*=0Q).
True.
i) VL(LD=L*.
False. L& =O.
D VL, Ly (L - L) = (L2 - Ly)).

False. Counterexample:
LetLl = {a} and Lz = @ Then L1 = Lz = {a}, but Lz -L] = @

k) VL, Ly, Ly (L1 Lo) W (L1 L3))* = (L1 (L2 U L3))*).
True.
D VL(((L v {e)* (Lw {eh)*)*=L").
True.
m) VL ({ef L =L").
False. Any L that does not contain € is a counterexample.
n) VL, L, where L # L, (L1 L) # (L Lv)).

False. Counterexample:
LBtLl = @ and Lz = a*. Then L1 Lz = @ = Lz Ll.

o) IfL,- L, is finite, then at least one of L, or L, must also be finite.

False. Counterexample:
Let L; = {a} U b*. Let L =Db*. Then L; - L, = {a}, which is finite. But neither L, or L, is.

p) The set of strings that correspond to binary encodings of positive integers is closed under concatenation.

True.

Chapter 2 1

3 The Big Picture: A Language Hierarchy

1) [Ben Wiedermann] Using the technique we use in Example 3.8 to describe addition, describe exponentiation as
a language recognition problem.

Problem: Given two nonnegative numbers » and m, compute n".
Encoding of the problem: We transform the problem of computing #” into the problem of checking
whether a third number p is the result of raising » to the m power. We can use the same encoding we used
in Example 3.5.
The language to be decided: INTEGEREXP =
{w of the form: <integer>**<integer,>=<integer3> : each of the substrings <integerl>,
<integer2> and <integer3> is an element of [0 — 9]" and integer3 = integer,"*“>.

2) [Ben Wiedermann] Consider the problem of computing the length of a route in a weighted graph. Formulate
this problem as a language recognition problem. Assume that a route is given as a sequence of edges to be
traversed.

Problem: Given a sequence of edges in an undirected graph, compute the length of the route that is defined
by that sequence of edges.
Encoding of the problem: We transform the problem of computing the length of a route into the problem of
checking a proposed length to see if it is correct.
The language to be decided: ROUTELEN =

{w of the form: <edge,>/<edge,>/ ... /<edge,>/<k> : each of the substrings edge; describes an

edge (and its weight), the endpoint of edge; = the starting point of edge;.1, and k is equal to the

sum of the edge weights}.

3) Consider the following problem: Given a database D and a query O, what result is returned when Q is executed
against D?

L={<D, O, R>: R is the result of executing Q against D}.

Chapter 3 2

4 Some Important Ideas Before We Start

1)

2)

3)

4)

[Ben Wiedermann] Describe in clear English or pseudocode a decision procedure to answer the question:
“Given a list of integers N and an individual integer 7, does N correspond to a prime factorization of n?

decidefactor(n: integer, N: list of integers) =
result=1
For each element i of N do:
If i is not prime, then halt and return False.
result = result * i.
If result = n then halt and return True. Else halt and return False.

Recall the function chop(L) defined in Example 4.10. Chop(L) = {w:3x € L (x =x1cx2, X1 € Z1*, x2 € X%, c €
21, |xi| =[xz, and w = x1x2)}. What is chop({a"b* : n > 0})?

{a">' : n > 1 and odd}.
Are the following sets closed under the following operations? Prove your answer. If a set is not closed under
the operation, what is its closure under the operation? Assume an alphabet £ = {a, b}.
a) FIN under complement.
No, which we prove by counterexample. Let L = {a}. L is finite. But —L is infinite.
b) INF under complement.
No, which we prove by counterexample. Let L = {a, b}*. L is infinite. But —L = & is infinite.

¢) FIN under reverse.

Yes. For any language L, there is a one-to-one correspondence between the elements of L and L®, so the
cardinalities of the two sets are the same.

d) INF under reverse.

No, which we prove by counterexample. Let L = {a}. L is finite. But —L is infinite.
e) FIN under Kleene star.

No, which we prove by counterexample. Let L = {a}. L is finite. But L* is infinite.
f) INF under Kleene star.

Yes. For any language L, every string in L must also be in L*. So L* has at least as many elements as L
does.

[Ben Wiedermann] Let £ = {a, b, c}. Let S be the set of all languages over X. Let f be a binary function
defined as follows:
fiSxS—>S
fx,y)=xy
Answer each of the following questions and defend your answers:
a) Is fone-to-one?

No, f'is not one-to-one. For any language L, L &= .

Appendix B 3

b) Isfonto?
Yes, fis onto. For any language L, L{e} = L.
¢) Isfcommutative?

No. f'is not commutative because concatenation is not commutative. Counterexample: {a}{b} = {ab}, but

{b}{a} = {baj.

Appendix B 4

	Part I: Introduction
	1 Why Study Automata Theory?
	2 Languages and Strings
	3 The Big Picture: A Language Hierarchy
	4 Some Important Ideas Before We Start

