1.1 If the current in an electric conductor is 2.4 A, how many coulombs of charge pass any point in a 30-second interval?

$$I = 2.4A$$
, $\Delta t = 30s$
 $Q = I \cdot \Delta t$
 $Q = 72C$

1.2 Determine the time interval required for a 12-A battery charger to deliver 4800 C.

$$I=12A$$
, $Q=4800C$
 $\Delta t = \frac{Q}{T}$
 $\Delta t = 400s$

1.3 A lightning bolt carrying 30,000 A lasts for 50 micro-seconds. If the lightning strikes an airplane flying at 20,000 feet, what is the charge deposited on the plane?

$$I = 30,000A$$
, $\Delta t = 50ms$
 $Q = I \cdot \Delta t$
 $Q = 1.5C$

1.4 If a 12-V battery delivers 100 J in 5 s, find (a) the amount of charge delivered and (b) the current produced.

$$V = 12V, \ \Delta W = 100J \text{ in 5s}$$

$$\Delta Q = \frac{\Delta W}{V}$$

$$\Delta Q = 8.33C$$

$$\Delta I = \frac{\Delta Q}{\Delta t}, \ \Delta t = 5s$$

$$I = 1.67A$$

1.5 The current in a conductor is 1.5 A. How many coulombs of charge pass any point in a time interval of 1.5 minutes?

$$T = 1.5A$$
, $\Delta t = 1.5 \text{min} = 90 \text{s}$
 $Q = T \cdot \Delta t$
 $Q = 135C$

1.6 If 60 C of charge pass through an electric conductor in 30 seconds, determine the current in the conductor.

$$Q = 60C$$
, $\Delta t = 30s$
 $I = \frac{Q}{\Delta t}$
 $I = 2A$

1.7 Determine the number of coulombs of charge produced by a 12-A battery charger in an hour.

$$I = 12A$$
, $\Delta t = 1hr = 60min = 3600s$
 $Q = I \cdot \Delta t$
 $Q = 43.2 kC$

1.8 Five coulombs of charge pass through the element in Fig. P1.8 from point *A* to point *B*. If the energy absorbed by the element is 120 J, determine the voltage across the element.

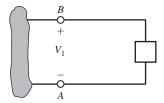


Figure P1.8

$$M = -\Lambda^1 \cdot O$$

$$V_1 = -\frac{W}{Q}$$

1.9 The current that enters an element is shown in Fig. P1.9. Find the charge that enters the element in the time interval 0 < t < 20 s.

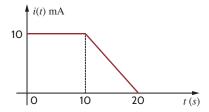


Figure P1.9

$$i(t) = mt + b$$

$$m = \frac{10m - 0}{10 - 20} = -lm$$

$$i(t) = -lm + b$$

$$10m = -lm \cdot (10s) + b$$

$$b = 20m$$

$$i(t) = (-t + 20) mA$$

$$g(t) = \int_{0}^{20} i(t) dt$$

$$g(t) = \int_{0}^{10} 10x \cdot 10^{-3} dt + \int_{10}^{20} \frac{20 - t}{1000} dt$$

$$g(t) = 10x \cdot 10^{-3} \cdot t \Big|_{0}^{10} + \frac{1}{1000} \left(20t - \frac{t^{2}}{2}\right)\Big|_{10}^{20}$$

$$g(t) = 0.15C, \quad 0 < t < 20s$$

1.10 The charge entering the positive terminal of an element is $q(t) = -30e^{-4t}$ mC. If the voltage across the element is $120e^{-2t}$ V, determine the energy delivered to the element in the time interval 0 < t < 50 ms.

$$g(t) = -30e^{-4t} mC$$

$$V(t) = 120e^{-2t} V$$

$$W = \int_{t_1}^{t_2} Pdt = \int_{t_1}^{t_2} V \cdot i dt$$

$$i(t) = \frac{dg(t)}{dt} = -4 \cdot (-30e^{-4t}) = 120e^{-4t} mA$$

$$W = \int_{0}^{50m} (120e^{-2t}) \cdot (120e^{-4t} \times 10^{-3}) dt$$

$$W = 14.4 \cdot (e^{-6t}) \int_{0}^{50m} W = 622.04 mJ$$

1.11 The charge entering the positive terminal of an element is given by the expression $q(t) = -12e^{-2t}$ mC. The power delivered to the element is $p(t) = 2.4e^{-3t}$ W. Compute the current in the element, the voltage across the element, and the energy delivered to the element in the time interval 0 < t < 100 ms.

$$g(t) = -12e^{-2t} m(C)$$

$$P(t) = 2.4e^{-3t} W$$

$$i(t) = \frac{dg(t)}{dt} = -2 \cdot (12e^{-2t})$$

$$i(t) = 24e^{-2t} mA$$

$$W = \int_{t_1}^{t_2} P(t) dt = \int_{0}^{100m} 2.4e^{-3t} dt$$

$$W = (2.4e^{-3t}) |_{0}^{100m}$$

$$W = 207.35 mJ$$

$$V(t) = \frac{P(t)}{i(t)}$$

$$V(t) = 100e^{-t} V$$

1.12 The voltage across an element is $12e^{-2t}$ V. The current entering the positive terminal of the element is $2e^{-2t}$ A. Find the energy absorbed by the element in 1.5 s starting from t = 0.

$$V(t) = 12e^{-2t} V$$

$$i(t) = 2e^{-2t} A$$

$$W = \int_{tt}^{t2} V i dt = \int_{0}^{1.5} (12e^{-2t}) \cdot (2e^{-2t}) dt$$

$$W = \left(\frac{24e^{-4t}}{-4} \right)_{0}^{1.5}$$

$$W = 5.99 J$$

1.13 The power absorbed by the BOX in Fig. P1.13 is $2e^{-2t}$ W. Calculate the amount of charge that enters the BOX between 0.1 and 0.4 seconds.

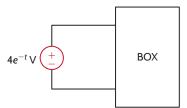


Figure P1.13

P(t) =
$$2e^{-2t} W$$

 $V(t') = 4e^{-t} V$
 $i(t') = \frac{P(t')}{V(t')} = 0.5e^{-t} A$
 $\Delta g(t') = \int_{0.1}^{0.4} i(t') dt$
 $= (-0.5e^{-t})|_{0.1}^{0.4}$
 $g(t') = 117.26 \text{ mC}, 0.1s < t < 0.4s$

1.14 The power absorbed by the BOX in Fig. P1.14 is $0.1e^{-4t}$ W. Calculate the energy absorbed by the BOX during this same time interval.

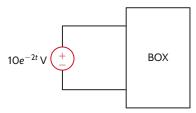


Figure P1.14

$$P(t) = 0.1e^{-4t} W$$
 $W = \int P(t) dt = \int_{0}^{\infty} 0.1e^{-4t} dt$
 $W = \left(\frac{0.1e^{-4t}}{-4}\right)_{0}^{\infty}$
 $W = 25 m J$

1.15 The energy absorbed by the BOX in Fig. P1.15 is shown below. How much charge enters the BOX between 0 and 10 milliseconds?

Figure P1.15

SOLUTION:

$$P = \frac{dW}{dt}$$

$$P = V \cdot i = (15) \cdot i$$

Os &t & Ims

$$P = \frac{5m-0}{1m-0} = 5W$$
, $i = \frac{P}{V} = \frac{5}{15} = \frac{1}{3}A$

lms sts3ms

$$P = \frac{5m - 5m}{3m - 1m} = 0 \text{ W}, i = 0 \text{ A}$$

3ms StS4ms

$$P = \frac{15m - 5m}{4m - 3m} = 10W$$
, $i = \frac{P}{V} = \frac{19}{15} = \frac{3}{5}A$

4ms <t < 6ms

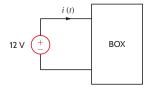
6ms ste7ms

$$P = \frac{10m - 15m}{7m - 6m} = -5W$$
, $i = \frac{P}{V} = \frac{-5}{15} = -\frac{1}{3}A$

7mssts8ms

$$P = \frac{10m - 10m}{8m - 7m} = OW, i = OA$$

Bms staloms


$$P = \frac{O - 10m}{10m - 8m} = -5W$$
, $i = \frac{P}{V} = \frac{-5}{15} = -\frac{1}{3}A$

$$\Delta g = \int i dt$$

$$\Delta g = (\frac{1}{3})(Im) + (\frac{3}{3})(Im) + (\frac{1}{3})(Im) + (\frac{1}{3})(2m)$$

$$\Delta g = OC$$

1.16 The charge that enters the BOX in Fig. P1.16 is shown in the graph below. Calculate and sketch the current flowing into and the power absorbed by the BOX between 0 and 10 milliseconds.

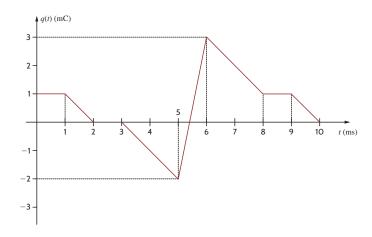


Figure P1.16

SOLUTION:

$$i(t) = \frac{dq}{dt}$$

$$P = V \cdot i = (12) \cdot i$$

Ims = t = 2ms

$$i = \frac{O - lm}{2m - lm} = -lA$$
, $P = (12) \cdot (-1) = -12W$

2msst =3ms

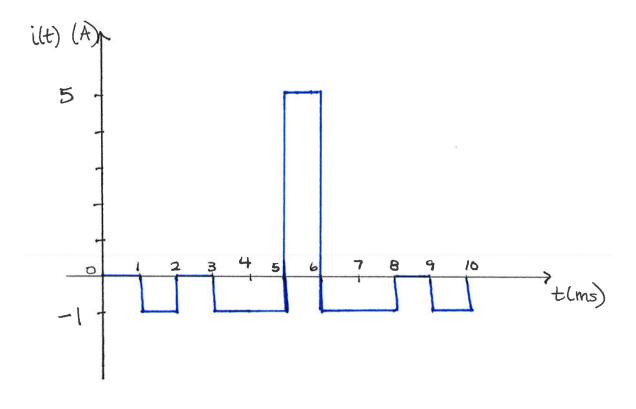
$$i = \frac{0-0}{3m-2m} = 0A$$
, $P = 0W$

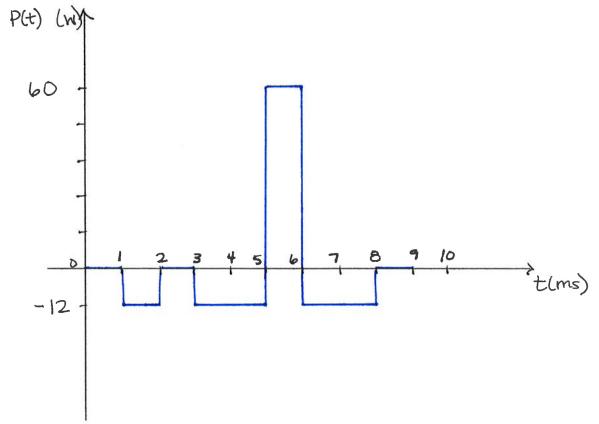
3ms St Sms

$$i = \frac{-2m - 0}{5m - 3m} = -1A$$
, $P = (12) \cdot (-1) = -12W$

5ms sts 6ms

$$i = \frac{3m - (-2m)}{6m - 5m} = 5A$$
, $P = (12)(5) = 60W$


6ms & t & 8ms


$$i = \frac{l_m - 3m}{8m - 6m} = -1 A$$
, $P = (12)(-1) = -12W$

8ms St & 9ms

9ms = t= 10ms

$$i = \frac{O - Im}{I0m - 9m} = -IA$$
, $P = (12)(-1) = -12W$

1.17 The energy absorbed by the BOX in Fig. P1.17 is given below. Calculate and sketch the current flowing into the BOX. Also calculate the charge which enters the BOX between 0 and 12 seconds.

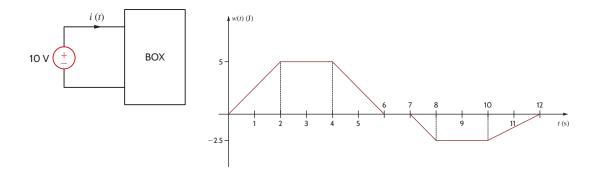


Figure P1.17

SOLUTION:

$$P = \frac{dW}{dt}$$

$$P = V \cdot i = (10) \cdot i$$

$$P = \frac{5-0}{2-0} = 2.5W$$
, $i = \frac{P}{V} = \frac{2.5}{10} = \frac{1}{4}A$

25 4t 45

$$P = \frac{5-5}{4-2} = OW$$
, $i = OA$

455t=65

$$P = \frac{0-5}{6-4} = -2.5W$$
, $i = \frac{P}{V} = \frac{-2.5}{10} = \frac{1}{4}A$

65 5 t 5 75

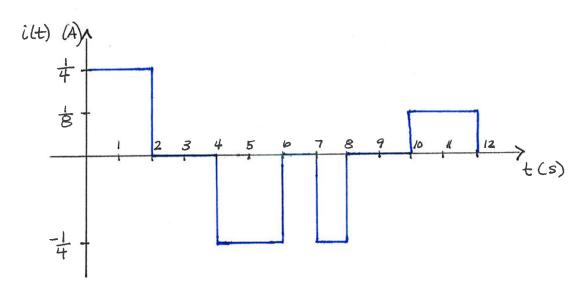
$$P = \frac{0-0}{7-6} = 0 \text{ W}$$
, i= OA

755t685

$$P = \frac{-2.5 - 0}{8 - 7} = -2.5 \text{ W}, i = \frac{P}{V} = \frac{-2.5}{10} = \frac{-1}{4} \text{ A}$$

855t 105

$$P = \frac{-2.5 - (-2.5)}{10 - 8} = 0 \text{W}, \quad i = 0 \text{A}$$


1065ts 125

$$P = \frac{O - (-2.5)}{12 - 10} = 1.25W$$
, $i = \frac{P}{V} = \frac{1.25}{10} = \frac{1}{8}A$

$$8 = \int i dt$$

$$8 = (4)(2) + (-4)(2) + (4)(1) + (8)(2)$$

$$9 = 00$$

1.18 The charge entering the upper terminal of the BOX in Fig. P1.18 is shown below. How much energy is absorbed by the BOX between 0 and 9 seconds?

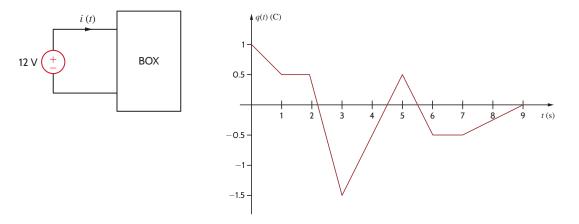


Figure P1.18

SOLUTION:

$$i(t) = \frac{dq}{dt}$$

 $P = V \cdot i = (12) \cdot i$

05 5 4 5 15

$$i = \frac{0.5-1}{1-0} = -0.5A$$
, $P = (12) \cdot (-0.5) = -6W$

155t52s

$$i = \frac{0.5 - 0.5}{2 - 1} = OA$$
, $P = OW$

255t43s

$$i = \frac{-1.5 - 0.5}{3 - 2} = -2A$$
, $P = (12)(-2) = -24W$

$$i = \frac{0.5 - (-1.5)}{5 - 3} = 1A$$
, $P = (12)(1) = 12 W$

$$i = \frac{-0.5 - 0.5}{6 - 5} = 1A \quad P = (12)(-1) = -12W$$

655t=75

$$i = \frac{-0.5 - (-0.5)}{7 - 6} = 0A$$
, $P = 0W$

755t695

$$i = \frac{O - (-0.5)}{9 - 7} = 0.25A$$
, $P = (12)(0.25) = 3W$

$$W = \int P dt$$

$$W = (-6)(1) + (-24)(1) + (12)(2) + (-12)(1) + (3)(2)$$

$$W = -12 J$$

1.19 The energy absorbed by the BOX in Fig. P1.19 is shown in the graph below. Calculate and sketch the current flowing into the BOX between 0 and 10 milliseconds.

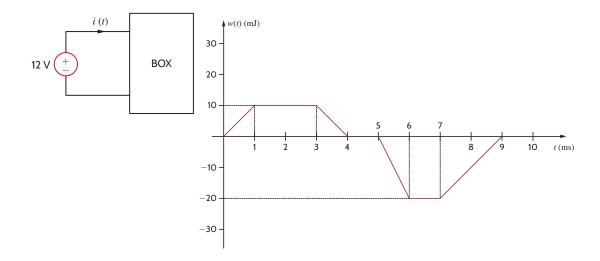


Figure P1.19

SOLUTION:

$$P = \frac{dW}{dt}$$

$$P = V \cdot i = (12) \cdot i$$

Os sts Ims

$$P = \frac{10m - 0}{1m - 0} = 10W$$
, $i = \frac{P}{V} = \frac{10}{12} = \frac{5}{6}A$

Ims = t = 3ms

$$P = \frac{10m - 10m}{3m - 1m} = OW$$
, $L = OA$

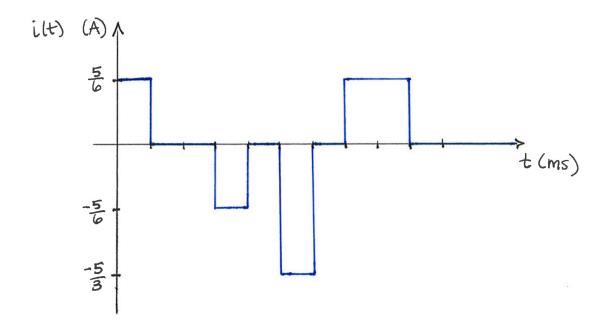
3ms sts 4ms

$$P = \frac{0-10m}{4m-3m} = -10W$$
, $i = \frac{P}{V} = \frac{-10}{12} = \frac{-5}{6}A$

4ms st = 5ms

5ms sts 6ms

$$P = \frac{-20m-0}{6m-5m} = -20W$$
, $i = \frac{P}{V} = \frac{-20}{12} = \frac{-5}{3}A$


6ms st = 7ms

$$P = \frac{-20m - (-20m)}{7m - 6m} = OW$$
, $i = OA$

7ms sts 9ms

$$P = \frac{O - (-20m)}{9m - 7m} = 10W$$
, $i = \frac{P}{V} = \frac{10}{12} = \frac{5}{6}A$

$$\frac{t = 9ms}{P = OW}$$
, $i = OA$

1.20 Determine the amount of power absorbed or supplied by the element in Fig. P1.20 if

(a)
$$V_1 = 9 \text{ V} \text{ and } I = 2 \text{A}$$

(b)
$$V_1 = 9 \text{ V} \text{ and } I = -3 \text{A}$$

(c)
$$V_1 = -12 \text{ V} \text{ and } I = 2 \text{A}$$

(d)
$$V_1 = -12 \text{ V} \text{ and } I = -3 \text{ A}$$

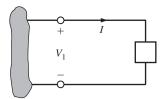


Figure P1.20

a)
$$V_1 = 9V$$
, $I = 2A$
 $P = V_1 \cdot I = 18W$ absorbed

b)
$$V_1 = 9V$$
, $I = -3A$
 $P = V_1 \cdot I = -27W$
 $P = 27W$ supplied

C)
$$V_1 = -12V$$
, $I = 2A$
 $P = V_1 \cdot I = -24W$
 $P = 24W$ Supplied

d)
$$V_1 = -12V$$
, $I = -3A$
 $P = V_1 \cdot I = 36W$ absorbed

1.21 Calculate the power absorbed by element A in Fig. P1.21.

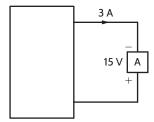
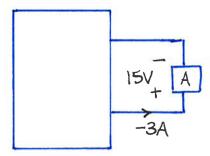



Figure P1.21

$$P_{A} = (15)(-3)$$

 $P_{A} = -45 W$ absorbed

1.22 Calculate the power supplied by element A in Fig. P1.22.

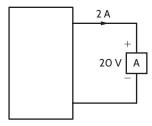
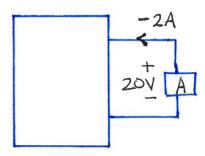



Figure P1.22

$$P_{A} = (20)(-2)$$

 $P_{A} = -40 \text{ W}$ supplied

1.23 Element A in the diagram in Fig. P1.23 absorbs 30 W of power. Calculate V_x .

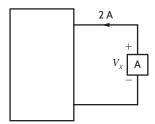
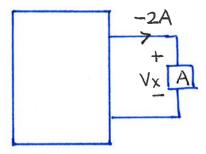



Figure P1.23

$$30 = V_x \cdot (-2)$$

 $V_x = -15V$

1.24 Element B in the diagram in Fig. P1.24 supplies 60 W of power. Calculate I_x .

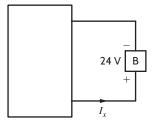
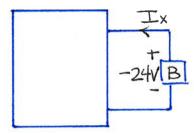



Figure P1.24

$$60 = (-24) \cdot I_X$$

 $I_X = -2.5 A$

1.25 Element B in the diagram in Fig. P1.25 supplies 72 W of power. Calculate V_A .

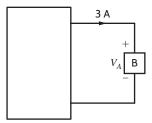
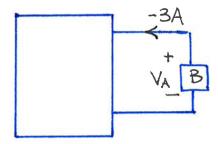



Figure P1.25

$$72 = V_A \cdot (-3)$$

 $V_A = -24 V$

1.26 Element B in the diagram in Fig. P1.26 supplies 72 W of power. Calculate I_x .

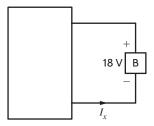


Figure P1.26

$$72 = (18) \cdot I_X$$

 $I_X = 4A$

$$I_X = 4A$$

- 1.27 (a) In Fig. P1.27 (a), $P_1 = 36$ W. Is element 2 absorbing or supplying power, and how much?
 - **(b)** In Fig. P1.27 (b), $P_2 = -48$ W. Is element 1 absorbing or supplying power, and how much?

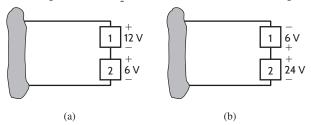
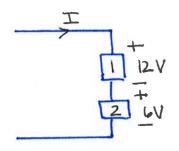
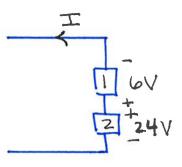



Figure P1.27


a)
$$P_1 = 3b = V_1 \cdot I$$

 $I = \frac{3b}{12} = 3A$

$$P_2 = V_2 \cdot I = (6)(3)$$

 $P_2 = 18W$ absorbed

b)
$$P_2 = -48 = -V_2 \cdot I$$

 $I = -\frac{48}{-24} = 2A$

$$P_1 = V_1 \cdot I = (6)(2)$$

 $P_1 = 12W \text{ absorbed}$

1.28 Two elements are connected in series, as shown in Fig. P1.28. Element 1 supplies 24 W of power. Is element 2 absorbing or supplying power, and how much?

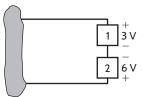
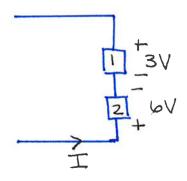



Figure P1.28

$$P_1 = 24 = V_1 \cdot I$$

 $I = \frac{24}{3} = 8A$

$$P_2 = V_2 \cdot I = (6)(8)$$

 $P_2 = 48 \text{ W absorbed}$

1.29 Element 2 in Fig. P1.29 absorbed 32 W. Find the power absorbed or supplied by elements 1 and 3.

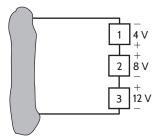
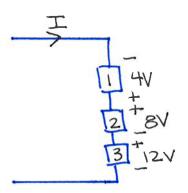



Figure P1.29

$$P_2 = 32 = V_2 \cdot I$$

 $I = \frac{32}{8} = 4A$

$$P_1 = V_1 \cdot T = (4)(4)$$

 $P_1 = 16W$ supplied

$$P_3 = V_3 \cdot I = (12)(4)$$

 $P_3 = 48 \text{ W absorbed}$

1.30 Choose I_s such that the power absorbed by element 2 in Fig. P1.30 is 7 W.

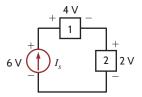


Figure P1.30

$$P_{z} = 7 = V_{z} \cdot I_{s}$$

$$I_{s} = \frac{7}{2}$$

$$I_{s} = 3.5 A$$

1.31 Find the power that is absorbed or supplied by the circuit elements in Fig. P1.31.

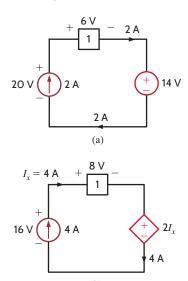
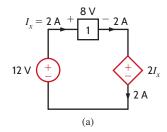



Figure P1.31

a)
$$P_{2A} = (-20) \cdot (2) = -40 \text{W}$$

 $P_{2A} = 40 \text{W}$ supplied
 $P_{1} = (6) \cdot (2) = 12 \text{W}$ absorbed
 $P_{14V} = (14) \cdot (2) = 28 \text{W}$ absorbed

b)
$$P_{4A} = (-16)(4) = -64W$$

 $P_{4A} = 64W$ supplied
 $P_{1} = (8)(4) = 32W$ absorbed
 $P_{2Ix} = [2(4)](4) = 32W$ absorbed

1.32 Find the power that is absorbed or supplied by the network elements in Fig. P1.32.

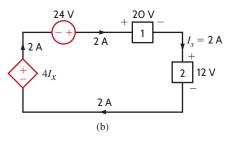


Figure P1.32

a)
$$P_{12V} = (-12)(2) = -24 \text{ W}$$

 $P_{12V} = 24 \text{ W}$ supplied
 $P_1 = (8)(2) = 16 \text{ W}$ absorbed
 $P_{2I_X} = [2\cdot(2)]\cdot(2) = 8 \text{ W}$ absorbed

b)
$$P_{4Ix} = [-4(2)] \cdot (2) = -16W$$
 $P_{4Ix} = 16W$ supplied

 $P_{24v} = (-24)(2) = -48W$
 $P_{24v} = 48W$ supplied

 $P_{1} = (20) \cdot (2) = 40W$ absorbed
 $P_{2} = (12) \cdot (2) = 24W$ absorbed

1.33 Compute the power that is absorbed or supplied by the elements in the network in Fig. P1.33.

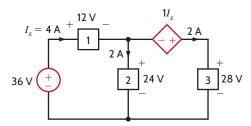


Figure P1.33

$$P_{36V} = (-36) \cdot I_X = (-36)(4) = -144 \text{ W}$$

 $P_{36V} = 144 \text{ W}$ Supplied

1.34 Find the power that is absorbed or supplied by element 2 in Fig. P1.34.

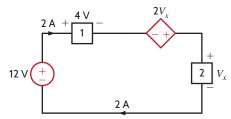


Figure P1.34

$$P_{12v} = (-12)\cdot(2) = -24W \Rightarrow 24W \text{ supplied}$$

$$P_1 = (4)\cdot(2) = 8W \Rightarrow 8W \text{ absorbed}$$

$$P_{2vx} = (-2Vx)\cdot(2) = -4VxW \Rightarrow 4VxW \text{ supplied}$$

$$P_2 = (Vx)\cdot(2) = 2VxW \Rightarrow 2VxW \text{ absorbed}$$

Psupplied = Pabsorbed

$$24 + 4Vx = 8 + 2Vx$$

 $V_X = -8V$

$$P_2 = (-8) \cdot (2) = -16 \text{ W}$$

 $P_2 = 16 \text{ W}$ supplied

1.35 Find I_{y} in the network in Fig. P1.35.

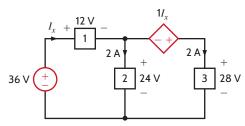


Figure P1.35

$$P_{36V} = (-36) \cdot I_X = -36I_X \text{ W} \Rightarrow 36:I_X \text{ W} \text{ supplied}$$

$$P_1 = (12) \cdot I_X = 12I_X \text{ W} \Rightarrow 12:I_X \text{ W} \text{ absorbed}$$

$$P_2 = (24) \cdot (2) = 48 \text{ W} \Rightarrow 48 \text{ W} \text{ absorbed}$$

$$P_{1I_X} = [-1(I_X)] \cdot 2 = -2:I_X \text{ W} \Rightarrow 2:I_X \text{ W} \text{ supplied}$$

$$P_3 = (28) \cdot (2) = 56 \text{ W} \Rightarrow 56 \text{ W} \text{ absorbed}$$

Psupplied = Pabsorbed
$$36I_X + 2I_X = 12I_X + 48 + 56$$

$$I_X = 4A$$

1.36 Determine the power absorbed by element 1 in Fig. P1.36.

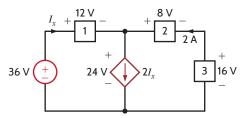


Figure P1.36

$$P_{36N} = (-36) I_X = -36 I_X W \Rightarrow 36 I_X W \text{ supplied}$$
 $P_1 = (12) I_X = 12 I_X W \Rightarrow 12 I_X W \text{ absorbed}$
 $P_{2I_X} = (24)(2I_X) = 48 I_X W \Rightarrow 48 I_X W \text{ absorbed}$
 $P_2 = (-8)(2) = -16 W \Rightarrow 16W \text{ supplied}$
 $P_3 = (-16)(2) = -32 W \Rightarrow 32W \text{ supplied}$

Psupplied = Pabsorbed
$$36I_X + 16 + 32 = 12I_X + 48I_X$$

$$I_X = 2A$$

1.37 Find the power absorbed or supplied by element 1 in Fig. P1.37.

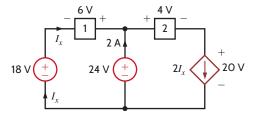


Figure P1.37

$$P_{18V} = (-18) \cdot I_X = -18I_X W \rightarrow 18 \cdot I_X W$$
 supplied
 $P_1 = (-6) \cdot I_X = -6I_X W \rightarrow 6I_X W$ supplied
 $P_{24V} = (-24) \cdot (2) = -48W \rightarrow 48 W$ supplied
 $P_2 = (4) \cdot (2I_X) = 8I_X W \rightarrow 8 \cdot I_X W$ obsorbed
 $P_{2I_X} = (20) \cdot (2I_X) = 40I_X W \rightarrow 40I_X W$ absorbed

Psupplied = Pabsorbed

$$18I_X + 6I_X + 48 = 8I_X + 40I_X$$

 $I_X = 2A$
 $P_1 = (-6) \cdot (2) = -12W$
 $P_1 = 12W$ Supplied

1.38 Find the power absorbed or supplied by element 3 in Fig. P1.38.

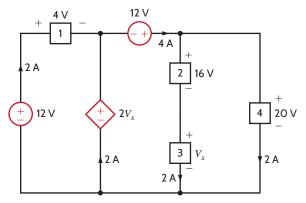


Figure P1.38

$$P_{12V} = (-12)(2) = -24 \text{ W} \rightarrow 24 \text{ W supplied}$$
 $P_1 = (4)(2) = 8 \text{ W} \rightarrow 8 \text{ W absorbed}$
 $P_{2Vx} = (-2Vx)(2) = -4Vx \text{W} \rightarrow 4Vx \text{ W supplied}$
 $P_{12V} = (-12)(4) = -48 \text{ W} \rightarrow 48 \text{ W supplied}$
 $P_{2V} = (16)(2) = 32 \text{ W} \rightarrow 32 \text{ W absorbed}$
 $P_3 = Vx(2) = 2Vx \text{ W} \rightarrow 2Vx \text{ W absorbed}$
 $P_4 = (20)(2) = 40 \text{ W} \rightarrow 40 \text{ W absorbed}$

Psupplied = Pabsorbed

$$24 + 4V_X + 48 = 8 + 32 + 2V_X + 40$$

 $V_X = 4V$
 $P_3 = (4)(2) = 8W$ absorbed

1.39 Find the power absorbed or supplied by element 1 in Fig. P1.39.



Figure P1.39

$$P_{4Tx} = (-12) \cdot (4Tx) = -48Tx \ W \rightarrow 48Tx \ W \text{ supplied}$$
 $P_1 = (4)(4Tx) = 16Tx \ W \rightarrow 16Tx \ W \text{ absorbed}$
 $P_2 = (8)(4) = 32W \rightarrow 32W \text{ absorbed}$
 $P_{12V} = (-12)(4) = -48W \rightarrow 48W \text{ supplied}$
 $P_{13} = (20)(2) = 40W \rightarrow 40W \text{ absorbed}$
 $P_{24} = (20) \cdot T_x = 20Tx \ W \rightarrow 20Tx \ W \text{ absorbed}$

Psupplied = Pabsorbed
$$48I_X + 48 = 10I_X + 32 + 40 + 20I_X$$

$$I_X = 2A$$

$$P_1 = 16(2) = 32W \text{ absorbed}$$

1.40 Find $V_{\rm v}$ in the network in Fig. P1.40 using Tellegen's theorem.

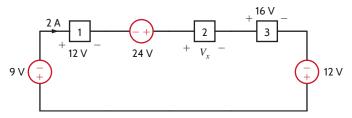


Figure P1.40

$$P_{qV} = (9)(2) = 18W \rightarrow 18W \text{ absorbed}$$
 $P_1 = (12)(2) = 24W \rightarrow 24W \text{ absorbed}$
 $P_{24V} = (-24)(2) = -48W \rightarrow 48W \text{ supplied}$
 $P_2 = V_X(2) = 2V_X W \rightarrow 2V_X W \text{ absorbed}$
 $P_3 = (16)(2) = 32W \rightarrow 32W \text{ absorbed}$
 $P_{12V} = (-12)(2) = -24W \rightarrow 24W \text{ supplied}$

$$P_{\text{supplied}} = P_{\text{absorbed}}$$
 $48 + 24 = 18 + 24 + 24 \times +32$
 $V_{x} = -14$

1.41 Find I_{y} in the circuit in Fig. P1.41 using Tellegen's theorem.

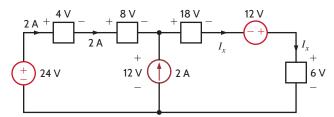


Figure P1.41

$$P_{24V} = (-24)(2) = -48W \rightarrow 48W \text{ supplied}$$
 $P_{4V} = (4)(2) = 8W \rightarrow 8W \text{ absorbed}$
 $P_{8V} = (8)(2) = 16W \rightarrow 16W \text{ absorbed}$
 $P_{2A} = (-12)(2) = -24W \rightarrow 24W \text{ supplied}$
 $P_{18V} = (18)(I_X) = 18I_XW \rightarrow 18I_XW \text{ absorbed}$
 $P_{12V} = (-12)(I_X) = -12I_XW \rightarrow 12I_XW \text{ supplied}$
 $P_{6V} = (6)(I_X) = 6I_XW \rightarrow 6I_XW \text{ absorbed}$

Psupplied = Pabsorbed

$$48 + 24 + 12I_X = 8 + 16 + 18I_X + 6I_X$$

 $I_X = 4A$

1.42 Is the source V_s in the network in Fig. P1.42 absorbing or supplying power, and how much?

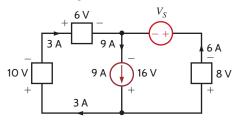


Figure P1.42

$$P_{10V} = (10)(3) = 30 \text{ M} \rightarrow 30 \text{ M} \text{ absorbed}$$
 $P_{10V} = (16)(3) = 18 \text{ M} \rightarrow 18 \text{ M} \text{ cubsorbed}$
 $P_{10V} = (-16)(9) = -144 \text{ M} \rightarrow 144 \text{ M} \text{ supplied}$
 $P_{10V} = (-16)(9) = -144 \text{ M} \rightarrow 144 \text{ M} \text{ supplied}$
 $P_{10V} = (-16)(9) = -144 \text{ M} \rightarrow 144 \text{ M} \text{ supplied}$
 $P_{10V} = (-16)(9) = -144 \text{ M} \rightarrow 144 \text{ M} \text{ supplied}$
 $P_{10V} = (-16)(9) = -144 \text{ M} \rightarrow 144 \text{ M} \text{ supplied}$
 $P_{10V} = (-16)(9) = -144 \text{ M} \rightarrow 144 \text{ M} \text{ supplied}$
 $P_{10V} = (-16)(9) = -144 \text{ M} \rightarrow 144 \text{ M} \text{ supplied}$
 $P_{10V} = (-16)(9) = -144 \text{ M} \rightarrow 144 \text{ M} \text{ supplied}$
 $P_{10V} = (-16)(9) = -144 \text{ M} \rightarrow 48 \text{ M} \text{ supplied}$

Psupplied = Palosorbed

$$144 = 30 + 18 + 64 + 48$$

 $48 = 84$

1.43 Find I_a in the network in Fig. P1.43 using Tellegen's theorem.

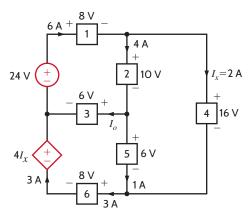


Figure P1.43

$$P_{24W} = (-24)(6) = -144W \rightarrow 144W \text{ supplied}$$
 $P_{4T_X} = [-4(2)](3) = -24W \rightarrow 24W \text{ supplied}$
 $P_1 = (8)(6) = 48W \rightarrow 48W \text{ absorbed}$
 $P_2 = (10)(4) = 40W \rightarrow 40W \text{ absorbed}$
 $P_3 = (6) \cdot J_6 = 6J_6W \rightarrow 6J_6W \text{ absorbed}$
 $P_4 = (16)(2) = 32W \rightarrow 32W \text{ absorbed}$
 $P_5 = (6)(1) = 6W \rightarrow 6W \text{ absorbed}$
 $P_6 = (8)(3) = 24W \rightarrow 24W \text{ absorbed}$
 $P_{80} = P_{80} = P_{80}$

1.44 Calculate the power absorbed by each element in the circuit in Fig. P1.44. Also, verify that Tellegen's theorem is satisfied by this circuit.

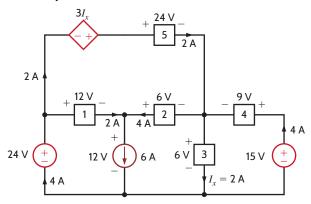


Figure P1.44

$$P_{3Ix} = [-3(2)] \cdot (2) = -12 \text{ M} \rightarrow 12 \text{ M supplied}$$
 $P_{24V} = (-24)(4) = -96 \text{ M} \rightarrow 96 \text{ M supplied}$
 $P_{6A} = (12)(6) = 72 \text{ M} \rightarrow 72 \text{ M absorbed}$
 $P_{15V} = (-15)(4) = -60 \text{ M} \rightarrow 60 \text{ M supplied}$
 $P_{15V} = (12)(2) = 24 \text{ M} \rightarrow 24 \text{ M absorbed}$
 $P_{2} = (-6)(4) = -24 \text{ M} \rightarrow 24 \text{ M supplied}$
 $P_{3} = (-6)(4) = -24 \text{ M} \rightarrow 24 \text{ M supplied}$
 $P_{3} = (-6)(4) = 36 \text{ M} \rightarrow 12 \text{ M absorbed}$
 $P_{4} = (-6)(4) = 36 \text{ M} \rightarrow 36 \text{ M absorbed}$
 $P_{5} = (24)(2) = 48 \text{ M} \rightarrow 48 \text{ M absorbed}$

Psupplied - Pabsorbed = 0
$$(12 + 96 + 60 + 24) - (72 + 24 + 12 + 36 + 48) = 0$$

$$(192) - (192) = 0 \checkmark$$

1.45 Calculate the power absorbed by each element in the circuit in Fig. P1.45. Also, verify that Tellegen's theorem is satisfied by this circuit.

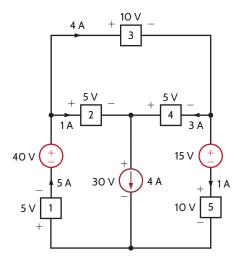


Figure P1.45

$$P_{40V} = (-40)(5) = -200 \text{ M} \rightarrow 200 \text{ W supplied}$$
 $P_{4A} = (30)(4) = 120 \text{ W} \rightarrow 120 \text{ W absorbed}$
 $P_{15V} = (15)(1) = 15 \text{ W} \rightarrow 15 \text{ W absorbed}$
 $P_1 = (5)(5) = 25 \text{ W} \rightarrow 25 \text{ W absorbed}$
 $P_2 = (5)(1) = 5 \text{ W} \rightarrow 5 \text{ W absorbed}$
 $P_3 = (10)(4) = 40 \text{ W} \rightarrow 40 \text{ W absorbed}$
 $P_4 = (-5)(3) = -15 \text{ W} \rightarrow 15 \text{ W supplied}$
 $P_5 = (10)(1) = 10 \text{ W} \rightarrow 10 \text{ W absorbed}$

Psupplied - Pabsorbed = 0
$$(200 + 15) - (120 + 15 + 25 + 5 + 40 + 10) = 0$$

$$(215) - (215) = 0$$

1.46 In the circuit in Fig. P1.46, element 1 absorbs 40 W, element 2 supplies 50 W, element 3 supplies 25 W, and element 4 absorbs 15 W. How much power is supplied by element 5?

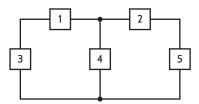


Figure P1.46

Psupplied = Pabsorbed

$$P_2 + P_3 + P_5 = P_1 + P_4$$

 $50 + 25 + P_5 = 40 + 15$
 $P_5 = -20W$ supplied
or
 $P_5 = 20W$ absorbed