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Preface

This solution manual is a work in progress. Solutions to the following exercises
are missing as of now: 2.9, 3.1-3.14, 4.1-4.4, 4.6-4.14, 4.18-21, 5.1, 5.3, 5.4,
7.2-7.5, 8.2, 8.3, 8.4, 8.6, 8.8, 8.10, 8.12, 8.14-8.17, 9.12, 10.9, 11.7, 12.10,
12.11, 13.1, 13.3, 13.4, 13.9-13.14, 13.16, 14.2, 14.4, 14.5, 14.7, 14.9, 14.11,
14.13, 14.15. We expect to have these ready before January 1, 2015. Please
report any typos/errors to Sergiy Butenko (butenko@tamu.edu). Thank you
for your patience and support.

Sergiy Butenko and Panos Pardalos
October 12, 2014
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Chapter 1

Preliminaries

1.1. Let f: X — Y be an arbitrary mapping and X/, X" C X, Y',Y" C Y. Prove that
(@) YUY = YU,
(b) f 1(Y' NY”)=f1Y)nf=1y")
(0) FX'UX") = f(X)UfX");
(d) f(X’'NX") may not be equal to f(X’)N f(X").
Solution:

(a) Consider z € f~1(Y'UY"). Then there exists y € Y’ UY"” such
that f(x) = y. This implies that = € f~1(Y’) U f~1(Y"). Thus,
P UYT) € Y U YY), (1)
Now, consider z € f~1(Y’)U f~1(Y"). Then x € f~1(Y') or x €
YY), Since f~H(Y") C fAH(YUY”) and fTHY") C fAHY'U
Y"), we have x € f~1(Y'UY"”). Thus
YUy c Y uy”). (1.2)
From (1.1) and (1.2) we have f~1(Y'UY") = f~1(Y)U f~L(Y").
(b) Consider z € f~1(Y"NY"”). Then there exists y € Y/ NY" such
that f(z) = y. This implies that z € f~1(Y’) N f~1(Y"). Thus,
YY)y iy n iy, (1.3)

Now, consider z € f~1(Y’)n f~Y(Y"). Then x € f~1(Y’) and
x € f~YY"). Hence, there exist ¥’ € Y and y” € Y” such that
f(@) =9 and f(x) = y”. Since f(z) is unique, this implies that
Yy =y" €Y' NY”. So,z e f~H(Y'NY") and

YNty iy ny”). (1.4)
From (1.3) and (1.4) we have f~1(Y'NY") = f~1(Y')n f~1(Y").
()
ye fF(X'uX")
)
there exists © € X" or X" such that f(z) =y
)

y € F(X) U FXT).
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(d) Consider, for example, f(z) = 22, X' = [-1,0],X” = [0,1]. Then
f(X) = f(X") = f(X)n f(X") =[0,1], however, f(X'NX") =
f{0}) = {0}.

1.2. Prove that the following sets are countable:

(a) the set of all odd integers;
(b) the set of all even integers;

(c) the set 2,4,8,16,...,2™,... of powers of 2.

Solution: We have the following bijections with the countable set Z of
all integers or Z of all positive integers:

(a) f(n)=2n+1,n€Z;

(b) f(n) =2n,n € Z;

(¢) fln)=2"neZ,.
1.3. Show that

(a) every infinite subset of a countable set is countable;
(b) the union of a countable family of countable sets A1, Ag, ... is countable;

(c) every infinite set has a countable subset.
Solution:

(a) Let A be the countable set, and let B be its infinite subset. Since
A is countable, there is a bijection f:Z, — A. Let f(n) =a, € A
for any n € Z,. We build a bijection ¢ : Z;, — B such that
g(k) = by, k > 1 as follows. Let by, be the element of {a, : n > 1}
with the &*" smallest index among the elements of A that belong
to B. Since B is infinite, there is such an element for any k& > 1.
On the other hand, each element of B is one of the elements of
{an :n > 1} (since BC A = {a, : n > 1}, so for any b € B there
exists k such that b, = b. Thus g is a bijection and B is countable.

(b) We can assume that no two sets have any elements in common
(otherwise, we can consider A, A3\ A, A3\(A; U As), ..., each of
which is countable as a subset of a countable set).

We can write the elements of A, As, ... in the form of an infinite
table as follows:

a1 a2 a13

Gz1 Q22 G23

asz1 Q32 as3

where a;; is the 7' element of A;, i, j=1,2, .... Clearly, this table
contains all the elements of all the sets. We can count the elements
of the table by processing it diagonally as follows. Start with a1,
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then count a2, as1. Proceed to asy, ass, ais, etc. Any element of the
table will eventually be counted this way, and for any positive inte-
ger n we can find a specific element in the table that is counted as

hin the suggested procedure. Thus, we have a bijection between
Z 4 and the union of elements of Ay, As, .. ..

Let A be an infinite set. We construct its countable subset as
follows. Pick an arbitrary element a; of A. Then pick an ar-
bitrary element of A\{a;}, ..., pick an arbitrary element aj of
A\{a,...,ax—1} for any k > 3. This is always possible since the
set A\{a1,...,ar—1} is infinite for any positive integer k > 2.

Show that each of the following sets satisfies axioms from Definition 1.4 and thus is

a linear space.

(a)
(b)
(c)

IR™ with operations of vector addition and scalar multiplication.
IR™*"™ with operations of matrix addition and scalar multiplication.

Cla, b]-the set of all continuous real-valued functions defined on the interval
[a, b], with addition and scalar multiplication defined as

(f+9)(2) =

(af)(z) = af(z),x € [a,b] for each f € C[a,b] and any scalar «;

f(@)+g(z),x € [a,b] for any f,g € Cl[a,b];

respectively.

Pr—the set of all polynomials of degree at most n with addition and scalar
multiplication defined as
(p+@)(z) = p(x) + q(z), foranyp,q € Pn;

(ap)(xz) = ap(z), for each p € Pyn;and any scalar a;

respectively.

Solution: All 8 properties listed in Definition 1.4 are trivial to verify in
each of the four considered cases.

1.5.

(Gram-Schmidt orthogonalization) Let p(®), ...,

p*—1) ¢ IR™, where k < n,

be an arbitrary set of linearly independent vectors. Show that the set of vectors

d®, ..., d*k=1) ¢ R" given by
d® = pO),
() () FpOTa® _
d P Z; d()Td<)d , s=1,...,k—1
is orthogonal.
Solution: We have
T T )T (0
0 1 0 1 p 0
40" g1 p() ()_Wp()
_ PO T pM) (@7 ©)) @ (1T (0)),,(0)
pOT p(0)

= 0.
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Assume that @7 d(®) = 0forals=1,....,7r, 5 =1,...s — 1, where
r<k—1.Then fors=r+1and j=1,...5s— 1 we have

T T r+1)7T ;) .
A" g+ — g <p(r+1) Z Pd( >Td(d) d(z))
_ AT e <r+1) 4@
= W7 [ plr+d) — 7(1(]_)%(3_) 4@
—  dOT D) _ )T ()

= 0.

Hence, the statement is correct by induction.
1.6. Show that for p = 1,2, co the norm ||- || is compatible, that is for any A € R™*"™, z €

R™:
lAz]lp < | Allpllz]lp-

Solution: By the definition of || Al|, we have:

ax 1421 o 1Az,

o flzlly — llzllp

A, = for any = € IR™\{0}.

Thus, [|Az[], < [|A]lp[l2],

1.7. Let
al bl
a= : and b=
Qn, bn
be two vectors in IR™.
(a) Compute the matrix
ai
M = abT = o | b1y, bal.

an

(b) How many additions and multiplications are needed to compute M?

(c) What is the rank of M?
Solution:

(a) By definition of the product of two matrices,

a a1b1 albg . albn

M bT .1 [b b ] CLle a262 e agbn
= a = : Tyeees0n| =

fn anbl a"bg .e anb”

(b) To compute M in (a), we have done n? multiplications and no
additions.
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(c) Without loss of generality, assume that a; # 0. Then the i-th row
R;, i =2,...,n, of M can be obtained from the first row R; as
follows: R; = Z—le. Therefore, the rank of M is 1.

Show that a square matrix A is orthogonal if and only if both the columns and rows
of A form sets of orthonormal vectors.

Solution: Denote by a; the i'" column of A of size n x n. Then al is
the i*" row of AT. Since A is orthonormal have: AT A = I,,, where I, is
the n x n identity matrix. But this is the case if and only if

1, ifi=4
T R ’ J
@i X a5 = { 0, otherwise,

which is exactly the definition of a set of orthonormal vectors. Since
AT = A1, we have AAT = I,, and the same proof can be used to show
that the rows of A are also orthonormal.

A company manufactures three different products using the same machine. The sell
price, production cost, and machine time required to produce a unit of each product
are given in the following table.

Product 1 Product 2 Product 3
Sell price $30 $35 $50
Production cost $18 $22 $30
Machine time 20 min 25 min 35 min

The table below represents a two-week plan for the number of units of each product
to be produced.

Week 1 Week 2
Product 1 120 130
Product 2 100 80
Product 3 50 60

Use a matrix product to compute, for each week, the revenue received from selling
all items manufactured in a given week, the total production cost for each week, and
the total machine time spent each week. Present your answers in a table.
Solution: We have

30 35 50 120 130 9600 9700
18 22 30 100 80 | = | 5860 5900
20 25 35 50 60 6650 6700

Putting the results in a table, we obtain:

Week 1 Week 2
Revenue 9600 9700
Production cost 5860 5900
Machine time 6650 6700
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1.10. Given matrices

1oz oo 2 1 oo

A= , B=|1 -3 | andCc=|0 1 0|,
21005 0 2 0 0 1
0 4 8

(a) find the transpose of each matrix;

(b) consider all possible pairs {(A4, A), (4, B),(B,A),...,(C,C)} and compute a
product of each pair for which multiplication is a feasible operation.

Solution:
(a)
1 -2 20
AT=1|2 7 10 4|, BT:[? 7:13 g} and CT = C.
6 —6 5 8
(b)
4 5
ap=| 3 Yl uc—a =B co=C
T 14 —22 | = - -
4 4

1.11. For the matrices

find (a) A—2B, (b) AB, (c) BA.

Solution:
7 —10 0 60 —45 6
(a) A-2B = —4 7 —14 |; (b)AB=| —65 27 28 | ;
—16 1 19 66 -8 —-30
22 —53 —56
(¢c) BA=| —13 51 70
—6 43 —16

1.12. Compute the p-norm for p = 1,2, co of the matrices A and B in Exercise 1.11.
Solution: |A|; = 17, ||All2 = 12.882, ||Al/c = 13;
|Bll1 = 15, ||Bll2 = 12.168, ||Bl|e = 15.

1.13. Find the quadratic Taylor’s approximation of the following functions:

(a) f(z) =z} + x5 —dz129 + 27 — 223 at 7 = [1,1]7;
(b) f(z) = exp (2] +23) at = = [0,0]";

(c) f(z) = m at = [0,0]T.
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Solution: The quadratic Taylor’s approximation is given by
_ _ _ 1 _ _ _
f@) = f(@) + V@) (@ - 2) + (@ = 2) V(@) (@ - 2).
(a) f(z)=141—-441-2=-3.
Vf(x) = [4a? —dwg 4221, 40 —day —4xo)T = Vf(z) =[2,—4]7.

2 [ 1222 +2 —4 2 | 14 —4

Hence, we have:

f(aj) ~ -3+ 2(1‘1 - 1) — 4(:1:2 - 1) + 7(331 - 1)2
74(1’1 — 1)(’1}2 — 1) + 4(:172 — 1)2
= 7;6% — 4129 + 4:5% — 8x1 — 8x9 + 6.

(b) f(Z) =exp(0+0) =1.
Vf(x) = [271 exp (2] + 23), 229 exp (25 + m%)]T = Vf(z)= [O,O]T.

V2 () = 2exp (22 + 22) [ 1422 27179 ]

21’1$2 1 +2£L’2

= sz(:z)_[g g}

Thus,
flx)~ a3+ 23+ 1.
(c) f(z)=1
2x1 2z T - T
Vf(z) =|— ,— = Vf(x)=10,0]".
Ha) =1 (1+ a2 + 23)? (1+x%+x§)2] @) =[0,0]
_2(1+x%+3¢§)2—8(1+x?+x3)xf 4(1+a3+ad)z i xo
20y retal) BNCE v
v f(.T) - 4(1+93f+1:n§):621:v2 _2(1+:v?+x§)2178(21+:1:%+z§)zg
(14a3+x2)* (14a3+a2)*
-2 0
205\
éVf(x)[O _2}.
Thus,

flz)~ —af — a3 + 1.
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