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Preface

This solution manual is a work in progress. Solutions to the following exercises
are missing as of now: 2.9, 3.1–3.14, 4.1–4.4, 4.6–4.14, 4.18–21, 5.1, 5.3, 5.4,
7.2–7.5, 8.2, 8.3, 8.4, 8.6, 8.8, 8.10, 8.12, 8.14–8.17, 9.12, 10.9, 11.7, 12.10,
12.11, 13.1, 13.3, 13.4, 13.9–13.14, 13.16, 14.2, 14.4, 14.5, 14.7, 14.9, 14.11,
14.13, 14.15. We expect to have these ready before January 1, 2015. Please
report any typos/errors to Sergiy Butenko (butenko@tamu.edu). Thank you
for your patience and support.

Sergiy Butenko and Panos Pardalos
October 12, 2014
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Chapter 1

Preliminaries

1.1. Let f : X → Y be an arbitrary mapping and X′, X′′ ⊆ X, Y ′, Y ′′ ⊆ Y . Prove that

(a) f−1(Y ′ ∪ Y ′′) = f−1(Y ′) ∪ f−1(Y ′′);

(b) f−1(Y ′ ∩ Y ′′) = f−1(Y ′) ∩ f−1(Y ′′);

(c) f(X′ ∪X′′) = f(X′) ∪ f(X′′);

(d) f(X′ ∩X′′) may not be equal to f(X′) ∩ f(X′′).

Solution:

(a) Consider x ∈ f−1(Y ′ ∪ Y ′′). Then there exists y ∈ Y ′ ∪ Y ′′ such
that f(x) = y. This implies that x ∈ f−1(Y ′) ∪ f−1(Y ′′). Thus,

f−1(Y ′ ∪ Y ′′) ⊆ f−1(Y ′) ∪ f−1(Y ′′). (1.1)

Now, consider x ∈ f−1(Y ′) ∪ f−1(Y ′′). Then x ∈ f−1(Y ′) or x ∈
f−1(Y ′′). Since f−1(Y ′) ⊆ f−1(Y ′ ∪Y ′′) and f−1(Y ′′) ⊆ f−1(Y ′ ∪
Y ′′), we have x ∈ f−1(Y ′ ∪ Y ′′). Thus

f−1(Y ′) ∪ f−1(Y ′′) ⊆ f−1(Y ′ ∪ Y ′′). (1.2)

From (1.1) and (1.2) we have f−1(Y ′ ∪ Y ′′) = f−1(Y ′) ∪ f−1(Y ′′).

(b) Consider x ∈ f−1(Y ′ ∩ Y ′′). Then there exists y ∈ Y ′ ∩ Y ′′ such
that f(x) = y. This implies that x ∈ f−1(Y ′) ∩ f−1(Y ′′). Thus,

f−1(Y ′ ∩ Y ′′) ⊆ f−1(Y ′) ∩ f−1(Y ′′). (1.3)

Now, consider x ∈ f−1(Y ′) ∩ f−1(Y ′′). Then x ∈ f−1(Y ′) and
x ∈ f−1(Y ′′). Hence, there exist y′ ∈ Y ′ and y′′ ∈ Y ′′ such that
f(x) = y′ and f(x) = y′′. Since f(x) is unique, this implies that
y′ = y′′ ∈ Y ′ ∩ Y ′′. So, x ∈ f−1(Y ′ ∩ Y ′′) and

f−1(Y ′) ∩ f−1(Y ′′) ⊆ f−1(Y ′ ∩ Y ′′). (1.4)

From (1.3) and (1.4) we have f−1(Y ′ ∩ Y ′′) = f−1(Y ′) ∩ f−1(Y ′′).

(c)
y ∈ f(X ′ ∪X ′′)

m
there exists x ∈ X ′ or X ′′ such that f(x) = y

m
y ∈ f(X ′) ∪ f(X ′′).

3



4 Numerical Methods and Optimization: Solutions to Exercises

(d) Consider, for example, f(x) = x2, X ′ = [−1, 0], X ′′ = [0, 1]. Then
f(X ′) = f(X ′′) = f(X ′) ∩ f(X ′′) = [0, 1], however, f(X ′ ∩X ′′) =
f({0}) = {0}.

1.2. Prove that the following sets are countable:

(a) the set of all odd integers;

(b) the set of all even integers;

(c) the set 2, 4, 8, 16, . . . , 2n, . . . of powers of 2.

Solution: We have the following bijections with the countable set Z of
all integers or Z+ of all positive integers:

(a) f(n) = 2n+ 1, n ∈ Z;

(b) f(n) = 2n, n ∈ Z;

(c) f(n) = 2n, n ∈ Z+.

1.3. Show that

(a) every infinite subset of a countable set is countable;

(b) the union of a countable family of countable sets A1, A2, . . . is countable;

(c) every infinite set has a countable subset.

Solution:

(a) Let A be the countable set, and let B be its infinite subset. Since
A is countable, there is a bijection f : Z+ → A. Let f(n) = an ∈ A
for any n ∈ Z+. We build a bijection g : Z+ → B such that
g(k) = bk, k ≥ 1 as follows. Let bk be the element of {an : n ≥ 1}
with the kth smallest index among the elements of A that belong
to B. Since B is infinite, there is such an element for any k ≥ 1.
On the other hand, each element of B is one of the elements of
{an : n ≥ 1} (since B ⊆ A = {an : n ≥ 1}, so for any b ∈ B there
exists k such that bk = b. Thus g is a bijection and B is countable.

(b) We can assume that no two sets have any elements in common
(otherwise, we can consider A1, A2\A1, A3\(A1 ∪ A2), . . ., each of
which is countable as a subset of a countable set).

We can write the elements of A1, A2, . . . in the form of an infinite
table as follows:

a11 a12 a13 · · ·
a21 a22 a23 · · ·
a31 a32 a33 · · ·
...

...
...

. . .

where aij is the jth element of Ai, i, j=1,2, . . . . Clearly, this table
contains all the elements of all the sets. We can count the elements
of the table by processing it diagonally as follows. Start with a11,
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then count a12, a21. Proceed to a31, a22, a13, etc. Any element of the
table will eventually be counted this way, and for any positive inte-
ger n we can find a specific element in the table that is counted as
nth in the suggested procedure. Thus, we have a bijection between
Z+ and the union of elements of A1, A2, . . ..

(c) Let A be an infinite set. We construct its countable subset as
follows. Pick an arbitrary element a1 of A. Then pick an ar-
bitrary element of A\{ai}, ..., pick an arbitrary element ak of
A\{a1, . . . , ak−1} for any k ≥ 3. This is always possible since the
set A\{a1, . . . , ak−1} is infinite for any positive integer k ≥ 2.

1.4. Show that each of the following sets satisfies axioms from Definition 1.4 and thus is
a linear space.

(a) IRn with operations of vector addition and scalar multiplication.

(b) IRm×n with operations of matrix addition and scalar multiplication.

(c) C[a, b]–the set of all continuous real-valued functions defined on the interval
[a, b], with addition and scalar multiplication defined as

(f + g)(x) = f(x) + g(x), x ∈ [a, b] for any f, g ∈ C[a, b];

(αf)(x) = αf(x), x ∈ [a, b] for each f ∈ C[a, b] and any scalar α;

respectively.

(d) Pn–the set of all polynomials of degree at most n with addition and scalar
multiplication defined as

(p+ q)(x) = p(x) + q(x), for any p, q ∈ Pn;

(αp)(x) = αp(x), for each p ∈ Pn; and any scalar α;

respectively.

Solution: All 8 properties listed in Definition 1.4 are trivial to verify in
each of the four considered cases.

1.5. (Gram-Schmidt orthogonalization) Let p(0), . . . , p(k−1) ∈ IRn, where k ≤ n,
be an arbitrary set of linearly independent vectors. Show that the set of vectors
d(0), . . . , d(k−1) ∈ IRn given by

d(0) = p(0);

d(s) = p(s) −
s−1∑
i=0

p(s)
T
d(i)

d(i)
T
d(i)

d(i), s = 1, . . . , k − 1

is orthogonal.

Solution: We have

d(0)T d(1) = p(0)T
(
p(1) − p(1)

T
p(0)

p(0)T p(0)
p(0)

)
= p(0)

T
p(1)(p(0)

T
p(0))−p(0)T (p(1)

T
p(0))p(0)

p(0)T p(0)

= 0.
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Assume that d(j)T d(s) = 0 for all s = 1, . . . , r, j = 1, . . . s − 1, where
r < k − 1. Then for s = r + 1 and j = 1, . . . s− 1 we have

d(j)T d(r+1) = d(j)T
(
p(r+1) −

r∑
i=0

p(r+1)T d(i)

d(i)T d(i)
d(i)

)
= d(j)T

(
p(r+1) − p(r+1)T d(j)

d(j)T d(j)
d(j)

)
= d(j)T p(r+1) − p(r+1)T d(j)

= 0.

Hence, the statement is correct by induction.

1.6. Show that for p = 1, 2,∞ the norm ‖·‖p is compatible, that is for any A ∈ IRm×n, x ∈
IRn:

‖Ax‖p ≤ ‖A‖p‖x‖p.

Solution: By the definition of ‖A‖p we have:

‖A‖p = max
x 6=0

‖Ax‖p
‖x‖p

≥ ‖Ax‖p
‖x‖p

for any x ∈ IRn\{0}.

Thus, ‖Ax‖p ≤ ‖A‖p‖x‖p.

1.7. Let

a =

 a1

...
an

 and b =

 b1
...
bn


be two vectors in IRn.

(a) Compute the matrix

M = abT =

 a1

...
an

 [b1, . . . , bn].

(b) How many additions and multiplications are needed to compute M?

(c) What is the rank of M?

Solution:

(a) By definition of the product of two matrices,

M = abT =

 a1

...
an

 [b1, . . . , bn] =


a1b1 a1b2 . . . a1bn
a2b1 a2b2 . . . a2bn

...
...

. . .
...

anb1 anb2 . . . anbn

.

(b) To compute M in (a), we have done n2 multiplications and no
additions.
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(c) Without loss of generality, assume that a1 6= 0. Then the i-th row
Ri, i = 2, . . . , n, of M can be obtained from the first row R1 as
follows: Ri = ai

a1
R1. Therefore, the rank of M is 1.

1.8. Show that a square matrix A is orthogonal if and only if both the columns and rows

of A form sets of orthonormal vectors.

Solution: Denote by ai the ith column of A of size n × n. Then aTi is
the ith row of AT . Since A is orthonormal have: ATA = In, where In is
the n× n identity matrix. But this is the case if and only if

aTi × aj =

{
1, if i = j
0, otherwise,

which is exactly the definition of a set of orthonormal vectors. Since
AT = A−1, we have AAT = In and the same proof can be used to show
that the rows of A are also orthonormal.

1.9. A company manufactures three different products using the same machine. The sell
price, production cost, and machine time required to produce a unit of each product
are given in the following table.

Product 1 Product 2 Product 3
Sell price $30 $35 $50
Production cost $18 $22 $30
Machine time 20 min 25 min 35 min

The table below represents a two-week plan for the number of units of each product
to be produced.

Week 1 Week 2
Product 1 120 130
Product 2 100 80
Product 3 50 60

Use a matrix product to compute, for each week, the revenue received from selling

all items manufactured in a given week, the total production cost for each week, and

the total machine time spent each week. Present your answers in a table.

Solution: We have 30 35 50
18 22 30
20 25 35

 120 130
100 80
50 60

 =

 9600 9700
5860 5900
6650 6700

 .
Putting the results in a table, we obtain:

Week 1 Week 2
Revenue 9600 9700
Production cost 5860 5900
Machine time 6650 6700
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1.10. Given matrices

A =


1 2 6
−2 7 −6

2 10 5
0 4 8

 , B =

 2 −1
1 −3
0 2

 and C =

 1 0 0
0 1 0
0 0 1

 ,
(a) find the transpose of each matrix;

(b) consider all possible pairs {(A,A), (A,B), (B,A), . . . , (C,C)} and compute a
product of each pair for which multiplication is a feasible operation.

Solution:

(a)

AT =

 1 −2 2 0
2 7 10 4
6 −6 5 8

 , BT =

[
2 1 0
−1 −3 2

]
, and CT = C.

(b)

AB =


4 5
3 −31

14 −22
4 4

 ; AC = A; CB = B; CC = C.

1.11. For the matrices

A =

 −1 8 4
2 −3 −6
0 3 7

 ; B =

 −4 9 2
3 −5 4
8 1 −6

 ,
find (a) A− 2B, (b) AB, (c) BA.

Solution:

(a) A−2B =

 7 −10 0
−4 7 −14
−16 1 19

 ; (b) AB =

 60 −45 6
−65 27 28

65 −8 −30

 ;

(c) BA =

 22 −53 −56
−13 51 70
−6 43 −16

 .
1.12. Compute the p-norm for p = 1, 2,∞ of the matrices A and B in Exercise 1.11.

Solution: ‖A‖1 = 17, ‖A‖2 = 12.882, ‖A‖∞ = 13;
‖B‖1 = 15, ‖B‖2 = 12.168, ‖B‖∞ = 15.

1.13. Find the quadratic Taylor’s approximation of the following functions:

(a) f(x) = x4
1 + x4

2 − 4x1x2 + x2
1 − 2x2

2 at x̄ = [1, 1]T ;

(b) f(x) = exp (x2
1 + x2

2) at x̄ = [0, 0]T ;

(c) f(x) = 1
1+x21+x22

at x̄ = [0, 0]T .
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Solution: The quadratic Taylor’s approximation is given by

f(x) ≈ f(x̄) +∇f(x̄)T (x− x̄) +
1

2
(x− x̄)T∇2f(x̄)(x− x̄).

(a) f(x̄) = 1 + 1− 4 + 1− 2 = −3.

∇f(x) = [4x3
1−4x2+2x1, 4x

3
2−4x1−4x2]T ⇒ ∇f(x̄) = [2,−4]T .

∇2f(x) =

[
12x2

1 + 2 −4
−4 12x2

2 − 4

]
⇒ ∇2f(x̄) =

[
14 −4
−4 8

]
.

Hence, we have:

f(x) ≈ −3 + 2(x1 − 1)− 4(x2 − 1) + 7(x1 − 1)2

−4(x1 − 1)(x2 − 1) + 4(x2 − 1)2

= 7x2
1 − 4x1x2 + 4x2

2 − 8x1 − 8x2 + 6.

(b) f(x̄) = exp (0 + 0) = 1.

∇f(x) = [2x1 exp (x2
1 + x2

2), 2x2 exp (x2
1 + x2

2)]T ⇒ ∇f(x̄) = [0, 0]T .

∇2f(x) = 2 exp (x2
1 + x2

2)

[
1 + 2x1 2x1x2

2x1x2 1 + 2x2

]
⇒ ∇2f(x̄) =

[
2 0
0 2

]
.

Thus,
f(x) ≈ x2

1 + x2
2 + 1.

(c) f(x̄) = 1.

∇f(x) = [− 2x1

(1 + x2
1 + x2

2)2
,− 2x2

(1 + x2
1 + x2

2)2
]T ⇒ ∇f(x̄) = [0, 0]T .

∇2f(x) =

 − 2(1+x2
1+x2

2)2−8(1+x2
1+x2

2)x2
1

(1+x2
1+x2

2)4
4(1+x2

1+x2
2)x1x2

(1+x2
1+x2

2)4

4(1+x2
1+x2

2)x1x2

(1+x2
1+x2

2)4
− 2(1+x2

1+x2
2)2−8(1+x2

1+x2
2)x2

2

(1+x2
1+x2

2)4


⇒ ∇2f(x̄) =

[
−2 0
0 −2

]
.

Thus,
f(x) ≈ −x2

1 − x2
2 + 1.
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