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1 [0 FUNCTIONS AND LIMITS

1.1 Four Ways to Represent a Function

1. The functions f(z) = = + v/2 — z and g(u) = u + /2 — u give exactly the same output values for every input value, so f

and g are equal.

2. f(z) = a; :193 = m(j:ll) =g forz — 1+ 0,so f and g [where g(z) = z] are not equal because f(1) is undefined and

3. (a) The point (1, 3) is on the graph of f, so f(1) = 3.
(b) When z = —1, y is about —0.2, so f(—1) ~ —0.2.
(c) f(z) = lisequivalenttoy = 1. Wheny = 1, we have x = 0 and x = 3.
(d) A reasonable estimate for z when y = 0is z = —0.8.

(e) The domain of f consists of all z-values on the graph of f. For this function, the domain is —2 < z < 4, or [—2, 4].

The range of f consists of all y-values on the graph of f. For this function, the range is —1 < y < 3, or [—1, 3].
(f) As z increases from —2 to 1, y increases from —1 to 3. Thus, f is increasing on the interval [—2, 1].
4. (a) The point (—4, —2) is on the graph of f, so f(—4) = —2. The point (3, 4) is on the graph of g, so g(3) = 4.

(b) We are looking for the values of  for which the y-values are equal. The y-values for f and g are equal at the points

(—2,1) and (2, 2), so the desired values of z are —2 and 2.
(©) f(z) = —1isequivalenttoy = —1. Wheny = —1, we have z = —3 and z = 4.
(d) As x increases from 0 to 4, y decreases from 3 to —1. Thus, f is decreasing on the interval [0, 4].

(¢) The domain of f consists of all z-values on the graph of f. For this function, the domain is —4 < x < 4, or [—4, 4].

The range of f consists of all y-values on the graph of f. For this function, the range is —2 < y < 3, or [-2, 3].
(f) The domain of g is [—4, 3] and the range is [0.5, 4].

5. From Figure 1 in the text, the lowest point occurs at about (¢, a) = (12, —85). The highest point occurs at about (17,115).

Thus, the range of the vertical ground acceleration is —85 < a < 115. Written in interval notation, we get [—85, 115].

6. Example 1: A car is driven at 60 mi/h for 2 hours. The distance d miles
traveled by the car is a function of the time ¢. The domain of the 120
function is {¢ | 0 < ¢ < 2}, where ¢ is measured in hours. The range
of the function is {d | 0 < d < 120}, where d is measured in miles. 0 2 time in

hours
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Example 2: At a certain university, the number of students NV on

campus at any time on a particular day is a function of the time ¢ after of iﬂgﬁ:

midnight. The domain of the function is {¢ | 0 < ¢ < 24}, where ¢ is

measured in hours. The range of the functionis {IV | 0 < N < k}, , . , , —
where N is an integer and k is the largest number of students on (midgight) oo
campus at once.

Example 3: A certain employee is paid $8.00 per hour and works a pay

maximum of 30 hours per week. The number of hours worked is 2401 °
rounded down to the nearest quarter of an hour. This employee’s ;zi ._;—0
gross weekly pay P is a function of the number of hours worked h.

The domain of the function is [0, 30] and the range of the function is g ._O._O

{0,2.00,4.00, .. .,238.00,240.00}. o] 025 050 075 29502975 30 hours

. No, the curve is not the graph of a function because a vertical line intersects the curve more than once. Hence, the curve fails

the Vertical Line Test.

. Yes, the curve is the graph of a function because it passes the Vertical Line Test. The domain is [—2, 2] and the range

is[-1,2].

. Yes, the curve is the graph of a function because it passes the Vertical Line Test. The domain is [—3, 2] and the range

is [-3,-2)U[-1,3].

No, the curve is not the graph of a function since for x = 0, £1, and 42, there are infinitely many points on the curve.

(a) When t = 1950, T' = 13.8°C, so the global average temperature in 1950 was about 13.8°C.

(b) When T" = 14.2°C, ¢t =~ 1990.

(c) The global average temperature was smallest in 1910 (the year corresponding to the lowest point on the graph) and largest
in 2005 (the year corresponding to the highest point on the graph).

(d) When t = 1910, T' & 13.5°C, and when ¢ = 2005, T' & 14.5°C. Thus, the range of 1" is about [13.5, 14.5].

(a) The ring width varies from near 0 mm to about 1.6 mm, so the range of the ring width function is approximately [0, 1.6].

(b) According to the graph, the earth gradually cooled from 1550 to 1700, warmed into the late 1700s, cooled again into the
late 1800s, and has been steadily warming since then. In the mid-19th century, there was variation that could have been

associated with volcanic eruptions.

The water will cool down almost to freezing as the ice melts. Then, when T

the ice has melted, the water will slowly warm up to room temperature.

© 2016 Cengage Learning“All'Rights Reserved. May not bé'scanned; copied; or duplicated; or posted'to a publiclyaccessible'website, in whele orin part:



SECTION 1.1 FOUR WAYS TO REPRESENTAFUNCTION O 11

14. Runner A won the race, reaching the finish line at 100 meters in about 15 seconds, followed by runner B with a time of about

19 seconds, and then by runner C who finished in around 23 seconds. B initially led the race, followed by C, and then A.

C then passed B to lead for a while. Then A passed first B, and then passed C to take the lead and finish first. Finally,

B passed C to finish in second place. All three runners completed the race.

15. (a) The power consumption at 6 AM is 500 MW, which is obtained by reading the value of power P when ¢t = 6 from the

graph. At 6 PM we read the value of P when ¢t = 18, obtaining approximately 730 MW.

(b) The minimum power consumption is determined by finding the time for the lowest point on the graph, ¢ = 4, or 4 AM. The

maximum power consumption corresponds to the highest point on the graph, which occurs just before ¢ = 12, or right

before noon. These times are reasonable, considering the power consumption schedules of most individuals and

businesses.

16. The summer solstice (the longest day of the year) is
around June 21, and the winter solstice (the shortest day)
is around December 22. (Exchange the dates for the

southern hemisphere.)

Hours of
daylight

| June2l  Dec.22 t

18. The value of the car decreases fairly rapidly initially, then
somewhat less rapidly.

value

0 5 10 15 20 ¢
(in years)

20. The temperature of the pie would increase rapidly, level
off to oven temperature, decrease rapidly, and then level

off to room temperature.

T

17. Of course, this graph depends strongly on the
geographical location!

T

midnight noon !

19. As the price increases, the amount sold decreases.

amount

0 price

2. Height
of grass

Wed.  Wed. Wed Wed Wed. !
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12 0O CHAPTER1 FUNCTIONS AND LIMITS

22, (a) (1) (b) N0
400 35,000
feet
60 1 30 60 1t
(©) ground (d) vertical
speed velocity
500
miles
per hour
60 ! 60 t
23. (a) TH4CF) (b) 9:00 AM corresponds to ¢t = 9. When ¢ = 9, the
851 temperature T is about 74°F.
80 T
75 4
70t
651
0 + + + + + + + 7
2 4 6 8 10 12 14 (hohrs)
24. (a) (b) The blood alcohol concentration rises rapidly, then slowly
BAC 4(g/dL)
0.040 1 decreases to near zero. Note that the BAC in this exercise is
measured in g/dL, not percent.
0.030 1 g/ P
0.020 1
0.010 1
0 t
(hours)

25, f(x) =32% — x4+ 2.
f(2)=312)?%-2+2=12-2+2=12.

f
f(=a)
fla+1)=3(a+1)?—(a+1)+2=3a*+2a+1)—a—-1+2=3a>+6a+3—a+1=3a>+5a+4.

a) =3a® —a+2.

(

(

f(=2)=3(-2)2 - (-2)+2=124+2+2=16.
(

(— 3(—a)® = (—a)+2=3a>+a+2.

2f(a) =2- f(a) = 2(3a> — a +2) = 6a°® — 2a + 4.
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f(2a) = 3(2a)* — (2a) + 2 = 3(4a®) — 2a + 2 = 12a® — 2a + 2.
f(a®) =3(a*)? — (a*) + 2 =3(a*) —a®> + 2 =3a* —a® + 2.
[f(a)]? = [3a? —a+2}2 = (30> —a+2)(3a® —a+2)
=9a* — 3a® + 6a® — 3a® + a® — 2a + 6a® — 2a + 4 = 9a* — 6a® 4 13a® — 4a + 4.

fla+h)=3(a+h)?*—(a+h)+2=3*+2ah+h?>)—a—h+2=3a>+6ah+3h>—a—h+2.

A spherical balloon with radius r + 1 has volume V (r + 1) = 27 (r + 1)* = 47(r® + 3r® + 3r + 1). We wish to find the
amount of air needed to inflate the balloon from a radius of r to r + 1. Hence, we need to find the difference

V(ir+1)=V(r)=3a(r® +3r +3r +1) — 37r® = 27(3r? + 3r + 1).

flz)=4+3cx—2%s0 f(3+h)=4+33+h)— (B3+h)?>=4+9+3h—(9+6h+h?) =4—3h—h?

g JBHM —fB) _ (4=3h-h*)—4 h(=3-h)

h h oo STk

f(x) =2% 50 fla+h) = (a+h)® = d® + 3a>h + 3ah? + h?,

fla+h) = f(a) (a®+3a®h +3ah®>+h%) —a®  h(3a® + 3ah + h?)

— _ _q.2 2
and 5 = A = 5 = 3a” + 3ah + h”.
11 a-s
f(m)_f(a):x a _ _xza _ _9—7T :—l(m—a):_i
x—a x—a x—a za(lr—a) za(z—a) ax

43 9 r+3—-2(x+1)

fl@)—f1) _z+1 = z+1 4322
z—1 = xz-1 z—1 T (z+D(z—-1)
—z+1 —(x—1) 1

T @+ )z-1) (@+D)@E-1) z+1

f(z) = (z +4)/(z* — 9) is defined for all z except when0 =2> -9 < 0= (z+3)(x —3) < = —3or3,sothe
domainis {z € R |z # —3,3} = (—o0, —3) U (—3,3) U (3, 00).
f(z) = (22® — 5)/(z* + = — 6) is defined for all 7 except when0 = 2> +2—6 < 0= (z+3)(z—2) <

x = —3 or 2, so the domainis {x € R | x # —3,2} = (—o00,—3) U (—3,2) U (2,00).

f(t) = /2t — 1 is defined for all real numbers. In fact {/p(t), where p(¢) is a polynomial, is defined for all real numbers.

Thus, the domain is R, or (—o0, 00).

g(t) =v3—t—+2+tisdefinedwhen3 —¢t>0 <« t<3and2+¢t>0 < > —2. Thus, the domain is

—2<t<3,0r[-2,3].

h(z) =1 /v/2% — 5z is defined when 2° — 52 > 0 <  a(z — 5) > 0. Note that 2> — 5z # 0 since that would result in
division by zero. The expression z(x — 5) is positive if z < 0 or z > 5. (See Appendix A for methods for solving

inequalities.) Thus, the domain is (—o0, 0) U (5, 00).
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14 0 CHAPTER1 FUNCTIONS AND LIMITS

3. f(u):“—Jriisdeﬁnedwhenu+1¢0[u¢—1]and1+L;Ao. Since 14+ —— =0
1+ u—+1 u+1
u+1
—1&—1:71 & 1l=—u—-1 & wu=-2thedomainis{u |u # —2,u # —1} = (—o0, —2) U (-2, —1) U(—1, 00).
u

31. F(p) = /2 — \/pisdefined whenp > 0and2 — \/p > 0. Since2 - ,/p>0 & 2>,p & /<2 &
0 < p < 4, the domain is [0, 4].

38 h(z)=vV4—a2Nowy=+v4—-122 = ¢y>’=4—-2 & 22+y*=450 Y

the graph is the top half of a circle of radius 2 with center at the origin. The domain

is{z|4-2>>0} ={z|4>2"} ={z| 2> |z|} = [-2,2]. From the graph, E— 5

the range is 0 < y < 2, or [0, 2].

39. The domain of f(z) = 1.6z — 2.4 is the set of all real numbers, denoted by R or 7

(—00, 00). The graph of f is a line with slope 1.6 and y-intercept —2.4.

2 - —
40. Note that g(t) = —— L = X D=1

=t—1fort+1+#0,ie.,t#—1.

t+1 t+1
The domain of g is the set of all real numbers except —1. In interval notation, we /
have (—oo, —1) U (—1, 00). The graph of g is a line with slope 1, y-intercept —1, “1.-2) 0[1 !
andaholeatt = —1.
. () z+2 ifx<O ,
. f(x) = )
1—x ifx>0
0,2)
f(=3)=-3+2=-1,f0)=1-0=1,and f(2) =1—2= —1. /@U
e \
2. () 3—%1’ if © <2 y
. f(z) =
2v—5 ifzx>2 \3\
2,2
f(=3)=3—-3(-3) =% f(0)=3—-3(0) =3, ‘ />
0 X
and f(2) =2(2) —5=—1 @.-1)

43. f(x) =
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SECTION 1.1 FOUR WAYS TO REPRESENT AFUNCTION 00 15

. (o) -1 if <1 y
. xT) = 1,5
T—2r ifz>1 )

F(=3) = —1, f(0) = —1,and f(2) = 7 — 2(2) = 3.

T if >0
45. |z| = _ Y
—x ifz<O0
1) ] 2¢ if x>0 2l
So r)=x+ |x| =
0 if <0
Graph the line y = 2x for x > 0 and graph y = 0 (the x-axis) for z < 0. 5 1 >
x+ 2 if z+2>0
46. f(z)=|z+2|= ) Y
—(x+2) ifz4+2<0

T+ 2 if x> -2
T oz—2 ifz<-2 ¥

—2 |0 X
1-3t if 1-3t>0 ,
41. g(t) = |1 = 3t| = _ )
—(1-3t) if1-3t<0
1-3t ift<sz
C\3t—1 ift>1 !
o] & t
t if t>0 ,
48. |t| = ] and Y
—t ift<O
t+1 ift+1>0 t+1 if t > -1
t+1] = : = :
—(t+1) ift+1<0 —t—1 ift<-1 f
J] 0 t
t+(t+1) ift>0 2t+1 ift>0
50 ht)=[t|+[t+1] =< —t+(t+1) if —1<t<0 =41 if —1<t<0
—t+(—t—1) ift<-1 —2t—1 ift<—1
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lz] if |z| <1 ,
To graph f(z) = ) , graph y = |z| (Figure 16) )
1 if|zl>1
1
for —1 < x < 1landgraphy =1 forxz > 1and forz < —1. — "
-1 1 X
1 if z<—1
W d e fas f(2) —x if -1<z<0
e could rewrite f as f(x) =
ifo<z<1
1 ifz>1
|z| — 1 if |[2]—1>0 y
g(@) = ||o| — 1] = .
—(lz] =1) if |z|—-1<0
|z| — 1 if |z|>1
= . -1 0 1 X
—lz|+1 if |Jz| <1
r—1 if |[z|>1andz >0 r—1 if x>1
—z—1 if |z|>1andaz <0 —z—1 ifx<-1
) -z 1 if |z)<landz>0 | -z41 if0<z<l
—(—z)+1 if |z|<landz <0 z+1 if —1<x<0

Recall that the slope m of a line between the two points (x1,y1) and (22,y2) ism = 9279 andan equation of the line
T2 —I1

connecting those two points is y — y1 = m(z — x1). The slope of the line segment joining the points (1, —3) and (5, 7) is

75%(_13) = g, so an equation is y — (—3) = 5 (x — 1). The function is f(z) = Sz — &, 1 <z <5.
. S . . —10—-10 5 .
The slope of the line segment joining the points (—5, 10) and (7, —10) is T—(5) =—3,s0an equation is

y —10 = —3[z — (—5)]. The functionis f(z) = -2z + 2, -5 <z < T.

We need to solve the given equation fory. z+(y—1)°=0 & (y—1)°=-2 & y—1=+y/—z <
y = 1 + /—x. The expression with the positive radical represents the top half of the parabola, and the one with the negative

radical represents the bottom half. Hence, we want f(x) = 1 — y/—x. Note that the domain is z < 0.
P+ y—-22%=4 & Y-2°=4-2> & y-2=4+V4—22 & y=2=4+4— 2 Thetophalfis given by
the function f(z) =2+ V4 — 22, -2 <z < 2.
For 0 < x < 3, the graph is the line with slope —1 and y-intercept 3, that is, y = —z + 3. For 3 < x < 5, the graph is the line
with slope 2 passing through (3, 0); thatis, y — 0 = 2(z — 3), or y = 2z — 6. So the function is

—x+3 if0<x<3

f(z) = :

20 —6 if 3<ax<5h

For —4 < z < —2, the graph is the line with slope —2 passing through (—2,0); thatis,y — 0 = —2[z — (=2)], or

Y= —%x — 3. For —2 < z < 2, the graph is the top half of the circle with center (0, 0) and radius 2. An equation of the circle
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is 22 + y® = 4, so0 an equation of the top half is y = v/4 — x2. For 2 < x < 4, the graph is the line with slope % passing
through (2,0); thatis,y — 0 = 3(z — 2), ory = 3z — 3. So the function is

—3z-3 if 4<z<-2

flr)=¢V4—a? if 2<z<2

30-3 if 2<2<4

Let the length and width of the rectangle be L and W. Then the perimeter is 2L + 2W = 20 and the areais A = LWW.
20 - 2L

Solving the first equation for W in terms of L gives W = =10 — L. Thus, A(L) = L(10 — L) = 10L — L?. Since

lengths are positive, the domain of A is 0 < L < 10. If we further restrict L to be larger than W, then 5 < L < 10 would be

the domain.

Let the length and width of the rectangle be L and W. Then the area is LW = 16, so that W = 16/ L. The perimeter is
P =2L+2W,so P(L) =2L+ 2(16/L) = 2L + 32/L, and the domain of P is L > 0, since lengths must be positive
quantities. If we further restrict L to be larger than W, then L > 4 would be the domain.

Let the length of a side of the equilateral triangle be x. Then by the Pythagorean Theorem, the height y of the triangle satisfies

2

y*+ (%1‘)2 = 22, so that y% = 22 — 122

1 _ 3.2 V) ; :
72° = 32 and y = 5°x. Using the formula for the area A of a triangle,

A = $(base)(height), we obtain A(z) = 1 () (@x) = %xQ, with domain z > 0.

Let the length, width, and height of the closed rectangular box be denoted by L, W, and H, respectively. The length is twice
the width, so L = 2W. The volume V of the box is given by V' = LWH. Since V = 8, we have 8 = 2W)WH =

8 4 4
8:2W2H = H:2W2:W,andS0H:f(W):m.

Let each side of the base of the box have length z, and let the height of the box be h. Since the volume is 2, we know that
2 = ha®, so that h = 2/22, and the surface area is S = x> + 4xh. Thus, S(z) = 22 + 42(2/2%) = 2 + (8/2), with
domain z > 0.
2
The area of the window is A = zh + %’/T(%.T)z =zxh + %, where h is the height of the rectangular portion of the window.

The perimeteris P = 2h + 2+ in2 =30 < 2h=30—2— 37z < h = 1(60 — 2z — 7z). Thus,

— 2z — 2 4
A(x):xw-k% =152 — 12 — %2° + %2 :153,-—%3:2—%3:2:151;—952(” ; )
Since the lengths « and h must be positive quantities, we have > 0 and h > 0. For h > 0, we have 2h >0 <&

1 60 . . 60
30—z —5mr>0 & 60>2x+mr < o< -——. Hence,thedomainof Ais0 <z < .
247 247

The height of the box is « and the length and width are L = 20 — 2z, W = 12 — 2z. Then V = LWz and so
V(z) = (20 — 22)(12 — 22)(x) = 4(10 — 2)(6 — z)(x) = 42(60 — 16z + 2?) = 4o® — 642> + 240x.

The sides L, W, and x must be positive. Thus, L. >0 < 20—2z >0 < z <10;

W>0 & 12—-2x>0 & < 6;andz > 0. Combining these restrictions gives us the domain 0 < x < 6.
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64. We can summarize the monthly cost with a piecewise

defined function. 37 _~
351

35 if 0 <z <400
C(z) = .
354 0.10(z — 400) if = > 400

0 400 600 x
65. We can summarize the amount of the fine with a F
. . . 600+ (100, 525)
piecewise defined function.
15(40 —z) if 0 <z < 40
F(z)=<0 if 40 < <65
15(x — 65) if z > 65 ‘
0 40 65 100 X
66. For the first 1200 kWh, E(x) = 10 4 0.06. E4 Cost (3)
138
For usage over 1200 kWh, the cost is
E(z) = 10+ 0.06(1200) + 0.07(z — 1200) = 82 + 0.07(z — 1200).
Thus, 821 (1200, 82)
10 + 0.06z if 0 <z <1200
|82+ 0.07(x — 1200) if @ > 1200
101
0 1200 2000 x
(kKWh)
67. (a) R(%) (b) On $14,000, tax is assessed on $4000, and 10%($4000) = $400.
154 —_ On $26,000, tax is assessed on $16,000, and
107 © * 10%($10,000) 4+ 15%($6000) = $1000 + $900 = $1900.
o[ 10000 20000 7 (indollars)
(c) As in part (b), there is $1000 tax assessed on $20,000 of income, so T (in dollars)
the graph of 7" is a line segment from (10,000, 0) to (20,000, 1000). 2500+

The tax on $30,000 is $2500, so the graph of T for = > 20,000 is 10004

the ray with initial point (20,000, 1000) that passes through

0] 10,000 20,000 30,000 1 (in dollars)
(30,000, 2500).

68. One example is the amount paid for cable or telephone system repair in the home, usually measured to the nearest quarter hour.
Another example is the amount paid by a student in tuition fees, if the fees vary according to the number of credits for which

the student has registered.

69. f is an odd function because its graph is symmetric about the origin. g is an even function because its graph is symmetric with

respect to the y-axis.
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SECTION 1.1 FOUR WAYS TO REPRESENT AFUNCTION T 19

70. f is not an even function since it is not symmetric with respect to the y-axis. f is not an odd function since it is not symmetric

about the origin. Hence, f is neither even nor odd. g is an even function because its graph is symmetric with respect to the

y-axis.

71. (a) Because an even function is symmetric with respect to the y-axis, and the point (5, 3) is on the graph of this even function,

the point (—5, 3) must also be on its graph.

(b) Because an odd function is symmetric with respect to the origin, and the point (5, 3) is on the graph of this odd function,

the point (—5, —3) must also be on its graph.

72. (a) If f is even, we get the rest of the graph by reflecting

about the y-axis.

—T —T T

(—z)2+1 T4l 2241
Since f(—z) = —f(x), f is an odd function.

1

f—2) =

-z
—z+1 z-—1"

75. f(z) = xLH so f(—z) =

Since this is neither f(z) nor — f(z), the function f is

neither even nor odd.

T \

—f(z).

(b) If f is odd, we get the rest of the graph by rotating

180° about the origin.

s
0
4. f(z) = xf—+1
I ) S S
f(—.l’)— (—I)4+1 _1'4+1 —f(.l’)

Since f(—z) = f(x), f is an even function.

1

-2 2

-1

76. f(z) = = |x|.
f(=z) = (=) |-z| = (=) |z = —(x]x])
= /(@)

Since f(—z) = — f(x), f is an odd function.

4
-2 2

-4
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7. f(z) =14 32% — z*. 78. f(z) = 1+ 32® — 5, s0
f(=2) = 143(=2)* — (—2)" = 1+32° —a" = f(2). f(=2) =14 3(-2)® — (—2)° = 1 + 3(—2®) — (=2°)
Since f(—x) = f(z), f is an even function. —1-323 440
4

Since this is neither f(z) nor — f(z), the function f is

/\/\ neither even nor odd.
-2 V + + V 2 >
- /\
el \J )

o

79. (i) If f and g are both even functions, then f(—z) = f(z) and g(—z) = g(z). Now
(f +9)(=2) = f(—=z) + g(—2) = f(2) + g(x) = (f + g)(x), s0 f + g is an even function.
(ii) If f and g are both odd functions, then f(—x) = —f(z) and g(—x) = —g(). Now
(f+9)(==z) = f(—2) + g(—2) = — f(z) + [-g9(x)] = =[f(2) + 9(x)] = —(f + g)(@), s0 f + g is an odd function.
(iii) If f is an even function and g is an odd function, then (f + g)(—z) = f(—x)+ g(—z) = f(z) +[~g(z)] = f(z) — g(x),
which is not (f + g)(z) nor —(f + g)(z), so f + g is neither even nor odd. (Exception: if f is the zero function, then
f + g will be odd. If g is the zero function, then f + g will be even.)
80. (i) If f and g are both even functions, then f(—z) = f(z) and g(—z) = g(z). Now
(f9)(=z) = f(—=x)g(—=x) = f(x)g(x) = (fg)(x),s0 fg is an even function.
(ii) If f and g are both odd functions, then f(—x) = —f(z) and g(—x) = —g(). Now
(f9)(=z) = f(=z)g(—2) = [~ f(@)][-g(2)] = f(z)g(x) = (fg)(x), so fg is an even function.
(iii) If f is an even function and g is an odd function, then

(f9) (=) = f(=2)9(—2) = f()[-g(2)] = —[f(z)g(x)] = =(fg) (%), s0 fg is an odd function.

1.2 Mathematical Models: A Catalog of Essential Functions

1. (a) f(z) = log, x is a logarithmic function.

(b) g(x) = /x is aroot function with n = 4.

22° . . .. . .
(c) h(z) = -2 is a rational function because it is a ratio of polynomials.
-z

(d) u(t) = 1 — 1.1t 4 2.54¢? is a polynomial of degree 2 (also called a quadratic function).
(e) v(t) = 5" is an exponential function.

(f) w(0) = sin @ cos*@ is a trigonometric function.

© 2016 Cengage Learning“All'Rights Reserved. May not bé'scanned; copied; or duplicated; or posted'to a publiclyaccessible'website, in whele orin part:
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2. (a) y = m” is an exponential function (notice that x is the exponent).
(b) y = =™ is a power function (notice that x is the base).
(¢) y = 22(2 — 23) = 22 — 2® is a polynomial of degree 5.
(d) y = tant — cost is a trigonometric function.
(e) y = s/(1 + s) is a rational function because it is a ratio of polynomials.
®y=vad—1/ (14 /) is an algebraic function because it involves polynomials and roots of polynomials.

3. We notice from the figure that g and h are even functions (symmetric with respect to the y-axis) and that f is an odd function
(symmetric with respect to the origin). So (b) [y = x5] must be f. Since g is flatter than h near the origin, we must have
() [y = xs] matched with g and (a) [y = xz] matched with h.

4. (a) The graph of y = 3z is a line (choice G).

(b) y = 3" is an exponential function (choice f).
(c) y = = is an odd polynomial function or power function (choice F).
dy=z= z'/? is a root function (choice g).

5. The denominator cannot equal 0, s0 1 —sinz # 0 < sinz #1 < x # 5 + 2nm. Thus, the domain of

COos

f@) =1~

is Z4+2 an integer |.
- {z|z#3%+2nm,n ger }

6. The denominator cannot equal 0,s0 1 —tanxz #0 < tanxz #1 < 1« # 7 + nm. The tangent function is not defined

- is{z|z# % +nm a# 5 +nm naninteger}.

if v # § + nn. Thus, the domain of g(x) = ﬁ

b=3b=0
b

7. (a) An equation for the family of linear functions with slope 2

isy = f(x) = 2x + b, where b is the y-intercept.

(b) f(2) = 1 means that the point (2, 1) is on the graph of f. We can use the \)
point-slope form of a line to obtain an equation for the family of linear

functions through the point (2,1). y — 1 = m(x — 2), which is equivalent

to y = mx + (1 — 2m) in slope-intercept form.

//\
X
/ y—1l=mx—2)

(c) To belong to both families, an equation must have slope m = 2, so the equation in part (b), y = mz + (1 — 2m),

becomes y = 2x — 3. It is the only function that belongs to both families.
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8.

10.

1.

12,

13.

. All members of the family of linear functions f(z) = ¢ — x have graphs

U CHAPTER1 FUNCTIONS AND LIMITS

All members of the family of linear functions f(z) = 1 + m(z + 3) have

y
m=1
graphs that are lines passing through the point (-3, 1). v %
m= ?
7\

y
that are lines with slope —1. The y-intercept is c. \

(=
=

c=2
c=

c=0

The vertex of the parabola on the left is (3,0), so an equation is y = a(z — 3)? + 0. Since the point (4, 2) is on the
parabola, we’ll substitute 4 for 2 and 2 for y to finda. 2 =a(4 —3)> = a = 2,so0anequationis f(z) = 2(z — 3)2.
The y-intercept of the parabola on the right is (0, 1), so an equation is y = ax® 4 bz + 1. Since the points (—2,2) and
(1, —2.5) are on the parabola, we’ll substitute —2 for x and 2 for y as well as 1 for « and —2.5 for y to obtain two equations
with the unknowns a and b.
(-2,2): 2=4a—-2b+1 = 4da—2b=1 )
(1,-25): —25=a+b+1 = a+b=-35 (2
2-2)+ @) givesusba=—6 = a=-1.Fom(2),—-1+b=-35 = b= —2.5,50an equation
is g(v) = —2* — 2.5z + 1.
Since f(—1) = f(0) = f(2) =0, f has zeros of —1, 0, and 2, so an equation for f is f(z) = alz — (—1)](z — 0)(z — 2),
or f(z) = ax(x 4+ 1)(x — 2). Because f(1) = 6, we’ll substitute 1 for z and 6 for f(z).
6=a(l)(2)(-1) = —-2a=6 = a= —3,s0anequation for fis f(z) = —3z(z + 1)(z — 2).
(a) For T' = 0.02¢ + 8.50, the slope is 0.02, which means that the average surface temperature of the world is increasing at a
rate of 0.02 °C per year. The T-intercept is 8.50, which represents the average surface temperature in °C in the year 1900.
(b) £ =2100 — 1900 = 200 = 7T = 0.02(200) + 8.50 = 12.50°C
(a) D =200, so ¢ =0.0417D(a + 1) = 0.0417(200)(a 4+ 1) = 8.34a + 8.34. The slope is 8.34, which represents the
change in mg of the dosage for a child for each change of 1 year in age.

(b) For a newborn, a = 0, so ¢ = 8.34 mg.
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14. (a) y (b) The slope of —4 means that for each increase of 1 dollar for a

200+ rental space, the number of spaces rented decreases by 4. The

y-intercept of 200 is the number of spaces that would be occupied

1001
if there were no charge for each space. The x-intercept of 50 is the

smallest rental fee that results in no spaces rented.

0] 10 20 30 40 50 60 *

15. (a) F (b) The slope of % means that F' increases % degrees for each increase
e of 1°C. (Equivalently, F increases by 9 when C increases by 5
F= %C+ 32 and F’ decreases by 9 when C' decreases by 5.) The F-intercept of
> 32 is the Fahrenheit temperature corresponding to a Celsius
(-40,-40) ¢ temperature of 0.
16. (a) Let d = distance traveled (in miles) and ¢ = time elapsed (in hours). At (b) ¢
t =0,d =0 and at ¢t = 50 minutes = 50 - 6—10 = % h, d = 40. Thus we %67

w =48 and so d = 48¢.
0

6

have two points: (0,0) and (2,40), so m =

(c) The slope is 48 and represents the car’s speed in mi/h.

17. (a) Using N in place of x and 7" in place of y, we find the slope to be ]z;z : 1];;1 = 1?3 : :23 = % = % So a linear

(N-173) & T-80=tN-13 & T=IN+37 [30_5116].

equation is 7" — 80 = &

1
6
(b) The slope of é means that the temperature in Fahrenheit degrees increases one-sixth as rapidly as the number of cricket

chirps per minute. Said differently, each increase of 6 cricket chirps per minute corresponds to an increase of 1°F.

(¢) When N = 150, the temperature is given approximately by 7' = & (150) + 2L = 76.16 °F ~ 76 °F.

18. (a) Let x denote the number of chairs produced in one day and y the associated "
cost. Using the points (100, 2200) and (300, 4800), we get the slope 20007
250" = o5 = 13.Soy — 2200 = 13(x — 100) < izzz
y = 13z + 900. 2000:
(b) The slope of the line in part (a) is 13 and it represents the cost (in dollars) 1000;:
of producing each additional chair. ol 100 200 300 x
(c) The y-intercept is 900 and it represents the fixed daily costs of operating
the factory.
19. (a) We are given change in pressure __ 4.34 = 0.434. Using P for pressure and d for depth with the point

10 feet change in depth ~ 10
(d, P) = (0, 15), we have the slope-intercept form of the line, P = 0.434d + 15.
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(b) When P = 100, then 100 = 0.434d + 15 < 0434d =85 < d= % ~ 195.85 feet. Thus, the pressure is

100 Ib/in? at a depth of approximately 196 feet.

. . . Cy—C1 460 — 380 80 1
20. 1 f 1 f find the sl = =— ==
0. (a) Using d in place of x and C' in place of y, we find the slope to be p— 300480 — 320 — 4

So a linear equation is C' — 460 = 1 (d — 800) < C —460=1d—200 < C = id+ 260.

(b) Letting d = 1500 we get C' = 1 (1500) + 260 = 635. (©) ’

1000
The cost of driving 1500 miles is $635.

(d) The y-intercept represents the fixed cost, $260. 00 /

(e) A linear function gives a suitable model in this situation because you

. 0

have fixed monthly costs such as insurance and car payments, as well 500 1000

as costs that increase as you drive, such as gasoline, oil, and tires, and The slope of the line represents the cost per
the cost of these for each additional mile driven is a constant. mile, $0.25.

21. (a) The data appear to be periodic and a sine or cosine function would make the best model. A model of the form

f(z) = acos(bx) + ¢ seems appropriate.

(b) The data appear to be decreasing in a linear fashion. A model of the form f(z) = max + b seems appropriate.

22. (a) The data appear to be increasing exponentially. A model of the form f(z) = a - b” or f(z) = a - b® + c seems appropriate.
(b) The data appear to be decreasing similarly to the values of the reciprocal function. A model of the form f(z) = a/x seems

appropriate.

Exercises 23—28: Some values are given to many decimal places. These are the results given by several computer algebra systems — rounding is left
to the reader.

23. (a) 5 (b) Using the points (4000, 14.1) and (60,000, 8.2), we obtain
. 8.2 —-14.1 .
y—14.1= 60,000 — 4000 (z — 4000) or, equivalently,

y ~ —0.000105357x + 14.521429.

— 61,000

A linear model does seem appropriate.

61,000

(c) Using a computing device, we obtain the least squares regression line y = —0.0000997855x + 13.950764.

The following commands and screens illustrate how to find the least squares regression line on a TI1-84 Plus.
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Enter the data into list one (L1) and list two (L2). Press [STAT|[1] to enter the editor.

L1 Lz Lz 1 L1 Lz Lz z
yooo [ 141 [ oo 1zom0 [ 1z.5
good | 13 1000 |12
goon | 13y zooon | 1Z.y
izo00 | 1FE oop0 | 16E
o |1, o |3
Fooo0 (1o | || _Cll_. h
L ={4B88H, SAEHE, 2. Lziim =

Find the regession line and store it in Y. Press [2nd][QUIT][STAT|[»] [4] [VARS] ] [ENTER].

LinEealax+bs Y10 LinReg AME Flokz Flok:
u=zx+h ~HM1E 9. 9FE545618
a=-9, 978545 -5 TEAZE-SH+13. 9567
b=13.93587&482 63@??@85
WY E=
wMr=
My=
[ | sMe=

Note from the last figure that the regression line has been stored in Y; and that Plotl has been turned on (Plotl is

highlighted). You can turn on Plotl from the Y= menu by placing the cursor on Plotl and pressing  ENTER]| or by

pressing (2nd][STAT PLOT|[1][ENTER] .

Flatz  Flat:
o
Fed B8 L= Jn

i FTobz. GFF o R [
S Mlistile
TiFlot3. O N

11 L& o Mark: B +
44FTots0f F

Now press [ZOOM] (9] to produce a graph of the data and the regression
line. Note that choice 9 of the ZOOM menu automatically selects a window

that displays all of the data.

(d) When z = 25,000, y ~ 11.456; or about 11.5 per 100 population.

(e) When z = 80,000, y ~ 5.968; or about a 6% chance.

(f) When = = 200,000, y is negative, so the model does not apply.

24. (a) 230 (chirps/min) (b) 270 (chirps/min)

. . . . . o 45 105 (°F
450 95 (°F) 0 (°F)

Using a computing device, we obtain the least squares
regression line y = 4.856x — 220.96.
(c) When z = 100°F, y = 264.7 ~ 265 chirps/min.
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25.

26.

27.

28.

29.

30.

31.

32,
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(a) 180 . (b) Using a computing device, we obtain the regression line
o : y = 1.88074x + 82.64974.
o 3
%ﬂ b 180
3
== ° o ~
g
150 e
35 55 fb
Femur length (cm) ﬁ

55

(c) When x = 53 cm, y =~ 182.3 cm.

Femur length (cm)

(a) Using a computing device, we obtain the regression line y = 0.01879x + 0.30480.
50

(b) The regression line appears to be a suitable model for the data.

Percentage

(c) The y-intercept represents the percentage of laboratory rats that

develop lung tumors when not exposed to asbestos fibers.

L
3000

Asbestos exposure
(fibers/mL)

(a) See the scatter plot in part (b). A linear model seems appropriate.

(b) Using a computing device, we obtain the regression line 90,000

y = 1116.64x + 60,188.33.

per day

(c) For 2002, x = 17 and y ~ 79,171 thousands of barrels per day.

Thousands of barrels

For 2012, x = 27 and y ~ 90,338 thousands of barrels per day.

55,000 L
0

Years since 1985
(a) See the scatter plot in part (b). A linear model seems appropriate.

(b) Using a computing device, we obtain the regression line

y = 0.33089x + 8.07321.

Cents/kWh

(c) For 2005, z = 5 and y = 9.73 cents/kWh. For 2013, z = 13 and

y ~ 12.37 cents/kWh.

Years since 2000

If 2 is the original distance from the source, then the illumination is f(x) = kxz~2 = k/z>. Moving halfway to the lamp gives

us an illumination of f(3z) = k(3z) 2 = k(2/x)? = 4(k/2?), so the light is 4 times as bright.

(a) If A = 60, then S = 0.74°3 = 2.39, so you would expect to find 2 species of bats in that cave.

b S=4 = 4=074"" = L= A3 o A= (4—70)10/3 ~ 333.6, so we estimate the surface area of the cave
to be 334 m®.

(a) Using a computing device, we obtain a power function N = cA®, where ¢ ~ 3.1046 and b ~ 0.308.

(b) If A = 291, then N = cA® ~ 17.8, so you would expect to find 18 species of reptiles and amphibians on Dominica.

(a) T = 1.000431 2274 1499528750
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(b) The power model in part (a) is approximately T' = d*-®. Squaring both sides gives us 72 = d>, so the model matches

Kepler’s Third Law, T2 = kd 3.

1.3 New Functions from Old Functions

1. (a) If the graph of f is shifted 3 units upward, its equation becomes y = f(x) + 3.
(b) If the graph of f is shifted 3 units downward, its equation becomes y = f(z) — 3.
(c) If the graph of f is shifted 3 units to the right, its equation becomes y = f(x — 3).
(d) If the graph of f is shifted 3 units to the left, its equation becomes y = f(z + 3).
(e) If the graph of f is reflected about the x-axis, its equation becomes y = — f ().
(f) If the graph of f is reflected about the y-axis, its equation becomes y = f(—z).
(g) If the graph of f is stretched vertically by a factor of 3, its equation becomes y = 3 f(x).

(h) If the graph of f is shrunk vertically by a factor of 3, its equation becomes y = % f(z).

2. (a) To obtain the graph of y = f(x) + 8 from the graph of y = f(z), shift the graph 8 units upward.
(b) To obtain the graph of y = f(x + 8) from the graph of y = f(z), shift the graph 8 units to the left.
(c) To obtain the graph of y = 8 f(x) from the graph of y = f(z), stretch the graph vertically by a factor of 8.
(d) To obtain the graph of y = f(8z) from the graph of y = f(x), shrink the graph horizontally by a factor of 8.

(e) To obtain the graph of y = — f(x) — 1 from the graph of y = f(z), first reflect the graph about the z-axis, and then shift it

1 unit downward.

(f) To obtain the graph of y = 8 f(g) from the graph of y = f(x), stretch the graph horizontally and vertically by a factor
of 8.

3. (a) (graph 3) The graph of f is shifted 4 units to the right and has equation y = f(z — 4).
(b) (graph 1) The graph of f is shifted 3 units upward and has equation y = f(z) + 3.
(c) (graph 4) The graph of f is shrunk vertically by a factor of 3 and has equation y = % f(z).
(d) (graph 5) The graph of f is shifted 4 units to the left and reflected about the z-axis. Its equation is y = — f(x + 4).

(e) (graph 2) The graph of f is shifted 6 units to the left and stretched vertically by a factor of 2. Its equation is

y=2f(z +6).
4. (a) y = f(x) — 3: Shift the graph of f 3 units down. (b) y = f(x + 1): Shift the graph of f 1 unit to the left.
EREEuamaE EEsamssyaseaus
0 T X 3
/ ;
/
/
| o k)
[ [
—HH H L] [ [ 1]
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(¢) y = 3 f(x): Shrink the graph of f vertically by a

factor of 2.

1

0 X
| I
\ \ \ [

5. (a) To graph y = f(2x) we shrink the graph of f
horizontally by a factor of 2.

The point (4, —1) on the graph of f corresponds to the
point (3 -4,—1) = (2,-1).
(c) To graph y = f(—x) we reflect the graph of f about

the y-axis.

The point (4, —1) on the graph of f corresponds to the
point (—1-4,—1) = (—4,-1).

(d) y = — f(x): Reflect the graph of f about the z-axis.

[ Y [

(b) To graph y = f (%x) we stretch the graph of f
horizontally by a factor of 2.

0 } 2 X

The point (4, —1) on the graph of f corresponds to the
point (2 -4, —1) = (8, —1).

(d) To graph y = — f(—x) we reflect the graph of f about

the y-axis, then about the z-axis.

\%1){

The point (4, —1) on the graph of f corresponds to the
point (—1-4,—1-—-1) = (—4,1).

6. The graph of y = f(x) = +/3x — 2 has been shifted 2 units to the right and stretched vertically by a factor of 2.

Thus, a function describing the graph is

y=2f(z—2)=23(—-2)—(z—-2)2=232—-6— (22 —dx +4)=2V/—-22 + Tz — 10

7. The graph of y = f(z) = v/3z — 22 has been shifted 4 units to the left, reflected about the z-axis, and shifted downward

1 unit. Thus, a function describing the graph is

Yy = —1-
~——
reflect

about x-axis

This function can be written as

4 units left

f (x+4) -1
—— ——
shift shift

1 unit left

y=—flz+4)—1=—/3(xz+4) — (z+4)2 -1

=—yBz+12— (22 +8x+16) —1=—v/—22 -5z —4—1
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8. (a) The graph of y = 2sin x can be obtained from the graph (b) The graph of y = 1 + 1/ can be obtained from
of y = sin z by stretching it vertically by a factor of 2. the graph of y = \/x by shifting it upward 1 unit.
y y
2 -+
_m 37
/\ E i /\
: ' : : : (1.2)
o O \/ e 3\x !
2 2
i) 0 x
9. y = —x?: Start with the graph of y = z° } y
and reflect about the z-axis.
y= X2 y= —x?
0 x 0 x
10. y = (« — 3)?: Start with the graph of Y Y

y = 22 and shift 3 units to the right.

y=x
0 X
1. y = x3 + 1: Start with the graph of y Y
y = * and shift upward 1 unit.
= 1
Y= /' y=x*+1
0 X 10 X
1 1 . 1 . . .
12. y =1 — — = —— 4 1: Start with the graph of y = —, reflect about the z-axis, and shift upward 1 unit.
x x x
y y Y
y= —%+ 1
=1
) y=1
0 0 X 0 X

©)2016 Cengage Learning. All Rights Reserved: May notbe scanned; copied, or duplicated, of posted toja publicly accessibleswebsite, in'whole ot in part.



30 0 CHAPTER1 FUNCTIONS AND LIMITS

13. y = 2 cos 3z: Start with the graph of y = cos x, compress horizontally by a factor of 3, and then stretch vertically by a factor
of 2.

y=2cos 3x

y=cos 3x

TN DD NN
N VAAVAAVC AV VES:

14. y = 2¢/x + 1: Start with the graph of y = /=, shift 1 unit to the left, and then stretch vertically by a factor of 2.

y y y
/ 4+
y=x y=ir+1
27 2’/ y=2Jv+1
0 4‘1 X —‘l 3‘ X - 1 3‘ X

15, y =2 — 4o + 5= (2® —4a +4) + 1 = (x — 2)® + 1: Start with the graph of y = 22, shift 2 units to the right, and then

shift upward 1 unit.

1 y=@x—27>+1

0 ‘ 2 x

17. y = 2 — \/z: Start with the graph of y = /=, reflect about the z-axis, and then shift 2 units upward.

y y y
y=vkx y=—x y=2-\x
2 24\
0 4 x 0 1 x 0 4 x
_2,,
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SECTION 1.3 NEW FUNCTIONS FROM OLD FUNCTIONS O 31

18. y = 3 — 2 cos z: Start with the graph of y = cos z, stretch vertically by a factor of 2, reflect about the x-axis, and then shift

y
2
y=cosx \ /\ y=2cosx
0 ; o \/ 0 \7 i

3 units upward.

y=-2cos x

VARV T

y=3—2cosx

. . ¥ ¥
19. y = sin(z/2): Start with the graph of y=sinx y=sin(x/2)
y = sin x and stretch horizontally by a 1l 1l
N\ 7 /; . 27
factor of 2. 7 0 NS ¥ 0 ~x
20. y = |x| — 2: Start with the graph of Y N Y
y=|x
y = |x| and shift 2 units downward.
l +
0 ] x
21. y = |z — 2|: Start with the graph of
y
y = || and shift 2 units to the right. y= x|
1
o >

2. y= i tan(z — §): Start with the graph of y = tan z, shift £ units to the right, and then compress vertically by a factor of 4.

y=tan x y=tan(x—7%) y=%tan(x—7747)
y

(=27 =T =27 ,_ /7 (=-T' =27 17
r== x=-z  x=T5 x= X=-g o x=T x=Tg

Iy
>

©)2016 Cengage Learning. All Rights Reserved: May notbe scanned; copied, or duplicated, of posted toja publicly accessibleswebsite, in'whole ot in part.



32 0O CHAPTER1 FUNCTIONS AND LIMITS

23. y = |\/x — 1|: Start with the graph of y = /z, shift it 1 unit downward, and then reflect the portion of the graph below the
x-axis about the z-axis.

y=x

R _
\ )
Il
<
=]
|
=
1 <
Il
=
|

24. y = |cos mz|: Start with the graph of y = cos z, shrink it horizontally by a factor of 7, and reflect all the parts of the graph

below the x-axis about the z-axis.

v

25. This is just like the solution to Example 4 except the amplitude of the curve (the 30°N curve in Figure 9 on June 21) is

14 — 12 = 2. So the function is L(t) = 12 + 2sin[ 2% (¢ — 80)]. March 31 is the 90th day of the year, so the model gives

L(90) ~ 12.34 h. The daylight time (5:51 AM to 6:18 PM) is 12 hours and 27 minutes, or 12.45 h. The model value differs

from the actual value by 1242=12:3% ~ 0.009, less than 1%.

26. Using a sine function to model the brightness of Delta Cephei as a function of time, we take its period to be 5.4 days, its
amplitude to be 0.35 (on the scale of magnitude), and its average magnitude to be 4.0. If we take ¢ = 0 at a time of average
brightness, then the magnitude (brightness) as a function of time ¢ in days can be modeled by the formula
M(t) = 4.0 4 0.35sin(251).

242

. 1
= 5 m, average magnitude =T7m,

27. The water depth D(t) can be modeled by a cosine function with amplitude 12—

and period 12 hours. High tide occurred at time 6:45 AM (¢ = 6.75 h), so the curve begins a cycle at time ¢ = 6.75 h (shift
6.75 units to the right). Thus, D(t) = 5cos [23(t — 6.75)] + 7 = 5cos [%(t — 6.75)] + 7, where D is in meters and ¢ is the
number of hours after midnight.

2500 — 2000

28. The total volume of air V() in the lungs can be modeled by a sine function with amplitude — = 250 mL, average
volume w = 2250 mL, and period 4 seconds. Thus, V' (t) = 250 sin %T’rt + 2250 = 250sin 5t + 2250, where V'

is in mL and ¢ is in seconds.
29. (a) To obtain y = f(|z|), the portion of the graph of y = f(z) to the right of the y-axis is reflected about the y-axis.
(b) y = sin || ©y =l

y = sin |x|
\ /,

\/0‘ N
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32,

33.

34,

SECTION 1.3 NEW FUNCTIONS FROM OLD FUNCTIONS U 33

The most important features of the given graph are the z-intercepts and the maximum y

and minimum points. The graph of y = 1/f(z) has vertical asymptotes at the z-values

where there are x-intercepts on the graph of y = f(z). The maximum of 1 on the graph x

of y = f(x) corresponds to a minimum of 1/1 = 1 ony = 1/ f(x). Similarly, the

minimum on the graph of y = f(z) corresponds to a maximum on the graph of y

y = 1/f(x). As the values of y get large (positively or negatively) on the graph of K] K

y = f(z), the values of y get close to zero on the graph of y = 1/ f(x). \ x
ﬂ

f(z) = 2® +22% g(z) =32° —1. D =R forboth f and g.
@) (f +9)(x) = (¥ +22%) + (32> — 1) = 2® + 52® — 1, D = (—o0,0), or R.
O (f—g9)(x)=(*+22*) - B2 —1) =2 -2 +1, D=R.

© (f9)(x) = (2* +22%)(32” — 1) = 32" + 62* —2” — 22, D =R.

(d) (g)@):%, D= {x|x7éi%}since3x2717é0.

flz)=v3—1z, D=(—00,3]; g(z)=+v2?2—-1, D= (—00,—1]U][1,00).

@ (f+9)(x)=v3—z++V22 -1, D= (—00,—1] UL, 3], which is the intersection of the domains of f and g.
®) (f—g9)(z)=vV3—xz—+v22—-1, D= (—00,—1]U]JL,3].

© (fg)(z)=v3—z-v22 -1, D= (—00,—1]U]JL,3].

@ ($)w- 2=

E 2 —1

f

, D = (—00,—1) U (1, 3]. We must exclude x = £1 since these values would make = undefined.
g

f(z) =32 +5; g(z) =2®>+=x. D =R for both f and g, and hence for their composites.
@ (fog)(z) = f(g(x)) = f(z* +2) =3(2*+2) +5=32>+32+5, D=R.
) (90 f)(@) = g(f(2)) = g(3z +5) = (32 +5)* + (3z +5)

= 9x% + 302 + 25+ 3z + 5 = 922 + 332 + 30, D =R.

© (fof)=f(f(2)=f(3z+5)=3Bx+5)+5=9z+15+5=92+20, D=R.

) (909)(z) = g(g(2)) = g(2® + z) = (2® + 2)* + (2* + 2)
:x4+2x3+x2+x2+$:$4+2x3+2w2+x, D =R.

f(x) =2 —2; g(x) =1 —42. D = R for both f and g, and hence for their composites.

@ (fog)(z)= f(g(x)) = f(1 —4z) = (1 - 4z)® -2
= (1)% — 3(1)%(4x) + 3(1)(4z)? — (4z)®> —2 =1 — 12z + 48x% — 642> — 2
=—1—12z +48z% —642®, D =R.

® (go @) =g(f(z) =g@*—2)=1—-4(2*-2)=1-42>+8=9—42°>, D=R.
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3¢ O CHAPTER1 FUNCTIONS AND LIMITS
© (fof)a)=f(f(z)=fa®-2) = (z° —2)° -2
= (2)%® = 3(2*)%(2) + 3(2%)(2)% — (2)® — 2 = 2? — 62° + 122®> — 10, D =R.

@) (gog)(x)=9g(g9(x)) =g9g(1 —4a)=1—-4(1—4z) =1—4+4 162 = -3+ 16z, D =R.

3B, fx)=vz FL,D={z|xz>-1}; g(z) =42 -3, D=R.
@) (fog)(x) = flg(x) = f(4z —3) = /(4o —3) + 1 = iz =2
Thedornainoffogis{x|4x73271}:{x|4x22}:{x|x2%}

®) (9o N)(x) =g(f(z)) =g(Vo+1)=4vVz +1-3

The domain of g o f is {« | « is in the domain of f and f(z) is in the domain of g}. This is the domain of f, that is,

[3:00)-

{z|z+1>0t={z|z>—-1} =[-1,00).

© (fof)z)=f(f(@) =fWz+1)=vVVe+1+1
For the domain, we need  + 1 > 0, which is equivalent to z > —1, and v/x + 1 > —1, which is true for all real values

of 2. Thus, the domain of f o f is [—1, 0).
(d) (g0 9)(x) = g(g(x)) = g4z — 3) = 4(4x —3) —3 =162 — 12— 3 = 16z — 15, D =R.
36. f(x) =sinz; g(z) = 2%+ 1. D = R forboth f and g, and hence for their composites.
@) (fog)(z) = fg(z)) = f(z* +1) =sin(z® +1), D =R.
(®) (go f) = g(f(z)) = g(sinz) = (sinz)® + 1 =sin?24+1, D =R.
(© (fo (@) = f(f(z)) = f(sinz) = sin(sinz), D =R.
d(gog)(x)=g(g(z)) =g(x*+1) = (2> +1)* +1=a"+22"+1+1=2"+22°+2, D=R.

x+1
D = —2
S D={zls#£ -2

:c—l—l)ix—&—l 1 z+1 x4+2

37. f(x):;r-&-%, D={z|z#0} g(z)=

@ (fog)(@) = f(g(x) = f(

z+2 z+2 T+l x+42 41
T+ 2
@+ D@+ D+ (@+)@+2) (P42 + 1)+ @+ +4) 2074 60+5
(z+2)(z+1) N (z+2)(z+1) S (z+2)(z+1)

Since g(x) is not defined for z = —2 and f(g(z)) is not defined forx = —2 and z = —1,

the domain of (f o g)(z) is D = {z | z # —2,—1}.

1 2
r4+=)+1 T +142
1 ( x) 2?2 +r+1 2+ +1
® (90 1)) = (@) =+ 1) = e =t
x <x+%>+2 2?4142 2 +20+1 (x+1)
T

Since f(z) is not defined for z = 0 and g(f(x)) is not defined for x = —1,
the domain of (g o f)(z) is D = {z | x # —1, 0}.
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39.

40.

41.

42.

43.

44.

SECTION 1.3 NEW FUNCTIONS FROM OLD FUNCTIONS U

1 1 1 1 1 1 T
@ Uon@=rua)=r(s+3)=(v+3)+ Gr=rt 1+ m =+t
w(x)(2?+1) +1(a® +1) +x(x) 2 22422 +1+22
N z(z?2 +1) N z(z2 +1)
z* + 322 +1
_r T Tl po
@) {z |z +#0}
ac+1Jrl z+1+1(x+2)
B (x4l _z+2 " w42 wm4l4at+2 2243
(d)(909)(”6)’9(9(%))’9(93%)* v+l Tk 1+2w+2) w+1+20+4 3u+5
z+2 T+ 2

Since g(x) is not defined for z = —2 and g(g(x)) is not defined for z = —3,

the domain of (g o g)(z) is D = {x |z # ,27,%}'

flz) = 115 D={z|z#-1}; g(z) =sin2z, D=R.
@ (f 0 9)(x) = f(g(x)) = f(sin20) = 7 jizjf%

Domain: 1 +sin2x #0 = sin2zx# -1 = Zx#?)?ﬂJrZTm = x;é?%Jrﬂn [n an integer].

® (00 @) = (@) =9 T ) =sin( 125 ).
Domain: {z | z # —1}

© (fo N@) = f(f(@) = f(l_fx) = Hl?_ = <1<+11i>.>(.1:1) = T T T
z 14+

Since f(z) is not defined for z = —1, and f(f(z)) is not defined for x = —%,
the domain of (f o f)(z)is D = {z |z # —1,—3}.

(d) (909)(9) = 9(9(x)) = g(sin 2z) = sin(2sin 2z).

Domain: R

(fog0h)(@) = f(g(h(x))) = f(9(z%)) = f(sin(a?)) = 3sin(a?) — 2
(fogoh)(@) = flg(h(@)) = f(g(Va) = F(27) = 27 — 4

(fogoh)(z) = fg(h(x))) = f(g(z® +2)) = fl(=® +2)7]
= f(a® +42° +4) = /(25 + 423 +4) -3 =Vab + 423 + 1

(fogoh)(x) = f(g(h(x) = f(g(¥/z)) = f(\s/g/f 1) :tan<\:y§/f 1)

Let g(x) = 2z 4 2% and f(z) = z*. Then (f o g)(z) = f(9(2)) = f(2x + 22 ) = (22 4+ 2*)* = F(x).

Let g(z) = cosz and f(x) = 22. Then (f o g)(z) = f(g(z)) = f(cosz) = (cosx)? = cos®> x = F(x).
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45.

46.

41.

48.

49.

50.

51.

52,

53.

54.

U CHAPTER1 FUNCTIONS AND LIMITS

Letg(x) = ¢/ and f(x) = . Then (f 0 0)(x) = f(9(x)) = f(¥/Z) = f = F(a).

Letg(z) = T and f(2) = Y& Then (7 0 9)(a) = F(a(o) = £ (75 ) = {7 = 6o
Let g(t) = t* and f(t) = secttant. Then (f o g)(t) = f(g(t)) = f(t?) = sec(t?) tan(t?) = v(t).
Let g() = tan t and f(t) — 1—+t Then (f 0 g)(£) = f(g(t)) = f(tant) = lia?a’;t — u(t).

Let h(z) = v/7, g(x) = x — 1, and f(z) = /Z. Then

(fogoh)(z) = f(g(h(x))) = flg(vx)) = (V2 —1) = VVr—1=R(z
Let h(z) = |z|, g(z) = 2 + x, and f(x) = /z. Then
(fogoh)(x) = f(g(h(x))) = f(g(|z])) = f 2+ [z]) = ¥/2+ |2| = H(z).

Let h(t) = cost, g(t) = sint, and f(t) = t>. Then

(fogoh)(t) = f(g(h(t))) = f(g(cost)) = f(sin(cost)) = [sin (cost)]* = sin®(cost) = S(t).

@) f(g(1)) = f(6) =5 (b) g(f(1)) = g(3) =2

© f(f(1)=[f(3) =4 (d) g(g(1)) = g(6) =3

©) (9o f)B)=9(f(3)) =g(4) =1 () (fo9)(6) = f(g(6)) = f(3) =4

(a) g(2) = 5, because the point (2, 5) is on the graph of g. Thus, f(g(2)) = f(5) = 4, because the point (5, 4) is on the

graph of f.
(b) g(f(0)) = g(0) =3
() (fo9)(0) = f(g(0)) = f(3)=0

(d) (go f)(6) = g(f(6)) = g(6). This value is not defined, because there is no point on the graph of g that has

a-coordinate 6.
(© (g09)(=2) = g(9(=2)) = g(1) =4
) (fe £)4) =f(f(4) = f(2) = -2
To find a particular value of f(g(z)), say for z = 0, we note from the graph that g(0) ~ 2.8 and f(2.8) ~ —0.5. Thus,

f(g(0)) = f(2.8) = —0.5. The other values listed in the table were obtained in a similar fashion.

z | g(z) | flg(z)) z | g(z) | flg(z)) ]
5| -02] -4 o| 28] -05 1
4| 12| -33 1| 22| -17 A /
3| 22| -17 2| 12| -33 N *
—2| 28] -05 31 -02]| -4 I
~1| 3 | -02 4| -19]| —22 T

5| -41] 19
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55. (a) Using the relationship distance = rate - time with the radius r as the distance, we have r(t) = 60t.
b)) A=ar? = (Aor)(t) = A(r(t)) = m(60t)® = 36007t This formula gives us the extent of the rippled area
(in cm?) at any time ¢.
56. (a) The radius r of the balloon is increasing at a rate of 2 cm/s, so 7(t) = (2 cm/s)(t s) = 2t (in cm).
(b) Using V = 37r®, we get (Vo r)(t) = V(r(t)) = V(2t) = 37(2t)* = L7t°.

The result, V = 3—3277153, gives the volume of the balloon (in cm?®) as a function of time (in s).

57. (a) From the figure, we have a right triangle with legs 6 and d, and hypotenuse s. ship ¢
By the Pythagorean Theorem, d*> + 6 = s> = s = f(d) = v/d2 + 36. 6 g
: s
(b) Using d = rt, we get d = (30 kmy/h) (¢ hours) = 30¢ (in km). Thus, g
d = g(t) = 30t. light;ouse shoreline

(©) (fog)(t) = f(g(t)) = £(30t) = /(30t)2 + 36 = /900t + 36. This function represents the distance between the
lighthouse and the ship as a function of the time elapsed since noon.
58. (a)d=rt = d(t) =350t
(b) There is a Pythagorean relationship involving the legs with lengths d and 1 and the hypotenuse with length s:
d? +12 = 5% Thus, s(d) = Vd2 + 1.

(© (s 0d)(t) = s(d(t)) = s(350t) = \/(3500)% + 1

59. (a) H (b) %
] 120
OT ! OT t
i 0 ift<0
H(t) = 0 <o Vi(t) = , so V(t) = 120H(t).
1 ift>0 120 if t>0
() 4 Starting with the formula in part (b), we replace 120 with 240 to reflect the
240 -—

different voltage. Also, because we are starting 5 units to the right of ¢ = 0,

we replace ¢ with ¢ — 5. Thus, the formula is V' (¢) = 240H (¢t — 5).

0| 5 t
0. (a) R(t) = tH(1) wve={" "< @VH =1 <t
. (a = = c -
2% if 0<t<60 A(t—7) ifT7T<t<32
0 ift<O
=) iteso so V(1) = 2tH(t), t < 60, so V() = A(t — T)H(t — 7T), t < 32.
1% V.
R 120
100
1 /
o] 1 t o e o] 7 3 1
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61.

62.

63.

64.

65.

66.

U CHAPTER1 FUNCTIONS AND LIMITS

If f(z) = miz + by and g(z) = mox + by, then

(fog)z) = f(g(x)) = f(maz + b2) = mi(max + b2) + by = mimax + mibs + by.

So f o g is a linear function with slope mimsa.

If A(z) = 1.04x, then

(Ao A)(x) = A(A(x)) = A(1.042) = 1.04(1.04x) = (1.04)z,

(AoAoA)(z) = A((Ao A)(x)) = A((1.04)%x) = 1.04(1.04)*z = (1.04)3z, and

(AoAo Ao A)(z) = A((Ao Ao A)(z)) = A((1.04)3x) = 1.04(1.04)3x, = (1.04)*=.

These compositions represent the amount of the investment after 2, 3, and 4 years.

Based on this pattern, when we compose n copies of A, we get the formula (Ao Ao --- 0 A)(z) = (1.04)"z.

T

(a) By examining the variable terms in g and h, we deduce that we must square g to get the terms 422 and 4z in h. If we let
f(z) = 2® + ¢, then (fo g)(x) = f(g(x)) = fF(2x +1) = (22 + 1)® 4+ ¢ = 42® 4+ 42 + (1 + ¢). Since
h(z) = 42® + 4z + 7, wemust have 1 + ¢ = 7. So ¢ = 6 and f(x) = 2 + 6.

(b) We need a function g so that f(g(z)) = 3(g(z)) + 5 = h(x). But

h(z) =32> + 3z +2=3(2?+2) +2=3(z* + 2 — 1) + 5, s0 we see that g(z) = 2* + = — 1.

We need a function g so that g(f(z)) = g(z +4) = h(x) = 4z — 1 = 4(x + 4) — 17. So we see that the function g must be

g(z) = 4z —17.

We need to examine h(—x).

h(—x) = (f 0 g)(~2) = f(g(—x)) = f(g(x)) [because g s even] = h(z)

Because h(—z) = h(z), h is an even function.

h(—z) = f(g9(—z)) = f(—g(x)). At this point, we can’t simplify the expression, so we might try to find a counterexample to

show that A is not an odd function. Let g(2) = , an odd function, and f(x) = 2 + 2. Then h(x) = 2 4 z, which is neither
even nor odd.

Now suppose [ is an odd function. Then f(—g(z)) = —f(g9(z)) = —h(z). Hence, h(—x) = —h(z), and so h is odd if
both f and g are odd.

Now suppose f is an even function. Then f(—g(z)) = f(g(z)) = h(z). Hence, h(—z) = h(z), and so h is even if g is

odd and f is even.
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1.4 The Tangent and Velocity Problems

SECTION 1.4  THE TANGENT AND VELOCITY PROBLEMS [

39

1. (a) Using P(15,250), we construct the following table:

t Q slope = mpg
5 (5,694) §94-250 — 28— —444

10 (10, 444) 444250 — 194 _ 388

10—15 5

20 (20,111) 10250 — 139 — 9738

20—-15
25 | (25,28) 28250 — 222 — _222
30 | (30,0) 9250 — 250 — _16.6

(c) From the graph, we can estimate the slope of the

tangent line at P to be =3% = —33.3.

__ 2948 — 2530 __ 418

(c) Slope = 22482806 — 122 — 7]

(b) Using the values of ¢ that correspond to the points
closest to P (t = 10 and ¢ = 20), we have

—38.8 4 (—27.8)
—= =-333
2
7001 .
| _—approximate
650 graph of function
600T
5501 approximate
& 00T tangent line
£ 4501
T 400
eh
= 3507
3001
a0t 300 N
2001
1501 =
100
501 f—9—
0 5 10 15 20 25 30
t (minutes)

(b) Slope = 293=2061 — 28 — 71.75

3080 — 2048 __ 132
(d) Slope = = —5= = 2% =66

From the data, we see that the patient’s heart rate is decreasing from 71 to 66 heartbeats/minute after 42 minutes.

After being stable for a while, the patient’s heart rate is dropping.

3 @)y = ——, P(2,-1)

1—x
T Q(z,1/(1 —x)) mpQ
|15 | @15-2 2
(1) | 1.9 (1.9,-1.111111) 1.111111
(iii) | 1.99 (1.99,-1.010101) 1.010101
(iv) | 1.999 | (1.999,—-1.001001) | 1.001001
v | 25 | (2.5, -0.666667) | 0.666667
(vi) | 2.1 (2.1,-0.909091) 0.909 091
(vii) | 2.01 (2.01, —0.990 099) 0.990 099
(viii) | 2.001 | (2.001,—0.999001) | 0.999 001

(b) The slope appears to be 1.

(c) Using m = 1, an equation of the tangent line to the
curve at P(2,—1)isy — (—1) = 1(z — 2), or

y=x—3.
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4. (a) y = cosmz, P(0.5,0) (b) The slope appears to be —.

x Q mpQ (c)y—0=—m(z—05) or y=—mz+ im.
Qo (0,1) 2
Gi) | 0.4 | (0.4,0.300017) ~3.090170 CIN o taneentline
i) | 0.49 | (0.49,0.031411) ~3.141076 \
(iv) | 0.499 | (0.499,0.003142) | —3.141587
|1 (1,-1) -2 0 o«
i) | 0.6 | (0.6,-0.309017) | —3.090170 eantlineat N\
(vii) | 0.51 | (0.51,—0.031411) | —3.141076 x=Oandx=1 "\
(viii) | 0.501 | (0.501,—0.003142) | —3.141587

5. (a) y = y(t) = 40t — 16t>. Att = 2,y = 40(2) — 16(2)*> = 16. The average velocity between times 2 and 2 + h is

y(2+h) —y(2)  [40(2+h) —16(2+h)*] =16  —24h — 16h>
(2+h)—2 h N h

Vave =

= —24 — 16h, ifh # 0.

(i) [2,2.5): h = 0.5, Vaye = —32 ft/s (ii) [2,2.1]: h = 0.1, Vave = —25.6 fi/s

(iii) [2,2.05): h = 0.05, vaye = —24.8 ft/s (iv) [2,2.01): h = 0.01, vaye = —24.16 ft/s

(b) The instantaneous velocity when ¢ = 2 (h approaches 0) is —24 ft/s.

6. (a) y = y(t) = 10t — 1.86t>. Att =1,y = 10(1) — 1.86(1)? = 8.14. The average velocity between times 1 and 1 + h is

Cy(l+h)—y(1)  [10(1+h) —1.86(1+h)?] —8.14  6.28h — 1.86h

Ve =T 0 R —1 h h

=6.28 — 1.86h, if h # 0.

(1) [152] h = 1’ Vave = 4.42 m/s

(iii) [1,1.1): h = 0.1, vaye = 6.094 m/s

(v) [1,1.001]: & = 0.001, Vave = 6.27814 m/s

(i) [1,1.5): h = 0.5, vaye = 5.35 m/s

(iv) [1,1.01]: A = 0.01, vave = 6.2614 m/s

(b) The instantaneous velocity when ¢ = 1 (h approaches 0) is 6.28 m/s.

7. (a) (i) On the interval [2, 4], vVave = s(4) —s(2) _

79.2 —20.6

5 =29.3 fi/s.

79.2 —46.5

1 = 32.7 ft/s.

124.8 - 79.2

T = 45.6 ft/s.

176.7 — 79.2

4-2
(ii) On the interval [3,4], Vave = s(4i - ;(3) _
(iii) On the interval [4,5], vave = 8(5; - 2(4) _
(iv) On the interval [4, 6], vave = 5(6()5 : 2(4) _

5 = 48.75 fi/s.
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SECTION 1.4  THE TANGENT AND VELOCITY PROBLEMS [

(b) Using the points (2, 16) and (5, 105) from the approximate 18(;
tangent line, the instantaneous velocity at t = 3 is about
140
_ ¥ 29.7 ft/s.
3 100 ;
60 |~ 80
20y M J:
I 3 I I I
0 1 2 3 4 5 6 ¢
8. (@) (i) s = s(t) = 2sint + 3 coswt. On the interval [1, 2], Vave = 8(2; : i(l) _ 3= i—S) =6cm/s
(ii) On the interval [1,1.1], Vave = s(.1) = s(1) ~ —3471 — (=3) = —4.71 cm/s.
1.1-1 0.1
(iii) On the interval [1, 1.01], vaye = s(lféi - i(l) ~ *3'063?01* (=3) _ 613 cm/s.
(iv) On the interval [1,1.001], vave = 8(110832 : i(l) ~ _3'00820701_ (=3) _ —6.27 cm/s.
(b) The instantaneous velocity of the particle when ¢ = 1 appears to be about —6.3 cm/s.
9. (a) For the curve y = sin(107n/x) and the point P(1,0):
x Q mpQ x Q mpQ
2 | (2,0 0 0.5 | (0.5,0) 0
1.5 | (1.5,0.8660) 1.7321 0.6 | (0.6,0.8660) —2.1651
1.4 [ (1.4,-0.4339) | —1.0847 0.7 | (0.7,0.7818) —2.6061
1.3 | (1.3,-0.8230) | —2.7433 0.8 | (0.8,1) -5
1.2 | (1.2,0.8660) 4.3301 0.9 | (0.9,—0.3420) 3.4202
1.1 | (1.1,-0.2817) | —2.8173

(b)

As x approaches 1, the slopes do not appear to be approaching any particular value.

0.5

—

i

f\
i
|

i

\

-1

\J

(c) If we choose z = 1.001, then the point Q is (1.001, —0.0314) and mpq

We see that problems with estimation are caused by the frequent

oscillations of the graph. The tangent is so steep at P that we need to

its slope.

take x-values much closer to 1 in order to get accurate estimates of

~ —31.3794. If x = 0.999, then @ is

(0.999,0.0314) and mpg = —31.4422. The average of these slopes is —31.4108. So we estimate that the slope of the

tangent line at P is about

—31.4.
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1.5 The Limit of a Function

1. As zx approaches 2, f(x) approaches 5. [Or, the values of f(z) can be made as close to 5 as we like by taking = sufficiently
close to 2 (but = # 2).] Yes, the graph could have a hole at (2, 5) and be defined such that f(2) = 3.

2. As x approaches 1 from the left, f(z) approaches 3; and as x approaches 1 from the right, f(x) approaches 7. No, the limit

does not exist because the left- and right-hand limits are different.
3. (a) Ilin33 f(z) = co means that the values of f(x) can be made arbitrarily large (as large as we please) by taking x
sufficiently close to —3 (but not equal to —3).
(b) zliril+ f(z) = —oo means that the values of f(x) can be made arbitrarily large negative by taking x sufficiently close to 4
through values larger than 4.

4. (a) As x approaches 2 from the left, the values of f(x) approach 3, s0 lim f(z) = 3.

r—27

(b) As x approaches 2 from the right, the values of f(z) approach 1, so lim+ flz)=1.
r—2

(c) lim2 f(x) does not exist since the left-hand limit does not equal the right-hand limit.

(d) Whenz =2,y = 3,s0 f(2) = 3.

(e) As x approaches 4, the values of f(x) approach 4, so lin}1 f(z) =4.

(f) There is no value of f(z) when x = 4, so f(4) does not exist.

5. (a) As x approaches 1, the values of f(z) approach 2, so lim1 flz)=2.

(b) As x approaches 3 from the left, the values of f(z) approach 1, so lim f(z) = 1.

r—3~

(c) As z approaches 3 from the right, the values of f(x) approach 4, so lim f(z) = 4.

z—3t

(d) lirn3 f(z) does not exist since the left-hand limit does not equal the right-hand limit.

(e) Whenz = 3,y = 3,50 f(3) = 3.

6. (a) h(x) approaches 4 as x approaches —3 from the left, so lim h(z) = 4.

r——3"

(b) h(z) approaches 4 as = approaches —3 from the right, so lim+ h(z) =4.

r——3

() lim3 h(z) = 4 because the limits in part (a) and part (b) are equal.

(d) h(—3) is not defined, so it doesn’t exist.

(e) h(zx) approaches 1 as x approaches 0 from the left, so lim h(z) = 1.

r—0—

(f) h(x) approaches —1 as x approaches 0 from the right, so lim+ h(z) = —1.

r—0

(2) lin}) h(z) does not exist because the limits in part (e) and part (f) are not equal.

(h) h(0) = 1 since the point (0, 1) is on the graph of h.
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SECTION1.5 THELIMITOFAFUNCTION [ 43
(i) Since lim h(z) =2 and lirn+ h(z) = 2, we have lin% h(z) =2.
T—2" r—2 r—

(j) h(2) is not defined, so it doesn’t exist.

(k) h(x) approaches 3 as z approaches 5 from the right, so lirn+ h(z) = 3.
r—5

(1) h(z) does not approach any one number as z approaches 5 from the left, so lim h(z) does not exist.
r—57

. (@) lim g(t) = -1 (b) lim g(t) = -2
t—0 t—0t

(c) tliH(l) g(t) does not exist because the limits in part (a) and part (b) are not equal.
(d) lim g(t) =2 (e) lim ¢g(t)=0
t—2— t—2+

) thn% g(t) does not exist because the limits in part (d) and part (e) are not equal.

(@ 9(2) =1 (h) lim (1) = 3
. (@) 1im3A(a:) =00 (b) lim2 A(z) does not exist. (©) lim A(z) = —0
s z— T2~
(d) lim+ A(z) = o0 (e) lirn1 A(z) = —oc0
2 r——
(f) The equations of the vertical asymptotes are x = —3,x = —1 and x = 2.
. (@) lin37f(x) = -0 (b) 111133 f(z) =00 (c) lin}) flz) =00
(d) lim f(z)=—-00 (e) lim f(z) =00
z—6" z—671
(f) The equations of the vertical asymptotes are x = —7,z = —3,z = 0, and x = 6.

lim f(¢) = 150 mg and lim+ f(t) = 300 mg. These limits show that there is an abrupt change in the amount of drug in
t—12— t—12

the patient’s bloodstream at ¢ = 12 h. The left-hand limit represents the amount of the drug just before the fourth injection.

The right-hand limit represents the amount of the drug just after the fourth injection.

From the graph of
1+2 ifx<—1
flz) =< 2? if —-1<z<1,
2—z ifz>1 0 1 X

we see that lim f(z) exists for all a except a = —1. Notice that the
r—a

right and left limits are different at a = —1.

From the graph of

1+sinz if <0
f(x) = cosz if0<a<m, g

sinx if o>

we see that lim f(x) exists for all a except a = 7. Notice that the
r—a

right and left limits are different at a = 7.
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J

13. (a) lirgli flz)=1 p 15

(b) lir()gl+ f(z)=0 —’/ Y=E1 ok

(c) lin% f(z) does not exist because the limits in
xTr—

|
)
. \
S}

part (a) and part (b) are not equal. \

14. (a) ,lir(l)li flz)=-1

(b) lim f(a) =1

_2 4
\\ X’ Hx

(c) ;11% f(x) does not exist because the limits y= N
in part (a) and part (b) are not equal. 5
15. lim f(z)=-1, lim f(z)=2, f(0)=1 16. lim f(z) =1, lim f(x) = -2, lim f(x) =2,
z—0— z—0t z—0 z—3— z—3+
y f0)=-1f3)=1

0 +
0 x 3
—1e
\rl B
17. lim f(z) =4, lim f(z)=2, lim f(z) =2, 18. lim f(z) =2, lim f(z) =0, lim f(z)=3,
z—37+ z—3~ T—>—2 z—0~ z—0+ z—4—
f@B)=3, f(-2)=1 dim f(z) =0, £(0) =2, f(4) =1
y
3,,
/2
1,,
0 X
2 — 3z
19. For f(z) = g
z f(z) T f(z)
3.1 0.508 197 2.9 0.491 525
3.05 0.504 132 2.95 0.495 798 R 1
It appears that lim — = _.
3.01 0.500 832 2.99 0.499 165 e—8 22 -9 2
3.001 0.500 083 2.999 0.499917
3.0001 | 0.500008 2.9999 | 0.499 992
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z? — 3z
20. For f(z) = o
x f(x) x f(x)
—2.5 -5 -3.5 7
—2.9 —29 -3.1 31
—2.95 —59 -3.05 61 It appears that lim f(z) = —oo and that
r——3
—2.99 —299 -3.01 301
2 —
—2.999 —2999 —3.001 3001 lim f(z) = oo, so lim_ z 5 3; does not exist.
z——3" z——=3 IT° —
—2.9999 | —29,999 —3.0001 | 30,001
sin (24 h)® —32
21. F =— 22. F h)= ——F—7—:
or f(x) z+tanz or f(h) h
e T @ n 7(h) n 7 (h)
+1 0.329033 0.5 131.312500 -0.5 48.812 500
405 | 0.458209 0.1 88.410 100 —0.1 72.390 100
402 | 0493331 0.01 80.804 010 —0.01 79.203 990
401 | 0.498333 0.001 80.080 040 —0.001 79.920 040
£0.05 | 0.499583 0.0001 | 80.008 000 —0.0001 | 79.992000
4+0.01 | 0.499983 5
It appears that }lir% W = 80.
. sin x 1 o
It appears that ilir%) P 0.5 = 5
sin 36
23. F = :
3. For f(60) tan 20
2
0 1) I hat 1i sin30 1.5
+0.1 1.457847 tappears that im °r o5 = 1.5.
+0.01 1.499575 The graph confirms that result.
+0.001 1.499 996
40.0001 | 1.500000 03 0 s
14 p° )
2. For f(p) = 1
p f(p) p f(p) |
-1.1 0.427397 —0.9 0.771405
—1.01 0.582 008 —0.99 0.617 992 0.6
—1.001 | 0.598200 —0.999 | 0.601800
—1.0001 | 0.599820 —0.9999 | 0.600 180 0
-2 -1 0

It appears that lim1 f(p) = 0.6. The graph confirms that result.
pP——
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25.

26.

27.

28.

29.

30.

31.

32,

L CHAPTER1 FUNCTIONS AND LIMITS
For f(z) = z*:
2
: | @ ,
01 0.794 323 It appears that xlirgh_ flx)=1.
0.01 0.954993 The graph confirms that result. !
0.001 0.993116
0.0001 | 0.999079 0 |
t —
For f(t) = b 1 :
¢ 2
t | JO ! 0 4
0.1 1.746 189 —0.1 1.486 601
0.01 1.622 459 —0.01 1.596 556
0.001 1.610734 —0.001 1.608 143
0.0001 | 1.609567 —0.0001 | 1.609308 4 o 1
It appears that 71111(1) f(t) = 1.6094. The graph confirms that result.
. . 2 —
(a) From the graphs, it seems that hn% w = —1.5. (b)
’ v x f(z)
; ‘ +0.1 —1.493 759
| I 40.01 —1.499 938
-6 : 605 | 0.5
+0.001 —1.499999
4+0.0001 | —1.500000
-2 )
(a) From the graphs, it seems that 1in% ?mI =0.32. (b)
x S 7Txr T f (iB)
2 0.5 +0.1 0.323 068
+0.01 0.318 357
£0.001 0.318 310
+0.0001 | 0.318310
Later we will be able to show that
-1 1 -02 0.2
0 0 .1
the exact value is —.
™
lim+ T ; = oo since the numerator is positive and the denominator approaches 0 from the positive side as = — 5.
z—5T L —
lim < +1 = —oo0 since the numerator is positive and the denominator approaches 0 from the negative side asz — 5.

z—5— T — D

. 2—x . . e . ..
hml W = o0 since the numerator is positive and the denominator approaches 0 through positive values as z — 1.
r— xTr —

lim vV

W = —oo since the numerator is positive and the denominator approaches 0 from the negative side as z — 37.
2—3— (r —

© 2016 Cengage Learning“All'Rights Reserved. May not bé'scanned; copied; or duplicated; or posted'to a publiclyaccessible'website, in whele orin part:



-1 ) —
. Ikg+m :—OOSIDCC(I+2) —>OEISCZ'—>—2Jr andm <0for—-2<z<0O.
. r—1 . 2 z—1
lim ————— = —oosince 2 — 0asx — 0and ——— < 0for0 < z < land for -2 < z < 0.
x—0 2(z + 2) z?(z +2)
. 1 . 1. .. +
lim —secxz = —oo since — is positive and secx — —ooasx — (7/2)™.
w—(n/2)+ T x

SECTION1.5 THELIMITOFAFUNCTION O 47

. . CoST . . . . o

lim cotz = lim — = —oo since the numerator is negative and the denominator approaches 0 through positive values
o7 r—m— SINXT
asx —m .

lim zcscx = lim — = —oo0 since the numerator is positive and the denominator approaches 0 through negative
T—2m rz—27— SINT
values as x — 27 .

x? — 2z z(z —2)

o lim ————— = lim ——
oo 22— Az 4 aoae (x—2)2 2o2-2—2

approaches 0 through negative values as ¢ — 27.

lim 2’ -2 -8 lim (x —4)(x+2)
oot 22 =5 +6 oot (x—3)(z —2)

negative values as x — 27

2 +1 22 +1

= lim = —oo since the numerator is positive and the denominator

= oo since the numerator is negative and the denominator approaches 0 through

3 — — H 5
. (a) The denominator of y = 5027 2(3-22) is equal to zero when (b) U
z=0andz = % (and the numerator is not), so z = 0 and z = 1.5 are
-2 4
vertical asymptotes of the function. N\
-5
1
L@ f@) = .
z f(=z) z f(=@)
0.5 —-1.14 1.5 0.42
From these calculations, it seems that 0.9 —3.69 11 3.02
0.99 —-33.7 1.01 33.0
lim f(z) =—ococand lim f(z) = occ.
z—1— z—1+ 0.999 —333.7 1.001 333.0
0.9999 —3333.7 1.0001 3333.0
0.99999 | —33,333.7 1.00001 | 33,333.3

(b) If z is slightly smaller than 1, then 2 — 1 will be a negative number close to 0, and the reciprocal of #® — 1, that is, f(z),

will be a negative number with large absolute value. So lim f(z) = —oco.

r—1—

If 2 is slightly larger than 1, then 2® — 1 will be a small positive number, and its reciprocal, f(z), will be a large positive

number. So lim f(x) = oo.

x—1
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(c) It appears from the graph of f that
lim f(x)

x—1"

—ocoand lim f(z) = oco.
z—1t

tan4x

42. (a) From the graphs, it seems that lin%

[Y]
N 7]

0
43. For f(z) = x* — (2%/1000):

—-0.2
—10

(a)
x f(=@)
1 0.998 000
0.8 0.638 259
0.6 0.358 484
0.4 0.158 680
0.2 0.038 851
0.1 0.008 928
0.05 | 0.001465

It appears that lir% flx)y=0.

44. For h(z) = tan;:—3:1::
(@
x h(z)
1.0 0.557407 73
0.5 0.370419 92
0.1 0.33467209
0.05 0.333 66700
0.01 0.333 346 67
0.005 | 0.33333667
©
x h(z)
0.001 0.333 33350
0.0005 0.33333344
0.0001 0.333 33000
0.00005 0.333 336 00
0.00001 0.333 000 00
0.000001 | 0.00000000

=4.

=

—-10

(b)

(b) It seems that lir% h(z) =

(b)
5
s 0.2
x f(=)
0.04 0.000572
0.02 —0.000614
0.01 —0.000907
0.005 | —0.000978
0.003 | —0.000993
0.001 | —0.001000

x f(=z)
+0.1 4.227932
+0.01 4.002135
£0.001 4.000 021
£0.0001 | 4.000000

It appears that lir% f(z) = —0.001.

1
3-

Here the values will vary from one

calculator to another. Every calculator will

eventually give false values.
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(d) As in part (c), when we take a small enough viewing rectangle we get incorrect output.

1 0.4
'd Y 'd N
—1 % 5 4! —0.1 - 0 < 0.1
0.4 0.4
s N e \
—5%x1076 03 < 5x107° —1076 03 < 107¢

45. No matter how many times we zoom in toward the origin, the graphs of f(x) = sin(w/x) appear to consist of almost-vertical
lines. This indicates more and more frequent oscillations as z — 0.

1.2 1.2

AT\ Il
L. L

12 12

—0.01 0.01 —0.0001 0.0001

46. (a) For any positive integer n, if x = ni’ then f(x) = tan % = tan(nm) = 0. (Remember that the tangent function has
7

period 7.)
(b) For any nonnegative number n, if x = m, then
- 1 (An+1)m dnmt  m\ T\ T
f(m)—tan;—tan 1 —tan< 1 +4)—tan(nﬂ'—|—4)—tan4—1

(c) From part (a), f(x) = 0 infinitely often as # — 0. From part (b), f(x) = 1 infinitely often as z — 0. Thus, lin% tani

does not exist since f(x) does not get close to a fixed number as z — 0.
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47. 6 There appear to be vertical asymptotes of the curve y = tan(2sin x) at  ~ +0.90
U and = ~ +2.24. To find the exact equations of these asymptotes, we note that the
o -  graph of the tangent function has vertical asymptotes at z = 7 + 7n. Thus, we
/‘\ must have 2sinz = 7 + 7n, or equivalently, sinx = 7 + Zn. Since
—6 —1 <sinz < 1, we must have sinz = +7 andsox = + sin™! 4 (corresponding
to  ~ £0.90). Just as 150° is the reference angle for 30°, 7 — sin™* 7 isthe
reference angle for sin™! I-Sox ==+ (7r —sin™! %) are also equations of
vertical asymptotes (corresponding to x ~ £2.24).
48. /ulir?— m = Ulir?_ \/%W' Asv— ¢, /1 —v%/c2 — 0%, and m — oo.
3
-1
49. (a) Let Yy = x 1 6}6 7 A
VT - T Yy 0 y=65
From the table and the graph, we guess 0.99 5.925 31 y= X1
V=1
that the limit of y as = approaches 1 is 6. 0.999 5.99250
0.9999 | 5.999 25 P y=55
1.01 6.07531 0.752 L Z 13
1.001 | 6.00750 '
1.0001 | 6.00075

22 —1

vz —1
and Q(1.0649, 6.5). Now 1 — 0.9314 = 0.0686 and 1.0649 — 1 = 0.0649, so by requiring that = be within 0.0649 of 1,

(b) We need to have 5.5 <

< 6.5. From the graph we obtain the approximate points of intersection P(0.9314, 5.5)

we ensure that y is within 0.5 of 6.

1.6 Calculating Limits Using the Limit Laws

1. (@) lim [f(2) + 5g(2)] = lim f(z) + lim [5g(2)] [LimitLaw 1] (b) lim [g())* = [113 g(x)]3 [Limit Law 6]
= anlz flz)+5 112?12 g(z)  [Limit Law 3] =(-2°%=-8

=4+5(-2)=—6

lim [3f(z)]
(©) lim /F(z) = \/iln; F(z) [Limit Law 11] (d) lim 3gf((xx)) - wﬁg o) [LimitLaw 5]

=Vi=2 3 lim f(z)
=222 [LimitLaw 3]
hm2 g(z)

_34) _
—_—2——6
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SECTION 1.6  CALCULATING LIMITS USING THE LIMIT LAWS U 51

(e) Because the limit of the denominator is 0, we can’t use Limit Law 5. The given limit, hrré M, does not exist because the
xr—

h(z)

denominator approaches 0 while the numerator approaches a nonzero number.

) lim 98 M) lim [g(x) h(x)]

= - [Limit Law 5]
2 w) Tim /(2)
lim g(z) - lim h(x)
=22 o3 [Limit Law 4]
hm2 f(x)
—-2-0
= T =0

(@) lim [f(2) + g(x)] = lim f(z) + lim g(x) ~[Limit Law 1]
=—1+2
=1

(b) lirr%) f(z) exists, but lin%) g(z) does not exist, so we cannot apply Limit Law 2 to lir% [f(z) —g(z)].

The limit does not exist.

(© lim [f(z)g(z)] = lim f(z)- lim g(z) [LimitLaw 4]

=12
=2
(d) 1in}” f(z) =1, but 1in}” g(x) = 0, so we cannot apply Limit Law 5 to lin?3 ]gc(_g The limit does not exist.
Note: lim f) _ oo since g(x) — 0T asz — 37 and lim f@) _ —oo since g(z) — 0"asx — 3.
r—37 g(x) z—3+ g(x)
Therefore, the limit does not exist, even as an infinite limit.
(e) lim [2° f(z)] = lim, z? . lim f(z) [Limit Law 4]
=2 (-1)
=—4
€ f(-1)+ ling1 g() is undefined since f(—1) is not defined.
. lim (523 — 32° + 2z — 6) = lim3(5m3) — lim (32%) + lirréx — lin‘;3 6 [Limit Laws 2 and 1]
=51im 2® — 3 lim 2% + lim « — lim 6 [3]
r—3 r—3 x—3 x—3
=5(3%-33%)+3-6 [9, 8, and 7]
=105
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52 0 CHAPTER1 FUNCTIONS AND LIMITS

4, 12@1(m4 —32)(z? + 5z +3)= mlinill(m4 — 3x) Ilil{ll(rz + 5z +3) [Limit Law 4]
= (zEII}l T4 Ilin;ll 396) (Ilirle z° 4+ zlinj 5 + Iling 3) [2,1]
= (xlinjl 24 3xlin31 x) (z-lin,ll 22 +5 mlir{ll T+ xlir{ll 3) [3]
=(1+3)(1-5+3) [9, 8, and 7]
=4(-1)=-4
t*—2 151iI£12(t4 o 2)

5. lim Limit Law 5
"227 —30+2  Tim (27 — 3L+ 2) [Limit Law 5}

lim ¢* — lim 2

o "}

= 1,2
2 Tim {2 —3 lim ¢+ lim 2 (1,2, and 3]
t——2 t——2 t——2
16 — 2
- b-=s 8
2(4) — 3(—2) + 2 (9.7, and 8]
_1_7
T 16 8
6. lim u®+3u+6= \/ lim_(u + 3u + 6) [11]
= lim2u4+3 lim v+ lim 6 [1, 2, and 3]
= \/(—2)4 +3(-2)+6 [9, 8, and 7]
=V16—-6+6=+16=4
7. lim (1+ Yr)(2—-62"+2°) = lim (1 + Yz)- lim (2 — 62° + z°) [Limit Law 4]
3
(ilg}gl—&-hm\/_) (hmZ—Ghn}sx +;IE}3I) [1, 2, and 3]
=(1+V8) - (2—6-8"+8% [7,10,9]
= (3)(130) = 390
t2 _9 2 2
B 131(m) = (M ts_3t+5) [Limit Law 6]
hm( —-2) 2
= | (5]
hm(t3 —3t+5)
thrr%t —thII%Q 2
- thn%t?’ 311mt+hm5 (1,2, and 3]
4 — 2
= <8 30 ) [9, 7, and 8]
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12.

13.

14.

15.

16.

17.

18.

19.

SECTION 1.6  CALCULATING LIMITS USING THE LIMIT LAWS  UJ

_ 2x2+1_\/. 22% +1 .
i%\/3x_2 = i:nlz - [Limit Law 11]
lim (222 + 1)
_ r—2 [5]
1irr12(3x —-2)
2 lim z? + lim 1
~\| 3limz — lim 2 (1,2, and 3]
r—2 r—2
(2022 41 _\/5_3
= 32)—2 =1~ 3 [9, 8, and 7]
(a) The left-hand side of the equation is not defined for x = 2, but the right-hand side is.

53

(b) Since the equation holds for all = # 2, it follows that both sides of the equation approach the same limit as x — 2, just as

in Example 3. Remember that in finding lim f(z), we never consider z = a.
r—a

27 J— —
him 20240 @Dy —5o124
z—5 r—>5 z—5 r—>5 z—5
lim —x2+3:1: = lim —x(:p+3) = lim —— = 3 __3
o332 —x—12 o>3(x—4)(xr+3) 2--3x—-4 -3—-4 7
27
lim w does not exist sincez — 5 — 0, but 2> — 52 +6 — 6 as z — 5.

x—5 {[—5

2?4 3z . x(z 4 3) x

iﬂm :ilir}l G- +3) ::113311—4' The last limit does not exist since xlfg i and
= Q.
r—d4+ T —
lim t?2—-9 oy U+3E=3) L t-3  —3-3 _—6_6
32247t +3  t>-3(2+1)(t+3) t>-32+1 2(-3)+1 -5 5
lim 202 +3z4+1 o CrADE+D 2w+l 2141 -1 1
e—-122—-2x—3 o--1 (z—3)(z+1) «->-12-3  —-1-3  —4 4
_ 2 _ _ 2\ _ 2 _

lim (=5+h)*—25 — lim (25 — 10h + h*) — 25 — lim 10h +h — lim h(—10 + h) — lim (—10 4+ h) = —10
h—0 h h—0 h h—0 h h—0 h h—0
. (2+h)?—-8 . (8+12h+6R*+h%)—8 12h+6h>+A°
lim —————— = lim = lim
h—0 h—0 h h—0 h

=lim (124 6h+h?) =12+ 0+0 =12

h—0

By the formula for the sum of cubes, we have

x4+ 2

z——2 13

+8 zli}@.z (x+2)(x2 — 22 +4)

x+2 ~ lim 1 _ 1 _ 1
Tas222 2244 444447 12
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54 [0 CHAPTER1 FUNCTIONS AND LIMITS
20. We use the difference of squares in the numerator and the difference of cubes in the denominator.
4 2 2 N 2 2
im el (E-DE D) E-DEEDE D) G+ DE D) 2(2) 4
t—=13—1 =1 (-2 +t+1) =1 (t—-1)2+t+1) t—1 2+t +1 3 3
gt iy YIFR=3 _ . VOFRh-3 VOFh+3 . (VoFh) -3 i 94 R) —9
" A0 h h=0 h VI+h+3 fHOh(\/9+ +3)  h=0h(\VO+h+3)
—lim#—lim ! -1 1
izaoh(,/9+h+3) h—0+9+h+3 3+3 6
VAT 1-3 . VAri-3 Viuti+s . (Viuri) -3
22. lim = lim . = lim
u—2  u—2 u—2  u—2 Vaiu+1+3 w2 (u—2)(vVAu+1+3)
du+1-9 . 4(u—2)
= lim = lim
w=2 (u—2)(Vau+1+3) w2 (u—2)(VAu+1+3)
. 4 42
u—2/du+1+3 +9+3 3
1 1 1 1
. x 3 _ . x 3 3T _ . 3—z . -1 _ 1
23'%1—»1% z—3 _il—% x—3 3x_il—>m?,3x(at73)_alcl—>n}%3x_ 9
1 1
o B+hm'-3Y . 3%h 3 _ . 3-(@B+h) . —h
24. Jimy h R I S R N WA R L S A WAL
. 1 1 1 1
= lim |[— = —— = — —_=
h—0 | 3(3+h) lim [3(3 + 1)) 3(3+0) 9
25 qipg YITI—VI—1 \/1— i YIFE- VI VI VI 1im(\/1+t)2—(\/l—t)2
Ay =0 t VITt+VI—t =0 t(VI+i+vI—t)
= lim +H-(1-% = lim 2 —lim;
0t (VIFE+VI—t) o0t (VIHt+VI—t) =0T+t 4+VI—t
-2 _2_
Vi+vl o 2
2. Jim (2~ =) =lim (2 - —— 11y 1 L _
G\ T e re) T\ Ty ) T e+ 1) iet+1 0+1
2. lim AV gy VDU VE) 10—z
2516 162 — 22 =—16 (169:—1’2)(4—1—\/_) =16 (16 — z)(4 + v/7)
i S S S
a:—»lﬁ{[(ll—‘rﬁ) 16(4+\/ﬁ) 16(8) 128
x? —da 44 (x —2)? (z —2)?
28. li =1 =1
eos zh — 302 — 4 oo (22— A) (@2 +1)  eob (w4 2)(x —2) (22 + 1)
T —2 0
Iy e ey 75
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SECTION 1.6  CALCULATING LIMITS USING THE LIMIT LAWS  UJ

29 lim( L ,l) —lim IV (- VIFD)(+VIFT) im —
o \tyT+E t) o0 t/THE o0 eI L(1+VIFE) 0t /ITHE(1+VIFE)
lim -1 = -1 -1
=0 1+t(1+v1+t) V1I+0(1+v1+0) 2
0. Ly YETIZE (Va2 +9-5) (Va2 +9+5) i (2% +9) — 25
i —— r+4 T——4 (x+4)(«/12+9+5) z——4 (x—|—4)(« /12+9+5)
. x® — 16 . (x4 4)(z —4)
= lim = lim
v==4 (z4+4)(VaZ+9+5) =4 (z+4)(Va2+9+5)
~ lim r—4 . -4-4 -8 _7é
4221945 VI6+9+5 5+5 5
. (z+hn)® -2 . (2 +32%h + 3zh® + h3) — 23 . 322h 4+ 3zh* + A®
31. lim = lim = lim
h—0 h—0 h h—0 h
2 2
i POTESTR AR (302 4 30k 4 h2) = 302
h—0 h h—0
1 1 2% — (x4 h)?
. (x+h)? 22 (z+h)222 2 —(2®+2zh+h%) | —h(2z+h)
32. Jim h = fm h B R P PR R L P e N e
. —(2z+h) —2x 2
= |lim = = ——
h—o 22(x + h)?  z? - 22 x3
33. (a) 15 (b)
x f(z)
—0.001 0.666 166 3
/ —0.0001 0.666616 7 9
—1 1 —0.00001 0.666 6617 The limit appears to be 3
L J —0.000001 | 0.666 666 2
-0.5 0.000001 | 0.666 667 2
lim T 2 0.00001 0.6666717
e—0,/14+3z—-1 3 0.0001 0.666 716 7
0.001 0.667166 3
(C)lim( x . 1+3x+1)_ 1mx( 1_’_396—1_1)—limx< 1+3$+1)
250\ /1+3z—1 V1+3z+1 e=0 (1+3zx)—1  a-0 3z
= % lim (v1+3z+1) [Limit Law 3]
I BT (1+3z) + lim 1 [1and 11]
~3 Va5 R an

Il
Wl
N

/lirl})1+3lin%)m+l) [1, 3, and 7]

zé(m+ 1) [7 and 8]
1 2
=1+ =3
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56 [l CHAPTER1 FUNCTIONS AND LIMITS

34. (a) 05 (b) o
X i

—0.001 0.288 699 2

—0.0001 | 0.2886775

—0.00001 | 0.2886754

1 ~0.000001 | 0.2886752

0 : 0.000001 | 0.2886751

0.00001 | 0.2886749

lim Y3FZ=VB o 0.0001 | 0.2886727

o0 z 0.001 0.288651 1

The limit appears to be approximately 0.2887.

© 1im(v3+x7\/§~v3+m+\/§)—lim G+2)-3 ) !
o v Brei i) it e (BreivE) BT iva
lir%l
= = Limit Laws 5 and 1
lim v3+ 2 + lim V3 : :
= L [7and 11]
[lim (3 +2) +V3
-1 [1,7,and 8]
NeE TV -
1
2V3
35. Let f(z) = —22, g(2) = 2 cos 207z and h(z) = 2. Then 1

So since /lirrb fz) = /linb h(z) = 0, by the Squeeze Theorem we have

lim g(z) = 0.

x—0

—1<cos20mz <1 = —2?<2%cos20mzr <z = f(x)<g(z)<h(z). m]m\

—_

1

36. Let f(z) = —va3 + 22, g(z) = Va3 + 22 sin(w/z), and h(xz) = Va3 + x2. Then

—1<sin(r/z) <1 = —Va3+22 < Va3 +a2sin(n/z) < Va3 +22 =

L/

f(z) < g(z) < h(x). So since 1in%) f(z) = lin%) h(z) = 0, by the Squeeze Theorem

we have lin}) g(z) = 0.
xr— 7]
37. We have lirri(4x79) =4(4)—-9= 7and/lirr}1 (2°—4z+7) =4>—4(4) +7="7.Since 4z — 9 < f(z) < 2° — 4z + 7

forz >0, lin}1 f(x) = 7 by the Squeeze Theorem.
38. We have liml(Zx) =2(1) =2and liml(yc4 —2>+2)=1* - 124+ 2 = 2. Since 27 < g(z) < 2* — 2° + 2 forall =,
liml g(x) = 2 by the Squeeze Theorem.

3. -1 <cos(2/x) <1 = —2*<ax*cos(2/z) < 2. Since lim (—z*) = 0and lim 2* = 0, we have

rz—0

lir% [#* cos(2/x)] = 0 by the Squeeze Theorem.
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45.

46.

47.

SECTION 1.6  CALCULATING LIMITS USING THE LIMIT LAWS  UJ

-1 <sin(2r/z) <1 = 0<sin?(2r/z) <1 = 1< 1+sin?(2n/2) <2 =

Vz <V [1+sin?(2r/z)] < 2Va. Since lim vV = 0and lim 2 V& = 0, we have
z—0 z—0

lim [\/5 1+ sin2(27r/x))} = 0 by the Squeeze Theorem.

z—0
| 3) r—3 ifx—3>0 r—3 ifx>3
x—3| = =
—(z—=3) ifz—-3<0 3—z ifz<3
Thus, lim+ 2z + ]z —3|) = 1im+(2m—|—m—3): lim (3z —3) =3(3) —3 =6and
r—3 z—3

r—3

lim 2z +|z—3|) = lim (2z+3 —2) = lim (z 4 3) = 3+ 3 = 6. Since the left and right limits are equal,
r—37 r—37 r—3~
lir%(2x + |z —3|) =6.
rz+6 if xt+6>0 Tz +6 if x> —6
|z 4+ 6] = ) = )
—(x+6) ifz+6<0 —(x+6) ifz<—6

We’ll look at the one-sided limits.
20412 2(xz +6) 20 + 12 . 2(z +6)

im = ————~ =2 and lim = lim —==-2
z——6+ |+ 6] z——6+ T+6 e——6- | +6] 2——6- —(z+6)
. . . .2 12 .
The left and right limits are different, so hr{l6 ‘z 1 G does not exist.
’2x3 7172’ = ’:1:2(2x — 1)’ = f:):zf 2z — 1] = 2% |22 — 1
20— 1] 2z — 1 if 22 —1>0 27 — 1 if z>05
r—1| = =
—(2z—-1) if2x—-1<0 —(2zx—-1) ifz<0.5
So [22° — 2®| = 2®[—(2z — 1)] forz < 0.5.
2z —1 2z —1 -1 -1 -1
Th li —— = i e, — = = —— = 4.
U P — 22 o 22 (22 —1)]  e—0s- 22 (05)2 025
. . 2— 2= (= .2 .
Since |z| = —z for x < 0, we have lim 2] = lim 2-(=2) — lim 2%~ fim 1=1.
z——-2 2+ z——-2 24 z——22+x z——2
. . 1 1 . 1 1 .2 . o
Since |z| = —x forz < 0,wehave lim [ = —-— ) = lim [ = —— | = lim =, which does not exist since the
z—0- \z |z s—0— \ & —& z—0— T

denominator approaches 0 and the numerator does not.

Since |z| = x for x > 0, we have lim (l — i) = lim+ (l — l) = lim 0=0.
z—0

a0t \ 2 |z r z—0+

(a) Y (b) (i) Sincesgna =1 forx > 0, 1im+ sgnzx = lim+ 1=1.
z—0 z—0
1
(i) Sincesgnz = —1forx < 0, lim sgn x = lim —1 = —1.
z—0— z—0—
0 X
H (iii) Since lim sgnz # lim sgnz, lim sgnx does not exist.
z—0— z—0T z—0

(iv) Since |sgnz| = 1 for z # 0, lirr%) |sgnz| = 111%1 =1
T— T—
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58 [l CHAPTER1 FUNCTIONS AND LIMITS

—1if sinz <0
48. (a) g(z) =sgn(sinz) = ¢ 0 if sinz =0
1 if sinz >0

@ lim+ g(z) = lim+ sgn(sinz) = 1 since sin z is positive for small positive values of z.
z—0 z—0

(ii) lim g(x) = lim sgn(sinz) = —1 since sin x is negative for small negative values of .
z—0— r—0—
(iii) lim g(x) does not exist since lim g(z) # lim g(z).
z—0 z—01 z—0—
(iv) lim+ g(z) = lim+ sgn(sinz) = —1 since sin z is negative for values of z slightly greater than 7.

(v) lim g(z) = lim sgn(sinz) = 1 since sin z is positive for values of x slightly less than 7.

(vi) lim g(z) does not exist since lim+ g(x) # lim g(z).

(b) The sine function changes sign at every integer multiple of 7,
so the signum function equals 1 on one side and —1 on the

other side of n, n an integer. Thus, lim g(z) does not exist
Tr—a

for a = nm, n an integer.

o . 2’ +z-6 . (z+3)(xz—-2)
9@ O lim g(@) = lim = 0 = lim = 70—
= lim —(x+3)(x72) [sincex —2 > 0ifz — 27]
rz—2+ xr—2

= zlirgr(x +3)=5

(ii) The solution is similar to the solution in part (i), but now |z — 2| =2 —z sincex — 2 < 0 ifz — 27.

Thus, lim g(z) = lim —(z + 3) = —5.
r—27 r—2~

(b) Since the right-hand and left-hand limits of g at z = 2 are not (c) J /

equal, 1in12 g(z) does not exist. \ 2,5)

\52, -5)

2?2 +1 if <1
mw@ﬂ@—{

(x—2)% ifz>1

lim f(z)= lim (2> +1)=1*+1=2, lim f(z)= lim (z—2)>=(-1)?=1

rz—1" r—1— z—1+ rz—14

(b) Since the right-hand and left-hand limits of f at x = 1 are not (c)

equal, lim1 f(x) does not exist.
T—
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SECTION 1.6  CALCULATING LIMITS USING THE LIMITLAWS  0TJ 59

51. For the lim B(t) to exist, the one-sided limits at £ = 2 must be equal. lim B(t) = lim (4—3t)=4—-1=23 and
- t—2— t—2—

lim+B(t): 1im+\/t+c:\/2+c. Now3=+v24+c = 9=2+4+c¢c & c=T.
t—2 t—2

52. (a) (i) linlf17 g(z)= lim z=1

r—1—

(i) 1im+ g(z) = lim (2 —2?) =2 —1% = 1. Since lim g(z) = 1 and lim+ g(z) =1, we have lim1 g(z) =1.
z—1 rz—1— r—1 z—

r—1

Note that the fact g(1) = 3 does not affect the value of the limit.
(iii) When z = 1, g(z) = 3,s0 g(1) = 3.

(v) lim g(z)= lim 2—2?)=2-2>=2—-4= -2
x—2"

r—2"

) lim+g(:1:) = lim (z—-3)=2-3=-1
r—2

T—2

(vi) hm2 g(x) does not exist since lim g(x) # lim g(z).

r—2 z—2+
(b) T if x <1 y
3 ifx=1
2—-2% ifl<z<2
z—3 ifz>2

g(z) =

8. (@ () [o] = —2for2<z<—Lso lim [¢]= lim (-2)=-2
r——2

z——271

(i) [z] = -3 for—3 <z < —2,50 lim [z] = lim (-3)=-3.

r——2" T——2"
The right and left limits are different, so lim2 [z] does not exist.
T——

(iii) [z] = —3for —3 <z < -2, 50 lin% . [z] = lim (-3)=-3.

r——2.4

®) ([z]=n—-1forn—1<z<n,s0 lim 2] = lim (n—1)=n-1.

T—n— r—n—

() [z =nforn <z <n+1so lim [z] = lim n=n.

z—nt T—n

(¢) lim [z] exists < a isnot an integer.
r—a

54. (a) See the graph of y = cosz. y

Since —1 < cosz < 0 on [—7, —7/2), we have y = f(x) = [cosa] = —1

on [, —/2). 7 ol ™

Since 0 < cosz < 1 on [—7/2,0) U (0,7/2], we have f(z) =0

on [—7/2,0) U (0,7/2]. y
IES
Since —1 < cosz < 0 on (7/2, 7], we have f(xz) = —1 on (7/2,7]. { {
-7 0 T X
Note that £(0) = 1. —_— L
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60 [ CHAPTER1 FUNCTIONS AND LIMITS
b) @) Ilir(r){ f(z) =0and mlir0n+ f(xz)=0,s0 ilir%) f(z)=0.
(i) Asz — (7/2)7, f(z) — 0, so Iﬂl(iﬂr?z)i f(x)=0.
(iii) As z — (7/2)%, f(z) — —1, 50 zﬂl(iﬂn%fr flz) = —1.
(iv) Since the answers in parts (ii) and (iii) are not equal, xkrf/ ) f(z) does not exist.
(c) ;g}l f(z) exists for all a in the open interval (—m, 7) except a = —7/2 and a = 7/2.
55. The graph of f(z) = [z] + [—=«] is the same as the graph of g(x) = —1 with holes at each integer, since f(a) = 0 for any

integer a. Thus, lim f(z) = —1 and lim+ f(x)=-1,s0 lirn2 f(z) = —1. However,
r—27 r—2 T—

) =21+ [-2] = 2+ (~2) = 0,50 lim f(2) # /(2).

v—CcT

2
56. lim (LO\ /1 — 2—2 > = Lov/1 — 1 = 0. As the velocity approaches the speed of light, the length approaches 0.

A left-hand limit is necessary since L is not defined for v > c.
57. Since p(x) is a polynomial, p(x) = ao + a1z + azx? + - - - 4 anz™. Thus, by the Limit Laws,
lim p(z) = lim (a0+a1x+agx2+~~~+ana§”) =ap+ a1 limx + a2 lim 22 + - - - + a, lim z"

= a0+a1a+a2a2+~~'+anan :p(a)

Thus, for any polynomial p, lim p(z) = p(a).

58. Let r(x) = p@) where p(z) and g(z) are any polynomials, and suppose that g(a) # 0. Then

q(x)
I i 20 2P sl 20 s =
lim r(z) = lim @) = Tm g (@ [Limit Law 5] = 2(@) [Exercise 57] = r(a).

r—a

59. lim [f(z) — 8] = lim F@ =8 ] 2 im L2 =8 i@ -1 =10-0=0.

x—1 €T — 1 x—1 €Tr — 1 xr—

Thus, iLnllf(x) = iLnll{[f(x) —8]+8} = igrlll[f(x) — 8] +iln}8:o+8:8.

Note: The value of liml % does not affect the answer since it’s multiplied by 0. What’s important is that
lim M exists.
z—1 1 —1

60. (a) lim f(x) = lim {f(”ﬁ).a?} tim 2 im a2 —5.0-0

z—0 2

(b) limM:lim {Lf)x} :limM~limx:5-0:0
z—0 T

xr z—0 z—0 J,‘z x—0

61. Observe that 0 < f(z) < 22 for all z, and lir%O =0= lin% x2. So, by the Squeeze Theorem, liH(l) flz)y=o0.

© 2016 Cengage Learning“All'Rights Reserved. May not bé'scanned; copied; or duplicated; or posted'to a publiclyaccessible'website, in whele orin part:



SECTION 1.6  CALCULATING LIMITS USING THE LIMIT LAWS U
62. Let f(x) = [z] and g(z) = —[]. Then ill% f(z) and :112% g(x) donot exist [Example 10]
but lny [/(2) + g()] =l ([a] — [a]) = im 0 =0,
63. Let f(x) = H(x) and g(z) = 1 — H(z), where H is the Heaviside function defined in Exercise 1.3.59.

Thus, either f or g is O for any value of z. Then lin}) f(z) and lirnO g(x) do not exist, but limO [f(z)g(z)] = 1in% 0=0.

64, lim YO 22 :nm(m"’”’z- V6 —z+2. V?”’”l)

V3—z—1 6—z+2 3—zx+1

r—2

i (V6—2) -2 3—a+1
(v3=z)’ -1 Vo-z+2

o (84 VBl
B 3—z—-1 /6—x2+2

C-o)(v3-z+1) . VI-a+1 1

= lim =1l

22 ) (Vo212 =2yVo-z+2 2
65. Since the denominator approaches 0 as * — —2, the limit will exist only if the numerator also approaches

0 as z — —2. In order for this to happen, we need lirrj2 (3x2 +axr+a+ 3) =0 &

3(=2)  +a(-2)+a+3=0 & 12—-2a+a+3=0 < a=15 Witha = 15, the limit becomes

3m2+15x+1871. 3@+2)(z+3) _ . 3@+3) _3(=2+43) 3 _ |

e T 2 h -2 a2 (- 1)(w+2)  eotz z—1 —2-1 -3

66. Solution 1: First, we find the coordinates of P and () as functions of . Then we can find the equation of the line determined
by these two points, and thus find the x-intercept (the point R), and take the limit as » — 0. The coordinates of P are (0, ).

The point Q is the point of intersection of the two circles > + y? = 72 and (z — 1)® 4 3> = 1. Eliminating y from these

61

equations, we get7> —2° =1— (z—1)> & r’=1+2zx—1 < 1z = ir? Substituting back into the equation of the

shrinking circle to find the y-coordinate, we get (%rz)2 +y? =72

ry/1— irQ —r
y—r= W (z — 0). We set y = 0 in order to find the x-intercept, and get
1,2 —%7‘2 (,/1—%7"2—1—1)
xr=—-—r 2 = T :2( 17%7’24’1)
) -de v

Now we take the limitas  — 0% lim o = lim 2(\/1— 372 +1)= lim 2(VI+1) =4,
r—0

r—0t r—0

So the limiting position of R is the point (4, 0).

[continued]
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Solution 2: We add a few lines to the diagram, as shown. Note that
ZPQS = 90° (subtended by diameter PS). So ZSQR = 90° = Z0QT
(subtended by diameter OT). It follows that ZOQS = ZTQR. Also

/PSQ =90° — ZSPQ = ZORP. Since AQOS is isosceles, so is T R x
AQTR, implying that QT = T'R. As the circle C5 shrinks, the point Q)

plainly approaches the origin, so the point R must approach a point twice

as far from the origin as 7', that is, the point (4, 0), as above.

1.7 The Precise Definition of a Limit

CIF|f(z) — 1] < 0.2,then —0.2 < f(z) —1< 0.2 = 0.8 < f(x) < 1.2. From the graph, we see that the last inequality is

true if 0.7 < = < 1.1, so we can choose 6 = min {1 —0.7,1.1 — 1} = min {0.3,0.1} = 0.1 (or any smaller positive

number).

L IF|f(z) — 2] < 0.5,then —0.5 < f(z) —2< 0.5 = 1.5< f(x) < 2.5. From the graph, we see that the last inequality is

true if 2.6 < = < 3.8, so we can take § = min {3 — 2.6, 3.8 — 3} = min {0.4, 0.8} = 0.4 (or any smaller positive number).
Note that z # 3.

. The leftmost question mark is the solution of v/ = 1.6 and the rightmost, /= = 2.4. So the values are 1.6% = 2.56 and

2.4% = 5.76. On the left side, we need |2 — 4| < |2.56 — 4| = 1.44. On the right side, we need |z — 4| < |5.76 — 4| = 1.76.
To satisfy both conditions, we need the more restrictive condition to hold—namely, |x — 4| < 1.44. Thus, we can choose

& = 1.44, or any smaller positive number.

. The leftmost question mark is the positive solution of z? = %, that is, x = %, and the rightmost question mark is the positive

solution of 22 = %, that is, z = \/g On the left side, we need |z — 1| < ‘% — 1‘ =2 0.292 (rounding down to be safe). On

the right side, we need |z — 1] < ‘ \/g — 1‘ = 0.224. The more restrictive of these two conditions must apply, so we choose

& = 0.224 (or any smaller positive number).

2( From the graph, we find that y = tan z = 0.8 when = =~ 0.675, so
yony T _§~0675 = 61 ~ZT—0.675~0.1106. Also,y = tanz = 1.2
;E when z ~ 0.876,s0 § + 02 ~ 0.876 = 2 = 0.876 — % =~ 0.0906.
Thus, we choose § = 0.0906 (or any smaller positive number) since this is
0 Z_5ZZ4s, 2 the smaller of ; and d5.
1( From the graph, we find that y = 2x/(2® +4) = 0.3 when z = £, so
y=X22jf4 ] 1-61=2 = 01=3. Also,y=2z/(z* +4) =0.5whenz = 2, s0
§;§‘ J 1+62=2 = §2 = 1. Thus, we choose § = % (or any smaller positive
0/] - ot 522 number) since this is the smaller of 41 and J2.
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5.8

1.8

y=x'—3x+4

2-8 ,2+4,

2.2

SECTION 1.7  THE PRECISE DEFINITION OF ALIMIT O

From the graph with € = 0.2, we find that y = 2> — 3z + 4 = 5.8 when
r~1.9774,502 — 61 = 1.9774 = 1 = 0.0226. Also,
y=2a®—3x+4=6.2whenz ~ 2.022,50 2 + 6> =~ 2.0219 =
02 = 0.0219. Thus, we choose § = 0.0219 (or any smaller positive
number) since this is the smaller of §; and Ja2.

Fore = 0.1, we get §1 = 0.0112 and 2 ~ 0.0110, so we choose

0 = 0.011 (or any smaller positive number).

63

8. Fory = (4x +1)/(3z — 4) and e = 0.5, we need 1.91 < 2 < 2.125. So since |2 — 1.91| = 0.09 and |2 — 2.125| = 0.125,
we can take 0 < § < 0.09. For e = 0.1, we need 1.980 < 2.021. So since |2 — 1.980| = 0.02 and |2 — 2.021| = 0.021,

we can take 6 = 0.02 (or any smaller positive number).

5.5 4.7
y=5 y=46
y=4 y =44
1.8 2.2 1.97 : : : 2.03
35 4.3
a? +4 200
9. (a) The graph of y = shows that y = 100 when = ~ 4.04 (more
(a) The graph of y N Yy (
accurately, 4.04134). Thus, we choose § = 0.04 (or any smaller positive 100
number).
b) From part (a), we see that as x gets closer to 4 from the right, y increases !
(b) part (a) g ght, y 0, 705
2
without bound. In symbols, lim v +4 =00
z—4t T —
10. We graph y = cscx and y = 500. The graphs intersect at 2 ~ 3.186, so 1500
we choose § = 3.186 — 7 ~ 0.044. Thus, if 0 < |z — 7| < 0.044, then 1000
csc?z > 500. Similarly, for M = 1000, we get § = 3.173 — 7 ~ 0.031. 200
0
z w 37
2 2

1. (@) A =7r? and A = 1000 cm?

(b) [A—1000] <5 =

= m?=1000 = r?=100 r:,/@ (r>0) =~17.8412cm.

™

—5<mr?—-1000<5 = 1000—-5<mr?<1000+5 =

V8B <p < (1005 177966 < 1 < 17.8858. (/1000 _ /995 ~ 004466 and /1005 — | /1000 (04455, So

if the machinist gets the radius within 0.0445 cm of 17.8412, the area will be within 5 cm? of 1000.

(c) = is the radius, f(x) is the area, a is the target radius given in part (a), L is the target area (1000 cm?), ¢ is the magnitude

of the error tolerance in the area (5 cm?), and d is the tolerance in the radius given in part (b).
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13.

14.

15.

16.

17.

U CHAPTER1 FUNCTIONS AND LIMITS

202 (°C)
e

— 2 _ \
() T =0.1w* +2.155w +20and T' = 200 = 201 /
0.1w? 4 2.155w 4+ 20 = 200 = [by the quadratic formula or T =200 /
from the graph] w =~ 33.0 watts (w > 0) T=19 /
32.5\ / s /335
(b) From the graph, 199 <7 <201 = 32.89 < w < 33.11. 198

(watts)

(c) « is the input power, f(x) is the temperature, a is the target input power given in part (a), L is the target temperature (200),

¢ is the tolerance in the temperature (1), and J is the tolerance in the power input in watts indicated in part (b) (0.11 watts).

0.1 0.1

01 01
(b) [4z — 8| = 4|z — 2| < 0.01 < |x—2|<%,soéz%:o.ooz5.

|(bx —7) — 3| = |5z — 10| = |5(z — 2)| = 5|z — 2|. Wemust have |f(z) — L| <e,s05|z —2|<e <

|z — 2| < /5. Thus, choose § = ¢/5. Fore = 0.1, § = 0.02; for e = 0.05, 6 = 0.01; fore = 0.01, 6 = 0.002.

Given e > 0, we need § > 0 such that if 0 < |x — 3| < 4, then 4 y=1+ ke
|1+ 3z) 2| <e But|(l+32)-2/<e & |fz—-1|<e & 2+;
|3z —3] <e < |z —3|<3e Soifwechoose § = 3e, then 2o
0<|z—3<s = ](1—&-%1’)—2!<5.Thus,£i£na(l+%a:):2by ; ,
3-6 3 346 X
the definition of a limit.
Given e > 0, we need § > 0 such that if 0 < |z — 4] < 6, then J
(22 —5) —3| < e But|2z —5)—3|<e < [2r—8<e < 3+e e
2||lx —4] <e & |z —4]| <e/2.Soif we choose § = e/2, then }
0<|o—4/<d = |(22—5) 3| <e Thus, lim(2x —5) = 3by the e
definition of a limit. 5 /4_5/2‘\44—6 -
Given e > 0, we need § > 0 such thatif 0 < |z — (—3)| < d, then y
y=1—4x 13+¢
|(1—4z) — 13| <e. But|1—4z) - 13| <e <  \gmmmm .
|—4x —12|<e & |-4||z+3|<e & |z—(-3)] <e/4 Soif
we choose § = e/4,then 0 < |z — (=3)|<d = [(1—4z)—-13|<e.
Thus, xlir{ls(l — 4z) = 13 by the definition of a limit.
) 0 %

-3-6 —-3+56

© 2016 Cengage Learning“All'Rights Reserved. May not bé'scanned; copied; or duplicated; or posted'to a publiclyaccessible'website, in whele orin part:



SECTION 1.7  THE PRECISE DEFINITIONOF ALIMIT O 65

18. Givene > 0, we need § > 0 such that if 0 < |z — (—2)| < 4, then y/

|3z +5) — (=1)] <& But|(3z +5) — (1) <& < 3

Bz +6|<e & [3|lz+2|<e & |z+2|<e/3.Soifwe choose

y=3x+5
d=¢/3,then0< |z +2|<d = [(Bzx+5)—(—1)| <e. Thus,
linjz(Sx + 5) = —1 by the definition of a limit.
RN e
04—1+s x
\—l—s

19. Givene > 0, we need § > 0 such that if 0 < |x — 1] < 4, then 244w —2‘ < e. But 2+ 4w —2’ <e &

4r — 4 4 3 . 3

3 <e & |3|lz—1<e & |z—1 < 3e Soifwechoosed = 2e,then0 < [z — 1| <§ =
’2 24:‘ - 2’ <& Thus, lim 24 4T _ 5 by the definition of a limit.

20. Givene > 0, we need § > 0 such that if 0 < |z — 10| < 4, then [3 — 2z — (—=5)| <e. But |3 — 42— (-5)| <¢ <«
|8—2z|<e & |-2[|lz—10]<e & |z—10| < 3e. Soif wechoose § = S¢,then 0 < |z — 10| <§ =

|3 — 22 — (=5)| < &. Thus, lim (3 — 22) = —5 by the definition of a limit.

22— 2z —8

21. Givene > 0, we need § > 0 such that if 0 < |z — 4| < 4, then ) 76’<€ &
—4 2
%—6‘<5 &S |lz+2-6|<e [z#4 < |r—4| <e. Sochoosed =e. Then
—4 2
O<|lz—4]<d = |z—4<e = |z+2-6/<e = %—6‘<5 [x #4] =
2 _ o _ 2 _o.
272078 _ 6l < - By the definition of a limit, lim ©— 22— _ ¢,
r—4 r—4 r—4
‘ . 9 —4a”
22. Givene > 0, we need 6 > 0 such that if 0 < |z + 1.5| < 4, then 3700 -6l <e &

‘(3 +2z)(3 — 22)
3+ 2x

—6‘<s & 3-—2z-6/<e [z#£-15] & |[2z-3|<e & |-2z+15|<e &

|z 4+ 1.5| < e/2. Sochoose § =¢/2. Then0 < [z +1.5|<d = |z+15|/<e/2 = |-2/|jz+15/<e =

(3+2x)(3 —2z) 9 — 42°
—2x — —2r — —_— —1. — .
|2z —-3|<e = [3—2z-6|<e = ‘ 3422 6| <e [z#-15] = 312 6| <e
402
By the definition of a limit, lim 9~ 4w =6
z——15 3+ 2z
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26.

27.

28.

29.

30.

31.

32,

L CHAPTER1 FUNCTIONS AND LIMITS
Given e > 0, we need § > 0 such that if 0 < |x — a| < 4§, then |z — a| < e. So § = € will work.

Given e > 0, we need § > 0 such that if 0 < |z — a| < d, then |c¢ — ¢| < e. But |¢ — ¢| = 0, so this will be true no matter
what § we pick.
Given e > 0, we need § > 0 such that if 0 < |z — 0| < §,then [2° — 0| <& & 2°<e < |z < E Taked =/

Then0 < |z —0| <6 = [z —0| <e. Thus, lim 2* = 0 by the definition of a limit.

Given e > 0, we need § > 0 such that if 0 < [z — 0] < 6, then |2® — 0] <& < |z <e & |z| < {/c. Taked = /e

Then0 < |z —0/ <6 = |2°—0]| <4 =e. Thus, 1in%] 23 = 0 by the definition of a limit.

Given € > 0, we need § > 0 such that if 0 < [z — 0| < &, then ||z| — 0| < e. But ||z[| = |2|. So this is true if we pick § = .

Thus, lin%) |z| = 0 by the definition of a limit.

Given e > 0, we need § > 0 such that if 0 < z — (—6) < 6, then |{/6+2 — 0| <e. But |[/6+2—-0| <ec <
VBorr<e & 6+x<e® & x—(—6)<e® Soifwechoose s =e5 then0 <z —(—6) <d§ =

|6+ 2 —0| <e. Thus, lim N V6 + x = 0 by the definition of a right-hand limit.
r——6

Givene > 0, weneed § > O such that if 0 < |z — 2| < &, then |(z* — 4z +5) — 1| <e & |2’ —dz+4|<e &
|(x —2)?| <e. Sotake§ = /2. Then0 < [z —2| < & [r—-2| <y & |(x—2)°| <e. Thus,

lim2 (mz —4dr + 5) = 1 by the definition of a limit.

Given e > 0, we need § > 0 such that if 0 < [z — 2| < 6, then |(2” +22 —7) — 1| <e.But (2’ +22 - 7) - 1| <e &
|z + 22— 8| <& < |z+4|[z—2| <e. Thus our goal is to make |z — 2| small enough so that its product with | + 4
is less than €. Suppose we first require that [t — 2| < 1. Then—1<z—-2<1 = 1<z<3 = s<zx+4<7 =
|x +4| < 7,and this givesus 7|z — 2| <e = |z —2| <e/7. Choose 6 = min{1l,e/7}. Thenif0 < |z — 2| < J, we
have |z — 2| < e/Tand |z +4| < 7,50 [(z® + 22 —7) — 1| = [(z + 4)(z — 2)| = [z + 4| |z — 2| < 7(¢/T) =&, as

desired. Thus, lirn2 (2 4+ 2z — 7) = 1 by the definition of a limit.

Given e > 0, we need § > 0 such that if 0 < [z — (—2)| < 8, then |(2® — 1) — 3| < € or upon simplifying we need
|#* — 4| < e whenever 0 < |z + 2| < 4. Notice that if [z + 2| < Lthen—1 <z +2<1 = —-5<z—-2<-3 =
|z —2] < 5. Sotake d = min{e/5,1}. Then0 < [z +2| <§ = |z —2|<5and|z+2|<e/5,s0

|(z* —1) = 3| =[(z +2)(z — 2)| = |z + 2| |z — 2| < (¢/5)(5) = &. Thus, by the definition of a limit, 1irr_12(a:2 —1)=3.

Given € > 0, we need § > 0 such that if 0 < [z — 2| < 6, then |2° — 8| < e. Now |2® — 8| = |(z — 2)(2” + 2z + 4)|.

If|z — 2| < 1,thatis, 1 < x < 3,then2® + 2z +4 < 32 +2(3) +4 =19 and so
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SECTION 1.7  THE PRECISE DEFINITION OF ALIMIT 0TI 67
|o® — 8| = |z — 2| (z® + 22+ 4) < 19|z —2|. Soif we take § = min {1, 5}, then 0 < [z —2| <§ =
|27 — 8| =& — 2| (+% + 22 + 4) < §5 - 19 = &. Thus, by the definition of  limit, lim 2” = 8.
Givene > 0,weletd =min {2,£}. If0 < [zt —3| < 4, then |z — 3| <2 = —-2<z-3<2 =
4<z+3<8 = |r+3|<8 Also|z—3|< 5,50 |x279| =lz+3|lr-3|<8 -5 =¢. Thus,/limsx2 =9.
From the figure, our choices for § are 61 = 3 — /9 — € and Y
9+e
02 = +/9 4 € — 3. The largest possible choice for § is the minimum 0 9
—&
value of {41, d2}; that is, § = min{d1,02} = d2 =9+ —3.
y=ax?
0 /3\ X
\/9—8 \/9+€
(a) The points of intersection in the graph are (21, 2.6) and (z2, 3.4) g 4 7 ‘
3
with 21 =~ 0.891 and x> ~ 1.093. Thus, we can take § to be the //
smallerof 1 — z; and 2 — 1. So § = z2 — 1 ~ 0.093.
4 // : )
_1 7
(b) Solving z* +  + 1 = 3 + ¢ gives us two nonreal complex roots and one real root, which is
(216 + 108 + 12/336 + 324z + 8122 )°/° — 12
z(e) = 73 . Thus, 6 = z(e) — 1.
6(216 + 108¢ + 124/336 + 324¢ + 81¢2 )
(c) Ife = 0.4, then z(e) ~ 1.093272342 and § = z(¢) — 1 =~ 0.093, which agrees with our answer in part (a).
1. Guessing a value for §  Let € > 0 be given. We have to find a number 6 > 0 such that 1_ %‘ < & whenever
x
1 1 2— —2 " 1
0<|zr—2|<d. But|=—=|= Tl = [z —2| < €. We find a positive constant C such that — < C =
x 2 2z |2x] |2x]
‘I|2_ ‘2| < C'|z — 2| and we can make C' |z — 2| < € by taking |z — 2| < % = §. We restrict z to lie in the interval
x
1 1 1 1 1 1 1 1. .
lt—2/<1 = 1<z<3s0l>->- = —-<—<=- = — <=.SoC = — issuitable. Thus, we should
z” 3 6 2z 2 2z] ~ 2 2

choose § = min {1, 2¢}.

2. Showing that 6 works ~ Givene > 0weletd = min{1,2¢}. If0 < |z — 2| <, then|z — 2| <1 = 1<z<3 =

1 1 .
w < 5 (asin part 1). Also |z — 2| < 2, so

1 1 . .
p —5’ = < = - 2e = e. This shows that 11n12(1/x): 1
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1. Guessing a value for § ~ Given e > 0, we must find 6 > 0 such that |\/z — \/a| < € whenever 0 < |z — a| < §. But

|vx —+/a| = % < & (from the hint). Now if we can find a positive constant C' such that /= + y/a > C then
T a

| — al | — al

Vz+a C

centeredata. If [z —a| < 3a,then —Ja<z—-a<3a = ia<z<3a = z+a>,/3a+a andso

< ¢, and we take |z — a| < Ce. We can find this number by restricting z to lie in some interval

C = \/4a+ V/a is a suitable choice for the constant. So |z — a| < (, [1a+ \/E) €. This suggests that we let

(5:min{%a7 (1/%a+\/c_z)s}.
2. Showing that  works ~ Given € > 0, we let 6 = min {%a, (,/%a + \/E)a}. If0 < |z —a|] < 4, then
|t —al < 2a = xT++a>,/3a+al(asinpartl). Also |z —a| < (,/%a—i—\/ﬁ)a,so

|z —al < (\/er\/a)ﬁ

VE - Val = 2 Vi)

= . Therefore, lim /z = y/a by the definition of a limit.

Suppose that PII(I) H(t) = L. Givene = 3, there exists § > Osuchthat 0 < [t| <6 = |H(t)—L|<3i <

L—3<H{)<L+3 For0<t<§ H(t)=1s0l<L+3i = L>%iFor—6<t<0, H(t) =0,

soL— 2 <0 = L < 1. This contradicts L > 5. Therefore, }iII(l) H(t) does not exist.

Suppose that lir% f(z) = L. Given e = 1, there exists § > Osuchthat 0 < || <d = |f(z) — L| < &. Take any rational

number r with 0 < |r| < 6. Then f(r) = 0,50 [0 — L| < 3,50 L < |L| < 3. Now take any irrational number s with

0 < |s| < 4. Then f(s) =1,s0|1 — L| < 3. Hence, 1 — L < £, s0 L > . This contradicts L < 3, so lim f(z) does not
exist.

First suppose that ;132 f(z) = L. Then, given € > 0 there exists § > Osothat0 < [z —a| <d§ = |f(z)—L|<e.

Thena—d<z<a = 0<|z—al]<dso|f(z)—L|<e. Thus, lim f(z)=L. Alsoa<z<a+d§ =

T—a~

0<|z—al <dso|f(x)— L| < e. Hence, 1irn+ f(z)=1L.

T—a

Now suppose lim f(z) =L = lim+ f(x). Lete > 0 be given. Since lim f(z) = L, there exists 61 > 0 so that

Tx—a~ T—a~

a—6 <zx<a = |f(z)—L|<e. Since lim+f(gc):L,thereexists<52>Osothata<x<a—|—<52 =

|f(z) — L| < e. Let § be the smaller of §; and d2. Then0 < |z —a| <0 = a—0d1<z<aora<z <a-+dzs0

|f(z) — L] < e. Hence, lim f(z) = L. So we have proved that lim f(z) =L < lim f(z)=L= lim+ f(z).

r—a T—a

1 4 1 1 1
m > 10,000 < (JJ+3) < 10,000 = ‘I‘+3| < T,OOO = |$— (—3)| < 1—0
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. 1
42. Given M > 0, weneed § > Osuchthat0 < |z +3| <8 = 1/(z+3)* > M.Now ——— > M &

(x +3)*
(:10—&—3)4<i < |x+3\<L.Sotake6:L.Then0<|x+3|<5: 1 = 1 > M, so
M VM vM VM (z+3)4
lim ——— = o0.
z—-3 (z + 3)*
43. Let N < 0 be given. Then, for z < —1 wehaveL<N &= E<(;1c—|—1)3 &= 33<;1c—|—1
' given. Then, : (z+1)° N VN '

/5 /5 5 5
Lets = — 3/ = Then —1 — 1 3/ 2L 1 2 <N li — 2 - .
€ - Then <z < = N<:1:+ <0 = ( l)3< ,sox im ( g 00

44. (a) Let M be given. Since lim f(x) = oo, there exists §; > Osuch that0 < |z —a| <61 = f(z) > M + 1 — c. Since

T—a

lim g(z) = c, there exists d2 > Osuch that 0 < |z —a| < d2 = |g(z) —c|] <1 = g(x)>c— 1. Letd bethe

T—a

smaller of 1 and d2. Then0 < [z —a|] <d§ = f(x)+g(x) > (M+1—c¢c)+ (c—1) = M. Thus,

lim [f(z) + g(x)] = oo.

(b) Let M > 0 be given. Since lim g(x) = ¢ > 0, there exists 61 > Osuchthat0 < |z —a| <1 =

T—a

lg(z) —c| <¢/2 = g(x) > c/2. Since lim f(x) = oo, there exists 2 > O such that 0 < |z —a| < J2 =
) 2M c .
f(z) >2M/c. Let § = min {01,d2}. Then0 < |z —a| <6 = f(x)g(r)>T§ZM,so lim f(z)g(x) = oo.

(c) Let N < 0 be given. Since lim g(z) = ¢ < 0, there exists 61 > Osuchthat0 < |z —a| < 61 =

T—a

lg(z) —c| < —¢/2 = g(z) < ¢/2. Since lim f(z) = oo, there exists d2 > Osuchthat0 < |z —a| < d2 =

f(z) >2N/c. Notethatc < Oand N <0 = 2N/c>0.) Letd = min{d1,d2}. Then0 < |z —a| <6 =

flz)>2N/c = f(z)g(z) < % . % = N,so lim f(z)g(z) = —oc.

T—a

1.8 Continuity

1. From Definition 1, lirr}1 flz) = f(4).

2. The graph of f has no hole, jump, or vertical asymptote.

3. (a) f is discontinuous at —4 since f(—4) is not defined and at —2, 2, and 4 since the limit does not exist (the left and right
limits are not the same).

(b) f is continuous from the left at —2 since lim f(z) = f(—2). f is continuous from the right at 2 and 4 since

r——2"

lim+ f(x) = f(2) and lirn+ f(z) = f(4). It is continuous from neither side at —4 since f(—4) is undefined.
z—2 r—4

4. From the graph of g, we see that g is continuous on the intervals [—3, —2), (=2, —1), (-1, 0], (0,1), and (1, 3].
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5. The graph of y = f(x) must have a discontinuity at

2 = 2 and must show that 1im+ flz) = f(2).
r—2

y

-

\o

7. The graph of y = f(x) must have a removable

discontinuity (a hole) at z = 3 and a jump discontinuity

atx = 5.

9. (a) The toll is $7 between 7:00 AM and 10:00 AM and between 4:00 PM and 7:00 PM.

(b) The function 7" has jump discontinuities at t = 7, 10, 16, and 19. Their
significance to someone who uses the road is that, because of the sudden jumps in

the toll, they may want to avoid the higher rates between ¢ = 7 and ¢ = 10 and

between ¢t = 16 and t = 19 if feasible.

6. The graph of y = f(x) must have discontinuities

atx = —1 and x = 4. It must show that

lim_ f(z) = f(=1)and lim_f(z) = f(4).

lim f(z) = £(2)

7

8. The graph of y = f(x) must have a discontinuity
atx = —2with lim f(z) # f(—2) and
r——27

lim+ f(z) # f(—2). It must also show that
r——2

and lim f(z) # f(2).
z—2t

619 24 !

10. (a) Continuous; at the location in question, the temperature changes smoothly as time passes, without any instantaneous jumps

from one temperature to another.

(b) Continuous; the temperature at a specific time changes smoothly as the distance due west from New York City increases,

without any instantaneous jumps.

(c) Discontinuous; as the distance due west from New York City increases, the altitude above sea level may jump from one

height to another without going through all of the intermediate values— at a cliff, for example.

(d) Discontinuous; as the distance traveled increases, the cost of the ride jumps in small increments.
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(e) Discontinuous; when the lights are switched on (or off), the current suddenly changes between 0 and some nonzero value,
without passing through all of the intermediate values. This is debatable, though, depending on your definition of current.

M. lim f(z) = lim (z+22°%)" = ( lim z+2 lim x3) = [1+2(-1)*]* = (-3)* = 81 = f(-1).

z——1 r——1 z——1 r——

By the definition of continuity, f is continuous at a = —1.
. 2 . 2 .

25 @5t lme?asime g g0 gy

12, 1i =1 = = = == = g(2).
fing g(t) = lim == lim(2¢t +1) ~ 2lm¢+lml ~ 22)+1 5 9(2)

By the definition of continuity, g is continuous at a = 2.
13. linip(v) = lim1 2v/3v2 +1=2 lim1 V32 +1=2 lir111(3112 +1)=2,/3 lim1 v2 4+ liml 1

By the definition of continuity, p is continuous at @ = 1.

14. lim f(z) = lim (3z* =5z + Va2 +4) =3 lim, zt =5 lim  + 3/lin12(a:2 +4)
=3(2)*—5(2)+ V22 +4=48—-10+2=40= f(2)
By the definition of continuity, f is continuous at a = 2.

15. For a > 4, we have
lim f(z) = lim(z + vz —4) = lim z + lim v/z — 4 [Limit Law 1]

=a+ ,/limz— lim 4 [8, 11, and 2]
=a++Va—4 [8 and 7]
= f(a)

So f is continuous at z = a for every a in (4, c0). Also, lim+ f(z) =4 = f(4),so f is continuous from the right at 4.
r—4
Thus, f is continuous on [4, 00).

16. For a < —2, we have

r—1 lim (z — 1)
l- — l- — Tr—a L. -tL
fm g(z) = I S = Tm@s o) Hmitkaws]
limz — lim 1
— Tr—a Tr—a 2 1
3lim z + lim 6 (2,1, and 3]
a—1
_ 8 and 7
30+6 (8 and 7]

Thus, g is continuous at z = a for every a in (—oo, —2); that is, ¢ is continuous on (—oo, —2).

is discontinuous at a = —2 because f(—2) is undefined. Y

0 X
\ x=-2
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20.

21
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23.
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if -2
f(x) = T+ 2 e # y |
1 if v =-2 Y=1v2
Here f(—2) = 1,but lim f(z) = —ocoand lim+ f(z) = oo, (2,1
T——2" z——2 I —

0 X
so lim2 f(z) does not exist and f is discontinuous at —2. \
T——
x=-2

1—2? ifz<l1
{1/m if x>1 X
The left-hand limit of f ata = 1 is N

lim f(z) = lim (1 —?) = 0. The right-hand limit of f at a = 1 is }

z—1— rz—1—

fz) =

lim+ (z) = lim (1/z) = 1. Since these limits are not equal, lim1 f(z)
x—1 rz—1 r—

does not exist and f is discontinuous at 1.

_z y
fa) = o1 if x#1
1 ifx=1 _
y=1

. e z(z—1) . x
Jin fz) = lim 75— s YT R ey

but (1) =1, so f is discontinous at 1. x=-1

N =

Ccos T if <0

flx)=<0 if z=0 y
1—22 ifz>0

—T

lin%) f(x) =1,but f(0) =0 # 1, so f is discontinuous at 0.

2% — 52 —3

if 243

f@)={ =3 ’

6 if =3 6l
_ 22 —bBx—3 . Qe+ 1)(z—3) B
;E%f(m)_;lgé z—3 _:113%% x—3 —ilﬁ%(?x—&-l)—z
but f(3) = 6, so f is discontinuous at 3. / 5 ;

3 X

2 p— — —
fz) =< - _502 2_ (= ;)_(w; D i 1fora £ 2. Since lim f(z) =2+ 1 =3, define f(2) = 3. Then f is
continuous at 2.

22 -8 (x—2)(z?+22x+4) 2°+2x+4 L 4+4+4

f(m)—x2_4— ) ) for z # 2. Smceil_)me(a:)—W—3,deﬁnef(2)—3.

Then f is continuous at 2.
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22—z —1

Fla) = =577~

is a rational function, so it is continuous on its domain, (—oo, 00), by Theorem 5(b).

2 2
1 1 . . . . . . .
G(z) = i = i is a rational function, so it is continuous on its domain,
202 —x—1 (2z+1(z—-1)

(—00,—2) U (—3,1) U(1,00), by Theorem 5(b).

P -2=0 = 2*=2 = 2=792,50Q() =

3 —
f 2 has domain (—oo, \3/5) U (\575, 00). Now z* — 2 s
x3 — 2

continuous everywhere by Theorem 5(a) and /z — 2 is continuous everywhere by Theorems 5(a), 7, and 9. Thus, Q is

continuous on its domain by part 5 of Theorem 4.

By Theorem 7, the trigonometric function sin x and the polynomial function « + 1 are continuous on R.

sinx

By part 5 of Theorem 4, h(z) = )
x

is continuous on its domain, {x | z # —1}.

By Theorem 5, the polynomial 1 — 22 is continuous on (—oo, o). By Theorem 7, cos is continuous on its domain, R. By

Theorem 9, cos(l — :1:2) is continuous on its domain, which is R.

By Theorem 7, the trigonometric function tan x is continuous on its domain, {x |z # 5+ 7rn}. By Theorems 5(a), 7, and 9,

tanx

V4 — x? .

the composite function v/4 — 22 is continuous on its domain [—2, 2]. By part 5 of Theorem 4, B(z) =

continuous on its domain, (—2, —7/2) U (—7/2,7/2) U (7/2,2).

:1/1+é:1/m7+1isdeﬁnedwhenm+l

orz < —1,s0 M has domain (—oo, —1] U (0, 00). M is the composite of a root function and a rational function, so it is

>0 = x2z+1>0andx>0o0rz+1<0andz <0 = x>0

continuous at every number in its domain by Theorems 7 and 9.
The sine and cosine functions are continuous everywhere by Theorem 7, so F'(x) = sin(cos(sin z)), which is the composite

of sine, cosine, and (once again) sine, is continuous everywhere by Theorem 9.

1 . . .
10 y = ——— is undefined and hence discontinuous when
1+ sinzx

l+sinz=0 & sinz=-1 & z=-7+2mn,nan
integer. The figure shows discontinuities for n = —1, 0, and 1; that

. 5T T 3
—10 ] 10 18, _7 ~ —785, —5 ~ —157, and 7 =~ 4.71.

v T
(]

The function y = f(z) = tan vz is continuous throughout its domain because it is the composite of a trigonometric function

-5 =5
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35.

36.

37.

38.

39.

40.
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and a root function. The square root function has domain [0, o) and the tangent function has domain {z | x # 5 + 7n}.

So f is discontinuous when z < 0 and when \/z = S +7n = xz = (% + 7rn)2, where n is a nonnegative integer. Note

that as x increases, the distance between discontinuities increases.

Because z is continuous on R and 1/20 — 2 is continuous on its domain, —/20 < z < /20, the product
f(x) = 2+/20 — 22 is continuous on —/20 < x < 4/20. The number 2 is in that domain, so f is continuous at 2, and
lim2 flz)=f(2) =2v16 =8.

Because z is continuous on R, sin z is continuous on R, and x + sin z is continuous on R, the composite function

f(z) = sin(z + sin z) is continuous on R, so lim f(x) = f(7) = sin(w +sin7) = sin7 = 0.

The function f(z) = x* tan z is continuous throughout its domain because it is the product of a polynomial and a
trigonometric function. The domain of f is the set of all real numbers that are not odd multiples of 7; that is,
domain f = {z | # # nm/2, n an odd integer}. Thus, £ is in the domain of f and

2 2

2 T T by
b = (2) = (T 1=
m @7 tane = f{ 2 1) BT =3 16

3:3

vV +x—2

square root of a polynomial. The domain of f is

The function f(z) = is continuous throughout its domain because it is the quotient of a polynomial and the

{z|2*+2-2>0}={z|(z+2)(z—1) >0} ={z |z < —20rz > 1} = (—00,—2) U (1,00)

® 2° 8
Thus, 2 is in the domain of f and lim 5 = @)= ——=—4=4

o—2 /22 Lz — V2+2-2 4
1—22 ifz<1
f(z) =

ve—1 ifz>1
By Theorem 3, since f(x) equals the polynomial 1 — 2® on (—oo0, 1], f is continuous on (—oo, 1]. By Theorem 7, since f(x)

equals the root function v/ — 1 on (1, 00), f is continuous on (1,00). Atz =1, lim f(z)= lim (1—2*)=1-12=0
rz—1— z—1—

and lim f(z) = lirn+ vz —1=+/1—-1=0. Thus, lirn1 f(x) exists and equals 0. Also, f(1) = 1 — 1® = 0. Therefore, f

z—1+ z—1

is continuous at z = 1. We conclude that f is continuous on (—o0, c0).
sinz  if v <mw/4

fl) = .
cosz if x>mw/4

By Theorem 7, the trigonometric functions are continuous. Since f(x) = sinz on (—oo, 7/4) and f(z) = cosx on

(m/4,00), f is continuous on (—oo, 7/4) U (r/4,00). lim f(z)= lim sinz =sinZ = 1/v/2 since the sine
z—(m/4)~ z—(m/4)~
function is continuous at 7 /4. Similarly, lim . fz)y=lim L cosz = 1/+/2 by continuity of the cosine function
z—(m/4) z—(7/4)

at /4. Thus, h(m/ o f(z) exists and equals 1/+/2, which agrees with the value f(7/4). Therefore, f is continuous at 7 /4,
so f is continuous on (—00, 00).
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x? if < -1
y
fl@y=< =z if —1<z<1
1/z ifxz>1
f is continuous on (—oo, —1), (—1, 1), and (1, co), where it is a polynomial, w1
a polynomial, and a rational function, respectively. L1
Now lim f(z)= lim 2>=1and lim f(z)= lim z=-1, (-1,-1) 0
r——1" r——1" z——1+ r——1+1
so f is discontinuous at —1. Since f(—1) = —1, f is continuous from the right at —1. Also, lim f(z) = lim z =1 and
rz—1— z—1—
. .1 . .
lim f(z)= lim — =1= f(1), so f is continuous at 1.
z—1t z—1+t T
2?41 ifz<1
flz)=¢3—2 ifl<z<4 Y
vz if >4 (1,2) 4,2)

f is continuous on (—o0, 1), (1,4), and (4, co), where it is a polynomial, a

\/\/

polynomial, and a root function, respectively. Now 0

lim f(x) = lim (z* +1) = 2and lim+ f(z)= lim (3—z)=2.
z—1— z—1

rz—1— z—1

(4 -1

X

Since f(1) = 2, we have continuity at 1. Also, lim f(z) = lim (3 —z)=—1= f(4) and lim+ flz) = 1irn+ VI =2,
z—4~ r—4 r—4

r—4—

so f is discontinuous at 4, but it is continuous from the left at 4.

z+2 ifzx<0 r

flz)=< 222 if0o<z<1 ©02)] &2
2—z ifz>1 / (&,n

f is continuous on (—o0, 0), (0,1), and (1, co) since on each of 0.0 >

these intervals it is a polynomial. Now lim f(z) = lim (x + 2) = 2 and
0~ z—0"

xr—

z—0

lim f(z) = lim 22 = 2and lim+ f(z) = lim (2 — ) =1, so f is discontinuous at 1. Since f(1) = 2,
rz—1

x—1— x—1— z—1+

f is continuous from the left at 1.

By Theorem 5, each piece of F' is continuous on its domain. We need to check for continuity at r = R.

. . GMr GM . . GM GM
Jm F(r) =l —pe~ =T nd I FO) = I, =5 =%

F' is continuous at R. Therefore, F' is a continuous function of r.
A cx’ 42 ifzx<?2
xTr) =
23 —cx if x>2

f is continuous on (—00,2) and (2,00). Now lim f(z) = lim (cz® + 2z) = 4c+ 4 and

r—27 r—2"
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xz—0

. GM .
S0 }LI}}%F(T) =z Since F'(R) =

R2’



76

46.

41.

48.

49.

0 CHAPTER1 FUNCTIONS AND LIMITS

lim+ f(@) = lim (2® —cx) =8—2c.So fiscontinuous < 4c+4=8-2c & 6c=4 < c=2. Thus,for f

T—2 r—2

to be continuous on (—oco, 00), ¢ = %
2 —4
xr — 2

F@) =90 0e® —be4+3 if 2<a<3
20 —a+b if >3

if v<2

2_ —
Atz =2 lim f(z)= lim ©—2 = tim @FDEZD ooy o014

z—2— z—2— T —2 z—2— r—2 z—2—
lim f(z) = lim (az® —bx +3) =4a —2b+3
z—2+ r—2+

We must have 4a —2b+ 3 =4,0orda — 2b =1 (1).

Atz =3: lim f(z)= lim (az® —bzr+3)=9a—3b+3

r—3~ T—3~

lim f(z) = lim+(2r—a+b) =6—a+b
r—3

z—3+

Wemusthave 9a —3b+3 =6 —a+b,or10a — 4b =3 (2).

Now solve the system of equations by adding —2 times equation (1) to equation (2).

—8a +4b= -2
10a —4b= 3
2a = 1
Soa = % Substituting % for a in (1) givesus —2b = —1,s0b = % as well. Thus, for f to be continuous on (—oo, 00),

—p=1
a=b=3.

If f and g are continuous and g(2) = 6, then 1imz[3f(m) + f(x)g(x)] =36 =

3lim f(2) + lim f(2) - lim g(x) =36 = 3f(2)+f(2)-6=36 = 9/(2)=36 = [(2)=4.

@) () = = and g(z) = =50 (0 9)(@) = [(g(a)) = f(1/2) = 1/(1/a?) = 2.

(b) The domain of f o g is the set of numbers z in the domain of g (all nonzero reals) such that g(z) is in the domain of f (also

all nonzero reals). Thus, the domain is {a: z # 0 and 1—12 #+ 0} ={z |z # 0} or (—o0,0) U (0,00). Since f o g is

the composite of two rational functions, it is continuous throughout its domain; that is, everywhere except = 0.

4 2 2 2
@ f(z) = 3;:11 _L +rl)_(xl - _@ +1)(;j11)(x71) =@+ 1) (x+1) [ora®+a2?+a+1]

for  # 1. The discontinuity is removable and g(z) = 2 + 2® 4+ = + 1 agrees with f for z # 1 and is continuous on R.

:$3—932—293_m(x2—x—2) :a:(x—Z)(m—l—l)

_ 2 . . .
pr—" po— p— =z(x+1) [orz®+x] forz # 2. The discontinuity

(b) f(x)

is removable and g(z) = * + x agrees with f for 2 # 2 and is continuous on R.
(¢) lim f(z) = lim [sinz] = lim 0=0and lim+ flz) = lirn+ [sinz] = lim+(—1) = —1,so lim f(x) does not

exist. The discontinuity at z = 7 is a jump discontinuity.
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o o2 1 x o o2s T 1 x
f does not satisfy the conclusion of the f does satisfy the conclusion of the
Intermediate Value Theorem. Intermediate Value Theorem.

f(z) = 2* + 10sin z is continuous on the interval [31,32], f(31) ~ 957, and f(32) ~ 1030. Since 957 < 1000 < 1030,
there is a number c in (31, 32) such that f(c) = 1000 by the Intermediate Value Theorem. Note: There is also a number ¢ in

(—32, —31) such that f(c) = 1000.

Suppose that f(3) < 6. By the Intermediate Value Theorem applied to the continuous function f on the closed interval [2, 3],
the fact that f(2) = 8 > 6 and f(3) < 6 implies that there is a number c in (2, 3) such that f(c) = 6. This contradicts the fact
that the only solutions of the equation f(z) = 6 are x = 1 and x = 4. Hence, our supposition that f(3) < 6 was incorrect. It

follows that f(3) > 6. But f(3) # 6 because the only solutions of f(z) = 6 are x = 1 and « = 4. Therefore, f(3) > 6.

f(z) = x* 4+ = — 3 is continuous on the interval [1,2], f(1) = —1, and f(2) = 15. Since —1 < 0 < 15, there is a number ¢
in (1,2) such that f(c) = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation z* + 2 — 3 = 0 in the
interval (1, 2).

The equation 2/x = x — /7 is equivalent to the equation 2/z — z + \/z = 0. f(z) = 2/x — = + /7 is continuous on the
interval [2,3], f(2) =1—2+4 /2~ 0.414,and f(3) = 2 — 3+ v/3 & —0.601. Since f(2) > 0 > f(3), there is a number c
in (2, 3) such that f(c) = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation 2/z — x + /z = 0, or
2/x = x — +/z, in the interval (2, 3).

f(z) = cosz — z is continuous on the interval [0, 1], f(0) = 1, and f(1) = cos1 — 1 = —0.46. Since —0.46 < 0 < 1, there

is a number ¢ in (0, 1) such that f(c) = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation

cosxz —x = 0, or cosz = z, in the interval (0, 1).

The equation sin 2 = x> — 1 is equivalent to the equation sinz — 2®> + = 0. f(x) = sinz — 2 + x is continuous on the
interval [1,2], f(1) =sinl ~ 0.84, and f(2) =sin2 — 2 &~ —1.09. Since sin1 > 0 > sin 2 — 2, there is a number c in
(1,2) such that f(c) = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation sin x — 2° + z = 0, or
sinz = 2® — =, in the interval (1, 2).

(a) f(x) = cosx — z* is continuous on the interval [0, 1], £(0) = 1 > 0, and f(1) = cos 1 — 1 ~ —0.46 < 0. Since

1> 0 > —0.46, there is a number c in (0, 1) such that f(c) = 0 by the Intermediate Value Theorem. Thus, there is a root

of the equation cosz — 2® = 0, or cos ¥ = 2%, in the interval (0, 1).
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(b) f(0.86) ~ 0.016 > 0 and f(0.87) ~ —0.014 < 0, so there is a root between 0.86 and 0.87, that is, in the interval
(0.86, 0.87).

(@) f(z) = 2° — 2® + 22 + 3 is continuous on [—1,0], f(—1) = —1 < 0, and £(0) = 3 > 0. Since —1 < 0 < 3, there
is a number ¢ in (—1, 0) such that f(c) = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation
2° — 2% 4 2z + 3 = 0 in the interval (—1,0).

(b) f(—0.88) ~ —0.062 < 0 and f(—0.87) = 0.0047 > 0, so there is a root between —0.88 and —0.87.

(@) Let f(z) = 2° — 2> — 4. Then f(1) = 1° — 1> —4 = —4 < O and f(2) = 2° — 2% — 4 = 24 > 0. So by the
Intermediate Value Theorem, there is a number c in (1, 2) such that f(c) = c® —c®> —4 = 0.

(b) We can see from the graphs that, correct to three decimal places, the root is z ~ 1.434.

25 1.5

1 2 1.4| |1.5

—10 —05

(a) Let f(z) =z —5— %4_3 Then f(5) = —% < Oand f(6) = § > 0, and f is continuous on [5,50). So by the

Intermediate Value Theorem, there is a number c in (5, 6) such that f(c) = 0. This implies that

13:\/0—5.

c
(b) Using the intersect feature of the graphing device, we find 0.2
that the root of the equation is = = 5.016, correct to three y=\x—5
imal places. 1
decimal places y=-t
5 5.1

Let f(x) = sin2®. Then f is continuous on [1, 2] since f is the composite of the sine function and the cubing function, both

of which are continuous on R. The zeros of the sine are at nm, sowenotethat 0 < 1 < 7 < %77 < 27w < 8 < 3, and that the
pertinent cube roots are related by 1 < ¢ %77 [call this value A] < 2. [By observation, we might notice that z = /7 and

x = v/2m are zeros of f.]
Now f(1) =sinl > 0, f(A) =sin 27 = —1 < 0, and f(2) = sin8 > 0. Applying the Intermediate Value Theorem on
[1, A] and then on [A, 2], we see there are numbers ¢ and d in (1, A) and (A, 2) such that f(c) = f(d) = 0. Thus, f has at

least two z-intercepts in (1, 2).

Let f(2) = 2> — 3 + 1/2. Then f is continuous on (0, 2] since f is a rational function whose domain is (0, 00). By

inspection, we see that f(§) = 12 > 0, f(1) = —1 < 0, and f(2) = £ > 0. Appling the Intermediate Value Theorem on
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[3.1] and then on [1, 2], we see there are numbers c and d in (§,1) and (1, 2) such that f(c) = f(d) = 0. Thus, f has at

least two z-intercepts in (0, 2).

(=) If f is continuous at a, then by Theorem 8 with g(h) = a + h, we have
lim f(a-+h) = f(Jim (a+1)) = f(a).
(<) Lete > 0. Since %in}) f(a+ h) = f(a), there exists § > O such that 0 < |h| < § =

|[f(a+h)— f(a)] <e. Soif0 < |z —a| < d,then|f(x) — f(a)|=|f(a+ (x —a)) — f(a)| <e.

Thus, lim f(z) = f(a) and so f is continuous at a.

lim sin(a + h) = lim (sinacosh + cosasinh) = lim (sinacosh) + lim (cosasinh)

—0 h—0 h—0 h—0

= (}llli% sin a) (%IL% cos h) —+ (%13}) cos a) (%11% sin h) = (sina)(1) + (cosa)(0) = sina

As in the previous exercise, we must show that lim cos(a 4+ h) = cos a to prove that the cosine function is continuous.
h—0

1in}) cos(a+ h) = }llirno (cosacosh —sinasinh) = }llin% (cosacosh) — lirn0 (sinasinh)

= (}Llir%) cos a) (}lg% cos h) - (flbli% sin a) (}Llir%) sin h) = (cosa)(1) — (sina)(0) = cosa

(a) Since f is continuous at a, lim f(z) = f(a). Thus, using the Constant Multiple Law of Limits, we have

lim (cf )(z) = lim cf(x)=c lim f(z) = cf(a) = (¢f )(a). Therefore, cf is continuous at a.

T—a

(b) Since f and g are continuous at a, lim f(z) = f(a) and lim g(x) = g(a). Since g(a) # 0, we can use the Quotient Law

—a

lim f(z)
@) _ & = @ = <i> (a). Thus, / is continuous at a.
g g g

of Limits: ;1_% (5) (z) = lim @

i—ag(z)  lim g(z)

is continuous nowhere. For, given any number a and any 6 > 0, the interval (a — d,a + §)

0 if x is rational
f(z) = e
1 if z is irrational

contains both infinitely many rational and infinitely many irrational numbers. Since f(a) = 0 or 1, there are infinitely many

numbers z with 0 < |z — a|] < § and |f(z) — f(a)| = 1. Thus, lim f(z) # f(a). [In fact, lim f(x) does not even exist.]

0 ifz isrational )
g(z) = o is continuous at 0. To see why, note that — |z| < g(z) < |z|, so by the Squeeze Theorem
x if x is irrational

lirr%) g(x) = 0 = g(0). But g is continuous nowhere else. For if a # 0 and 6 > 0, the interval (a — , a + &) contains both
infinitely many rational and infinitely many irrational numbers. Since g(a) = 0 or a, there are infinitely many numbers = with

0<|z—al <dand|g(x)— g(a)| > |a| /2. Thus, lim g(x) # g(a).

If there is such a number, it satisfies the equation 2® +1 =2 <« ® —x +1 = 0. Let the left-hand side of this equation be
called f(z). Now f(—2) = =5 < 0,and f(—1) = 1 > 0. Note also that f(z) is a polynomial, and thus continuous. So by the

Intermediate Value Theorem, there is a number c between —2 and —1 such that f(c) = 0, so that ¢ = ¢* + 1.
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70. . ;x2 — + = +bx —5 = 0 = a(2®+z—2)+b(®+ 222 — 1) = 0. Let p(x) denote the left side of the last

equation. Since p is continuous on [—1, 1], p(—1) = —4a < 0, and p(1) = 2b > 0, there exists a ¢ in (—1, 1) such that
p(c) = 0 by the Intermediate Value Theorem. Note that the only root of either denominator that is in (—1,1) is
(—=1++5)/2 =r,butp(r) = (3v/5 — 9)a/2 # 0. Thus, c is not a root of either denominator, so p(c) =0 =

x = c is aroot of the given equation.

71. f(x) = x*sin(1/x) is continuous on (—o0, 0) U (0, co) since it is the product of a polynomial and a composite of a
trigonometric function and a rational function. Now since —1 < sin(1/z) < 1, we have —z* < z*sin(1/x) < z*. Because

lim (—2*) = 0 and lin%) x* = 0, the Squeeze Theorem gives us Iin})(x4 sin(1/xz)) = 0, which equals f(0). Thus, f is

x—0

continuous at 0 and, hence, on (—o0, c0).
72. (a) lim+ F(z) =0and lim F(z)=0,so 1in%) F(z) = 0, which is F'(0), and hence F is continuous at z = a if @ = 0. For
x—0 z—0— T—

a >0, lim F(z) = lim z = a = F(a). Fora < 0, lim F(z) = lim (—z) = —a = F(a). Thus, F is continuous at

T—a

x = a; that is, continuous everywhere.

(b) Assume that f is continuous on the interval I. Then for a € I, lim |f(z)| = ’ lim f(:n)‘ = |f(a)| by Theorem 8. (If a is
an endpoint of I, use the appropriate one-sided limit.) So | f| is continuous on I.

1 ifx>0
(c) No, the converse is false. For example, the function f(z) = { it 0 is not continuous at © = 0, but | f(z)| = 11is
-1 iftz<
continuous on R.

73. Define u(t) to be the monk’s distance from the monastery, as a function of time ¢ (in hours), on the first day, and define d(t)
to be his distance from the monastery, as a function of time, on the second day. Let D be the distance from the monastery to
the top of the mountain. From the given information we know that «(0) = 0, u(12) = D, d(0) = D and d(12) = 0. Now
consider the function u — d, which is clearly continuous. We calculate that (v — d)(0) = —D and (u — d)(12) = D.

So by the Intermediate Value Theorem, there must be some time ¢o between 0 and 12 such that (u — d)(to) =0 <

u(to) = d(to). So at time ¢ after 7:00 AM, the monk will be at the same place on both days.

1 Review
TRUE-FALSE QUIZ

1. False.  Let f(z) = 2% s = —1,andt = 1. Then f(s +t) = (=14 1)*> = 0> = 0, but
&) +f) = (-1 +1>=2#£0= f(s +1).

2. False.  Let f(2) = 2% Then f(—2) =4 = f(2), but —2 # 2.

3. False. Let f(z) = 2®. Then f(3z) = (32)? = 922 and 3f(z) = 32°. So f(3z) # 3f(x).

© 2016 Cengage Learning“All'Rights Reserved. May not bé'scanned; copied; or duplicated; or posted'to a publiclyaccessible'website, in whele orin part:



10.

1.

12.

13.

14.

15.

16.

17.

18.

19.

. True.

True.

. False.

. False.

. False.

. True.

False.

True.

True.

False.

False.

True.

False.

True.

False.

False.

CHAPTER1 REVIEW O

If z1 < x2 and f is a decreasing function, then the y-values get smaller as we move from left to right.
Thus, f(z1) > f(z2).

See the Vertical Line Test.

For example, if z = —3, then \/W =+/9 = 3, not —3.

Limit Law 2 applies only if the individual limits exist (these don’t).
Limit Law 5 cannot be applied if the limit of the denominator is O (it is).

Limit Law 5 applies.

2_

is not defined when x = 3, but x + 3 is.
.z —9 . (x+3)(z—13) .
M3 ST ooy ameTd

The limit doesn’t exist since f(z)/g(x) doesn’t approach any real number as z approaches 5.

(The denominator approaches 0 and the numerator doesn’t.)

Consider lim z(z —5) or lim sin(z — 5)
z—5 T —DH r—5 r—>5

the latter limit exists (and it is equal to 1).

If f(z) =1/z, g(x) = —1/z, and a = 0, then lin}) f(z) does not exist, liH(l) g(x) does not exist, but

lin%) [f(z)+g(z)] = lin%)() = 0 exists.

Suppose that lim [f(z) + g(z)] exists. Now lim f(x) exists and lim g(z) does not exist, but

lim g(z) = lim {lf(z) + g(x)] — f(z)} = lim [f(z) + g(z)] — lim f(z) [by Limit Law 2], which exists, and

we have a contradiction. Thus, lim [f(z) + g(z)] does not exist.
r—a

Consider lirr%3 [f(x)g(x)] = lin% {(x —6) ﬁ} . It exists (its value is 1) but f(6) = 0 and g(6) does not exist,
so f(6)g(6) # 1.

A polynomial is continuous everywhere, so lirr%) p(x) exists and is equal to p(b).
T—

Consider lir% [f(z) — g(z)] = lim (i — i) This limit is —oo (not 0), but each of the individual functions
r— €T

approaches oo.

1/(z—1) ifz#1

Consider f(z) =
@) {2 ifx=1
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. The first limit exists and is equal to 5. By Example 1.5.3, we know that
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False.  The function f must be continuous in order to use the Intermediate Value Theorem. For example, let
1 if0o<z<3
f(z) = ] There is no number ¢ € [0, 3] with f(c) = 0.
-1 ifz=3
True.  Use Theorem 1.8.8 with a = 2, b = 5, and g(z) = 42> — 11. Note that f(4) = 3 is not needed.
True. Use the Intermediate Value Theorem witha = —1,b=1,and N = m, since 3 < 7w < 4.

True, by the definition of a limit with ¢ = 1.

24+1 ifx#0
False.  For example, let f(z) = ]
2 ifz=0

Then f(z) > 1 for all z, but lin}) f(z) = lin}) (z®+1) =1

True. f(z) = 2'° — 1022 + 5 is continuous on the interval [0, 2], f(0) = 5, f(1) = —4, and f(2) = 989. Since
—4 < 0 < 5, there is a number c in (0, 1) such that f(c) = 0 by the Intermediate Value Theorem. Thus, there is a

root of the equation 2'° — 102 + 5 = 0 in the interval (0, 1). Similarly, there is a root in (1, 2).
True. See Exercise 1.8.72(b).

False See Exercise 1.8.72(c).

EXERCISES

. (@) Whenz = 2, y &~ 2.7. Thus, f(2) ~ 2.7. ®) f(z)=3 = z=x23,5.6

(c) The domain of f is —6 < z < 6, or [—6, 6]. (d) The range of f is —4 <y < 4, or [—4,4].

(e) f is increasing on [—4, 4], that is, on —4 < z < 4. (f) f is odd since its graph is symmetric about the origin.

. (a) This curve is not the graph of a function of x since it fails the Vertical Line Test.

(b) This curve is the graph of a function of z since it passes the Vertical Line Test. The domain is [—3, 3] and the range

is [-2,3)].

. f(x) =2® =2z + 3,50 fla+h) = (a+ h)*> —2(a+ k) + 3 = a® + 2ah + h* — 2a — 2h + 3, and

fla+h)— f(a) (a® +2ah+h*—2a—2h+3)—(a®>—2a+3) h(2a+h—2)
- _ - = W =2a+h—2.

. There will be some yield with no fertilizer, increasing yields with increasing yield

fertilizer use, a leveling-off of yields at some point, and disaster with too

much fertilizer use.

0 fertilizer

© 2016 Cengage Learning“All'Rights Reserved. May not bé'scanned; copied; or duplicated; or posted'to a publiclyaccessible'website, in whele orin part:



CHAPTER1 REVIEW O 83

5 f(z) =2/(3z —1). Domain: 3z —1#0 = 3z#1 = z#3. D= (—00,3)U(3,0)
Range: all reals except O (y = 0 is the horizontal asymptote for f.)

R = (—00,0) U (0,00)

6. g(r) = V16 — 2%, Domain: 16 —z* >0 = 2*<16 = |z|< V16 = |z|<2. D=[-2,2|
Range: y>0andy <16 = 0<y<4.

R=10,4]

7. y=1+sinz. Domain: R.

Range: —-1<sinz<1 = 0<1+sinz<2 = 0<y<2 R=][0,2]

8. y=F(t) =3+ cos2t.

Domain: R. D = (—o0,00)

Range: —1<cos2t<1 = 2<3+cos2t<4 = 2<y<4

R=1[2,4]

9. (a) To obtain the graph of y = f(x) + 8, we shift the graph of y = f(z) up 8 units.

(b) To obtain the graph of y = f(x + 8), we shift the graph of y = f(x) left 8 units.

(c) To obtain the graph of y = 1 + 2f(z), we stretch the graph of y = f(z) vertically by a factor of 2, and then shift the

resulting graph 1 unit upward.

(d) To obtain the graph of y = f(z — 2) — 2, we shift the graph of y = f(x) right 2 units (for the “—2” inside the

parentheses), and then shift the resulting graph 2 units downward.

(e) To obtain the graph of y = — f(x), we reflect the graph of y = f(x) about the z-axis.

(f) To obtain the graph of y = 3 — f(x), we reflect the graph of y = f(x) about the z-axis, and then shift the resulting graph

3 units upward.
10. (a) To obtain the graph of y = f(z — 8), we shift the

graph of y = f(x) right 8 units.

=

1
0| 1 X

y

(c) To obtain the graph of y = 2 — f(z), we reflect the
graph of y = f(x) about the x-axis, and then shift the

resulting graph 2 units upward.

y

~.

(b) To obtain the graph of y = — f(z), we reflect the graph

of y = f(x) about the z-axis.

(d) To obtain the graph of y = % f(z) — 1, we shrink the
graph of y = f(x) by a factor of 2, and then shift the

resulting graph 1 unit downward.
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1. y = (z — 2)3: Start with the graph of y = * and shift Y Y
2 units to the right. e x
0 X 0| /2 X
y=x-2)
12. y = 2+/7: Start with the graph of y = /7 and stretch y - J Y= 2
y=+x )
vertically by a factor of 2.
0 X 0 X

13.

14.

15.

16.

y=a®> -2z +2= (2> —2x+ 1)+ 1 = (z — 1)® 4 1: Start with the graph of y = 2, shift 1 unit to the right, and shift

1 unit upward.

1 . 1 . .
y= m: Start with the graph of y = p and shift 1 unit to
the right.
x=1

f(z) = —cos2x: Start with the graph of y = cos z, shrink horizontally by a factor of 2, and reflect about the z-axis.

y ¥ y

1[ y=cos X . y=cos 2x <l> y=-—cos 2x

, g A/ ANV YA NVAN VAN /\
NG S S\ Y &N
£ (@) 1+2 ifx<O y
xT) =
1422 ifz>0
On (—00,0), graph y = 1 + z (the line with slope 1 and y-intercept 1) 1
with open endpoint (0, 1). _/
0 X

On [0, 00), graph y = 1 + 2 (the rightmost half of the parabola y = /

shifted 1 unit upward) with closed endpoint (0, 1).

© 2016 Cengage Learning“All'Rights Reserved. May not bé'scanned; copied; or duplicated; or posted'to a publiclyaccessible'website, in whele orin part:



17.

18.

19.

20.

21.

22

CHAPTER1 REVIEW O 85

(a) The terms of f are a mixture of odd and even powers of z, so f is neither even nor odd.
(b) The terms of f are all odd powers of x, so f is odd.
(¢) f(—z) = cos((—x)?) = cos(z®) = f(x), so f is even.

(d) f(—z) =1+sin(—z) =1 —sinz. Now f(—z) # f(x) and f(—z) # — f(z), so f is neither even nor odd.

For the line segment from (—2, 2) to (—1, 0), the slope is 0-2 _ —2, and an equationisy — 0 = —2(z + 1) or,

0-2

142
equivalently, y = —2x — 2. The circle has equation 2% + y? = 1; the top half has equation y = /1 — 22 (we have solved for
—2r—2 if 2<zx< -1

positive y). Thus, f(z) = {m if —1<z<1

f(@)=Vvz, D=1[0,00); g(z)=sinz, D=R.

@) (fog)(z) = f(g9(x)) = f(sinz) = V/sinz. For v/sin z to be defined, we must have sinz > 0 <
z € [0, 7], [27, 37], [-2m, —7], [47, B7], [-47, =37, ...,s0 D = {z | © € [2n7, 7 + 2n7], where n is an integer}.

®) (go f)(z) = g(f(z)) = g(vVx) =sinVz. = must be greater than or equal to 0 for vz to be defined, so D = [0, c0).
© (foN)@) = f(/@) = [(Va) = VVe = Va. D=[0,00).
(d) (gog)(x) =g(g(x)) = g(sinz) = sin(sinz). D =R.

Let h(z) = = + /7, g(x) = /7, and f(x) = 1/x. Then (f o go h)(z) = m = F(z).

80 Many models appear to be plausible. Your choice depends on whether you
think medical advances will keep increasing life expectancy, or if there is
bound to be a natural leveling-off of life expectancy. A linear model,

y = 0.2493x — 423.4818, gives us an estimate of 77.6 years for the
1890, . 2010 year 2010.

(cost)

<

(a) Let x denote the number of toaster ovens produced in one week and

y the associated cost. Using the points (1000, 9000) and 12,0001
9000 _

(1500, 12,000), we get an equation of a line: y=6x+3000
60001

12,000 — 9000
—9000 = —=——— (z — 1000 3000
Y 1500 — 1000 © ) =
y = 6(z —1000) + 9000 = y = 6z + 3000. 500 1000 1500 2000 ¥

(toaster ovens)

(b) The slope of 6 means that each additional toaster oven produced adds $6 to the weekly production cost.

(¢) The y-intercept of 3000 represents the overhead cost—the cost incurred without producing anything.
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23. (@) (1) lim f(z)=3 (i) lim f(z)=0
z—27F z——371
(iii) lim3 f(x) does not exist since the left and right limits are not equal. (The left limit is —2.)
(iv) lirr}1 flz) =2

W) lim f(x) = o0 vi) lim f(x) = —o0

(b) The equations of the vertical asymptotes are x = 0 and z = 2.

(c) f is discontinuous at x = —3, 0, 2, and 4. The discontinuities are jump, infinite, infinite, and removable, respectively.
24, lim f(z)=-2, lm f(z)=1, f(0)=-1, y pt
z——0F z—0~ X =

lim f(z) =00, lim f(z)=—00
z—2- z—2+ \f

9j ;

25. lin% cos(z + sinz) = cos [ lir%(m + sin x)} [by Theorem 1.8.8] = cos0 =1

xr—

26. Since rational functions are continuous, lim z* —9 = 3* —9 = 2 =0
’ ‘232422 -3 32+23)-3 12
2?2 -9 . (x4+3)(xz—3) r—3 -3-3 -6 3

2. lim ————" = lim ROy - 0
322 425 -3 o3 (@+3)(w—1) eosz—1 -3-1 -4 2

z2—9 2 -9

: = v : 2 _ + + s Y
28. Ilf?+x2+2m—3 ocosincer” +2x—3—0"asx — 1 andx2+2x_3<0for1<a:<3.
—1)3 h® —3h?+3h—1)+1 3 _3p2
20. Jimg 1= 1) +1:lim( ) :limw:hm(hz—%—i—i&)::}
h—0 h—0 h h—0 h h—0

Another solution: Factor the numerator as a sum of two cubes and then simplify.

. (h=1%4+1 . (h=1%+1>  [(h=1)+1][(h=1)>=1(h—1)+1?]
lim = lim = lim
h—0 h—0 h h—0 h
=lm [(h—1)?-h+2]=1-0+2=3
h—0
2 —_— —
30, Tim & =2 — Jim (L2 —2) fim — 12 2+2 _ 4 _1

BB o8 i (t—2) (2 +2t+4) a2yt +d 4+4+4 12 3

31. lii]%ﬁ :oosince(rf9)4H0+asrﬂ9and& > 0forr #9.
4—-v 4—v 1
32. 1i = lim —— = lim —=-1
it |4 —v| Byt —(4—-v) v 1
4 _ 2 2 _ 2 _ 2
3 dim — =L gy D@D g Dt D= g @ DD 20) 4
u—1ud +5u? —6u  uw—1 u(u2+5u—6) w—1  u(u+6)(u—1) u—1  u(u+6) 17y 7
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I \/erGfx_l, Vi+6—z Jr+6+a oy (VT +6)2—2?

34. = =
208 "3 _ 32 b z2(x—3) Vx+6+z 23 2?(z —3)(Vz + 6 +x)
. x+ 6 — 2’ . —(2® — 2 —6) . —(z—3)(x+2)
= lim = lim = lim
=3 g2(x —3) (Vo +6+x) -322(x—3)(Vo+6+z) +—322(x—3)(Vo+6+x)
= lim _(1‘+2) _ 5 7_&
v=3 12 (Vx4 6 4 ) 9(3+3) 54

3. lim 2=V iy 41— Vs —fm —— =21 __1
s—16 s — 16 5516 (\/s+4)(v/s—4) s—i6/s+4 /16+4 8

% limv2+2v—8_hm +Hhv-2) . v+4 B 2+4 _ 3

Tos2 vt =16 w2 (v+2)(v—2)(v2 +4)  v—2 (v+2)(v2+4) (2+2)(22+4) 16
L 1l—y/1T—22 14+/1-22 1—(1—2?% ) z? . x

37. lim . = lim = lim = lim =0
z—0 T 141 =22 zﬁox(1+4/1,x2) zﬁox(1+,/1,$2> =01 4+ /1 — 22

% lim (—— + —— — Jim |[—— + . = lim 222 4 .

"eoi\z—1 22-3z+2) o1lz—1 (-D@-2)] —1((z-1)(-2) (@-1)@E-2)
r—1 1 1
P {(x_n(m—z)] ilg—2  1-2

39. Since 22 — 1 < f(x) < 2? for0 < 2 < 3and lim1 2z—-1)=1= lim1 x2, we have lim1 f(z) = 1 by the Squeeze Theorem.

40. Let f(z) = —2°, g(x) = 2° cos(1/2”) and h(z) = x*. Then since |cos(1/2?)| < 1 for z # 0, we have
f(z) < g(z) < h(x) for z # 0, and so lin}) fz) = lir% h(z)=0 = lin%) g(x) = 0 by the Squeeze Theorem.

41. Givene > 0, we need § > 0 such that if 0 < |x — 2| < 6, then |(14 — 5x) — 4] < e. But|(14 —5z) — 4| <e &
|-5x+10|<e < |-5|llz—2/<e <& |r—2|<e/5 Soifwechoosed =¢/5,then0 < |z —2]<d =
|(14 — 5z) — 4| < e. Thus, lirn2 (14 — 5z) = 4 by the definition of a limit.

42. Givene > 0 we must find § > 0 so that if 0 < |z — 0] < 4, then | ¥z — 0] < e. Now |z — 0| = | /x| <e =
lz| = | /x> < &®. Sotake § = % Then0 < |z — 0| = |z| < = |¥Z—0|=|¥x| = {/Ja] < VS ==.
Therefore, by the definition of a limit, lin}) Iz =0.

43. Givene > 0, we need § > 0 so that if 0 < |z — 2| < 4, then |2® — 3z — (—2)| < e. First, note that if |z — 2| < 1, then
—l<z—-2<1l,s00<z-1<2 = |z—1] <2 Nowletd =min{e/2,1}. Then0 < [z —2] < =
|o? =3z — (=2)| = |(z = 2)(x —1)| = |z — 2| |z — 1| < (¢/2)(2) ==.

Thus, lim2 (22 — 3z) = —2 by the definition of a limit.
44. Given M > 0, we need 6 > O such thatif 0 < z — 4 < §, then 2//x —4 > M. Thisistrue < Vr—4<2/M <&

x —4 < 4/M?. Soif wechoose § =4/M? then0 <z —4 <& = 2//x —4 > M. So by the definition of a limit,
lim (2/\/x—4) = oco.

4+
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45.

46.

47.

48.

49.

50.

U CHAPTER1 FUNCTIONS AND LIMITS

@) f(z) =+v—zifz <0, f(z) =3 —zif0 <z <3, f(z) = (x —3)%ifz > 3.

(i) lim f(z)= lim (3—z)=3 (i) lim f(z)= lim /=2=0
z—0T r—0+ r—0— rz—0—
(iii) Because of (i) and (ii), lir% f(x) does not exist. (iv) lim f(z)= lim (3—z)=0
T— r—37 x—3"
) lirn+ flz) = lim+ (x—3)%=0 (vi) Because of (iv) and (v), lim3 f(z)=0.
r—3 r—3 r—
(b) f is discontinuous at 0 since lin}) f(z) does not exist. (©) Y

f is discontinuous at 3 since f(3) does not exist.

(@) glz) =20 —22if0<2<2,g(x)=2—2if2<2<3,g(x) =2z —4if3<z<4,g(x)=rifr >4

Therefore, lim g(z) = lim (2z —z*) = 0and lim g(z) = lim (2 —) = 0. Thus, lim g@)=0=g(2),
T—27 r—2 z—

r—2" rz—2

so g is continuous at 2. lim ¢g(z) = lim (2 —z) = —1and lim+ g(z) = lim (z —4) = —1. Thus,
T—37 r—3" z—3 r—3
;Lm3 g(x) = —1 = ¢(3), so g is continuous at 3. (b) 7}7

lim g(z) = lim (z—4)=0and lim g(z)= lim = =m.

r—4— z—4— z—4t z—4

Thus, lirr}l g(z) does not exist, so g is discontinuous at 4. But
e

0 2\/1 x

lim+ g(z) = 7 = g(4), so g is continuous from the right at 4.
2l

x> is continuous on R since it is a polynomial and cos x is also continuous on R, so the product 2> cos z: is continuous on R.

. 4 . . . . 4 . . .
The root function v/z: is continuous on its domain, [0, 00), and so the sum, h(z) = v + x° cos x, is continuous on its

domain, [0, 00).

2 — 9 is continuous on R since it is a polynomial and +/ is continuous on [0, co) by Theorem 1.8.7, so the composition

V22 — 9 is continuous on {z | 2° —9 > 0} = (—o0, —3] U [3, 00) by Theorem 1.8.9. Note that 2° — 2 7 0 on this set and

xr2

so the quotient function g(z) = is continuous on its domain, (—oo, —3] U [3, c0) by Theorem 1.8.4.

xr2 —

f(z) = 2° — 2® + 3z — 5 is continuous on the interval [1,2], f(1) = —2, and f(2) = 25. Since —2 < 0 < 25, there is a
number ¢ in (1, 2) such that f(c) = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation

2° — 2% + 3z — 5 = 0 in the interval (1, 2).

Let f(z) = 2sinxz — 3 4 2z. Now f is continuous on [0, 1] and f(0) = —3 < O and f(1) = 2sin1 — 1 ~ 0.68 > 0. So by
the Intermediate Value Theorem there is a number ¢ in (0, 1) such that f(c) = 0, that is, the equation 2sinz = 3 — 2z has a

rootin (0, 1).

© 2016 Cengage Learning“All'Rights Reserved. May not bé'scanned; copied; or duplicated; or posted'to a publiclyaccessible'website, in whele orin part:



CHAPTER1 REVIEW O 89

5. /(@) < g(z) & —g(x) < f(z) < g() and lim g(z) = 0 = lim —g(z).

T—a

Thus, by the Squeeze Theorem, lim f(x) = 0.

52. (a) Note that f is an even function since f(z) = f(—=z). Now for any integer n,
[n] + [-n] = n — n = 0, and for any real number & which is not an integer,

[kl + [-k] =[] + (—[kK] = 1) = —1.So lim f(z) exists (and is equal to —1)

for all values of a.

(b) f is discontinuous at all integers.
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[J PRINCIPLES OF PROBLEM SOLVING

r+5 if £ > -5
—r—5 ifx< -5

Nl vl

and | + 5| =
1-2z ifz<

20— 1 if x>
1.2z — 1| =
Therefore, we consider the three cases < —5, =5 <z < 3,andz > 1.
Ifx < —5,wemusthave 1 — 2z — (—z —5) =3 < = 3, which is false, since we are considering z < —5.
If -5 <2< 4, wemusthavel — 2z — (z+5)=3 < z=-I.

Ifz >4, wemusthave 2z — 1 — (z+5) =3 & z=09.

So the two solutions of the equation are x = —% andz = 9.

z—1 ifx>1 r—3 ifxz>3
2 |z-1]= ) and |z — 3| = )
11—z ifz<l1 3—z ifzx<3

Therefore, we consider the three cases x < 1,1 <z < 3,and z > 3.

Ifx < 1l,wemusthavel —z — (3—2)>5 < 02> 7,whichis false.

Ifl<z <3 wemusthavex —1—(3—2)>5 < x> %,which is false because x < 3.
Ifx >3, wemusthavex —1— (z —3) >5 < 2> 5, whichis false.

All three cases lead to falsehoods, so the inequality has no solution.

3. f(z) = |2® — 4|z +3|. Ifx > 0, then f(z) = |¢° — 4z + 3| = [(z — 1)(z — 3)|.
Case (i): 1f0 < x < 1,then f(z) = 2* — 4z + 3.
Case (ii): 1f1 < z < 3,then f(x) = —(2° — 42 +3) = —2° + 4v — 3.
Case (iii): 1f x > 3, then f(z) = 2 — 4z + 3.

This enables us to sketch the graph for z > 0. Then we use the fact that f is an even

function to reflect this part of the graph about the y-axis to obtain the entire graph. Or, we

could consider also the cases ¢ < —3, -3 < x < —1,and —1 <z < 0.

4 g(z) =|2* — 1] — |2* — 4]. y
ad
) 22 —1 if |z >1 ) 2 —4 if |z| > 2 T
|x —1|: and|m —4|: T
1-2% if 2] <1 4—z% if 7| <2 1
Sofor0 < |z| < 1,g9(z) =1 — 2 — (4 — 2?) = =3, for -4 \iJ R
1< |z] <2,9(z) =2% —1— (4 —2?) = 22 — 5, and for
74__
|z] > 2,9(x) =2* —1— (2* —4) = 3.
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92 0 PRINCIPLES OF PROBLEM SOLVING

5. Remember that |a| = a if @ > 0 and that |a| = —a if a < 0. Thus,
2¢c if >0 2y ify>0
z + || = . and g+ lyl = ,
0 ifz<oO 0 ify<O

We will consider the equation  + |z| = y + |y| in four cases.

BHzx>0y=>0 @ z>20y<0 B z<0y=>0 @HHz<0,y<0

20 =2y 20 =0 0=2y 0=0
=y z=0 0=y
Case 1 gives us the line y = x with nonnegative = and y. i) >

Case 2 gives us the portion of the y-axis with y negative.

Case 3 gives us the portion of the z-axis with = negative.

Case 4 gives us the entire third quadrant.

6. |z —y|+|z| — |y <2 [call this inequality (x)]

Case (i): z>y>0. Then(») & z—-y+2xz—-y<2 & zz—-y<l & y>zxr—1
Case (ii): y>x > 0. Then(*) & y—z+zxz—y<2 < 0<2 (true).
Case (iii): z>0andy <0. Then(») <& z—y+zrz+y<2 & 2¢<2 & <1
Case (iv). x<0andy>0. Then(x) & y—z—2—-y<2 & —2r<2 & x> -1
Case (v):. y<z<0. Then(x) & zxz—y—zxz+y<2 < 0<2 (true).
Case (vi): =<y <0. Then(x) <& y—z—2z+y<2 & y—z<1 & y<z+1
Note: Instead of considering cases (iv), (v), and (vi), we could have noted that Y
the region is unchanged if = and y are replaced by —z and —y, so the region is [
symmetric about the origin. Therefore, we need only draw cases (i), (ii), and |
(iii), and rotate through 180° about the origin. - 0-- t
4]
7. (a) To sketch the graph of y gw=x y
f(z) = max {x,1/x}, we first graph
g(z) = z and h(z) = 1/z on the same hxy =1 .
coordinate axes. Then create the graph of 0 x \/ I x
f by plotting the largest y-value of g and h f(x)=max{x, 1/x}
for every value of z.

(b)

— <

y
g(x) =sinx 1 h(x) =cos x = max{sin x, cos x}

—3x l 51T
u ‘ !
0 x =1 0
4
1272
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<
Il
=

Ff(x)=max{x% 2 +x,2—x}
y=2+x y=2—-x

On the TI-84 Plus, max is found under LIST, then under MATH. To graph f(z) = max {mz, 24,2 — x}, use

Y = max(z? max(2 + ,2 — x)).

8. (a) If max {x, 2y} = 1, then either x = 1 and 2y < 1 Y
or x <1 and 2y = 1. Thus, we obtain the set of 1
xSL)—E
points such that x = 1 and y < % [a vertical line
0 X
with highest point (1, 3)] or <1 and y =1 - .
x=1Ly=< 2
[a horizontal line with rightmost point (1, 3)].
(b) The graph of max{x, 2y} = 1 is shown in part (a), and ;
1
the graph of max{z, 2y} = —1 can be found in a Y=>
similar manner. The inequalities in 0 >
—1 < max{z, 2y} < 1 give us all the points on or y=—%
inside the boundaries. x=-1 =1
2 _ y
(c) max{z,y°} =1 < yeLx<i 1
x=1,
z=1and y* <1 [-1 <y <1] i<y
or <1 and y* =1 [y ==*1]. 0 x

y=—-lLx=<1

. Let d be the distance traveled on each half of the trip. Let ¢; and 2 be the times taken for the first and second halves of the trip.
For the first half of the trip we have ¢; = d/30 and for the second half we have t2 = d/60. Thus, the average speed for the

total distance ~ 2d 2d @ _120d _ 120d
total time _t1+t2_i+i 60 2d+d  3d
30 60

entire trip is = 40. The average speed for the entire trip

is 40 mi/h.

10. Let f(z) = sinx, g(x) = z, and h(z) = x. Then the left-hand side of the equation is

[f o(g+ h)](z) =sin(z + x) = sin2z = 2sinz cos z; and the right-hand side is

(fog)(x)+ (f oh)(xr) =sinz + sinz = 2sinz. The two sides are not equal, so the given statement is false.
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11. Let S, be the statement that 7" — 1 is divisible by 6.
e S is true because 7' — 1 = 6 is divisible by 6.

o Assume Sy, is true, that is, 7% — 1 is divisible by 6. In other words, 7¥ — 1 = 6m for some positive integer m. Then
TR _1=7".7-1=(6m+1)-7—1=42m + 6 = 6(7Tm + 1), which is divisible by 6, so Sx1 is true.

e Therefore, by mathematical induction, 7" — 1 is divisible by 6 for every positive integer n.

12. Let S, be the statement that 1 +3 + 5+ -+ + (2n — 1) = n?.
e S is true because [2(1) — 1] = 1 = 1%
e Assume Sy, is true, thatis, 1 +3 + 54 --- + (2k — 1) = k2. Then
143454+ +2k—1)+2k+1)—1=1+3+5++2k—1)+2k+1)=k>+ 2k +1) = (k+1)°
which shows that S is true.

e Therefore, by mathematical induction, 1 +3 +5+---+ (2n — 1) = n? for every positive integer 7.

13. fo(z) = z? and frt1(x) = fo(fn(z)) forn=0,1,2,....
F1(@) = folfo(2)) = fo(2?) = (¢2)* = 2%, fa(2) = fo(fi(2)) = fo(z?) = (a*)? = 25,

f3(x) = fo(f2(2)) = fo(2®) = (®)® = 2°,.... Thus, a general formula is f,(z) =

14. (a) fo(z) =1/(2—z)and frn41 = foo fnforn=0,1,2,....

fi(z) = 1 o 2—x _2—z

! 2 I " 22—-2)—-1 3-2z
T 2—x

fole) = 2-z\ 1 B 3—2x 3-2

2 3—2x T, _2-x  2B-2w)-(2-2) 4-3z
3—2x

folz) = 3—2x\ 1 . 4 -3z _ 4-3x

3 4-3z) 5 3-20 2(4-3z)-(3-2w) 5-4x "
4 -3z

n+1—nx

Thus, we conjecture that the general formula is f, (z) = m

To prove this, we use the Principle of Mathematical Induction. We have already verified that f,, is true for n = 1.

Assume that the formula is true for n = k; that is, fi(z) = kf;—}—m Then

Je+1(x) = (fo o fx)(x) = fo(fu(z)) = (ka/’;‘ 1(kim1)x> = k—i—ll—kx
S Py P

B E+2—(k+ 1z _k+2—(k+ 1z
2[k+2—(k+ V] —(k+1—kz) k+3—(k+2)z

This shows that the formula for f,, is true for n = k + 1. Therefore, by mathematical induction, the formula is true for all

positive integers n.
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o)

(b) From the graph, we can make several observations: x=3 x=4 )i:/z x=2
e The values at each fixed x = a keep increasing as n increases. ’ \\’ /
e The vertical asymptote gets closer to z = 1 as n increases.
=4
o The horizontal asymptote gets closertoy = 1 £ 1 /} 3
: £ Ly=3
as n increases. [ — ﬁ ]
1 -~ , y= 2
e The z-intercept for f, 11 is the value of the fo ! u
vertical asymptote for f,.
e The y-intercept for f, is the value of the
horizontal asymptote for fy, 1.
. N
15. Lett = $/z,s0x =t°. Thent — lasz — 1, s0 fs 21 fo
Vr—1 2 —1 t—1)(t+1 t+1 141 2
lim Ve = lim = lim ( (E+1) im * + -

el JT—1 1B -1 i1 (t—1) (2 +t+1) e124t+1 12+1+1 3

Another method: Multiply both the numerator and the denominator by (1/z + 1) (\3/ 2+ Jx + 1) .

16. First rationalize the numerator: lim vaz +b -2 . vaz +b+2 =1 art+b—4

= lim
z—0 T var+b+2 x—0 x(\/aw+b+2)

approaches 0 as x — 0, the limit will exist only if the numerator also approaches 0 as x — 0. So we require that

. Now since the denominator

a a
a(0)+b—4=0 = b=4. Sothe equation becomes lim ——— =1 = =1 = a=4.
(0) q 20 \Jaz + 4 + 2 VAi+2

Therefore, a = b = 4.

17. For —3 <2 < 3, wehave 2z —1 < 0and 2z +1 > 0,50 |22 — 1| = —(2z — 1) and |22 + 1| = 2z + 1.

el = et l] o, ZCeD=Q@ed D) ) 248 ey g
T x—0 €T x—0 €T z—0

Therefore, lim
x—0

18. Let R be the midpoint of O P, so the coordinates of R are (%x, %xQ) since the coordinates of P are (x, a:2). Let @ = (0, a).

2 1,..2 2

. T 1 . . 3¢ —a 1" —2a
Since the slope mop = — = x, mgr = —— (negative reciprocal). But mqr = = 0 = , so we conclude that
T x sr— x
2

—1=2"-2a = 2a=2"+1 = a=322"+3 Asz— 0,a — 3,and the limiting position of Q is (0, 3).

19. (a) For 0 < z < 1, [z] :O,soM =0,and lim [=1 =0.For—1<z<0,[z] = —1,s0M = _—l,and
T -0+ T T T
lim M = lim <_—1> = oo. Since the one-sided limits are not equal, lim M does not exist.
r—0— X z—0— x z—0 T

(b) Forz >0,1/z —1<[1/z] <1/z = z(l/z—-1)<z[l/z] <z(l/z) = 1-z<z[l/z] <1

Asxz — 07,1 — x — 1, so by the Squeeze Theorem, lim+ z[1/z] = 1.
x—0

Forz <0,1/z—1<[1/z] <1/z = z(l/z-1)>z[l/z] >z(l/z) = 1—z>z[l/z]>1.

Asz — 07,1 —z — 1, so by the Squeeze Theorem, lim z[1/z] =1.
x—0—

Since the one-sided limits are equal, lir% z[1/z] = 1.
T—
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20. (a) [z]? + [y]® = 1. Since [z]? and [y]? are positive integers or 0, there are S

only 4 cases:

Case (i): [z] =1,y =0 =1<z<2and0<y<1 1
Case (ii): [z] = -1, [y =0=-1<z<0and0 <y <1 - ] 5-;
Case (iii):[z] =0,y =1 =0<z<landl<y<2

[ —

Case (iv):[z] =0, [y =—-1=0<z<land -1 <y <0

(b) [#]* — [y]? = 3. The only integral solution of n* — m? = 3isn = +2
and m = =£1. So the graph is

{(Ivy) | III]] = %2, Hy]] = il} = {(I,y)

2<z<3or 2<z<],
1<y<2or —1<y<0 [

©z+y’=1 = [z+y]l==%1 = 1<z+y<2

or—1<z4+y<0

dForn<z<n+1l[z]=nThen[z]+[y]=1 = [yj=1-n = y

1 —n <y < 2 — n. Choosing integer values for n produces the graph. \_Y..._,I
1

21. f is continuous on (—o0, a) and (a, o). To make f continuous on R, we must have continuity at a. Thus,

2

lim+f(m): lim f(z) = lim+x2: lim (zx4+1) = ad*=a+1 = d*—-a-1=0 =

T—a~

[by the quadratic formula] a = (1++/5)/2 ~ 1.618 or —0.618.

22. (a) Here are a few possibilities:

y
1+

(b) The “obstacle” is the line x = y (see diagram). Any intersection of the graph of f with the line y = x constitutes a fixed
point, and if the graph of the function does not cross the line somewhere in (0, 1), then it must either start at (0, 0)

(in which case 0 is a fixed point) or finish at (1, 1) (in which case 1 is a fixed point).
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(c) Consider the function F'(z) = f(z) — x, where f is any continuous function with domain [0, 1] and range in [0, 1]. We
shall prove that f has a fixed point. Now if f(0) = 0 then we are done: f has a fixed point (the number 0), which is what
we are trying to prove. So assume f(0) # 0. For the same reason we can assume that f(1) # 1. Then F'(0) = f(0) >0
and F'(1) = f(1) — 1 < 0. So by the Intermediate Value Theorem, there exists some number c in the interval (0, 1) such

that F'(c) = f(¢) — ¢ = 0. So f(c) = ¢, and therefore f has a fixed point.

lim [ (z) + g(z)] = 2 lim /(@) + lim g(@) =2 (1)
23.
lm[f(@) —g()]=1 | lm f(z)- lmge)=1 (@

Adding equations (1) and (2) gives us 2 lim f(z) =3 = lim f(x) = 3. From equation (1), lim g(z) = 3. Thus,

r—a

lim [f(x) g(2)] = lim f(2) - lim g(a) = § - & = 2.
24. (a) Solution 1: We introduce a coordinate system and drop a perpendicular y A
from P, as shown. We see from ZNC P that tan 20 = 1 g , and from
/N BP that tan 6 = y/x . Using the double-angle formula for tangents, P(x, y)
Yy 2 tan 0 2(y/x) .
t =tan20 = = . After a bit of
we get == an T—tan?0 1= (y/2)? er a bit o 5 09 N
1 2 0 MoNo L

simplification, this becomes T T o 7 & y* =z (32 —2).

As the altitude AM decreases in length, the point P will approach the x-axis, that is, y — 0, so the limiting location of P
must be one of the roots of the equation z(3z — 2) = 0. Obviously it is not z = 0 (the point P can never be to the left of

the altitude AM, which it would have to be in order to approach 0) so it must be 3z — 2 = 0, that is, z = %

Solution 2: We add a few lines to the original diagram, as shown. Now note
that ZBPQ = ZPBC (alternate angles; QP || BC by symmetry) and
similarly ZCQP = ZQCB. So ABP(Q and ACQP are isosceles, and
the line segments BQ, QP and PC are all of equal length. As |AM| — 0,

P and Q) approach points on the base, and the point P is seen to approach a

position two-thirds of the way between B and C, as above.

(b) The equation y*> = x(3z — 2) calculated in part (a) is the equation of

the curve traced out by P. Now as |AM| — o0, 260 — 5,0 — 7,

z — 1, and since tan @ = y/x, y — 1. Thus, P only traces out the P(x y)

part of the curve with 0 < y < 1.
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25. (a) Consider G(x) = T'(x + 180°) — T'(x). Fix any number a. If G(a) = 0, we are done: Temperature at a = Temperature
ata + 180°. If G(a) > 0, then G(a 4 180°) = T'(a + 360°) — T'(a + 180°) = T'(a) — T'(a + 180°) = —G(a) < 0.
Also, G is continuous since temperature varies continuously. So, by the Intermediate Value Theorem, G has a zero on the

interval [a, a + 180°]. If G(a) < 0, then a similar argument applies.
(b) Yes. The same argument applies.

(c) The same argument applies for quantities that vary continuously, such as barometric pressure. But one could argue that

altitude above sea level is sometimes discontinuous, so the result might not always hold for that quantity.
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