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Limits and Continuity

Exercise Set 1.1

1. (a) 3 (b) 3 (c) 3 (d) 3

2. (a) 0 (b) 0 (¢) 0 (d) 0

3. (a) —1 (b) 3 (c) does not exist (d) 1

4. (a) 2 (b) O (c) does not exist (d) 2

5. (a) 0 (b) 0 (¢) O (d) 3

6. (a) 1 (b) 1 () 1 (d) 0

7. (a) —© (b) —o0 (¢) —© (d) 1

8. (a) +o0 (b) +oo (¢) +o0 (d) can not be found from graph

9. (a) +o0 (b) 400 (c) 2 (d) 2 (e) —o0 ) r=-2,2=0,2=2

10. (a) does not exist (b) —o0 (c) O (d) -1 (e) +0 (f) 3 (g) =-2,2=2

11. (i)|  -o0.1 —0.01 —0.001 0.001 0.01 0.1
1.9866933 | 1.9998667 | 1.9999987 | 1.9999987 | 1.9998667 | 1.9866933

2.
(ii) FReo 0. The limit appears to be 2.

12. (i) —0.5 —0.05 —0.005 0.005 0.05 0.5
—0.489669752 | —0.499895842 | —0.499998958 | —0.499998958 | —0.499895842 | —0.489669752
~0.4896698

-0.5
(ii) e 02 The limit appears to be —1/2.
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13. (a) 2 1.5 1.1 1.01 | 1.001 0 0.5 0.9 0.99 | 0.999
0.1429 | 0.2105 | 0.3021 | 0.3300 | 0.3330 | 1.0000 | 0.5714 | 0.3690 | 0.3367 | 0.3337
1
0 —
0 The limit is 1/3.
(b) 2 1.5 1.1 | 1.01 | 1.001 | 1.0001
0.4286 | 1.0526 | 6.344 | 66.33 | 666.3 | 6666.3
50
1 =/ 2
0 The limit is +o00.
()] o 0.5 0.9 0.99 0.999 | 0.9999
—11| —1.7143 | =7.0111 | —67.001 | —667.0 | —6667.0
0
0 \ 1
~50 The limit is —oo.
14. (a)| —0.25 | —0.1 | —0.001 | —0.0001 | 0.0001 | 0.001 0.1 0.25
0.5359 | 0.5132 | 0.5001 | 0.5000 | 0.5000 | 0.4999 | 0.4881 | 0.4721
0.6
_
_025\\ | | | | . | | | | 1\025
0 The limit is 1/2.
(b)| 0.25 0.1 | 0.001 |0.0001
8.4721 | 20.488 | 2000.5 | 20001
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0 = 0.25
0 The limit is 4+oc0.
(¢)| —0.25 -0.1 —0.001 | —0.0001
—7.4641 | —19.487 | —1999.5 | —20000
0
—-0.25 F 70
—160 The limit is —oo.
15. (a)| —0.25 | —0.1 | —0.001 | —0.0001 | 0.0001 | 0.001 | 0.1 0.25
2.7266 | 2.9552 | 3.0000 | 3.0000 | 3.0000 | 3.0000 | 2.9552 | 2.7266
3
—-0.25 L L -/ 0.25
2 The limit is 3.
(b) —0.5 | —0.9 | —0.99| —0.999 | —1.5 ~1.1 | —=1.01 | —1.001
11]1.7552 | 6.2161 | 54.87 | 541.1 | —0.1415 | —4.536 | —53.19 | —539.5
60
—1.5]¢ WL 0
—80 The limit does not exist.
16. (a) 0 —-05 | =09 | —0.99 | —0.999 | —1.5 | —1.1 | —1.01 | —1.001
1.5574 | 1.0926 | 1.0033 | 1.0000 | 1.0000 | 1.0926 | 1.0033 | 1.0000 | 1.0000

The limit is 1.
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17.

18.

19.

20.

27.

28.

29.

30.

31.

32.

33.

(b)| —0.25 | —0.1 | —0.001 | —0.0001 | 0.0001 | 0.001 0.1 0.25
1.9794 | 2.4132 | 2.5000 | 2.5000 | 2.5000 | 2.5000 | 2.4132 | 1.9794

‘ 2/ 0.25
2 The limit is 5/2.

-0.25 ‘

False; define f(z) =« for z # a and f(a) = a+ 1. Then lim,—,, f(z) =a # f(a) =a+ 1.

True; by 1.1.3.

False; define f(z) =0 for x < 0 and f(z) = x + 1 for > 0. Then the left and right limits exist but are unequal.
False; define f(z) = 1/x for > 0 and f(0) = 2.

2
—1
Mgoc = v 1 x — 1 which gets close to —2 as x gets close to —1, thusy — 1= —2(x + 1) or y = —2x — 1.
x

2
x

Mgec = — = x which gets close to 0 as = gets close to 0, thus y = 0.
x

4
-1
Mgec = 3: T = 23 + 2% + 2 4+ 1 which gets close to 4 as x gets close to 1, thus y — 1 = 4(x —1) or y =4x — 3.
T —
.’1}'4 -1 3 2 .
Mgec = e = z° —z“4x — 1 which gets close to —4 as x gets close to —1, thus y—1 = —4(x+1) or y = —4x—3.
x
(a) The length of the rod while at rest.

(b) The limit is zero. The length of the rod approaches zero as its speed approaches c.
(a) The mass of the object while at rest.

(b) The limiting mass as the velocity approaches the speed of light; the mass is unbounded.

3.5

(a) 2.5 The limit appears to be 3.

3.5

—-0.001 \c =/ 0.001
(b) 25 The limit appears to be 3.
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3.5

—0.000001 0.000001
(c) 2.5 The limit does not exist.

Exercise Set 1.2
1. (a) By Theorem 1.2.2, this limit is 2+ 2 (—4) = —6.
(b) By Theorem 1.2.2, this limit is 0 — 3 - (—4) + 1 = 13.
(c) By Theorem 1.2.2, this limit is 2 - (—4) = —8.
(d) By Theorem 1.2.2, this limit is (—4)% = 16.
(e) By Theorem 1.2.2, this limit is ¢/6 + 2 = 2.

2 1
(f) By Theorem 1.2.2, this limit is = =-3

2. (a) By Theorem 1.2.2; this limit is 0 + 0 = 0.

(b) The limit doesn’t exist because lim f doesn’t exist and lim g does.
(c) By Theorem 1.2.2, this limit is =242 = 0.
(d) By Theorem 1.2.2, this limit is 1 +2 = 3.
(e) By Theorem 1.2.2, this limit is 0/(1 4+ 0) = 0.
(f) The limit doesn’t exist because the denominator tends to zero but the numerator doesn’t.
(g) The limit doesn’t exist because /f(z) is not defined for 0 < x < 2.
(h) By Theorem 1.2.2, this limit is /1 = 1.
3. By Theorem 1.2.3, this limit is 2-1-3 = 6.
4. By Theorem 1.2.3, this limit is 32 —3-3%24+9-3 = 27.
5. By Theorem 1.2.4, this limit is (32 —2-3)/(3 +1) = 3/4.

6. By Theorem 1.2.4, this limit is (6 -0 — 9)/(03> —12-0+ 3) = —3.

4
7. After simplification, x
x

-1
=23+ 22+ 241, and the limit is 13 +12 +1+1 = 4.

t3
8. After simplification, ;

+28 =12 — 2t +4, and the limit is (—2)2 — 2+ (=2) +4 = 12.

> +6x4+5 x+5
r2-3r—-4 x-4

9. After simplification, and the limit is (-1 +5)/(—1 —4) = —4/5.
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10. After simplification, 2.6 213 and the limit is (2 —2)/(2+3) = 0.
222 -1
11. After simplification, % =2z — 1, and the limit is 2- (—1) — 1 = —3.
x
322 —x—2  3w+2
12. After simplification, oo 2 — 9T T2 4 the limit is (3-142)/(2-143) = 1.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

x274x+47;ﬂ72

224+2x—-3 22+3

2437 =12t 44 t* 45t -2
3 — 4t Y

After simplification,

P42 —5t+3  t+3
B3 -3t+2  t+2

After simplification,

The limit is +oo.
The limit is —oo.
The limit does not exist.
The limit is +o0.
The limit is —oo.
The limit does not exist.
The limit is +o0.
The limit is —oo.
The limit does not exist.
The limit is —oo.
The limit is +o0.
The limit does not exist.
The limit is +o0.

The limit is +oo.

z—9
vV —3

4—-y
After simplification,
2=y

(@ 2 ()2 (c) 2

(a) does not exist (b) 1 (c) 4

After simplification, =/ + 3, and the limit is v9 + 3 = 6.

=2+ /y, and the limit is 2 + /4 = 4.

True, by Theorem 1.2.2.
2
False; e.g. 1i ()
x—0

and the limit is (1+3)/(1 +2) =4/3.

, and the limit is (22 +5-2 —2)/(22 +2-2) = 3/2.
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35. False; e.g. f(z) = 2z, g(x) =z, so 711_% f(z) = ilﬂ%g(:r) =0, but 71}3}) f(x)/g(x) = 2.
36. True, by Theorem 1.2.4.

\/m+4—2_ 1
x C Jr+4+2

Vat+4-2 x
x VaZ +4+2

3

37. After simplification,

, and the limit is 1/4.

38. After simplification, , and the limit is 0.

-1
39. (a) After simplification, z T = 2%+ + 1, and the limit is 3.
T —

(b)

-9
40. (a) After simplification, xx T3 = 3, and the limit is —6, so we need that k = —6.

(b) On its domain (all real numbers), f(z) = = — 3.

41. (a) Theorem 1.2.2 doesn’t apply; moreover one cannot subtract infinities.

. 1 1 . x—1
o) g (5 ) = m () ==

42. (a) Theorem 1.2.2 assumes that Ly and Lo are real numbers, not infinities. It is in general not true that ”oo-0 =07.

1 2 x? 1 1 2 1
b) — — = = f 0 that li —— ==
( )x x?2+2x  xz(x?+2z) x+2 or 2 70, 50 amlg%)<x :v2+2m> 2
1 a z+1—-a . TR . .
43. For = # 1, — = and for this to have a limit it is necessary that lim(z 4+ 1 —a) = 0, i.e.
R 1-2 11 o1
a = 2. For this value, — _rtles _rob and lim —— = —.

r—1 22-1  22-1  22-1 z+1 eSlz+1 2
44. (a) For small z, 1/2? is much bigger than +1/z.

1 1 1
(b) -+ 5= % Since the numerator has limit 1 and z? tends to zero from the right, the limit is +o0.
r x

45. The left and/or right limits could be plus or minus infinity; or the limit could exist, or equal any preassigned real
number. For example, let ¢(x) = z — z¢ and let p(z) = a(z — z¢)"™ where n takes on the values 0,1, 2.

46. If on the contrary liin g(z) did exist then by Theorem 1.2.2 so would ligl [f(z) + g(x)], and that would be a

contradiction.

47. Clearly, g(x) = [f(z) + g(x)] — f(x). By Theorem 1.2.2, il_}n;[f(m) + g(2)] — lim f(z) = lim[f(z) + g(x) — f(x)] =

Tr—a Tr—a
lim g(x).
r—a
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48.

By Theorem 1.2.2, lim f(z) = (lim f(x)) lim g(x) = (hm f(a:)) -0 =0, since lim /() exists.

r—a r—a

v—a g(x)

Exercise Set 1.3

1.

AN o o

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22,

23.

(a) —o0 (b) +o0
(a) 2 (b) O

(a) 0 (b) —1

(a) does not exist (b) 0

(a) 3+3-(=5)=—12 (b) 0—4-(=5)+1=21 (c) 3-(=5)=~15

(e) V5+3=2  (f) 3/(=5)=-3/5  (g) 0

a—~a g(x)

(h) The limit doesn’t exist because the denominator tends to zero but the numerator doesn’t.

. (@) 2-7—(-6)=20 (b) 6-7+7-(—6)=0 (c) +o0 (d) —o0 (e) v/—42
(f) —6/7 (g) 7 (h) —7/12
T 10 100 1000 10000 100000 1000000
f(z) ] 0.953463 | 0.995037 | 0.999500 | 0.999950 | 0.999995 | 0.9999995
The limit appears to be 1.
T -10 —100 —1000 —10000 —100000 —1000000
f(z) | —1.05409255 | —1.00503781 | —1.00050037 | —1.00005000 | —1.0000050 | —1.00000050

The limit appears to be —1.

The limit is —oo, by the highest degree term.
The limit is 400, by the highest degree term.
The limit is +o0.

The limit is +o0.

The limit is 3/2, by the highest degree terms.
The limit is 5/2, by the highest degree terms.
The limit is 0, by the highest degree terms.
The limit is 0, by the highest degree terms.
The limit is 0, by the highest degree terms.
The limit is 5/3, by the highest degree terms.
The limit is —oo, by the highest degree terms.
The limit is +o00, by the highest degree terms.
The limit is —1/7, by the highest degree terms.
The limit is 4/7, by the highest degree terms.
The limit is {/—5/8 = —+/5/2, by the highest degree terms.

(d) (-5)2=25
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24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

The limit is {/3/2, by the highest degree terms.

2
5a% — 2 S—
\/2_73 = 32 when z < 0. The limit is —/5.
- 1_3
2
5 2_2 5— %
\/173: 1+3x2 when z > 0. The limit is /5.
- 3
2
2 — —y 1
i “ when y < 0. The limit is 1/1/6.

v”+6ﬁ__¢§+ﬁ

2-y 4!
VT [T e

when y > 0. The limit is —1/v/6.

Yoy \/3+QEL
3; J;x: L 83 when z < 0. The limit is v/3.

1

/320 \/3+ 35
f —;x = 3 when z > 0. The limit is v/3.

_ -5

Va2 +3 +x 3
lim (V22+3 —2)——— = lim ——— =0, by the highest degree terms.
rc—>+oo( ),/$2_~_3 +x =400 /22 +3 + y & 8
Va2 =3z +zx —3x
lim (V22 -3z —2)——— = lim = —3/2, by the highest degree terms.
$H+OO( ) 2?2 —3x +x ot r?2 -3z + /2, by & &
False; if /2 > 1000 then 1000z < 22/2, 2% — 10002 > 22 /2, so the limit is +oo.

lim €”® does not exist.
r—r+00

False; y = 0 is a horizontal asymptote for the curve y = e* yet
True: for example f(z) = sina/x crosses the z-axis infinitely many times at x = nm,n =1,2,....
False: if the asymptote is y = 0, then lirin p(x)/q(z) = 0, and clearly the degree of p(x) is strictly less than the
T—>1T 00
degree of q(x). If the asymptote is y = L # 0, then ligl p(z)/q(xz) = L and the degrees must be equal.
T—>LT 00

It appears that lim n(t) = +o0, and lim e(t) = c.

li
t——+o0 t—+oo

(a) It is the initial temperature of the potato (400° F).

(b) It is the ambient temperature, i.e. the temperature of the room.

(a) +oo (b) -5

(a) 0 (b) —6

xli)r_nocp(x) = 4+00. When n is even, zgrfoop(x) = 4o00; when n is odd, zEI}_loop(x) = —o0.

(@) pla)=qlx)=z. (b) pla)==,q(x)=2 (c) plx)=2% g(@)=2. (d) p(z)=2+3, q(z) ==
(a) No. (b) Yes, tanz and secx at © = nw + 7/2 and cotx and cscx at x = nm,n =0,+1,+2,.. ..

If m > n the limit is zero. If m = n the limit is ¢, /d,,. If n > m the limit is +oc0 if ¢, d,,, > 0 and —o0 if ¢, d,,, < 0.
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45

46.

47.

48.

49.

50.

51.

52

53. After along division, f(z) = —2?+1+

. (a) If f(t) = 4oo (resp. f(t) = —oo) then f(t) can be made arbitrarily large (resp. small) by taking ¢ large
enough. But by considering the values g(z) where g(x) > ¢, we see that f(g(z)) has the limit 400 too (resp. limit
—00). If f(t) has the limit L as t — +oo the values f(¢) can be made arbitrarily close to L by taking ¢ large
enough. But if x is large enough then g(z) > t and hence f(g(x)) is also arbitrarily close to L.

b) For lim the same argument holds with the substitutiion ”x decreases without bound” instead of ” x increases
g
T——00

without bound”. For lim substitute "« close enough to ¢,z < ¢”, etc.
r—c—

(a) If f(t) — +oo (resp. f(t) — —oo) then f(t) can be made arbitrarily large (resp. small) by taking ¢ small
enough. But by considering the values g(z) where g(z) < ¢, we see that f(g(z)) has the limit 400 too (resp. limit
—00). If f(t) has the limit L as t — —oo the values f(t) can be made arbitrarily close to L by taking ¢ small
enough. But if = is large enough then g(z) < t and hence f(g(z)) is also arbitrarily close to L.

(b) For lim the same argument holds with the substitutiion ”z decreases without bound” instead of ”x increases
Tr—r—00

without bound”. For lim substitute "z close enough to ¢,z < ¢”, etc.
r—c—

t= 1/x,tilgrnoof(t) = +o00.
t= 1/I7tLIIjloo f(t)=0.
t = cscz, til?oo f(t) = +oo.

t = cscu, lt_1}r_noof(t) =0.

2
5 50 lim (f(z) — (x+42)) =0 and f(z) is asymptotic to y = = + 2.

xr — T—+oo
The only vertical asymptote is at x = 2.

After a long division, f(z) =x+2+

3
. After a simplification, f(z) = 2% — 1+ 80 lim (f(z) — (2> —1)) = 0 and f(z) is asymptotic to y = x? — 1.

r—Foo
The only vertical asymptote is at z = 0.

2
3 50 lim (f(z)—(—2*+1)) = 0 and f(z) is asymptotic toy = —x2+1.

xr — x—+oo
The only vertical asymptote is at x = 3.
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3 3
54. After a long division, f(z) = 23 + =1 2@t1) so Zgrjr[loo(f(x) —2%) =0 and f(z) is asymptotic to y = 2°.

The vertical asymptotes are at z = £1.

x=-1 Ay

0

!
)/
A
i/
//
—
V=X

1
1
1 |
:
|
|
|
) I I
|
|
|
|
|
|

5L

5L

2

1I5F f[x=1

i
|
|
|
|
|
|
,r
|
|
|
|
|

55. lirf (f(x) —sinz) = 0 so f(z) is asymptotic to y = sinz. The only vertical asymptote is at z = 1.
T—rL 00

Exercise Set 1.4

1. (a) |f(z) — f(0)| = |x +2 — 2| = |z| < 0.1 if and only if |2| < 0.1.
(b) |f(z) — f(3)] =|(4x —5) — 7| = 4|z — 3| < 0.1 if and only if |z — 3| < (0.1)/4 = 0.025.
() |f(z) — f(4)] = |2? — 16| < € if |z — 4] < 5. We get f(z) = 16 + € = 16.001 at x = 4.000124998, which
corresponds to § = 0.000124998; and f(x) = 16 — e = 15.999 at x = 3.999874998, for which § = 0.000125002. Use
the smaller §: thus |f(x) — 16| < € provided |z — 4| < 0.000125 (to six decimals).

2. (a) |f(x) — f(0)] = |22 + 3 — 3] = 2|z| < 0.1 if and only if |z| < 0.05.
(b) |f(z) = f(0)] = |2z + 3 — 3] = 2|z| < 0.01 if and only if |z| < 0.005.
(e) |f(x) — f(0)| = |22 + 3 — 3| = 2|z| < 0.0012 if and only if |x| < 0.0006.

3. (a) 2o = (1.95)? = 3.8025, 21 = (2.05)? = 4.2025.

(b) 6 = min (|4 — 3.8025], |4 — 4.2025| ) = 0.1975.
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4. (a) 2o = 1/(1.1) = 0.909090 . .., 21 = 1/(0.9) = 1.111111 . ..
(b) 6 = min( |1 — 0.909090], |1 — 1.111111] ) = 0.0909090 . . .

5. |(z3—4x+5)—2| < 0.05 is equivalent to —0.05 < (23 —4z+5)—2 < 0.05, which means 1.95 < z3—4x+5 < 2.05. Now
3 —4x+5 = 1.95 at z = 1.0616, and 2> —4x+5 = 2.05 at = 0.9558. So § = min (1.0616 — 1,1 — 0.9558) = 0.0442.

0.9 1.1
1.9

6. vVbr+1=35at x =225 v/br+1=4.5at x =3.85, so 6 =min(3 —2.25,3.85 — 3) = 0.75.

7. With the TRACE feature of a calculator we discover that (to five decimal places) (0.87000, 1.80274) and (1.13000, 2.19301)
belong to the graph. Set xg = 0.87 and x; = 1.13. Since the graph of f(x) rises from left to right, we see that if
xo < x < z7 then 1.80274 < f(z) < 2.19301, and therefore 1.8 < f(x) < 2.2. So we can take ¢ = 0.13.

8. From a calculator plot we conjecture that lir% f(z) = 2. Using the TRACE feature we see that the points
T—

(£0.2,1.94709) belong to the graph. Thus if —0.2 < z < 0.2, then 1.95 < f(z) < 2 and hence |f(x) — L| < 0.05 <
0.1 =¢e

9. |22 — 8| = 2|z — 4] < 0.1 when |z — 4] < 0.1/2 = 0.05 = 6.

10. |(5z — 2) — 13| = 5|z — 3| < 0.01 when |z — 3| < 0.01/5 = 0.002 = 4.

2_9 29— 6z +18 2 _6r+9
11. If 2 # 3, then | = — 6| = |© IS I 0TI 3] < 0.05 when |z — 3] < 0.05 = 4.
- r—3 r—3
422 — 1 dg? — 1+ 42+ 2 d? + 42 +1
12. Ifz # —1/2, th —(~-2)| = = = |22 4+ 1| = 2| — (~1/2)| < 0.05 wh
o =12 then |5 (-2) = [ Al < jae + 1] = 2l — (-1/2)] < 0.05 when

|z — (—1/2)| < 0.025 = 4.

13. Assume § < 1. Then —1 <z —2 < 1 means 1 < z < 3 and then |2® — 8] = |(z — 2)(2% + 22 + 4)| < 19|z — 2|, so
we can choose § = 0.001/19.

r—4
VI +2

|z — 4
V3 +2

14. Assume 6 < 1. Then —1 < z—4 < 1 means 3 < z < 5 and then |/z — 2| =
§=10.001-(v3+2).

‘ < , S0 we can choose

1 1
15. Assume § < 1. Then —1 <2 —5 < 1 means 4 < x < 6 and then ‘ = , SO we can choose
T

0=0.05-20=1.

x—B‘ |z — 5
<

5 ox 20
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16

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

l|z| — 0] = |x| < 0.05 when |x — 0] < 0.05 = .

Let € > 0 be given. Then |f(x) — 3| = |3 — 3] = 0 < € regardless of =, and hence any § > 0 will work.

Let € > 0 be given. Then |(z + 2) — 6] = | — 4| < € provided § = € (although any smaller § would work).
|3z — 15| = 3|z — 5| < eif |z — 5] <¢/3, 5 =¢/3.

[Te+5+2|="Tz+ 1 <eif [z + 1] <¢e/7, =¢/T.

22

i +x—1':2x<eif|x<e/2,5:e/2.
2_9

L —(—6)‘=x+3|<eif|x+3<e,5:6.
x+3

If(z)=3|=lz+2-3|=|z—1l<eif O<|z—1|<¢ d=c¢.
9 -2z —5|=2lz-2|<eif 0< |z —2|<¢/2,0=¢/2.
If € > 0 is given, then take § = ¢; if |z — 0| = |z| < ¢, then |z — 0] = |z| < e.

If v < 2 then |f(z)—5| =|9—22—5| =2|z—2| < eif [x—2| < €¢/2,5; = €/2. If x > 2 then |f(x)—5| = [3z—1-5| =
3lz — 2| <eif |z —2| <¢/3,02 =€¢/3 Now let § = min(dy, d2) then for any = with |z — 2| < J,|f(z) — 5| <e.

For the first part, let € > 0. Then there exists § > 0 such that if a < z < a + ¢ then |f(z) — L| < e. For the left
limit replace a < x < a4+ with a — 6 < z < a.

(a) Given e > 0 there exists § > 0 such that if 0 < | — a| < ¢ then ||f(z) — L| — 0| <€, or |f(x) — L] <.

(b) From part (a) it follows that |f(x) — L| < € is the defining condition for each of the two limits, so the two
limit statements are equivalent.

(a) |(32% + 22 — 20 — 300| = 322 + 22 — 320| = |(3x + 32)(x — 10)| = |3z + 32| - |= — 10.
(b) If |z — 10| < 1 then |3z + 32| < 65, since clearly z < 11.
(c) § =min(1,¢/65); |3z + 32| |z —10] <65-|x — 10| < 65-€/65 = €.

28 B
3rz+1

28— 122 —4
o 22 e

—12x + 24
3rz+1

12
3r+1

Sz —2|.
3z +1

12
(b) If |z — 2] < 4 then —2 < z < 6, so x can be very close to —1/3, hence ] is not bounded.
T

12 12
(c)If|lzr—2|<1lthenl<z<3and3z+1>4, so < —=3.
3z +1 4
(d) 0 = min(1,¢€/3); 12 |t —2| <3 |z —2]<3-¢/3=
- y € ) 3z + 1 € — €.

If § < 1 then [222 — 2| = 2|z — 1||z + 1] < 6|z — 1| < € if |z — 1] < €/6, so § = min(1,€/6).

If § < 1then |22 +2 — 12| = |z + 4| |z — 3] < 5|z — 3] < € if |z — 3] < ¢/5, so § = min(1,¢/5).
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33

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

If§ <1/2 and |x — (=2)] < ¢ then —=5/2 <z < =3/2, 2+ 1< —1/2, |x + 1] > 1/2; then

1 2
o (—1)’ = Iiil <2z 42| <eif |+ 2| <€/2,s0 6 =min(1/2,¢/2).

If 6 < 1/4 and |z —(1/2)] < 6 then ’ =24|z—(1/2)] < eif [x—(1/2)] < €/24,

so 0 = min(1/4,¢/24).

2043 |62 — 3| 6|z — (1/2)]
| <
x || 1/4

2 —4 1
VE— 2 = ’(ﬁ-z)ﬁ@’ — fiw‘ < 5lo 4] < eif |p— 4] < 2€, 50 6 = min(2e,4).
If§ <1land |x —2| < d then |z| <3 and 22 +22+4 <9+6+4=19, so

2% — 8| = |z — 2| - |2® + 2z + 4] < 196 < € if 6 = min(e/19,1).

Let € > 0 be given and take § = e. If |z] < d, then |f(z) — 0| =0 < € if = is rational, and |f(z) — 0| =|z| < d =€
if  is irrational.

If the limit did exist, then for e = 1/2 there would exist 6 > 0 such that if |z| < ¢ then |f(z) — L| < 1/2.
Some of the z-values are rational, for which |L| < 1/2; some are irrational, for which |1 — L| < 1/2. But
1=]1|]=L+(1-L)<1/24+1/2,0r 1< 1, a contradiction. Hence the limit cannot exist.

(a) We have to solve the equation 1/N? = 0.1 here, so N = /10.

(b) This will happen when N/(N + 1) =0.99, so N = 99.

(c) Because the function 1/23 approaches 0 from below when # — —oo, we have to solve the equation 1/N3 =
20.001, and N = —10.

(d) The function /(x4 1) approaches 1 from above when 2z — —o0, so we have to solve the equation N/(N +1) =
1.01. We obtain N = —101.

(a) N = /10 (b) N = /100 (c) N = /1000 = 10

2 2
7 [1—¢ x5 1—e¢
7:1— = — M 7:1— =
(a) 1+x% & &1 e 1+x% & %2 €
1— 1-—
(b) N =,/ —F (c) N =— ¢
€ €

(@) 21 =1/ 23 =1/ (b) N=1/¢ (c) N=-1/¢

1
— < 0.01if |z > 10, N = 10.
T

1
—— < 0.005 if |z + 2| > 200, = > 198, N = 198.
T+ 2

1

Z 1| =|——| <0001 if |z + 1| > 1000, = > 999, N = 999.
z+1 r+1
4z —1 11

T o= < 0.1if [22 + 5| > 110, 2 > 105, N = 52.5.
2x+5 2z 45

ol 0‘ < 0.005 if |z + 2| > 200, —z — 2 > 200, x < —202, N = —202.
X
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48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

—| <0.01if |z| > 10, —2 > 10, z < —10, N = —10.
4 — 1 11 .
— = 2| = < 0.1if |22 + 5| > 110, =2z — 5 > 110, 2z < —115, z < —57.5, N = —57.5.
2 +5 2z +5
1
Y 4| =|——]<0.001if |z +1] > 1000, —z — 1 > 1000, z < —1001, N = —1001.
z+1 z+1
1 1
— | <eif |z > so N =—.
Ve Ve
1 1 1 1 1
’<eifx+2|>,i.e. whenz+2>—-,orz>—-—-2,s0 N=-—-2.
T+2 € € € €
4r —1 11 11 11 11 11
< -2l =|——|<e€if 2245 > —, i.e. when —2x—5 > —, which means 22 < —— -5, orz < —— — =
2045 22 +5 € € € 2e
5 11
N=_2_2°
% 2 2
1 1 1 1 1
I | ) <eif [t +1] > —,ie when -z —1>—- orz<—-1——,so N=-1——.
z+1 z+1 € € € €
2 2
2 2 2 2 2 2
\/E\/_El—Q‘:‘\/E_1’<eif\/5—l>€,i.e. Whenﬁ>1+€,orx>(1+€) ,SON=<1+€> .
3
Y 2 2 2
\3/%(?_2—1‘: ’<61f€/§?—&—2<—6,i.e.when\3/3?<—2—€,orx<<—2—€>7soN:<—2—
(a) — > 100 if 2] < — (b) —— > 1000if [z — 1] < ——
) 2 BT iz — 1] TS 1000
(c) L 1000 if |z — 3| < L (d) L o 10000 if 2% < 2| < !
— < — if |z — — - < - if x x| < —
(z —3)? 10v/10 at 10000 10
(a) —— > 10 if and only if |z — 1] < —
a if and only if |z — —
(z—1)? ' V10
(b) ! > 1000 if and only if |x71|<#
(z—1)? Y 10v/10
(€) —— > 100000 if and only if |z — 1| < —
—_— if and only if |z —
1) Y 10010
If M > 0 then ! > M when 0 < (x 3)2<1 or0< |z —3| < L so 4 L
T oNo w - s - T = =
(x —3)? M VM VM
If M < 0 the 1 < M when 0 < (x — 3)? < ! or0< |z —3|< s0 6 =
n-——— n - ——, or - =
@32 w x A x \/7 \/7
If M >0 th 1>M h 0<\|<1 5—1
en 2] when 2| < 37,808 =7
If M > 0 the ;>M hen 0 < | 71|<i 505*i
n|x_1| when x i =

).

5
27
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63

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

Chapter 1
1 4 1 1 5 1
IfM<Othenfﬁ<Mwhen0<x <7M,or|x|<m,so :W'
If M >0 th ! M when 0 4 L L 6= L
> eng> when U0 < x <M,orx<W,so —W.

Ifz>2then|z+1-3|=lz—2/=2—-2<cif2<zx<2+4+¢s00=c¢.

Ifx<1lthen |3z+2—-5|=[3z-3]=3lz—1|=3(1—-2)<eifl—z<e/3,orl—€/3 <z <1, 80d=¢/3.
Ifz>4then Vo —4d<eifz—4<e®, ord<az<4+e?, 500 =¢e.

If £ <0then v—z <eif —x < €2, or —e2 <z <0, s0 6 = €.

If > 2then |f(z) —2|=|z—2|=2—-2<eif2<z<2+4+¢s0J=¢.

If v < 2 then |f(z) — 6] =13z —6|=3|z —2| =32 —z)<eif 2—x <¢/3,or2—¢/3<x <2, 800d=¢/3.

(a) Definition: For every M < 0 there corresponds a § > 0 such that if 1 < x < 14§ then f(z) < M. In our case

we want

1_QC<M,i.e. 1fx>M,or:c<17M,sowecanchoosec5:fﬂ.

(b) Definition: For every M > 0 there corresponds a 6 > 0 such that if 1 — ¢ < x < 1 then f(z) > M. In our case

1 1
we want >M,ie.1—x< —,orxz>1——, so we can choose § = —.
M M M

(a) Definition: For every M > 0 there corresponds a ¢ > 0 such that if 0 < z < § then f(z) > M. In our case we

1 1 1
want o > M, ie x < 5 takeézM.

(b) Definition: For every M < 0 there corresponds a ¢ > 0 such that if =0 < z < 0 then f(z) < M. In our case

1 1
t — < M,iex>—,sotake § = ——.
we wan - l1.e X MSO akKe M

(a) Given any M > 0, there corresponds an N > 0 such that if > N then f(x) > M, ie. 2+ 1> M, or
r>M-—-1,s0 N=M — 1.

(b) Given any M < 0, there corresponds an N < 0 such that if x < N then f(z) < M, ie. z+1 < M, or
r<M-—-1,s0 N=M — 1.

(a) Given any M > 0, there corresponds an N > 0 such that if z > N then f(x) > M, ie. 2> -3 > M, or

z>vVM+3,s0 N=+M+3.

(b) Given any M < 0, there corresponds an N < 0 such that if x < N then f(z) < M, ie. 23 +5 < M, or
< (M —5)Y3 so N =(M—5)1/5.

3.0 3 3
75. (a) == = 0.4 (amperes) (b) [0.3947, 0.4054] (c) [7.5 e 5] (d) 0.0187
(e) It approaches infinity.
Exercise Set 1.5
1. (a) No: lirra f(x) does not exist. (b) No: lim2 f(x) does not exist. (c) No: lirgl flx) # f(2).
r—r T— T—2—

(d) Yes. (e) Yes. (f) Yes.
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2. () Not lim f(@) # f(2).  (b) Nos lm f(@) #f(2).  (c) No: lim f(a)# [(2).

10.

. (a) 1 é

(d) Yes. () No: lim f(a) # f(2). (f) Yes.
. (a) No: f(1) and f(3) are not defined. (b) Yes. (¢) No: f£(1) is not defined.
(d) Yes. (e) No: f(3) is not defined. (F) Yes.
. (a) No: f(3) is not defined. (b) Yes. (c) Yes.
(d) Yes. (e) No: f(3) is not defined. (f) Yes.
. (a) No. (b) No. (c) No. (d) Yes.  (e) Yes. (f) No. (g) Yes.
. (a) No. (b) No. (c) No. (d) No.  (e) Yes. (F) Yes. (g) Yes.
v y

(a) 3 (by T 1 3

L 2 3
(c) 2 (d) /

. The discontinuities probably correspond to the times when the patient takes the medication. We see a jump in the

concentration values here, which are followed by continuously decreasing concentration values as the medication
is being absorbed.

C
- O—
o—e
= o—e
o—e
- o—e

o—e
$4 o—e
o—e
—

(b) One second could cost you one dollar.

(a) Not continuous, since the values are integers.

(b) Continuous.

(c) Not continuous, again, the values are integers (if we measure them in cents).

(d) Continuous.
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11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

27.

28.

29.

30.

None, this is a continuous function on the real numbers.
None, this is a continuous function on the real numbers.
None, this is a continuous function on the real numbers.
The function is not continuous at z = 2 and z = —2.

The function is not continuous at = —1/2 and = = 0.
None, this is a continuous function on the real numbers.
The function is not continuous at z =0, x =1 and =z = —1.
The function is not continuous at x =0 and x = —4.

None, this is a continuous function on the real numbers.

The function is not continuous at x =0 and z = —1.
- . . . . 16
None, this is a continuous function on the real numbers. f(x) = 2z + 3 is continuous on = < 4 and f(z) =7+ —
x

is continuous on 4 < x; lim f(z) = lim f(x) = f(4) = 11 so f is continuous at = = 4.
z—4- z—4t
The function is not continuous at = 1, as lim1 f(x) does not exist.
r—

True; by Theorem 1.5.5.

False; e.g. f(x)=1ifz#3, f(3)=—1.

False; e.g. f(z) =g(z) =211 ax#3, f(3) =1, g(3) =3.
False; e.g. f(z) =g(z) =21z #3, f(3) =1, g(3) =4.
True; use Theorem 1.5.3 with g(z) = \/f(x).

Generally, this statement is false because 1/ f () might not even be defined. If we suppose that f(c) is nonnegative,
and f(z) is also nonnegative on some interval (¢ — a, ¢ + «), then the statement is true. If f(c) = 0 then given
€ > 0 there exists § > 0 such that whenever |z —c| < 6,0 < f(z) < €2. Then |\/f(z)| < € and /[ is continuous at
x = c. If f(c) # 0 then given € > 0 there corresponds ¢ > 0 such that whenever |z —c| < 4, |f(z) — f(c)] < ey/f(c).

T o |f(z) — f(o)] |f(z) — f()]
hen X C)| = €
V) = vt IV [(@)++/f(c) = f(e) -

(a) f is continuous for z < 1, and for x > 1; lir? f(z) =5, lir?+ f(z) =k, so if k =5 then f is continuous for
r—1" r—r

all z.

(b) f is continuous for z < 2, and for x > 2; lilg () = 4k, 111121+ flz)=4+k,soifdk =4+k, k =4/3 then f
rT—27 T—r
is continuous for all x.

(a) f is continuous for x < 3, and for z > 3; lirgl f(z) =k/9, lir:r))1+ f(x) =0, s0 if k=0 then f is continuous for
r—3— z—
all z.

(b) f is continuous for z < 0, and for = > 0; 111%1 f(x) doesn’t exist unless k = 0, and if so then linél flx) =
z—0" x—0—

0; lim+ f(z) =9, so there is no k value which makes the function continuous everywhere.
z—0
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31.

32.

33.

34.

35.

36.

37.

f is continuous for z < —1, -1 < x < 2 and = > 2; lim f(z) =4, lim1+ f(z) =k, so k = 4 is required. Next,
T——
hr;l f(z) =3m+k=3m+4, lir;lJr f(x)=9,803m+4=9,m=0>5/3 and f is continuous everywhere if k =4
2~ z—
and m = 5/3.

(a) No, f is not defined at x =2.  (b) No, f is not defined for z <2.  (c) Yes. (d) No, see (b).

y\o\ y
[ )
(a) (1) —

(c) Define f(1) =2 and redefine g(1) = 1.
(a) x =0, liI(IJl flx)=-1#+4+1= liIélJr f(z) so the discontinuity is not removable.
z—0— T—
(b) x = —3; define f(—3) = -3 = lime(m), then the discontinuity is removable.
r——

(c) f is undefined at z = +2; at = = 2, lim2 f(x) = 1, so define f(2) = 1 and f becomes continuous there; at
r—r

r= -2, lim2 f(z) does not exist, so the discontinuity is not removable.
T——

2 1 1
(}511) f is not defined at = = 2; ignz flz) = igm =3 %0 define f(2) = 3 and f becomes continuous
there.

(b) lixgl flx)y=1#4= 11112r1+ f(z), so f has a nonremovable discontinuity at « = 2.
rT—27 T—r

(c) lim1 f(z) =8 # f(1), so f has a removable discontinuity at z = 1.
z—

(a) Discontinuity at = 1/2, not removable; at x = —3, removable.
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(b) 222 + 5z — 3 = (2z — 1)(z + 3)
4
-3 3
38. (a) -4 There appears to be one discontinuity near x = —1.52.
(b) One discontinuity at z ~ —1.52.

39. Write f(x) = 2%/°> = (23)!/® as the composition (Theorem 1.5.6) of the two continuous functions g(x) = 2 and
h(z) = x'/°; it is thus continuous.

40. z* + 722 +1> 1> 0, thus f(x) is the composition of the polynomial z* + 722 + 1, the square root y/z, and the
function 1/x and is therefore continuous by Theorem 1.5.6.

41. Since f and g are continuous at z = ¢ we know that lim f(z) = f(c¢) and lim g(z) = ¢g(c¢). In the following we use

Tr—cC r—c
Theorem 1.2.2.
() f(c) +g(c) = lim f(z) + lim g(z) = lim (f(z) + g(x)) so f + g is continuous at x = c.
r—c r—c Tr—cC
(b) Same as (a) except the + sign becomes a — sign.
(c) f(e)g(c) = lim f(z)lim g(z) = lim f(x)g(x) so fg is continuous at = = c.
r—c Tr—cC r—c

42. A rational function is the quotient f(x)/g(x) of two polynomials f(z) and g(x). By Theorem 1.5.2 f and g are
continuous everywhere; by Theorem 1.5.3 f/g is continuous except when g(z) = 0.

43. (a) Let h =2 — ¢,x = h + ¢. Then by Theorem 1.5.5, ’llin%) f(h+c¢)= f(’llin%)(h +¢) = fle).

— —
(b) With g(h) = f(c+h), }lLiH%J g(h) = }llir% fle+h) = f(c) = g(0), so g(h) is continuous at h = 0. That is, f(c+h)
— —
is continuous at h = 0, so f is continuous at x = c.

44. The function h(z) = f(z) — g(x) is continuous on the interval [a,b], and satisfies h(a) > 0, h(b) < 0. The
Intermediate Value Theorem or Theorem 1.5.9 tells us that there is at least one solution of the equation on this
interval h(z) =0, i.e. f(z) = g(x).

45. Of course such a function must be discontinuous. Let f(z) =1on0<z <1,and f(z)=—-1on 1<z <2.

46. (a) (i) No. (ii) Yes. (b) (i) No. (ii) No. (¢) (i) No. (ii) No.

47. If f(x) = 23 + 22 — 22 — 1, then f(—1) =1, f(1) = —1. The Intermediate Value Theorem gives us the result.

48. Since EIEI p(z) = —oo and Br}rl p(x) = 400 (or vice versa, if the leading coefficient of p is negative), it follows
that for M = —1 there corresponds Ny < 0, and for M = 1 there is Ny > 0, such that p(z) < —1 for z < N; and
p(z) > 1 for x > Ny. We choose x; < N7 and z9 > No and use Theorem 1.5.9 on the interval [z, z2] to show the
existence of a solution of p(z) = 0.

49. For the negative root, use intervals on the z-axis as follows: [—2,—1]; since f(—1.3) < 0 and f(—1.2) > 0, the

midpoint 2 = —1.25 of [—1.3, —1.2] is the required approximation of the root. For the positive root use the interval
[0, 1]; since f(0.7) < 0 and f(0.8) > 0, the midpoint x = 0.75 of [0.7,0.8] is the required approximation.
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50.

51.

52.

53.

54.

55.

56.

57.

58.

For the negative root, use intervals on the z-axis as follows: [—2,—1]; since f(—1.7) < 0 and f(—1.6) > 0, use
the interval [—1.7,—1.6]. Since f(—1.61) < 0 and f(—1.60) > 0 the midpoint = —1.605 of [—1.61, —1.60] is the
required approximation of the root. For the positive root use the interval [1,2]; since f(1.3) > 0 and f(1.4) <0,
use the interval [1.3,1.4]. Since f(1.37) > 0 and f(1.38) < 0, the midpoint x = 1.375 of [1.37,1.38] is the required
approximation.

For the positive root, use intervals on the z-axis as follows: [2, 3]; since f(2.2) < 0 and f(2.3) > 0, use the interval
[2.2,2.3]. Since f(2.23) < 0 and f(2.24) > 0 the midpoint x = 2.235 of [2.23,2.24] is the required approximation
of the root.

Assume the locations along the track are numbered with increasing x > 0. Let Ts(z) denote the time during the
sprint when the runner is located at point ,0 < < 100. Let T;(z) denote the time when the runner is at the
point  on the return jog, measured so that T;(100) = 0. Then Ts(0) = 0,7Ts(100) > 0,7;(100) = 0,75(0) > 0,
so that Exercise 44 applies and there exists an xo such that Ts(xo) = T (z0).

Consider the function f(0) = T'(6 + ) — T'(f). Note that T has period 2w, T(0 4 27) = T(#), so that f(6 + ) =
TO+27)—TO+7)=—(TO+7)—T(0)) = —f(0). Now if f(#) =0, then the statement follows. Otherwise,
there exists 6 such that f(6) # 0 and then f(6 + 7) has an opposite sign, and thus there is a ¢y between 6 and
0 4+ 7 such that f(to) = 0 and the statement follows.

Let the ellipse be contained between the horizontal lines y = a and y = b, where a < b. The expression
|f(z1) — f(22)| expresses the area of the ellipse that lies between the vertical lines x = 2; and & = 25, and
thus |f(z1) — f(2z2)] < (b — a)|z1 — #2|. Thus for a given € > 0 there corresponds 6 = ¢/(b — a), such that if
|21 — 22| < 4, then |f(z1) — f(2z2)] < (b—a)|z1 — 22| < (b — a)d = € which proves that f is a continuous function.

Since R and L are arbitrary, we can introduce coordinates so that L is the z-axis. Let f(z) be as in Exercise 54.
Then for large z, f(z) = area of ellipse, and for small z, f(z) = 0. By the Intermediate Value Theorem there is a
z1 such that f(z1) = half of the area of the ellipse.

y
1=

04

(a) 02 0.8

(b) Let g(z) =  — f(x). Then g(x) is continuous, g(1) > 0 and ¢g(0) < 0; by the Intermediate Value Theorem
there is a solution ¢ in [0, 1] of g(c¢) = 0, which means f(c) = c.

For x > 0, f is increasing and so is one-to-one. It is continuous everywhere and thus by Theorem 1.5.7 it has an
inverse defined on its range [5, +00) which is continuous there.

L = h(0) = h(lim f~*(z)) = lim h(f*(z)) = lim @) _ lim

z—0 z—0 z—0  f~1(x) =0 f=1(x)’

Exercise Set 1.6

1.

2.

This is a composition of continuous functions, so it is continuous everywhere.

Discontinuity at x = .

. Discontinuities at * = nm,n =0,£1,£2,...

m
. Discontinuities at z = 3 +nm,n=0,+1,42,...
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5. Discontinuities at  =nw, n =0,+1,£2,...
6. Continuous everywhere.
. e ™ 5%
7. Discontinuities at x = 5 + 2n7, and x = 5 +2nm, n=0,£1,£2,...
8. Discontinuities at x = T +nm,n=0,+1,42,...
9. (a) f(z)=sinxz, g(z) = 2>+ Tz + 1. (b) f(z) = |x|, g(x) = sinx. (c) f(z) =23, g(x) = cos(z +1).
10. (a) f(z) = |z|, g(xr) = 3 + sin2z. (b) f(z) = sinz, g(z) = sinz. (c) f(z) = x° — 223 + 1,
g(z) = cosz.
. 1 . 1
11. lim cos () =COS< lim ) =cos0 =
xr——+00 €T r——+oc0o I
. . T . . e . T V3
12. lim sin =sin| lm = sin (——) = ——.
z—~400 2—3x z—+oo 2 — 3x 3 2
in 36 in 30
13. lim 2% — 3 im 22 3,
0—0 6—0 30
. sinh 1 . sinh 1
el TR L R A
2 .
15. lim :c 3sinz = lim z — 3 lim ST -3.
x—0 €T x—0 z—0 I
16. 2—cos3x—cos4x: 1—cos$x+1—cos4x. Note that 1—cos3x: l—cos3x.1+cos3ac: sin? 3z _
x x x x x 1+cos3z  x(1+ cos3z)
in 3 in 3
sindz  sin3x  Thus
x 1+ cos3x
lim 2 — cos 3z — cos 4z ~ lim sin 3x . sin 3x im sin 4z . sin 4z —3.044-0=0.
z—0 T z—0 I 1+cos3z =z2z—0 =z 1+ cosdx
sin 0 1 sin 0
17. 1 = lim -] U = .
o—0+ 02 <9—1>I(I)1+ 9) 0—0+ 0 oo
sin? 6 sin 6
18. lim = [ limsin@ | lim =0.
0—0t 0 6—0 60 0
tan 7z 7 sin7x 3x . tanTx 7 7
19. — = . - — , 80 lim — =—1:-1=—.
sin 3z 3cosTx Tx sin 3x z—0 sin 3z 3-1 3
20. sTn6x:§.sme. .83(: so lim s?n6x:§-1.1:§.
sin 8x 8 6x sin 8x z—0 sin 8x 8 4
sinx 1 sinx
21. — == 1i li =0.
A 5 T B YR
sin? 1 sinz 2 1
22. lim:<lim > = —.
z—0 312 3 \z—=0 2z 3
2 <2
23. lim 0% — (hm x) (hm S ) —0.
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24.

25.

sin h sinh 1 +cosh sinh(l4+cosh) 1+cosh

1—cosh:1—cosh.1+cosh_ 1—cos2h  sinh
therefore the limit does not exist.

; this implies that lim is +o0, and lim is —oo,
h—0+ h—0—

2 t\? 2
—=|—-—) ,s0lim—— =1
1—cos?t (sint) t—0 1 — cos?t

T

26. cos(5m — ) = cos(5m) cosx + sin(57) sinz = sinz, so ill}% o G p—— Tr—2) 1.
62 1+cosf 61+ cosf) 9 \° 62
27. . = = 1 9 lim — = (1)?.2=2.
1—cosf 14 cosf 1 —cos20 sin 0 (L + cosf), Soelg(l)l—cosﬁ (1)
1——cos3h 1+ cos3h sin® 3h 1
28. . = . ing th It of problem 20
cos25h —1 1+ cos3h —sin?5h 14 cos3h’ 50 (using the result of problem 20)
1 —cos3h . sin? 3h 1 3\% 1 9
im ———— = lim . =—|=-) ‘==—-——
z—0 cos2b5h —1 20 —sin®5h 1+ cos3h 5 2 50
29. lim sin () = lim sint, so the limit does not exist.
r—0+ €T t—4oc0
tan 322 + sin? 5z 3 sin3z? sin? 5z Lo . 3 . sin3z? . sin 5z 2
30. x2 "~ cos3z? 3z2 T2 (5x)2 "’ 0 limit = alclg%) 08372 150 322 25 alclg% ( 5z ) =312 =
28.
tan ax . asinar 1 bx
31. lim — = lim — . =a/b.
z—0 sin bx z—0b ax cosax sinbzx
.. 2 . 2
32, lim S0 k2, (Sm(m)) — 0.
x—0 x x—0 kx
33. (a) 4 4.5 4.9 5.1 5.5 6
0.093497 | 0.100932 | 0.100842 | 0.098845 | 0.091319 | 0.076497
The limit appears to be 0.1.
. sin(x —5) ) 1 .. sint 1 1
(b) Let t =z — 5. Thent—>0&sx—>5and£_}n§m:il_}r%x+5tgr(1)T:To-lzﬁ.
34. (a) —-2.1 —2.01 —2.001 —1.999 —-1.99 -1.9
—1.09778 | —1.00998 | —1.00100 | —0.99900 | —0.98998 | —0.89879
The limit appears to be —1.
i 2 1 int
(b) Let £ = (24+2)(z+1). Then t — 0 as z — —2, and lim SAEFDEEDL 1y S0 = g =
z——2 x+ 2 T——2 t—0 ¢

35.

36.

37.

—1 by the Substitution Principle.
True: let € > 0 and § = €. Then if |x — (—1)| = | + 1| < ¢ then |f(z) + 5] <.

True; from the proof of Theorem 1.6.3 we have tanz > x > sinz for 0 < & < 7/2, and the desired inequalities
follow immediately.

True; the functions f(z) = z,g(z) = sinz, and h(x) = 1/x are continuous everywhere except possibly at = = 0,
so by Theorem 1.5.6 the given function is continuous everywhere except possibly at + = 0. We prove that



24

Chapter 1

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

lir%xsin(l/x) = 0. Let € > 0. Then with § = ¢, if || < ¢ then |xsin(l/z)| < |z] < § = ¢, and hence f is
z—

continuous everywhere.

I

lim x‘<M lim - = 0.
X

r—+00

~

True; by the Squeezing Theorem 1.6.4 | lir% xf(z)| <M lirr%) |z| = 0 and
T— z—

(a) The student calculated x in degrees rather than radians.

T . sinx°
120" Thus $lolgl0 o =

(b) sinz® = sint where z° is measured in degrees, t is measured in radians and ¢ =

sint T

#550 (180t/7) 180"

Denote 0 by z in accordance with Figure 1.6.4. Let P have coordinates (cosz,sinx) and @ coordinates (1,0) so

2
1—
that c?(z) = (1 —cosx)? +sin?2 = 2(1 —cosz). Since s = rf = 1-2 = 2 we have lim ¢ () = lim 2— 2% _
z—0+t 52(1') z—0t 2
. 1—cosz 1+cosx . sinz > 2
lim 2 . = lim =
z—0+ x? l4+cosz a—0t \ x 1+ cosz
. . sin kz ) 9 9 L 1
lim f(z)=klim ————— =k, lim f(x) =2k~ so k = 2k*, and the nonzero solution is k = —.
=0~ =0 kx cos kx z—0+ 2

No; sin z/|x| has unequal one-sided limits (+1 and —1).

sint

a) lim — = 1.
(2) t—0+t ¢
1-— t
(b) lim L) (Theorem 1.6.3).
t—0— t
. . . M=z . t
() sin(r —t) = sint, so lim — =lim—=1
z—m SINT t—0 sint
3 — 2t)sint — 2t sin ¢
Let t = =~ — ~. Then cos (z — t) =sint, so lim cos(r/) = lim (m ) sin — lim © lim oot = T
2 =z 2 =2 T —2 t—0 4t t=0 4 t=0 ¢ 4
. . . . sin(mx) . sinmt
t =x — 1; sin(rx) = sin(nt + 7) = —sinwt; and lim = — lim = —m.
z—=1 x—1 t—0 ¢t
2sint t -1 2sint
t=x—7/4; tanx — 1 = — m S = 2.

——————; lim =lim ———
cost —sint’ z—r/a x—mw/4  t—0t(cost —sint)

50
—|z| <z cos (W) < |z|, which gives the desired result.
x

50m
—2% < 2%sin (

Iz

) < 22, which gives the desired result.

Since lin%) sin(1/x) does not exist, no conclusions can be drawn.
T—r

lin}) f(x) =1 by the Squeezing Theorem.
xr—r
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1k \

51. lim f(z) =0 by the Squeezing Theorem.

r—+o0
y
I\
N
\\\\
| | TS T—t= "
NS
e
/
/
/
11
y
\ y
\ /
\ /
\ /
N\ /
\\ s
VA NN v / g
I S a——— ==~ \/
\

52. |/

53. (a) Let f(z) =z — cosz; f(0)

y
1.5
y=x
1
05 y=cos x
X
(b) 0 /2

54. (a) f(z) =z +sinz —1; f(0)

in the interval.
y=1-sinx

0.5

(b) 0 ﬂ‘/6

=—1, f(n/2) = n/2. By the IVT there must be a solution of f(z) = 0.

(c) 0.739

=—1, f(n/6) =7/6 —1/2 > 0. By the IVT there must be a solution of f(z) =0

(c) 0.511

55. (a) Gravity is strongest at the poles and weakest at the equator.
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¢

30 60 90

(b) Let g(¢) be the given function. Then ¢(38) < 9.8 and ¢(39) > 9.8, so by the Intermediate Value Theorem
there is a value ¢ between 38 and 39 for which g(c) = 9.8 exactly.

Exercise Set 1.7

1.

2.

sin~ !4 is continuous for —1 <u<l,so—-1<2x<1,or —1/2 <z <1/2

cos~ ! u is continuous for —1 < u < 1,s00<v2x<1l,or 0<z<1/2

. y/u is continuous for 0 < u, so 0 < tan™'x, or > 0; 22 — 9 # 0, thus the function is continuous for 0 < z < 3

and z > 3.

. sin"!u is continuous for —1 < u < 1,s0 =1 < 1/x <1, thus x < —1 or > 1. The function is continuous on

(=00, —1] U [1, 00).

. tanf = 4/3, 0 < 6 < 7/2; use the triangle shown to get sinf = 4/5, cosf = 3/5, cotf = 3/4, secd = 5/3,

csch =5/4.

/A

3

. secf =2.6,0 < 0 < 7w/2; use the triangle shown to get sinf = 2.4/2.6 = 12/13,cos6 = 1/2.6 = 5/13,tanf = 2.4 =

12/5,cot 8 = 5/12,csc = 13/12.

2.6
24
A
1
(a) 0<z<nm (b) —-1<2<1 (¢) —7w/2<zx<m/2 (d) —oo<z<+00

. Let 6 = sin~'(—3/4); then sin = —3/4, —7/2 < § < 0 and (see figure) sec§ = 4//7.

L v

77

Let 6 = cos™1(3/5); sin20 = 2sinf cos§ = 2(4/5)(3/5) = 24/25.
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5 4
3
! Vi-x2 li Vi-x2
cos~lx cos—lx
V1_ 22
10. (a) sin(cos™'x) =1 — 22 x (b) tan(cos™'z) = yoo X
x
\/1 +x2 X 1+x2 X
_ tan—1 x
/71 3 tan—' x
(c) csc(tan™ta) = vite 1 (d) sin(tan~!z) = L 1
x V14 xr2
N1 + x2 1
* N1 —x2
-1 cos—lx
1 \tan x 1= 22
11. (a) cos(tan™'z) = —— 1 (b) tan(cos™'z) = Y- x
i z
X X
sec~!x seclx
21 1
(c) sin(sec™!'z) = ve T 1 (d) cot(sec™'z) = ——— 1
Va? -1
12. (a) z —1.00 | —0.80 | —0.60 | —0.40 | —0.20 | 0.00 | 0.20 | 0.40 | 0.60 | 0.80 | 1.00
sin™? —1.57 | —0.93 | —0.64 | —0.41 | —0.20 | 0.00 | 0.20 | 0.41 | 0.64 | 0.93 | 1.57
cos™! 3.14 2.50 2.21 1.98 1.77 1157|137 | 1.16 | 0.93 | 0.64 | 0.00
Ay
¢ - y
< 3L
Ce L
<><> o o &
1 Oog
"¢ Ir
_x_AD_DE,D_x_éi_, ‘ x
EID 05 1
L e
(b) © (c)
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13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

27.

28.

(b)
42 =22 + 32 — 2(2)(3) cos b, cos = —1/4, § = cos~1(—1/4) ~ 104°.

(a) = =m—sin"'(0.37) ~ 2.7626 rad (b) 6 =180° +sin'(0.61) ~ 217.6°.

(a) =7+ cos™1(0.85) ~ 3.6964 rad (b) 6= —cos™1(0.23) ~ —76.7°.

(a) sin~!(sin™!0.25) ~ sin~! 0.25268 ~ 0.25545; sin~* 0.9 > 1, so it is not in the domain of sin~* z.
(b) —-1< sin"!'z < 1 is necessary, or —0.841471 < z < 0.841471.

sin20 = gR/v? = (9.8)(18)/(14)% = 0.9, 20 = sin™'(0.9) or 26 = 180° — sin~'(0.9) so 6 = $sin™'(0.9) ~ 32° or
0 =90° — %sin_l(O.Q) ~ 58°. The ball will have a lower parabolic trajectory for # = 32° and hence will result in
the shorter time of flight.

lim sin~* v =sin~! | lim z =sin~? S
T—Fo0 1—2¢/) et 1l —2z ) 2) 6

: -1,y _ - —1.y _
wll)riloo cos(2tan™ " x) = Cos(wll)rfoo2tan x) = cos(2(n/2)) = —1.

False; the range of sin™! is [—7/2,7/2], so the equation is only true for z in this range.
False; it is the interval —7/2 < z < 7/2.
True; the line y = 7/2 is a horizontal asymptote as £ — oo and as x — —o0.

Let g(z) = f~!(x) and h(x) = f(z)/x when z # 0 and h(0) = L. Then lin}J h(x) = L = h(0), so h is continuous
T—>
at © = 0. Apply Theorem 1.5.5 to h o g to obtain that on the one hand h(g(0)) = L, and on the other h(g(z)) =

f(gg((xx))), x # 0, and il_% h(g(z)) = h(g(0)). Since f(g(x)) =z and g = f~' this shows that il_}ﬂlo f—li(x) =1L

. x . sinx
lim ——~— = lim
z—0gsin” "~ x z—0 T

=1

=1.

tan(tan~' z) = z, so lim = lim = (lim cos z) lim —
z—0 T z—0 tanx z—0 z—0 sin x

|
5 lim M =5 lim .5x
z—0 5z z—0 8in 5x

.1 .
lim L lim 0 (@ 1):

1 z—1 1
=11+ 1 z=1 r—1 2

lim ——— = —.
s—1gin(z —1) 2
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29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

2+

(a) Do T 10

(b) The domain of cot™! z is (—o0,+o0), the range is (0,7); the domain of csc™! z is (—oo, —1] U [1, +00), the
range is [—7/2,0) U (0, 7/2].

(a) y=cot™lz;ifz>0then 0 <y < m/2 and x = coty, tany = 1/z, y = tan"*(1/z); ifz <O then m/2 <y < 7
1

and z = coty = cot(y — m),tan(y — 7) = 1/2,y = 7 +tan" " —.
x

(b) y =sec 'z, x =secy, cosy = 1/x, y = cos~1(1/x).

(c) y=csc 'z, x =cscy, siny = 1/x, y = sin"!(1/x).

(a) 55.0° (b) 33.6° (c) 25.8°

x x x
and cot § = 3 s0 0 =cot ™t —— —cot™! (7>
a

x
Q—Q—ﬂ,cota—a_H) 3 2

(a) Ify = 90°, thensiny = 1, /1 — sin® ¢psin? y = /1 — sin® ¢ = cos ¢, D = tan ¢ tan A = (tan 23.45°)(tan 65°) ~
0.93023374 so h ~ 21.1 hours.

(b) If v =270° then siny = —1, D = —tan ¢ tan A & —0.93023374 so h ~ 2.9 hours.

R 6378
b) §=sin"" —— =sin"" ~ 23°.
(b) §=sin"" pmg =i 1657
y = 0 when 22 = 6000v?/g, * = 10v,/60/g = 1000+/30 for v = 400 and g = 32; tanf = 3000/x = 3//30,

6 = tan~1(3/1/30) ~ 29°.

(a) Let § = sin"'(—x) then sinf = —z, —7/2 < 6 < 7/2. But sin(—f) = —sinf and —7/2 < —0 < 7/2 so
sin(—0) = —(—z) =z, —0 =sin"'z, § = —sin" ' z.

(b) Proof is similar to that in part (a).

(a) Let 0 = cos™(—x) then cos = —x, 0 < 0 < 7. But cos(m —0) = —cos and 0 < 7 — 60 < 7 so cos(m — 0) = z,

mT—0=cos'a, 0 =m—cos .

(b) Let 0 = sec™!(—z) for # > 1; then secd = —z and 7/2 < § < 7. So0 <7 -0 < 7/2and 7 — 0 =

sec”sec(m — 0) = sec!(—sec) =sec !z, or sec}(—x) =7 —sec” ! x.

(a) sin™'z = tan™* (see figure).

x
V1—z2
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V1-x2

(b) sintz4cos lax=7m/2;costr =7/2 —sin" 'z =n/2 —tan"! :
—x

tan a 4 tan 8
39. tan(a+ 8) = m,

tan(tan™' z) + tan(tan~'y) x4y
ty)  1-ay

tan(tan~ 'z + tan"ly) =
( v) 1 — tan(tan~! x) tan(tan™

1 Tty
1—ay’

so tan" 'z +tan~! y=tan~

a1 L/211/3

1 -
3= —1_(1/2)(1/3):tan 11 =rn/4

1
40. (a) tan™! 3 + tan~!

= tan~! ,

1 1 1 L 1/3+1/3
12 = 1z 17: L
(b) 2tan 3 tan 3 + tan 3 tan 1= (1/3) (1/3)

1 1 3 1 3/4+1/7
2tan~! 3 +tan~! .= tan™! 1 +tan~! = =tan~! _ ST =tan"'1 = 7/4.

7 1—(3/4) (1/7)

3
1

. —1 . -1 1 2 1'2 -1
41. sin(sec™ ' z) = sin(cos ' (1/x)) =4/1— = | = T
x x

Exercise Set 1.8

1. (a) —4 (b) 4 (c) 1/4
2. (a) 1/16 (b) 8 (c) 1/3
3. (a) 2.9691 (b) 0.0341
4. (a) 1.8882 (b) 0.9381

1
5. (a) logy 16 = log,(2*) =4  (b) log, () =log,(27%) =5 (c) logs4=1 (d) logy3 =logy(9"/?) =1/2

32

6. (a) log(0.001) =log;u(1073) = =3  (b) log;n(10*) =4 (c) In(e?) =3 (d) In(ye) =1In(e?/?) =1/2

7. (a) 1.3655 (b) —0.3011
8. (a) —0.5229 (b) 1.1447
1 1
9. (a) 21na—|—51nb+§1nc:2r+s/2+t/2 (b) nb—3lna—Inc=s—3r—t

10. (a) %lnc—lna—lnb:t/S—r—s (b) %(lna+31nb—21nc)zr/2+3s/2—t
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1 1
11. (a) 1+logx + 3 log(z — 3) (b) 2In|z|+ 3ln(sinz) — 3 In(z? + 1)
1
12. (a) 3 log |z + 2| — log | cos 5| when x < —2 and cos 5z < 0 or when z > —2 and cos 5z > 0.

(b) %ln(xQ 1) - %111(3:3 +5)

24(16
13. log 2(16) = log(256/3)
1
14. log /z — log(sin® 2z) 4 log 100 = log 003\/5
sin® 2z
3 2
15. In M

COS T

16. 1+ = 10° = 1000, = = 999
17. Vr=10"1=0.1, 2 = 0.01
18. 22 = e, x = +e?

19. 1/z =e7 2, 2 =¢?

20. z =7

21. 2r =8,z =4

4 4 5
22. Indz —Ina® =1n2, In—=In2 —=2 =2 =12
x x

23. In222 =1n3, 222 = 3, 2% = 3/2, v = /3/2 (we discard —+/3/2 because it does not satisfy the original equation).

24. n3*=In2, xrIn3=In2, z = In2
In3
1
25. In52* =In3, —2xIn5=1n3, z = — n3
2Inb

1
26. ¢ 2" =5/3, —2x =1In(5/3), r = -5 In(5/3)

1
27. & =17/2, 3 =In(7/2), z = 3 In(7/2)
28. €"(1 —2z) =0 so e* =0 (impossible) or 1 —2x =0, z =1/2
29. e ¥(x+2) =0s0 e~ =0 (impossible) or x +2 =0, z = —2

30. With u = e, the equation becomes u? — 3u = —2, s0 (u —1)(u —2) =u? —3u+2 =0, and u = 1 or 2. Hence
x=—In(u) givesz =0o0r x = —1n2.
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31.

32.

33.

(a) Domain: all z; range: y > —1.

(b) Domain: = # 0; range: all y.

(a) Domain: z > 2; range: all y.

(b) Domain: all x; range: y > 3.

(a) Domain: x # 0; range: all y.

(b) Domain: all x; range: 0 <y < 1.

N

¥ =<
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34. (a) Domain: all z; range: y < 1.

(b) Domain: = > 1; range: all y.
35. False. The graph of an exponential function passes through (0, 1), but the graph of y = 2% does not.
36. True. For any b > 0, b° = 1.
37. True, by definition.
38. False. The domain is the interval x > 0.

39. log, 7.35 = (log 7.35) /(log 2) = (In7.35)/(In 2) ~ 2.8777; log; 0.6 = (log 0.6)/(log 5) = (In0.6)/(In5) ~ —0.3174.

10

40. -5

42. (a) Let X =log,z and Y = log, . Then bX = z and a¥ = zs0 a¥ = b¥, or a¥/X = b, which means log, b = Y/X.

I 1
Substituting for ¥ and X yields loga x 0g,

=log, b,1 = .
og, T 08a 0, 108p & log, b

(b) Let = a to get log,a = (log, a)/(log,b) = 1/(log,b) so (log, b)(log,a) = 1. Now (log, 81)(logs 32) =
(log(3"]) (log3[2%]) = (410g, 3)(5logs 2) = 20(logy 3) (logs 2) = 20.

43. z ~ 1.47099 and x ~ 7.85707.

44. r ~ +0.836382
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45. (a) No, the curve passes through the origin. (b) y=(Vv2)" (¢) y=2"7=(1/2)" (d) y=(V5)*
5
-1\ /2
0
46. (a) As z — +oo the function grows very slowly, but it is always increasing and tends to +o0o. As z — 1T the
function tends to —oo.
AY
5 -
i | X
rlﬁ
(b) -5k
47. log(1/2) < 0 so 3log(1/2) < 2log(1/2).
48. Let x = log, a and y = log, ¢, so a = b* and ¢ = bY.
First, ac = b*bY = b* 1Y or equivalently, log,(ac) = z + y = log, a + logy, c.
Second, a/c = b* /bY = b*~Y or equivalently, log,(a/c) = x —y = log, a — log, c.
Next, a” = (b*)" = b"™ or equivalently, log, a” = ra = rlog, a.
Finally, 1/¢ = 1/bY = b™¥ or equivalently, log,(1/c) = —y = — log,, c.
49, lm ¢ 170
z——o0 1 4 €% 140
1—e” -1 0-1
50. Divide the numerator and denominator by e*: lim e, = lim € - =—— =-1.
z—+oo 1 + €% z—+oo e T 4+ 1 0+1
14+e2® 140
51. Divide the numerator and denominator by e*: lim te — -0 1.
z—+oo 1 — e~ 2% 1-0
41 041
52. Divide the numerator and denominator by e~®: lim c o+l = —1.
-0 e2® —1 0-1
53. The limit is —oo.
54. The limit is +o0.
1 1 1)*
55. L 1 L w0 tim DT fom Figure 1.3.4,
T T—+00 x®
1\° 1 Y
56. (14 — = — 7 S0 the limit is e™~.
z (1+32)
57.



Exercise Set 1.8

58. t = 1/ac7t_13r_1f10O f() =0.

59. t = cscx, tk?oo f(t) = 4o0.

60. t =cscz, lim f(t) =0.
t——o0

In2 t+In2
61. Let ¢ =Inz. Then ¢ also tends to 4+o00, and e +n
In3xz t+1n3

, so the limit is 1.
62. With t =2 —1,[In(22 — 1) — In(z + 1)] = In(z + 1) + In(z — 1) — In(x + 1) = Int, so the limit is +oo.

1\
63. Set t = —x, then get lim (1 + ) = e by Figure 1.3.4.
t——o0 t

9 x 2
64. With ¢ =2/2, lim (1 + ) = ( lim [1+ 1/t]t) =¢?
T—+00 xT t——+o0

0 if b <1,

65. From the hint, lim b* = lim e™?? = 1 ifb=1,
T—-+00 T—>+00

400 if b > 1.

66. It suffices by Theorem 1.1.3 to show that the left and right limits at zero are equal to e.

lim (1+ )" = lim (14 1/t)" =e.
(a) lim (1+z) Jim (1+1/t)"=e

(b) lim (1+2)Y* = lim (1+1/t) =e.
T——00 t—0—

v

200 |-

160 |-

120 |-

80 -

40 |

67. (a) S8 12 16 20

(b) lim v =190 (1 ~ lim 6*0-16&) — 190, so the asymptote is v = ¢ = 190 ft/sec.
— 00

t—o0

(c) Due to air resistance (and other factors) this is the maximum speed that a sky diver can attain.

68. (a) p(1990) = 525/(1 + 1.1) = 250 (million).

1920 2000 2080
. : —

(b)
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i 525 .
(c) tlggop(t) = 1 1T, o 00m e To90) 525 (million).
(d) The population becomes stable at this number.
69. (a) n 2 3 4 5 6 7
1+107" 1.01 | 1.001 | 1.0001 | 1.00001 | 1.000001 | 1.0000001
14 10" 101 1001 | 10001 | 100001 | 1000001 | 10000001
(1+1077)1H10" | 27319 | 2.7196 | 2.7184 | 2.7183 | 2.71828 | 2.718282
The limit appears to be e.
(b) This is evident from the lower left term in the chart in part (a).
(¢) The exponents are being multiplied by a, so the result is e®.
1\ r—1\" r \" z \"7! x—1
. — = 1—— = = —1) = — _ .
0. @ 0= (1-1) = (51) = (25) e-n- () = (5 e
b) i 111—1' =| I li )= 1 1) =
®) e 1te) = An o= n T dn A= dp fe - =e
71. T5e~t/125 = 15,¢ = —1251n(1/5) = 125105 ~ 201 days.
72. (a) Ift =0, then Q = 12 grams.
(b) Q= 12709551 = 12¢70-22 = 9.63 grams.
(c) 1270055 = § 70055t = (0.5 ¢ = —(In0.5)/(0.055) ~ 12.6 hours.
73. (a) 7.4; basic (b) 4.2; acidic (c) 6.4; acidic (d) 5.9; acidic
74. (a) log[H] = —2.44,[H"] = 10724 ~ 3.6 x 1073 mol/L
(b) log[H*] = —8.06,[H*] = 10736 ~ 8.7 x 10~ mol/L
75. (a) 140 dB; damage (b) 120 dB; damage (c¢) 80 dB; no damage (d) 75 dB; no damage
76. Suppose that Il = 3[2 and 61 = 10 loglo Il/[(), 52 = 101Og10 IQ/I(). Then Il/IO = 3[2/]0, 1Og10 Il/[() =
logyo312/Ip = log,4 3 + logyg I2/Io, 1 = 10log,y 3 + B2, b1 — B2 = 10log,, 3 ~ 4.8 decibels.
77. Let I4 and I be the intensities of the automobile and blender, respectively. Then log,, [4/Iy = 7 and log,, Ip /Iy =
9.3, I4 = 1071y and Ig = 10°31y, so Ig/I4 = 10*3 ~ 200.
78. First we solve 120 = 10log(I/Iy) to find the intensity of the original sound: I = 10'2/1°]; = 10'2. 10712 =
2 n
1 W/m®. Hence the intensity of the n’th echo is (2/3)® W/m® and its decibel level is 10 IOg((lo/—g1)2)
11
10(nlog(2/3) + 12). Setting this equal to 10 gives n = “Tog(2/3) A~ 62.5. So the first 62 echoes can be heard.
79. (a) log F =4.4+1.5(82)=16.7,FE = 10'%7 ~ 5 x 101¢J
(b) Let M; and M; be the magnitudes of earthquakes with energies of E' and 10F, respectively. Then 1.5(Ms —
My) =log(10E) — log E = log 10 = 1, My — My = 1/1.5 = 2/3 ~ 0.67.
80. Let F; and Fs be the energies of earthquakes with magnitudes M and M + 1, respectively. Then log E; —log F; =

IOg(EQ/El) = 1.57E2/E1 = 101'5 ~ 31.6.
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1. (a) 1 (b) Does not exist. (c) Does not exist. (d) 1 (e) 3 (f) 0
(h) 2 (i) 1/2
2. (a)| =z | 200001 | 2.0001 | 2.001 | 2.01 | 2.1 2.5
f(z) | 0.250 0.250 | 0.250 | 0.249 | 0.244 | 0.222
1
For z # 2, f(z) = ot the limit is 1/4.
(P)| = -0.01 -0.001 -0.0001 0.0001 0.001 0.01
f(x) | 4.0021347 | 4.0000213 | 4.0000002 | 4.0000002 | 4.0000213 | 4.0021347
Use tandr  sindx _ 4 . s1n4x; the Timit is 4.
T rcosdxr  cosdr @ 4dx
3. (@) =z -0.01 | -0.001 | -0.0001 | 0.0001 | 0.001 | 0.01
f(x) | 0.402 | 0.405 | 0.405 0.406 | 0.406 | 0.409
y
0.5
\/ | X
(b) 71 i
4. T 2.9 2.99 | 2.999 | 3.001 | 3.01 3.1
f(z) | 5.357 | 5.526 | 5.543 | 5.547 | 5.564 | 5.742
-1 3 _ -1 2
5. The limit is M =1.
-1-1
3_ .2 3_ .2
6.F0TJ}751,$ z :mQ,solimx T
T — z—1 x —1
3z +9 3 3
7. If —3 th = ith limit —=.
x # en$2_~_4x+3 o1 Vith limit —2
8. The limit is —oo.
. .25 32
9. By the highest degree terms, the limit is 33
10 V2 +4—-2 a2 +4+2 x? 1 5 x2+4-2 1 1
. . = = ;80 lim ———— = lim —— = -.
2 V2 +4+2  22(Vo?+4+2)  VaZr442 20 x? =0 \/x2 £4+2 4
11. (a) y=0. (b) None. (c) y=2.
12. (a) v/5, no limit, v/10, v/10, no limit, 400, no limit.

(b) —1,+1,—1,—1, no limit, —1,+1
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13

14.

15.

16.

17.

18.

19.

20.

21.

23.

24.

25.

26.

27.

28.

sin 3x
tan 3z

If z # 0, then = cos 3z, and the limit is 1.

o 1 <
If = # 0, then TSIMT L COST .x (14 cosz), so the limit is 2.
1—cosx 1+4cosz sinx

Ifm#O,thenw:3—k
x

) 1—cosf 1—cosf . 1—cos?0 . sind sin 6
limtan| ———— ) =tan | lim ——— | =tan | lim ———— | = tan ( lim . =0
0—0 6 00 0 60 6(1 + cosb) -0 6 (14 cosb)

smékx)’ so the limit is 3 — k.

Ast — m/27, tant — —oo, so the limit in question is 0.

In(2sinfcosf) —Intanf = In2 + 2Incos, so the limit is In 2.

3\ % 3 z/3 (=3)
(1 + ) = (1 + > ] , so the limit is e=3.
x T
(ab)

bx z/a
(1 n E) - {(1 n 9) ] , 50 the limit is e,
X X

$2,001.60, $2,009.66, $2,013.62, $2013.75.

(a) f(z) = 22/(x — 1).

101|

(b)

Given any window of height 2¢ centered at the point © = a,y = L there exists a width 26 such that the window
of width 2 and height 2¢ contains all points of the graph of the function for = in that interval.

(a) lim £(z) = 5.

(b) § = (3/4) - (0.048/8) = 0.0045.

0 72 0.07747 (use a graphing utility).

(a) |4z — 7 — 1| < 0.01 means 4|z — 2| < 0.01, or |z — 2| < 0.0025, so § = 0.0025.

422 -9
2z —3

(b)

- 6‘ < 0.05 means |2z + 3 — 6] < 0.05, or |z — 1.5 < 0.025, so § = 0.025.

(c) |z% — 16| < 0.001; if § < 1 then |z + 4| < 9 if |x — 4| < 1; then |22 — 16| = |z — 4||x + 4] < 9|z — 4] < 0.001
provided |z — 4] < 0.001/9 = 1/9000, take & = 1/9000, then |22 — 16] < 9]z — 4| < 9(1/9000) = 1,/1000 = 0.001.

(a) Given € > 0 then |[4x — 7 — 1| < € provided |z — 2| < €/4, take § = €/4.

2

4z
b) Gi > 0 the i lit
(b) Given € e inequality ‘ 523

- 6‘ < e holds if [2x +3 — 6] < ¢, or |z — 1.5| < €/2, take § = €/2.
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29.

30.

31.

32.

33.

35.

36.

37.

38.

39.

Let € = f(z9)/2 > 0; then there corresponds a ¢ > 0 such that if |z — zg| < § then |f(x) — f(zo)| < e,
—e < f(x) — f(xo) <€ f(x) > flxo) —e= f(x0)/2>0, for zg — 6 <z < 29+ 9.

(a)| = 1.1 | 1.01 | 1.001 | 1.0001 | 1.00001 | 1.000001
f(z) | 0.49 | 0.54 | 0.540 | 0.5403 | 0.54030 | 0.54030

(b) cos1

(a) f is not defined at x = +1, continuous elsewhere.

(b) None; continuous everywhere.

(c) f is not defined at = 0 and z = —3, continuous elsewhere.
(a) Continuous everywhere except © = £3.

(b) Defined and continuous for z < —1, x > 1.

(c) Defined and continuous for = > 0.

For x < 2 f is a polynomial and is continuous; for x > 2 f is a polynomial and is continuous. At z = 2,
f(2)=-13#£13 = limJr f(z), so f is not continuous there.
r—2

a+b

b
flz)=—1lfora<z< % and f(x) =1 for <z < b; f does not take the value 0.

If, on the contrary, f(zg) < 0 for some zg in [0,1], then by the Intermediate Value Theorem we would have a
solution of f(x) =0 in [0, zg], contrary to the hypothesis.

f(=6) =185, f(0) = —1, f(2) = 65; apply Theorem 1.5.8 twice, once on [—6,0] and once on [0, 2].

(8) 7= f) =@+ 1 [ @) =y=Invr—T= (e 1)

. (1-=2y 1 1
b) = = sin ; r)=Y= """ 71 -
®) o= ) =sin (*2 )i f 0 == g
(c) ! tan (%), Th £ f consists of all # < ——— or > —2 this is al
r=-—————:y =tan . The range of f consists of all = or so this is also
1+3tan 1y’ 3z & 3r— 2 3712
1— _
the domain of f~'. Hence f~!(z) = tan <3w$>, T < g orz> Tt

Draw right triangles of sides 5, 12, 13, and 3, 4, 5. Then sin[cos™*(4/5)] = 3/5, sin[cos™1(5/13)] = 12/13,
cos[sin~'(4/5)] = 3/5, and cos[sin~*(5/13)] = 12/13.

(a) cos[cos~1(4/5) +sin(5/13)] = cos(cos~*(4/5)) cos(sin "' (5/13) — sin(cos ' (4/5)) sin(sin "' (5/13)) = 112

513
35 33

513 65

(b) sin[sin™*(4/5) 4 cos™'(5/13)] = sin(sin " (4/5)) cos(cos ™' (5/13)) + cos(sin~*(4/5)) sin(cos~(5/13)) = %% +
312 56
513 65
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y Ay y
B /2
2 -
| \ Ly L X L5
1 1 /2
i ) L L3
L 1
40. (a) - (b) - (<) (d)
41. y =5 ft = 60 in, so 60 = logz, x = 10% in ~ 1.58 x 10°° mi.
42, y =100 mi = 12 x 5280 x 100 in, so z = logy = log 12 4 log 5280 + log 100 = 6.8018 in.
43. 3In (e**(e”)®) + 2exp(Inl) = 3Ine® + 3In(e®)® +2-1 =3(2x) + (3-3)z + 2 = 150 + 2.
44. Y = In(Cef*) = InC + Ine** = In C + kt, a line with slope k and Y-intercept In C.
y
yf
X
%‘
ok
45. (a)
(b) The curve y = e~*/?sin 2z has x—intercepts at = —7/2,0,7/2,7,37/2. It intersects the curve y = e~ /2
at x = /4,57 /4 and it intersects the curve y = —e~%/2 at x = —7/4, 37 /4.
A
20
5
| | | | | !
46. (a) 1 2 3 4 5
(b) Ast gets larger, the velocity v grows towards 24.61 ft/s.
(c) For large t the velocity approaches ¢ = 24.61.
(d) No; but it comes very close (arbitrarily close).
(e) 3.009 s.
200
100
47. (a)

(b) N =80 when ¢t = 9.35 yrs.
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48.

49.

50.

51.

(c) 220 sheep.
(a) The potato is done in the interval 27.65 < t < 32.71.

(b) The oven temperature is always 400° F, so the difference between the oven temperature and the potato
temperature is D = 400 — T'. Initially D = 325, so solve D = 75 + 325/2 = 237.5 for ¢, so t ~ 22.76 min.

(a) The function Inx — 2%2 is negative at = 1 and positive at x = 4, so by the intermediate value theorem it is
zero somewhere in between.

(b) x =3.654 and 332105.108.

1 1
If ¥ = ¢® then klnxz = z, or g = The steps are reversible.
x

(b) By zooming it is seen that the maximum value of y is approximately 0.368 (actually, 1/e), so there are two
distinct solutions of 2F = e® whenever k > e.

(c) z ~ 1.155, 26.093.

(a) The functions 2% and tanz are positive and increasing on the indicated interval, so their product x2 tan x is
also increasing there. So is Inz; hence the sum f(r) = 2% tanz + Inx is increasing, and it has an inverse.

ij

2 A
B —
y=f )7 «
//// T n/z -
y: X//
o y=f(x)

(b)

The asymptotes for f(z) are x = 0, z = 7/2. The asymptotes for f~1(z) are y = 0,y = 7/2.

Chapter 1 Making Connections

1. Let P(x,2?) be an arbitrary point on the curve, let Q(—x,2?) be its reflection through the y-axis, let O(0,0) be

the origin. The perpendicular bisector of the line which connects P with O meets the y-axis at a point C(0, A(x)),
whose ordinate is as yet unknown. A segment of the bisector is also the altitude of the triangle AOPC which is
isosceles, so that CP = CO.

Using the symmetrically opposing point @ in the second quadrant, we see that OP = OQ too, and thus C is
equidistant from the three points O, P, @ and is thus the center of the unique circle that passes through the three
points.
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2. Let R be the midpoint of the line segment connecting P and O, so that R(x/2,22/2). We start with the
Pythagorean Theorem 0C° = OR + ﬁQ, or \2 = (2/2)? + (2%2/2)? + (2/2)?> + (A — 22/2)%. Solving for A
we obtain Az? = (22 + 24)/2,\ = 1/2 + 22/2.

3. Replace the parabola with the general curve y = f(x) which passes through P(z, f(z)) and S(0, f(0)). Let the
perpendicular bisector of the line through S and P meet the y-axis at C'(0,A), and let R(z/2,(f(x) — A)/2)
(

(
be the midpoint of P and S. By the Pythagorean Theorem, S = RS + @2, or (A — f(0)? = 2%/4 +

2 2
M IO o g [H 0T
. . 1 T
which yields A = 3 {f(O) + fx) + 7}0(@ — f(O)}

4 (@) F(0) = 0.0(0) = 420707 (s~ 1) = ()"
(b) f(0)=0,C(z) = %(secx +a?), 2% + (y — %)2 - (%)2

lx2+|x|2 2

(c) f(0)=0,C(x) = QT,x + 4% =0 (not a circle).
_ B z(1 +sin’ z) 9 1 2_ 1\ 2
(d) F(0) =0,C() = § T2 +(y_2> _ (2> |

() f(0)=1C)=5————

1426
22

(g) £(0)=0,C(z) =

, limit does not exist, osculating circle does not exist.

N[—=



