Chapter 2

Limits

2.1 The Idea of Limits

2.1.1 The average velocity of the object between time t = a and t = b is the change in position divided by the elapsed time: $v_{av} = \frac{s(b)-s(a)}{b-c}$

2.1.2 In order to compute the instantaneous velocity of the object at time t = a, we compute the average velocity over smaller and smaller time intervals of the form [a, t], using the formula: $v_{av} = \frac{s(t) = s(a)}{t - a}$. We let t approach a. If the quantity $\frac{s(t) = s(a)}{t - a}$ velocity of the object at time t = a. t^{-a} approachesalimitast—a, then that limit is called the instantaneous a

2.1.3 The slope of the secant line between points (a, f (a)) and (b, f (b)) is the ratio of the differences f (b) – f (a) and b – a. Thus $m_{\text{sec}} = \frac{f(b)-f(a)}{.}$

2.1.4 In order to compute the slope of the tangent line to the graph of y = f (t at (a, f (a)), we compute the slope of the secant line over smaller and smaller time intervals of the form [a, t]. Thus we consider the slope of the secant line over smaller and smaller time intervals of the form [a, t]. Thus we consider the slope of the tangent line to the curve t = t and let $t \to a$. If this quantity approaches a limit, then that limit is the slope of the tangent line to the curve t = t.

2.1.5 Both problems involve the same mathematics, namely finding the limit as $t \to a$ of a quotient of differences of the form t-a t-a t or t

2.1.6

Because f (x) = x^2 is an even function, f (-a) = f (a) for all a. Thus the slope of the secant line between the points (a, f (a)) and (-a, f (-a)) is $m_{sec} = \frac{f(-a)-f(a)}{-a-a} = \frac{0}{-2a} = 0$. The slope of the tangent line at x = 0 is also zero.

2.1.7 The average velocity is $(3)^{-6(2)} = 156 - 136 = 20$.

2.1.8 The average velocity is $^{s(4)-s(1)}$ $^{4-1}$ $^{144-84}$ $^{=60}$ $^{=20}$.

46 CHAPTER 2. LIMITS

2.1.9

a. Over [1, 4], we have
$$v_{av} = \frac{s(4)-s(1)}{4-1} = \frac{256-112}{4} = 48$$
.

b. Over [1, 3], we have
$$v_{av} = \frac{s(3)-s(1)}{3-1} = \frac{3}{240-112} = 64$$

c. Over [1, 2], we have
$$v_{av} = \frac{s(2) - s(1)}{2 - 1} = \frac{2}{100} = \frac{100 - 110}{100} = \frac{2}{100} = \frac{2$$

d. Over [1, 1 + h], we have
$$v_{av} = {s(1+h)-s(1) \over 1+h-1} = {16(1+h)_2 \over h} {128(1+h)-(112) \over h} = {16h_2 \over 32h+128h} = {16(-16h+96) \over h} = {16h_2 \over 12h+128h} = {16h_2 \over 12h+$$

2.1.10

a. Over [0, 3], we have
$$v_{av} = \frac{s(3)-s(0)}{3-0} = \frac{65.9-20}{15.3} = 15.3$$
.

b. Over [0, 2], we have
$$v_{av} = \frac{s(2)-s(0)}{2-0} = \frac{3}{2-0} = 20.2$$
.

c. Over [0, 1], we have
$$v_{av} = \frac{s(1)-s(0)}{1-0}$$
 $= \frac{2}{45.1-20} = 25.1.$

d. Over [0, h], we have
$$v_{av} = {s(h)-s(0) \over h-0} = {4.9h_2 \over h} {30h+20-20 \over h} = {h)(-4.9h+30) \over h} = -4.9h + 30.$$

2.1.11

$$a.\frac{s(2)-s(0)}{2-0}=\frac{72-0}{2}=36.$$

b.
$$\frac{s(1.5)-s(0)}{1.5-0}$$
 = $\frac{66-0}{1.5}$ = 44.

C.
$$\frac{s(1)-s(0)}{1-0} = \frac{52-0}{1} = 52.$$

$$d.^{s(.5)-s(0)} = 30-0 = 60.$$

2.1.12

a.
$$s(2.5)-s(.5)$$

2.5-.5 $=^{150-46}$ = 52.

b.
$$\frac{\text{s}(2)-\text{s}(.5)}{2-.5}$$
 = $\frac{136-46}{1.5}$ = 60.

C.
$$s(1.5)=s(.5)$$

1.5-.5 $=^{114-46} = 68$.

d.
$$\frac{s(1)-s(.5)}{1-.5}$$
 = $\frac{84-46}{5}$ = 76.

2.1.13

s 150

100 50 The slope of the secant line is given by $\frac{s(2)-s(.5)}{2-.5} = \frac{136-46}{1.5} = 60$. This represents the average velocity of the object over the time interval [.5, 2].

2.1.14

The slope of the secant line is given by $_{.5-0}^{s(.5)-s(0)} = _{.5-0}^{1} = 2$. This represents the average velocity of the object over the time interval [0, .5].

- 2.1.15 Time Interval [1, 2] [1, 1.5] [1, 1.1] [1, 1.01] [1, 1.001]

 Average Velocity 80 88 94.4 95.84 95.984

 The instantaneous velocity appears to be 96 ft/s.
- 2.1.16 Time Interval [2, 3] [2, 2.25] [2, 2.1] [2, 2.01] [2, 2.001] Average Velocity 5.5 9.175 9.91 10.351 10.395 The instantaneous velocity appears to be 10.4 m/s.
- 2.1.17 $\frac{s(1.01)-s(1)}{.01}$ = 47.84, while $\frac{s(1.001)-s(1)}{.001}$ = 47.984 and $\frac{s(1.0001)-s(1)}{.0001}$ = 47.9984. It appears that the instantaneous velocity at t = 1 is approximately 48.
- 2.1.18 $\frac{s(2.01)-s(2)}{.01} = -4.16$, while $\frac{s(2.001)-s(2)}{.001} = -4.016$ and $\frac{s(2.0001)-s(2)}{.0001} = -4.0016$. It appears that the instantaneous velocity at t = 2 is approximately -4.
- 2.1.19 Time Interval [2, 3] [2.9, 3] [2.99, 3] [2.999, 3] [2.9999, 3] [2.99999, 3] Average Velocity 20 5.6 4.16 4.016 4.0016 4.00016 The instantaneous velocity appears to be 4 ft/s.
- 2.1.21 Time Interval [3, 3.1] [3, 3.01] [3, 3.001] [3, 3.0001]

 Average Velocity -17.6 -16.16 -16.016 -16.002

 The instantaneous velocity appears to be -16 ft/s.
- 2.1.22 Time Interval $[\pi/2, \pi/2 + .1]$ $[\pi/2, \pi/2 + .01]$ $[\pi/2, \pi/2 + .001]$ $[\pi/2, \pi/2 + .001]$ Average Velocity -19.9667 -19.9997 -20.0000 The instantaneous velocity appears to be -20 ft/s.

2.1.25	x Interval	[2, 2.1]	[2, 2.01]	[2, 2.001]	[2, 2.0001]
220	Slope of Secant Line	8.2	8.02	8.002	8.0002

The slope of the tangent line appears to be 8.

2.1.26	x Interval	$[\pi/2, \pi/2 + .1]$	$[\pi/2, \pi/2 + .01]$	$[\pi/2, \pi/2 + .001]$	$[\pi/2, \pi/2 + .0001]$
	Slope of Secant Line	-2.995	-2.99995	-3.0000	-3.0000

The slope of the tangent line appears to be -3.

2.1.27	x Interval	[-1,9]	[-1,99]	[-1,999]	[-1,9999]
	Slope of the Secant Line	.524862	.5025	.50025	.500025

The slope of the tangent line appears to be .5.

2.1.28	x Interval	[1, 1.1]	[1, 1.01]	[1, 1.001]	[1, 1.0001]
	Slope of the Secant Line	2.31	2.0301	2.003	2.0003

The slope of the tangent line appears to be 2.

2.1.29

- a. Note that the graph is a parabola with vertex (2, -1).
- b. At (2, −1) the function has tangent line with slope 0.

. -	x Interval	[2, 2.1]	[2, 2.01]	[2, 2.001]	[2, 2.0001]
C.	Slope of the Secant Line	.1	.01	.001	.0001

The slope of the tangent line at (2, -1) appears to be 0.

2.1.30

- a. Note that the graph is a parabola with vertex (0, 4).
- b. At (0, 4) the function has a tangent line with slope 0.
- c. This is true for this function because the function is symmetric about the y-axis and we are taking pairs of points symmetrically about the y axis. Thus f $(0 + h) = 4 (0 + h)^2 = 4 (-h)^2 = f (0 h)$. So the slope of any such secant line is^{4-h2}= $^{(4-h2)}h-(-h)=^{0-2}h$ = 0.

2.1.31

a. Note that the graph is a parabola with vertex (4, 448).

400 300

200

100

b. At (4, 448) the function has tangent line with slope 0, so a = 4.

2 4 6 8

c. x Interval [4, 4.1] [4, 4.01] [4, 4.001] [4, 4.0001] Slope of the Secant Line -1.6 -.16 -.016 -.0016

The slopes of the secant lines appear to be approaching zero.

- d. On the interval [0, 4) the instantaneous velocity of the projectile is positive.
- e. On the interval (4, 9] the instantaneous velocity of the projectile is negative.

2.1.32

a. The rock strikes the water when s(t) = 96. This occurs when 16t2 = 96, or t2 = 6, whose only positive $\sqrt{}$

solution is $t = 6 \approx 2.45$ seconds.

b. t Interval $\begin{bmatrix} \sqrt{} & \sqrt{} & \sqrt{} & \sqrt{} & \sqrt{} & \sqrt{} & \sqrt{} \\ [6-.1, 6] & [6-.01, 6] & [6-.001, 6] & [6-.0001, 6] \end{bmatrix}$ Average Velocity 76.7837 78.2237 78.3677 78.3821

2.1.33 For line AD, we have

$$m_{AD} = \begin{array}{c} y_D - y_A \\ x_D - x_A \end{array} = f \frac{(\pi) - f(\pi/2)}{\pi - (\pi/2)} = \begin{array}{c} 1 \\ \pi/2 \end{array} \approx .63662.$$

$$m_{AC} = \begin{array}{c} y_C - y_A \\ x_C - x_A \end{array} = \begin{array}{c} f(\pi/2 + .5) - f(\pi/2) \\ (\pi/2 + .5) - (\pi/2) \end{array} = \frac{\cos(\pi/2 + .5)}{.5} \approx .958851.$$

For line AC, we have

$$m_{AC} = \begin{cases} y_C - y_A \\ x_C - x_A \end{cases} = \begin{cases} f(\pi/2 + .5) - f(\pi/2) \\ (\pi/2 + .5) - (\pi/2) \end{cases} = \frac{\cos(\pi/2 + .5)}{5} \approx .958851.$$

For line AB, we have

$$m_{AB} = \frac{y_B - y_A}{x_B - x_A} = \frac{f^{(\pi/2 + .05) - f(\pi/2)}}{(\pi/2 + .05) - (\pi/2)} = \frac{\cos(\pi/2 + .05)}{.05} \approx .999583.$$

Computing one more slope of a secant line:

$$m_{\text{sec}} = \begin{array}{cc} f\left(\pi/2 + .01\right) - f\left(\pi/2\right) \\ (\pi/2 + .01) - (\pi/2) \end{array} = \begin{array}{c} \cos(\pi/2 + .01) \\ .01 \end{array} \approx .999983.$$

Conjecture: The slope of the tangent line to the graph of f at $x = \pi/2$ is 1.

Copyright © 2013 Pearson Education, Inc.

2.2 Definitions of Limits

2.2.1 Suppose the function f is defined for all x near a except possibly at a. If f (x) is arbitrarily close to a number L whenever x is sufficiently close to (but not equal to) a, then we write $\lim f(x) = L$.

2.2.2 False. For example, consider the function f (x) = $^\square x^2$ if x = 0

Then $\lim_{x\to 0} f(x) = 0$, but f(0) = 4.

 \Box 4 if x = 0.

2.2.3 Suppose the function f is defined for all x near a but greater than a. If f (x) is arbitrarily close to L for x sufficiently close to (but strictly greater than) a, then $\lim_{x \to a^+} f(x) = L$.

2.2.4 Suppose the function f is defined for all x near a but less than a. If f (x) is arbitrarily close to L for x sufficiently close to (but strictly less than) a, then $\lim_{x\to a^-} f(x) = L$.

2.2.5 It must be true that L = M.

2.2.6 Because graphing utilities generally just plot a sampling of points and "connect the dots," they can sometimes mislead the user investigating the subtleties of limits.

2.2.7

a.
$$h(2) = 5$$
.

b.
$$\lim_{x\to 2} h(x) = 3$$
.

c. h(4) does not exist.

d.
$$\lim_{x \to 4} f(x) = 1$$
.

e.
$$\lim_{x \to 5} h(x) = 2$$
.

2.2.9

a.
$$f(1) = -1$$
.

b.
$$\lim_{x\to 1} f(x) = 1$$
.

c.
$$f(0) = 2$$
.

d.
$$\lim_{x\to 0} f(x) = 2$$
.

2.2.8

a.
$$g(0) = 0$$
.

b.
$$\lim_{x\to 0} g(x) = 1$$
.

c.
$$g(1) = 2$$
.

d.
$$\lim_{x \to 1} g(x) = 2$$
.

2.2.10

a.
$$f(2) = 2$$
.

b.
$$\lim_{x \to 2} f(x) = 4$$
.

c.
$$\lim_{x \to 4} f(x) = 4$$
.

d.
$$\lim_{x \to 5} f(x) = 2$$
.

2.2.11

a.	х	1.9	1.99	1.999	1.9999	2	2.0001	2.001	2.01	2.1
	$f(x) = \frac{x_2}{x-2}$	3.9	3.99	3.999	3.9999	undefined	4.0001	4.001	4.01	4.1

b.
$$\lim_{x\to 2} f(x) = 4$$
.

2.2.12

a	Х	.9	.99	.999	.9999	1	1.0001	1.001	1.01	1.1
a.	$f(x) = x_3 - 1$	2.71	2.9701	2.997	2.9997	undefined	3.0003	3.003	3.0301	3.31

b.
$$\lim_{x\to 1} \frac{x^3-1}{x-1} = 3$$

2.2.13

a. ₋	t	8.9	8.99	8.999	9	9.001	9.01	9.1
u.	$g(t) = \frac{\sqrt{1 - 2\theta - 3}}{1 - 2\theta - 3}$	5.98329	5.99833	5.99983	undefined	6.00017	6.00167	6.01662

b.
$$\lim_{t\to 9} \frac{t-9}{t-3} = 6$$
.

2.2.14

a.	Х	.01	.001	.000	.00001	_
	$f(x) = (1 + x)^{1/x}$	2.7048	1 2.7169	2.718	5 2.71827	
	Х	01	001	0001	00001	_
	$f(x) = (1 + x)^{1/x}$	2.732	2.71964	2.71842	2.71830	

b.
$$\lim_{x\to 0} (1+x)^{1/x} \approx 2.718$$
.

c.
$$\lim_{x\to 0} (1 + x)^{1/x} = e$$
.

2.2.15

b.	X	1.8	1.9	1.99	2.01	2.1	2.2
	f (x)	1.0067	1.00167	1.00002	1.00002	1.00167	1.0067

From both the graph and the table, the limit appears to be 1.

2.2.16

a.

b.	Х	2	-0.1	-0.01	.01	0.1	0.2
ν.				2.00008			

From both the graph and the table, the limit appears to be 2.

2.2.17

a.

b	X	0.9	0.99	0.999	1.001	1.01	1.1
υ.	f (x)	1.993342	1.999933	1.999999	1.999999	1.999933	1.993342

From both the graph and the table, the limit appears to be 2.

2.2.18

a.

b	Χ	-0.1	-0.01	-0.001	0.001	0.01	0.1
				2.999			

From both the graph and the table, the limit appears to be 3.

2.2.19

х	4.9	4.99	4.999	4.9999	5	5.0001	5.001	5.01	5.1
$f(x) = x_2 = 25$	9.9	9.99	9.999	9.9999	undefined	10.0001	10.001	10.01	10.1

$$\lim_{x \to 5^+} \frac{x^2 - 25}{x - 5} = 10, \lim_{x \to 5^-} \frac{x^2 - 25}{x - 5} = 10, \text{ and thus } \lim_{x \to 5} \frac{x^2 - 25}{x - 5} = 10.$$

2.2.20

х	99.9	99.99	99.999	99.9999	100	100.0001	100.001	100.01	100.1
$f(x) = \sqrt{-100}$	19.995	19.9995	19.99995	≈ 20	undefined	≈ 20	20.0005	20.00005	20.005

$$\lim_{x \to 100^+} \frac{x-100}{\sqrt[4]{x}-10} = 20, \ \lim_{x \to 100^-} \frac{x-100}{\sqrt[4]{x}-10} = 20, \ \text{and thus} \ \lim_{x \to 100} \frac{x-100}{\sqrt[4]{x}-10} = 20.$$

2.2.21

a.
$$f(1) = 0$$
.

b.
$$\lim_{x \to 1^{-}} f(x) = 1$$
.

c.
$$\lim_{x \to 1^+} f(x) = 0$$
.

d. $\lim_{x\to 1} f(x)$ does not exist, since the two one-sided limits aren't equal.