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Chapter 1

Circuit Elements and Models

The numbers in parentheses after the problem numbers refer to the abilities needed
to work the problem. These are listed in the final section of the chapter labelled
”New Abilities Required.”

Drill Problems
All drill problems have solutions on the CD-ROM.

P-1.1 (4) For the circuit in Figure 1.1 write a KCL equation at every node in the
circuit in terms of the current variables whose reference directions are given.
This problem is similar to Example 1-1.

i3(t)

ia(t)

ia(?) i4(?)
is(t) Figure 1.1: Circuit for Problems P-
1.1 and P-1.7.

Solution: There are three nodes in this circuit as shown below.
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2 CHAPTER 1. CIRCUIT ELEMENTS AND MODELS

a | _________ia(t) b
{ o S e I
Yoty - - Y24 ()
CD is(2)
_______________________ C

If we sum the currents entering the node, then the three KCL
equations are:

node a:  —iq(t) — ia(t) + i3(t) + is(t) =0

node b: ig(t) - ig(t) - i4(t) =0
node ¢:  41(t) + i4(t) —is(t) = 0.

P-1.2 (4) Write a sufficient set of KCL equations for the circuit in Figure 1.2.
This problem is similar to Example 1-1.

il(t)59 30Q is(t)
7,2(t) 7'4(t)

vs(£) (i 1OQ§ 0 104 (2) § 10

Figure 1.2: Circuit for Problems P-
1.2 and P-1.28.

Solution: The circuit contains the three non-trivial nodes indi-
cated below.

(t) 5Q a 300 3 (t)

S AM—E AT |
Yi2(t) 10 ia(?)
vs(t)Ci 1OQ§ <1 1045 (¢) §1Q

—_—— e e~
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node a: i1(t) —ia(t) —i3(t) =0
node b: ’i3(t) 4+ 10i1(t) — i4(t) =0

P-1.3 (1,4) The circuit in Figure 1.3 contains four elements and a voltage source.
Write a sufficient set of KCL equations to fully constrain all the currents in
the circuit. You may exploit any obvious series and parallel connections to
reduce the number of variables. Notice that only the voltages are labelled,
although you should write your equations using current variables. You should
assume that the reference directions for the currents are consistent with the
default sign convention. Furthermore, let the current flowing into the element
with voltage v;(t) be i1(t), etc. This problem is similar to Example 1-2.

vs(t)

+ +
U1 (t) I \ | (2 (t)
B B Figure 1.3: Circuit for Problems P-
—— 1.3 and P-1.5.

Solution: Element 1 is connected in series with element 4. There-
fore, i1(t) = i4(t). Element 3 is connected in series with the voltage
source. Therefore, the current that flows through the voltage source
is i3(t). Once these facts are acknowledged, we are left with only
two nodes—one at the upper left and one at the lower right—that
produce the same KCL equation:

’il(t) + ig(t) + ’ig(t) =0.

P-1.4 (1,2,4,7) For the circuit in Figure 1.4 write a sufficient set of KCL equations
in terms of the voltage variables that are labelled. You should incorporate
Ohm’s Law for the resistors. Exploit any obvious series and parallel con-
nections to reduce the number of equations and variables. This problem is
similar to Example 1-3.
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4 CHAPTER 1. CIRCUIT ELEMENTS AND MODELS

Lult) o Lve(t)
AW
1Q

20
wo(E) 103w 203u0 (1)

Figure 1.4: Circuit for Problems P-
1.4 and P-1.26.

Solution: We begin by redrawing the circuit to identify the four
nodes.

vs(t) i) 19§§3(t) zgg;a) Q (1)

Since the circuit contains four nodes, it will be sufficient to write
only three KCL equations. The equation at node a, will tell us only
that the current flowing upwards through the voltage source is the
same as i1(t), since these two “elements” are connected in series;
we can ignore this one. That leave only nodes b and c.

node b: UIT(t) —vg(t) —ws(t) =0

node ¢:  wva(t) — v42(t) = —i4(t)

P-1.5 (5) Write a KVL equation for every simple closed path in the circuit in
Figure 1.3 in terms of the voltages whose reference directions are given in
that figure. This problem is similar to Example 1-4.

Solution: There are three simple closed paths: a path around the
left mesh, a path around the right mesh, and an outer path.
left:  —v1(t) + va(t) —va(t) =0
right:  v3(t) — va(t) + vs(t) =0
outer: —vy(t) + vs(t) +v3(t) —va(t) =0
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Notice that the third equation is equal to the sum of the first two.

P-1.6 (5) Write a sufficient set of KVL equations to incorporate the constraints on
the voltages over all closed paths for the circuit in Figure 1.5. This problem
is similar to Example 1-4.

Lu2(t) _

50

is(t) D 59?}1(1&) <¢>0.1v1(t)

. Figure 1.5: Circuit for Problems P-
1.6 and P-1.29.

Solution: Let the potential difference across the current source
be v(t), as drawn. There are two meshes in this circuit, so it is
sufficient to write two KVL equations, one for each mesh.

left mesh:  —v(t) +v1(t) =0

right mesh:  —vy(¢) + va(t) + 0.1v1(t) = 0 = —0.9v;(t) + va(t) =0

P-1.7 (5) Write a sufficient set of KVL equations to incorporate all of the voltage
constraints for the circuit in Figure 1.1. Since only the currents are labelled,
you should assume that the reference directions for the element voltages are
consistent with the default sign convention. Let the voltage across the element
with current i, () be v1(t), etc. Define a voltage across the terminals of the
current source. This problem is similar to Example 1-5.

Solution: We need to write a KVL equation for each mesh. Let
v(t) be the voltage across the current source.

upper: —v3(t) —va(t) =0
lower left: —i,(¢) +v(¢t) =0
lower right: —v(t) + va(t) + va(t) =0
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6 CHAPTER 1. CIRCUIT ELEMENTS AND MODELS

P-1.8 (1,2,5,7) For the circuit in Figure 1.6 write a sufficient set of KVL equations
to constrain all of the element variables in terms of the current variables that
are indicated. You should incorporate Ohm’s Law for the resistors. Use any
obvious series and parallel connections to reduce the number of equations and
variables. This problem is similar to Example 1-7.

i1(t) ia(t)
>~ AM—1>
29 30
v, (t) i) 19§ IQ§ Q is(t)

Figure 1.6: Circuit for Problems P-

i3(t) i4(t) 1.8 and P-1.27.

Solution: The right mesh KVL equation tells us only that the
voltage across the current source is the same as the voltage across
the resistor connected in parallel to it. The remaining two KVL
equations are:

left mesh: 241 (¢) — is(t) = vs(2)
center mesh: i3(t) + 3ia(t) — iy(t) =0

P-1.9 (2,4,5)
This problem is similar to Example 1-7.

-

io(t)f in(t) i(t)

vs(t) 1 Q§ 4 Q§ Vo (5(@) is(t)

- Figure 1.7: Circuit for Problem P-
1.9.

il(t)f/{}\’ 3R 45(0)

(a) How many nodes are present in the circuit in Figure 1.7?
(b) How many meshes are present in that circuit?

(c) Write a KCL equation at every node in the circuit in terms of the indicated
current and voltage variables.
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(d) Write a KVL equation for every mesh in the circuit. Write those equations
using the indicated current variables by incorporating Ohm’s Law for
each resistor.

Solution:

(a) The circuit has four nodes, three on the top row of the circuit
and one at the bottom.

(b) The circuit has three meshes.

(c) Let node a be the connection between the positive terminal of
the voltage source and the 2 Q resistor, node b be the connection
where the three resistors are joined, node ¢ be the connection
joining the 3€) resistor, 4§) resistor, and the current source,
and node d be the one at the base of the circuit. Then, the
four KCL equations are:

node a: io(t) —i1(t) =0

node b:  i1(t) — ia(t) +i3(t) =0

node c:  —ig(t) —ia(t) +1is(t) =0

node d:  —ig(t) + ia(t) + 14(t) — is(t) = 0.

(d) Denote the three meshes as the left, middle, and right mesh,
respectively. Then the three KVL equations are:

left mesh:  —wvs(t) + 2i1(¢) +42(t) =0
middle mesh: —iy(t) — 3i3(t) + 4ig(t) =0
right mesh:  —4i4(t) + vo(t) = 0.

P-1.10 (2,4,5)
All resistances are measured in Ohms. This problem is similar to Example 1-7.
(a) How many meshes are present in the circuit in Figure 1.8?
(b) How many nodes are present in that circuit?

(c) Write a KVL equation at every mesh in the circuit in terms of the indi-
cated voltage and current variables.

(d) Write a KCL equation for every node in the circuit. Write those equations
using the indicated voltage variables by incorporating Ohm’s Law for
each resistor.

© 2006 Pearson Education, Inc., Upper Saddle River, NJ. Allrights reserved. This material is protected under all copyright laws as they currently exist.
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8 CHAPTER 1. CIRCUIT ELEMENTS AND MODELS

+ Ug(t) _
aAAY
15

L v2(t) _ L val(t) _

i5(t) i

AN A
vy (t) Ci vl({)gzo is(t)CD ve(t)

+  Figure 1.8: Circuit for Problem P-
1.10.

Solution:

(a) This circuit has three meshes. Call them the top mesh, left
mesh, and right mesh.

(b) This circuit has four nodes. In this circuit each is marked by
one of the solid dots. Beginning at the upper left node and
proceeding clockwise, call these nodes a, b, ¢, and d.

(¢) The KVL equations are:

top mesh:  —wva(t) + v3(t) — v4(t) =0
left mesh: vy (t) + va(t) —vs(t) =0
right mesh: —wvq(¢) + va(t) — vs(t) = 0.

(d) The KCL equations at all of the nodes are:

V2 (t) Vs (t)

node a: — + 5 +i5(t) =0
Cou(t)  wa(t) | va(t)
node b: 20 3 0 = 0
. _’Ug(t) . ’U4(t) . .
node c: is 10 is(t) =0
node d: _ul) i5(t) +is(t) = 0.

20

P-1.11 (6) This problem is similar to Example 1-7.

(a) For the network in Figure 1.9 write a set of equations that expresses all
of the constraints on the element and source voltages and currents that
are implied by the network model.

(b) Solve those equations to determine ia(t).
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ig (t) Fa

2(t)

vs(t) Ci §R2 Q is(t)

Figure 1.9: Circuit for Problem P-
1.11.

Solution:

(a) Since R; is in series with the voltage source, the current i;(%)
passes through that source as well as R;. In addition, we can
let va(t) be the voltage across both resistor Ry and the current
source, since those elements are connected in parallel.

We are left with four unknowns—the two resistor voltages
and the two resistor currents. To find the complete solution we
will, therefore, need to find four independent equations. Thus,
we should write two element relations for the two resistors,
one KCL equation, and one KVL equation. These are written
below.

Ry wvi(t) = Ryis(f)
Ry wvy(t) = Raia(t)
KCL:  41(t) —ia(t) +is(t) =0
KVL:  —vg(t) +v1(t) +v2(t) =0
(b) Use the element relations to eliminate vq(t) and vo(t) in the
KVL equation, and rewrite the remaining equations with the

source terms on the right-hand side. This gives the following
two equations for the two unknown currents:

i1(t) — ia(t) = —is(2)
Rlil(t) + Rgig(t) = ’Us(t).

If we multiply the first equation by R; and subtract the two
equations, we can solve for i5(t):

i2(t) = g 0e(®) + Raic (O,

P-1.12 (2,4,5) Find the differential equation that relates the current ir(t) to the
source current is(t) in the circuit of Figure 1.56. This problem is similar to
Example 1-10.

© 2006 Pearson Education, Inc., Upper Saddle River, NJ. Allrights reserved. This material is protected under all copyright laws as they currently exist.
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10 CHAPTER 1. CIRCUIT ELEMENTS AND MODELS

ir(t)

is(t) (f) %L §R_
Figure 1.10: Circuit for Problem P-
1.12,

Solution: Let the (top-to-bottom) current through the inductor
by i¢(t). Then from KCL

ig(t) + ir(t) = is(t).
Writing a KVL equation around the right mesh gives

dig(t) .
—L—%%—l + Rig(t) =0

Using the KCL equation to solve for i,(¢t) and substituting this
result into the KVL equation gives

d
_Lai(is(t) —1ir(t)) + Rir(t) =0,
which simplifies to
dir(t) R, dis(t)
7 + .

P-1.13 (6) The circuit in Figure 1.11 contains a voltage-controlled current source.
Write a sufficient set of KCL equations to specify the current constraints in
the circuit using the variables 11 (t), 2(t), and i3(t).

io(t) 54
T A ia(®)

is(t) Q 109§§1(t) <¢ 0.2v1(t) §5Q

Figure 1.11: Circuit for Problems P-
1.13 and P-1.14.

© 2006 Pearson Education, Inc., Upper Saddle River, NJ. Allrights reserved. This material is protected under all copyright laws as they currently exist.
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11

Solution: First we need to express v1(t) in terms of the current

variables.
’Ul(t) = 107;1(t) > 0.2U1(t) = 2’i1(t)

Writing KCL equations at the two upper nodes gives

i () +ia(t) = is(t)
ip(t) +2i1(t) —is(t) =0

P-1.14 (6) Find the values of the currents for the circuit in Figure 1.11. This
problem is similar to Example 1-11.

Solution: This solution builds on the solution to Problem P-1.13.
Let the potential difference across the terminals of the dependent
source be v(t). We can then redraw the circuit as shown in Fig-
ure 1.12. Notice that we have changed the voltage-controlled cur-

in(t) 58
, MWV .
i1(t) i3(t)
+ + Figure 1.12: Redrawn version of Fi
is(t) (1 109 §UI () v(t) T> 24y (t) §5 Q2 ure 1.11 to indicate the dependence
- - the source on 41(t) rather than v (i
The voltage v(t) is also defined.

rent source to a current-controlled current source. From the solu-
tion to Problem P-1.13 the KCL equations at the two upper nodes
are

i1 () +ia(t) = is(t) (1.1)
ia(t) + 21 () — i3(t) = 0. (1.2)

Writing two KVL equations on the two rightmost meshes, using the
labelled currents as variables, gives the additional relations

—10’i1(t) + 5i2(t) + ’U(t) =0
——U(t) + 5ig(t) = 0.

Adding these last two equations eliminates v(t) and yields

~10i1(t) + 5ia(t) + 5is(t) = 0 (1.3)

© 2006 Pearson Education, Inc., Upper Saddle River, NJ. Allrights reserved. This material is protected under all copyright laws as they currently exist.
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12 CHAPTER 1. CIRCUIT ELEMENTS AND MODELS

Multiplying (1.2) by 5 and adding the result to (1.3) gives

10i2(t) =0= iQ(t) = 0.

Incorporating this result into (1.1) gives

11 (t) =1 (t)

and from (1.2)

is(t) = 2is(t).

Basic Problems

P-1.15 (2,3) Assume that the current flowing through a device is i(t) and that
the potential difference across its terminals is v(t), where these waveforms are
sketched in Figure 1.13. Mathematically these are given by

o(t) = 1, 0<t<1
~ 1 0, otherwise

1—e™3 0<t<l1

it)=¢ e30¢-D 1<t
0, otherwise
v(t) i(t)
1 1+
7 i > Figure 1.13: Voltage and current
1 1 waveforms for Problem P-1.15.

(a) Calculate and sketch the power P;,:(t) absorbed by the device as a func-

tion of time.
(b) Compute the total amount of energy that the device absorbs.

Solution:

©.2006 Pearson Education, Inc., Upper Saddle River, NJ. Allrights reserved. This material is protected under all copyright laws as they currently exist.
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13

, 1—e 3 0<t<1
Pinst(t) = v(t)i(t) = { 0, otherwise.

Pinst(t)
1 4

¥

1 t
(b) The total energy absorbed is

1
2 1
E—/Pznst(t)dt—§+§6
0

P-1.16 (2,7) The current source in the network shown in Figure 1.14a has the
time dependence shown in Figure 1.14b.

orl(t). 2elt)_
AN I is(t)
100Q

(a)

Figure 1.14: Circuit and source waveform for Problem P-1.16.

(a) Sketch v.(t).
(b) Sketch ve(2).
(c) Assuming v.(0) = 0, sketch v.(¢).

Solution:

(a) The same current i,(t) passes through all three elements: the
resistor, the capacitor, and the inductor. For each, we make
use of its element relation. For the resistor

vr(£) = 1000, (£).

© 2006 Pearson Education, Inc., Upper Saddle River, NJ. Allrights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



14 CHAPTER 1. CIRCUIT ELEMENTS AND MODELS

Figure 1.15: Resistor voltage derived
i from the current waveform shown in
Figure 1.13.

Since the voltage is proportional to the current and the current
is known, we can readily graph the voltage waveform, which is
done in Figure 1.15
(b) For the inductor the voltage is proportional to the first deriva-
tive of the current passing through it, which is #5(t). Thus,
dis (t)

= 0.001 ——.
’Ue(t) 00 7t

This waveform is plotted in Figure 1.16.

vg(t)
.00005
4
: : —t
1 2 3 5 ]
Figure 1.16: Inductor voltage de-
rived from the current waveform
—.00003 + shown in Figure 1.13.

(c) For the capacitor the voltage is proportional to the integral of
the current:

ve(t) = é/%(ﬂ) dp + ve(to)-

If we assume that the voltage on the capacitor is zero at ¢ = 0,

then
t

ve(t) =100 [ i5(B)dp,
0

for t > 0, which is graphed in Figure 1.17. The graph was
produced with the help of MATLAB.

© 2006 Pearson Education, Inc., Upper Saddle River, NJ. Allrights reserved. This material is protected under all copyright laws as they currently exist.
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capacitor voltage

‘ ‘ _ Figure 1.17:  Capacitor voltage
0 1 2 3 4 5 derived from the current waveform
time shown in Figure 1.13.

P-1.17 (2,7) The voltage source in the circuit shown in Figure 1.18a has the source
waveform shown in Figure 1.18b.

o e Viw 1

vs (1) (i 3Q 1H§ F==

(2) -1 (b) 1

Figure 1.18: Circuit and source waveform for Problem P-1.17.

DN =t

(a) Sketch i.(t).
(b) Sketch i.(t).
(c) Sketch i(t). Assume iz(—o00) = 0.

Solution:

(a) The same voltage, v,(t) is applied to all three elements by the
voltage source. This means that we can find each current by
using the appropriate element relation. For the resistor,

in(t) = %vr(t) - %Us(t) - %vs(t).

Its graph is shown below.

© 2006 Pearson Education, Inc., Upper Saddle River, NJ. Allrights reserved. This material is protected under all copyright laws as they currently exist.
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16 CHAPTER 1. CIRCUIT ELEMENTS AND MODELS

in(t)

o)t

i T 1 t
-1 1

(b) The current through a capacitor is proportional to the first
derivative of the voltage. Therefore,

1 —1<t<o0
ie(t) = Cd”c;t(t) = %dv(;gt) = —%, 0<t<1

0, otherwise.
ie(t)
1
2

1
t
-1

(¢) The current through an inductor is proportional to the integral
of the voltage.

ig(t)z% /vg('r)dT—f-'Ug(—oo): /’Ue(T)dT

If we assume that i,(—o0) = 0, then there are four cases to

consider
( 0, t< -1
ft(r+1)d7-, -1<t<0
ie(t) = < -1
i+ fl—7m)dr, 0<t<1
L ’ 1, 1<t

Evaluating the integrals gives

0, t<-1
2141, —1<t<0
S +t+3, 0<t<l1
1, 1<t

ie(t) =

This relation is graphed below.

© 2006 Pearson Education, Inc., Upper Saddle River, NJ. Allrights reserved. This material is protected under all copyright laws as they currently exist.
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i(t)
1.0

0.5

P-1.18 (2,7) The voltage waveform for the voltage source in the network of Fig-

ure 1.19 is
sin 27 (100)t, t>0
”S(t)z{o, oo t<0

) ) io(t)

vs(t) i) 2009 %10 mH == 1uF
Figure 1.19: Circuit for Problem P-
1.18.

(a) Determine 4,(t).
(b) Assuming 4,(0) = 0, determine i,(¢).
(c) Determine i.(t).

Solution:
(a) The potential difference across all three elements is vs(t). Thus,
we can find their currents using a simple application of the v —1

relations. For the resistor the current is proportional to the
voltage

o1 _{ 0.005sin27(100)t, t>0
in(t) = 200 (t) = { 0, otherwise.

(b) The current through an inductor is proportional to the integral
of the voltage across its terminals. Therefore, we can write
) ¢ t
iet) = 57 [ 0s(8) 4B +ie(0) = 100 [ v.(8) 5 +ie(0).
0

0
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18 CHAPTER 1. CIRCUIT ELEMENTS AND MODELS

Assuming that the initial value of the inductor current is zero,
this gives

o [1 — cos27(100)t], t>0
; — 2m [ ? —
ilt) = { b Zo

To determine the value of i,(t) for ¢t < 0, we appeal to the fact
that the integral is equal to the area under the curve. Since
i¢(t) = 0, for ¢t < 0, the integral under this portion of the curve
is zero also.

(c) The current through a capacitor is proportional to the deriva-
tive of the voltage across its terminals. Therefore,

'w—cmﬂf— 1076 . 27(100) cos 2m(100)¢, ¢ >0
ielt) = O~ = 0, t<0
_ [ 2710~ *cos27m(100)t, t>0
10 t<0.

P-1.19 (2,7) In the circuit shown in Figure 1.20 the current source waveform is

) 5cos(50t), t>0
’40:{0,( ) t <.

MV

. vr () ve(t)

2H

50
+
is(t) ?) 3F ve(t)
T_ Figure 1.20: Circuit for Problem P-
1.19.

(a) Determine v,.(t).
(b) Determine v,(t).
(c) Determine v.(t), if v.(0) = 0.

Solution:
(a) The same current, i5(t), flows through all three elements. We

can calculate the voltages by using the three element relations.
For the resistor

) 25cos(b0t) ¢t >0
”An:mAQZ{o ( )t<&
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(b) For the inductor

ve(t) = Ldv;t(t) = 2%(5 cos(50t)) = —500sin(50t), ¢ > 0.

The inductor voltage v,(t) =0 for t < 0.
(c) For the capacitor for ¢t > 0

t

1 5 1
ve(t) = ol /’LC(T =3 /cos (507)dr = —?ﬁsin(SOt).

0 0

The capacitor voltage is zero for ¢t < 0.

P-1.20 (2,7) For the circuit in Figure 1.21 the current source waveform is

) et—e 2 t>0
Zs(t)z{ 0, t<0

It is known that v.(—o0) = 0.

+ur(t)- +ve(t) -
AN TO0—
2Q 1H

+
is(t) T) :F == ()
- Figure 1.21: Circuit for Problem P-
1.20.

(a) What is v,(t)?
(b) What is ve(t)?
(c) What is v.(¢t)?

Solution: The same current i,(¢) flows through all three elements.

(a) vp(t) = Ri,(t) = 2i5(t). Therefore,

27t —e™%), t>0
v’”(t)z{ 0,( : t < 0.

(b) ve(t) = Ldijl—t(t). Therefore,

—et 4272 t>0
=1 5 120
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(c) Since
t
1 :
%@zafmﬂw
0
Since v.(—00) = 0 and i.(t) = 0, t < 0, we must have v.(0) = 0.
This specifies the constant of integration.

—3e~t43e 242 t>0
%“*:{0, ’ Y t<o

P-1.21 (2,3)
(a) The voltage across the terminals of a 1F capacitor is

1
_J 5(1—cosnt), 0<t<2
v(t) = { 0, otherwise.

This waveform is shown in Figure 1.22.

v(t)
14

: — Figure 1.22: Waveform for Problem
12 P-1.21.

(i) Sketch the current flowing through the device, i(t).

(ii) Sketch the energy stored in the device as a function of t.
(iii) For what values of ¢ is the device supplying power?

(iv) For what values of ¢ is the device absorbing power?

(b) Repeat the questions asked in part (a) if v(¢) is the voltage across the
terminals of a 1H inductor.

Solution:

(a) (i)

io(t) = C

duc(t) gsinmt, 0<t<2
da 10, otherwise.

This waveform is shown on the graph in Figure 1.23.
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ic(t)

14
t
1
14
Figure 1.23: Capacitor current as a
function of time.
(ii) The energy stored in a capacitor is given by
R Py %(l—coswt)z, 0<t<?2
Ec(t) = §CUC (8) = { 0, otherwise.
This is shown in Figure 1.24.
E.(t)
0.5

Figure 1.24: Energy stored in the ca-
1 1 2? t pacitor as a function of time.

1

(iii) It supplies power when the slope of the energy curve is
negative, which occurs for 1 < ¢ < 2.
(iv) It absorbs power when the slope of the energy curve is
positive, which occurs for 0 < t < 1.
(b) (i) For values of t in the range 0 < ¢ < 2 we can write

t

io(t) = / ve(r) dr + i2(0)

0
t

= / %(1 — cost) dr
0

- t+ 1 sin 7t
2 on '
For t > 2, the current remains constant at 1A and for ¢t < 0

it is constant at OA. Therefore,

0, t<0
ie(t) = %t—i— %sinwt, 0<t<?2
1, 2 < t.
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This is shown in Figure 1.25.

ie(t)

1.0
Figure 1.25: Inductor current as a
I " =1 function of time.
1 2
(ii) The energy stored in the inductor is 1Li2(t) = Lil(t),
which is shown in Figure 1.26.
Eq(t)
0.5
Figure 1.26: Energy stored in the in-
| 1' 2‘ t ductor as a function of time.
(iii) The inductor absorbs power (absorbs energy) for 0 < ¢t <
0o.
(iv) There are no values of ¢ for which the inductor is supplying
power.
P-1.22 (2)

(a) The voltage, v,(t) measured between the terminals of an ideal 2H inductor
is
ve(t) = 672 + 373t mV.
The inductor current, i,(t), at ¢ = 0 is zero. Determine i,(t).
(b) Repeat for the voltage shown in Figure 1.27.

Solution:
(a) The current flowing through the inductor is
¢
i(t) = 500 / v(7)dr

0
t

0
= = —(1.5e7*" + 5e™*) A
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ve(t)
21
14
5
1 2 4 t
14
Figure 1.27: Voltage waveform for

—94 Problem P-1.22.

(b) The easiest way to show this part is graphically.

i(?)
1500 +

500 +

P-1.23 (2,6) The source waveform v,(t) applied to the circuit in Figure 1.28a is
shown in Figure 1.28b. Sketch the current i(¢) flowing through the capacitor
as a function of time.

3H
T — vs (t)
10V +
vs(t) == 2F gz Q
i(t)
, | — ¢

(a) (b)
Figure 1.28: (a) Circuit for Problem P-1.23. (b) Voltage source waveform
vs(t).

© 2006 Pearson Education, Inc., Upper Saddle River, NJ. Allrights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



24 CHAPTER 1. CIRCUIT ELEMENTS AND MODELS

Solution: The inductor and the resistor do not affect the capacitor
current and can be ignored. The voltage of the capacitor is vs(t).
If i.(t) is defined to be the current flowing into the + terminal of
the capacitor, then

_ ve(t) dug(t)
o) =0 =24

This current, however, is the negative of i¢(¢). Thus,

dus(t)

i(t) = —ic(t) = —2—

Performing the derivative amounts to measuring the slopes of the
line segments that make up v,(t).

0, t<0
(=] “2/3 0<t<3
"WEY 20/3, 3<t<6
0, 6<t
i(t)
20 |
3
t
3 6
_20
3

P-1.24 (4,5)
(a) Write the KCL equations that constrain the currents at all of the nodes
of the network in Figure 1.29.

(b) Write the KVL equations that constrain the voltages for all of the meshes
in that same network.

Solution:

(a) The network contains four nodes. If we write the KCL equa-
tions by summing the currents that enter the nodes, then the
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i1 (t) Ry
SNV
R 10 i9(t)
a [2()32 b /N c
EA -
is(t)y AVE
Ve t)
vs(t) Ci §R3 §R4 Figure 1.29: Circuit for Problem P-
. . 1.24.
is(t) i4(t)
d

four equations are:

node a: —ii(t) —ia(t) —is(t) =0
node b:  +ig(t) + 10ia(t) —i3(t) =0
node ¢:  +i1(t) — 10d2(t) —ia(t) =0
node d:  +i3(t) +i4(t) +i5(t) = 0.
(b) Let the resistor voltages be defined so that the current arrows

are defined as pointing from the + to the — terminals. Then
the KVL equations on the three meshes are:

mesh 1:  v1(t) —vg(t) —va(t) =0
mesh 2:  —v,(t) + va(t) +v3(t) =0
mesh 3:  —v3(t) + ve(t) + va(t) = 0.

Recall that the voltage for each resistor gets a + sign if the path
goes in the direction of the current (i.e., downstream) and a —
sign if the path is upstream.

P-1.25 (4,5)

(a) Write the KCL equations that constrain the currents at all of the nodes
of the network in Figure 1.30. The time dependence of the element
variables and currents has been suppressed to limit clutter.

(b) Write the KVL equations that constrain the voltages for all of the meshes
in that same network.

Solution:
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+ —_
vst) (£ 2a w (1)
- * Figure 1.30: Circuit for Problem P-
1.25.

(a) There are four nodes in this circuit: upper left (a), upper middle
(b), upper right (c), and lower (d).
node a: —ig(t) —i2(t) —i1(t) =0
node b: ia(t) —i3(t) —ia(t) =0
node ¢ i3(t) +is5(t) +41(t) =0
node d:  iq(t) +i4(t) —is(t) =0
(b) There are three meshes: upper (1), lower left (2), and lower
right (3).
mesh 1:  —vg(t) + va(t) + v4(t) =0
mesh 2:  —wvy(t) + v3(t) — vp(t) =0
mesh 3: vy (t) —vs(t) —va(t) =0

P-1.26 (6) Find the values of the voltages from the complete solution of the circuit
in Figure 1.4.

Solution: From Problem P-1.4, the two KCL equations are

node b: U12(t) —vg(t) —wvs(t) =0
node c¢:  wva(t) — U4T(t)— = —i,(t).

Writing KVL equations on the left two meshes provides the neces-
sary two additional equations

left mesh: w1 (t) + vs3(t) = vs(t)
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right mesh:  —wvs(t) 4+ va(t) + va(t) = 0.

These four equations in four unknowns can be solved for vy (t), va(t),
v3(t), and v4(¢) in terms of vs(t). The solution is

0(t) = 0(t) = ia(l)
ww=%%@—%uw
5(2) = rvs(t) + (1)
mm=ﬁsw+ﬁuw

P-1.27 (6) Find the values of the currents from the complete solution of the circuit
in Figure 1.6.

Solution: From Problem P-1.8, we have KVL equations for the
two left meshes:

left mesh: 201 (¢t) — i3(t) = vs(t)

right mesh:  i9(t) +43(t) —i4(¢) = 0.
We can add two KCL equations at the two non-trivial nodes at the
top of the circuit. (The left node merely tells us that the current

flowing through the voltage source is the same as the current flowing
through the 2 resistor.)

node a: 4;(t) —ia(t) +i3(t) =0
node b:  ia(t) +i4(t) = —is(2).

This gives four equations in the four unknown currents. We can
solve for the currents in terms of v,(t) and i.(t). The algebra of the
solution is omitted, but the solution is:

() = Sva(t) — ia(t)
1 3

i2(t) = 'gvs(t) - gis(t)
is(t) = —ivs(t) - iis(t)
ia(t) = —5vs(8) — 2is(1)
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P-1.28 (6) Find the values of the currents for the circuit in Figure 1.2.

Solution: In Problem P-1.2 we found the two KCL equations for
this circuit:

node a: i1(t) —ia(t) —is(t) =0

node b:  i3(t) + 10i1(t) —i4(t) =0
Let the voltage across the dependent source be v(t). Then we can

write KVL equations over the three meshes using v(t) and the cur-
rent variables. The results are

left mesh: 541 (¢) 4+ 10i2(t) = vs(t)
center mesh: —10i5(t) + 30i3(¢) +v(t) =0
right mesh: —v(t) +i4(t) =0

Adding the last two equations eliminates v(t). The remaining four
equations can be written in matrix-vector form (See Section 2-3.3.)

1 -1 -1 0 i1(¢) 0
10 0 1 -1 i2t) | | O
5 10 0 0 || st p | v
0 -—-10 30 1 i4(t) 0
Using MATLAB the solution is readily found to be
i1(t) 1/15
io(t) | _ | 1/15
is(t) | = 0 vs ().
i4(t) 2/3

P-1.29 (6) Find the values of the voltages in the circuit in Figure 1.5.

Solution: From the solution to Problem P-1.6 we have the follow-
ing KVL equations

—v(t) +v1(t) =0

—0.9U1(t) -+ ’Ug(t) =0.
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To these we can add a KCL equation
1

Sa(®) + Foa(®) = in(0).

If we multiply the KCL equation by five and subtract the second
KVL equation, we get

1.9v1(t) = 5is(2).
Using this result we get

vi(t) = 2.632,(t)
va(t) = 2.368 i, (t)
v(t) = v1(t) = 2.63214(t).

P-1.30 (4,5,6) In the circuit of Figure 1.31 determine v(t) as a function of vy, (¢),
vs, (t) and is(%).

2Q 50
AA——AN—

wm®(®) w0(D)u (e

Figure 1.31: Circuit for Problem P-
1.30.

Solution: Writing a KCL equation (incorporating Ohm’s Law and
KVL) at the upper node gives

[—0(t) = vaa (O] + 5[-0(6) = 05, ()] = 50 (0).

U] =

Solving for v(t) gives the result

0(t) = ~2ns (1) — 204, (1) — (1)
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P-1.31 (4,5 6) In the circuit in Figure 1.32 both source waveforms (and all of the
element variables) are constant. Compute the values of i1, vy, i, and vs.

i 10Q
AW
+ U1 -

3V Ci 1A 5 Q§ Ug
+ Figure 1.32: Circuit for Problem P-

L2 1.31.

Solution: Observe that the voltage across the current source is v,
and that the current through the voltage source is i;. This means
that we do not need one KCL equation and one KVL equation. We
will need two element relations, one KCL equation, and one KVL
equation.

Ry: v =104

Ry: vy = biy

KCL: 4;4+14+4=0
KVL: —-3+4+wv;+wvy=0

The solution of these equations is

i1 =—2/15 vy = —4/3

P-1.32 (4,5,6) Consider the circuit in Figure 1.33.

(a) What is ¢1(£)? (in terms of vs(¢))
(b) What is va(t)?

2Q
YW i1(%)

vs(2) (i §19 2Q§;g(t)

Figure 1.33: Circuit for Problem P-
1.32.
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Solution: We have labelled some additional variables on the above
circuit.

(a) There are six element variables. To solve for these we write
three element relations, two KVL equations, and one KCL
equation.

Ri:  vi(t) =41(t)
Ry:  wy(t) = —2iy(t) note reference directions
Rs:  ws(t) = 2i3(t)

KVL1: —u,(t) +vs(t) +v1(¢) =0

KVL2: —wv;(t) —va(t) =0

KCL:  i1(¢) +1i2(t) —i3(t) =0

Eliminating the voltage variables, these become

KVLI:  i1(¢) + 2i3(t) = vs(t)
KVL2: 41(¢) — 2i2(¢) =0
KCL:  #1(t) 4 i2(t) —3(t) = 0.
We can express i3(t) in terms of i1 (¢) from the first equation,

express i(t) in terms of 41 (¢) from the second, and substitute
into the third to solve for i1 (¢). This gives

) 1
i1(t) = sz(t)
(b) From the solution in part (a), we know
: 1
n(t) = ia(t) = os(t)

va(t) = —vy(t) = —ivs(t)

P-1.33 (4,5,6) Solve the circuit in Figure 1.34 for v;(t), va(t), and vs(t).

Solution: We need to write two KCL equations and one KVL
equation. If we write these in terms of the voltage variables, we
save some effort.

KCL1: 3%@ + %@ — sin 30t

© 2006 Pearson Education, Inc., Upper Saddle River, NJ. Allrights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



32 CHAPTER 1. CIRCUIT ELEMENTS AND MODELS

+ va(t) -
MV
2Q

+ +
sin 30¢ 5 Q§v1 (t) 3 Qévg(t)
B Figure 1.34: Circuit for Problem P-

1.33.

. vz(t) _ ’Ug(t) _
KCL2: 5 T3 = 0

KVL: -—V1 (t) + 'Ug(t) + vs (t) =0

From the second equation we know that v3(t) = 3v,(t). Substitut-
ing this fact into the third equation gives

_on(t) + va(t) + gvg(t) —0

from which we learn that v1(t) = Svs(t). Substituting this fact into
the first equation gives

t '
U22( ) 4 022( ) _ sin30t

or
v (t) = sin 30t.

Therefore,the other two voltages are
5 .
v1(t) = 5 sin 30t

3
v3(t) = 2 sin 30t.

P-1.34 (4,5,6) For the circuit of Figure 1.35, express v(t) in terms of i4(t).

Solution: Let v;(t) be the voltage across the 12() resistor (top-to-
bottom) and let vy(t) be the voltage across the 2Q resistor (left-to-
right). Note that v(t) is the voltage across both the 6Q and the
12€) resistors. From KVL in the middle mesh

—~’U1(t) -+ Ug(t) -+ ’U(t) = 0.
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is(t) (D §129 69§

244

1m§ ;:z(t)

From KCL at the top left node

+ Zv2

From KCL at the top right node

33

Figure 1.35: Circuit for Problem P-
1.34.

1 .
2 (t) = Zs(t)'

%vg(t) - %v(t) - -1-150(15) 0.

From the last equation, we learn that

v(t) = -;-v(t).

If we substitute this result into the top equation, we see that

w(t) = gv(t).

Substituting for v;(t) and vo(t) into the remaining equation gives

or

1 1 .
gv(t) + Zv(t) = i4(t)

8.
= gzs(t).

P-1.35 (4,5,6)

(a) Determine the current i(t) in terms of v,(¢) in the circuit of Figure 1.36
when the switch is in the open position.

(b) Determine that same current when the switch is closed.

Solution:
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vs(t) i) 69§ 3Q

Figure 1.36: Circuit for Problem P-
1.35, which contains a switch.

(a) When the switch is open, no current flows through the vertical
3Q) resistor on the right. As a result the current through the
voltage source and the current through both remaining resistors
is i(t). A KVL equation written around the mesh on the left
gives

3i(t) + 6i(t) = vs(t),

from which we see that
iwwémm.

(b) When the switch is closed, let the current i;(t) flow through
the vertical 3(2 resistor. Writing a KVL equation on the mesh
on the right gives

—6i(t) + 3i1(t) =0,
from which we conclude that
i1(t) = 2i(¢).

Observe now that the current flowing through the horizontal
resistor is i(t) + i1(t) = 3i(t). Writing a KVL equation on the
left mesh gives

3(3i(t)) + 6i(t) = vs(t),

which we can solve to get

Mﬂ=%%@-

Because of the simplicity of this circuit, the approach that we
used alternated stages of setting up equations and solving them
to hold down the number of variables. We could, alternatively,
have defined three voltages across the terminals of the three
resistors and three currents flowing through them. We could
then have written three element relations, two KVL equations,
and one KCL equation and solved these six equations for the
six element variables. The result, of course, would be the same.
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P-1.36 (4,5,6)

(a) Determine the voltage v(t) in terms of v,(t) in the circuit of Figure 1.37
when the switch is closed.

(b) Determine that same voltage when the switch is open.

6Q
M ]
+
is(t) 120 §U(t) 60
- Figure 1.37: Circuit for Problem P-
1.36, which also contains a switch.
Solution:

(a) When the switch is closed, there is no voltage across the vertical
62 and, therefore, there is also no current flowing through it.
The voltage across the terminals of the horizontal 62 resistor
is v(t). Writing a KCL equation at the node where the current
source, the 12€) resistor, and the horizontal resistor are joined
gives

1 1 .
Ev(t) + gv(t) = i5(¢),
or

v(t) = 4is(t).

(b) When the switch is open, let i(t) denote the current flowing
through both 69 resistors. The current flowing down through
the 12Q) resistor is v(t)/12. A KCL equation written at the
same node that we used in part (a) gives

1 . ,
Ev(t) +i(t) = is(t).

A KVL equation around the mesh containing the three resistors
written in terms of the same variables gives

6i(t) + 6i(t) — v() = 0 —> i(t) = %v(t).
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Substituting for #(¢) in the KCL equation gives us the answer
that we are looking for

1—12v(t) + 1—12v(t) = i5(t) = v(t) = 6is(£).

P-1.37 (2,3)
(a) If a 1k resistor and a 2k() resistor are connected in series, which will
absorb more power?

(b) If a 1kQ resistor and a 2k} resistor are connected in parallel, which will
absorb more power?

Solution:

(a) If two resistors are connected in series, the same current passes
through them. Let that current be i(t). Then the power ab-
sorbed by the 1k{) resistor is

Py (t) = 1000:%(2)
and the power absorbed by the 2k} resistor is
Py(t) = 2000:%(¢),

which is twice as great. Therefore, more power is absorbed by
the 2k} resistor.

(b) If two resistors are connected in parallel, the same voltage ap-
pears across both. Let that voltage be v(t). Then the power
absorbed by the 1k} resistor is

Pi(t) =

2
1000 ¥
and the power absorbed by the 2k() resistor is

1

which is only half as much. Thus in this case more power is
absorbed in the 1k() resistor, which is just the opposite of what
we saw in (a).
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P-1.38 (2,3) Two 1uF capacitors are connected to a battery. Will they store more
energy if they are connected in series or in parallel?

Solution: Let the voltage of the battery be V. The energy stored
in a capacitor is %C V2. When the two capacitors are connected in

parallel,
Vao=Vo=V

and the total energy stored is

1 1
EParallel = §CV2 + §CV2 =CV2.

When the two capacitors are connected in series, KVL says that
Vo + Ve =V.

Then the total energy stored is given by

1 1
Eseries = Ecvczl + §C(V - Vcl)2

= SOV OV, 4OV

= %Eparallel —CVaVe,
which is always less than Epara116]- The capacitors will settle to the
minimum energy state, which occurs when V,; = Vo = V//2. Then,
the energy stored in the series connection will be only one-fourth
of that stored in the parallel connection.

P-1.39 (4,5,6) The circuit in Figure 1.38 contains a current-controlled voltage
source. Write a sufficient set of KVL equations to specify the element voltage
constraints over all closed paths in the circuit using the variables v (t), va(t),
v3(t) and v,(t). (41(t) is the current flowing into the + terminal of the 5
resistor.)

Solution: First, we need to use the fact that ¢1(¢t) = v1(¢)/5 to
turn the current-controlled voltage source into a voltage-controlled
voltage source (with voltage 2v;(t)). Then, we can write KVL equa-
tions over the two meshes.

left mesh: vy (t) + v (t) = vs(t)
right mesh:  —va(t) + v3(t) + va(t) + 2v1(t) =0
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+’l)1(t)_ _,_’Ug(t)_ +’U4(t)__
M AR M\
30 1Q

v () C@ mlongjz(t) <ﬁ> 104 (t)

Figure 1.38: Circuit for Problems P-
1.39 and P-1.40.

P-1.40 (2,4,5,6) Find the values of the voltage in the circuit in Figure 1.38.

Solution: From the solution to Problem P-1.39 we have the two
KVL equations

v1(t) + va(t) = vs(t)
—Ug(t) -+ Ug(t) + U4(t) + 2v; (t) =0.

To these we add two KCL equations (written using the voltage
variables):

vall) _va®) o (e — 3u(a) = 0

30 40
015575) B 112185) _ Uf;(;) =0 = 6uy(t) — 3vy(t) — vs(t) = 0.

Putting these in matrix-vector form gives

11 0 o0 i () 1
2 -1 1 1 va(t) 0
0 0 4 -3/ w) 0 | v
6 -3 —1 0 va(t) 0

Using MATLAB the solution is readily found to be

i1(6) 1/3
1o(t 2/3
iggtg =| %7 |
ia(t) 0

© 2006 Pearson Education, Inc., Upper Saddle River, NJ. Allrights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



39

il(t)loﬂ /\
W<

vs(t) (ﬁ §20 Q §1oo Q

Figure 1.39: Circuit for Problem P-
1.41.

P-1.41 (1,4,5,6) Find the current i;(t) for the circuit shown in Figure 1.39. (You
will need to define some additional variables.)

Solution: Define the auxiliary currents shown in Figure 1.40. From

5iy (£)
11 (t) 10Q /\
'VV}; (t) \-iMI/ i3(t)

Figure 1.40: Circuit for Problem P-1.41 with additional currents labelled.

KCL
i1(t) —ia(t) —is(t) = 0. (1.4)
From KVL applied to the left mesh
and from KVL applied to the right mesh
—20i5(t) + 541 (t) + 100i3(t) = 0. (1.6)

Remember the dependent source is a voltage source with a voltage
that is equal to 5iy(t). From the first equation i3(t) = i1(t) — ia(t).
Substituting into the second and third equations, this gives

10i1(t) + 20i2(t) = vs(2)
105y (t) — 120i5(t) = 0.
We can now multiply the first equation by six and add the two

equations together.
16541 (t) = 6us(t)
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or 6 5
i1(t) = Evs(t) = 5-5—1)5(15).

P-1.42 (1,4,5,6) Determine the voltage v(t) in the circuit in Figure 1.41.
12Q i(t)
MV

4Q
MY

vs(t) m) 2Q§iv(t) <T>5i(t)

Figure 1.41: Figure for Problem P-
1.42.

Solution: In the figure below we indicate some additional vari-

ables.
12Q i(t)
ANV
40 ]
AN—E )
’il(t) “““““““““ -~

Notice that we have let the current flowing through the 4€) resistor
be denoted by 41 (t). The current flowing downward through the 29
resistor is v(t)/2. We can set up one KCL equation (at the circled
node), and two KVL equations to solve for the three variables i(t),
v(t), and i1 ().

KCL:  41(t) + 6i(t) — %v(t) =0
KVL a:  4i1(t) + v(t) = vs(t)
KVL B 12i(t) — 4i1 (t) = 0.
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From the third equation
1(t) = 3i(¢).
Substituting this fact into the first equation gives
9i(t) — 2u(t) = 0 —> i(t) = %v(t).
Finally, substituting this result into the second equation gives
Zo(t) +v(t) = vs(1)

o(t) = 3v.(0):

P-1.43 (3,4,5,6) For the circuit in Figure 1.42

(a) Compute the power absorbed by the independent voltage source.
(b) Compute the power absorbed by the dependent current source.

i(t)
VWV
30

"@ W e

Figure 1.42: Circuit for Problem P-1.43.

Solution: Since the only independent source waveform is constant,
all of the voltages and currents in this circuit will be constant as a
function of t. Let ¢’ denote the current flowing (downward) through
the 20 resistor. From KCL at the top node

i+4i=141 == i =5i.

By KVL
3i+2¢ =3.
If we substitute for i/, this gives
3 15
13: =3 = —A; i'=—A.
' Tt T T
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(a) The power absorbed by the voltage source is the product of
its voltage (3V) and the current entering its + terminal (—i).

Thus,
9

—5W

(b) The power absorbed by the dependent current source is the
product of its voltage (2i') and the current entering its + ter-
minal (—41). Therefore,

Py =~(3)(5) =

15,3 360

Py = — (ﬁ)(ﬁ) =~ 7169

P-1.44 (4,5,6) In the circuit in Figure 1.43, which contains a voltage-dependent
current source, determine v(t).

o)

—AA
1Q

is(0) 29§ 29§ <1 20(t)

Figure 1.43: Circuit for Problem P-
1.44.

Solution: We could solve this problem by setting up and solving
the usual set of KVL equations, KCL equations, and element rela-
tions. There is nothing wrong with approaching this problem that
way. An alternative, however, is to evaluate some of the voltages
and currents in the circuit whose value can be immediately deter-
mined and then use these values to evaluate others. That is the
approach discussed here.

The current flowing left to right through the horizontal 1€ resis-
tor is v(t). Since a current 2v(t) comes from the dependent current
source, KCL tells us that a current of 3v(t) must flow through the
rightmost 2€) resistor from top to bottom. This will induce a volt-
age of 6v(t). This means that there is a voltage of 7v(t) across
the leftmost 2 resistor (by KVL) and a current of Zv(t) flowing
through it. Since the current through the horizontal resistor was
v(t), by KCL we have finally

u(t) + ;v(t) = is(t)
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or

P-1.45 (4,5,6) Find v(t), the potential difference between the two indicated nodes,for
the circuit in Figure 1.44.

-+

v(t) - |
z's(t)(D 4OQ§ 10:21§ O.25i1<\£; §15OQ

Figure 1.44: Circuit for Problem P-1.45.

Solution: Let iz(t) be the current flowing down through the 40
resistor. Then, from KCL

i1(t) + i2(t) = is(t)
and from KVL
1041 (t) — 40i2(t) =0
s g(6) = iz’l(t).
Substituting this result into the KCL equation gives
1) + ia () = i (9)
= ia(t) = gis(t).

We can now write a KVL equation around the closed path con-
taining the 10(2 resistor, the dependent source, and the open circuit
across which v(t) is defined.

104, (t) — %z’l(t) = (t).

Thus,
39 . 39 .
’U(t) = —4—1,]_(15) = Eis(t)
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Advanced Problems

P-1.46 (2) In the circuit of Figure 1.45 both inductors have no current flowing
through them at ¢ = 0.

i(t) +o(t) -
3H
vs(t) i) 2H§ (D is(t)
. Figure 1.45: Circuit for Problem P-
it) 1.46.

(a) If
. sindt, t>0
is(t) = { 0, t<o0,
what is v(¢)?
(b) If
e 3t t>0
vs (t) :{ 0, t<0,

what is i(t)?
(c) With both sources turned on as indicated in (a) and (b), what is 4(t)?

Solution:
(a) For an inductor
_ i)
Ug(t) =L dt .
Therefore,
dis(t) . d [ sin3t, t>0
olt) = S “_3%{0, t<0

—9cos3t, t>0
N 0, t<O0.
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(b)
¢
ie(t) = —]13/1)(7’) dr + i¢(0).
0
Therefore,
t
itt) =3 [ wr)dr :{ g 120
0

= i(t). Therefore,

i) = i) —is(t)
. t(1—e3") —sin3t, t>0
- 0, t<O.

P-1.47 (2,3) Consider the circuit in Figure 1.46. The waveforms corresponding

v(t)
A [
i)Y gp

ve(t) (j == 2F (? is(t)

Figure 1.46: Circuit for Problem P-1.47.

to the source signals are given graphically in Figure 1.47.

vg(t)

t Figure 1.47: Voltage and current
source waveforms for Problem P-1.47.

(a) Determine the current i(t). Express your result as a graph of the current

versus time.
(b) Determine the voltage v(t). Express your result as a graph of the voltage

versus time.
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46 CHAPTER 1. CIRCUIT ELEMENTS AND MODELS

(c) Draw a graph of the instantaneous power absorbed by the voltage source
versus time.

(d) Draw a graph of the instantaneous power absorbed by the current source
versus time.

Solution: Before we begin, it is helpful to define some additional
variables in the circuit. This is done in the following figure.

v(t)

()
io () it o )
w)(X) O 2F 0 0a(t)

(a) By KVL, v1(t) = vs(t). From the element relation for the
capacitor

d’Ul(t) = des(t)
d 7 dt
The graph of this function is shown below.

i(t)

il
Ju

(b) From KCL i5(t) = —is(¢). From the element relation of the 3F
capacitor,

i(t) =2

t

v(t) = %/12(7') dr + v(2).
2
Assuming that v(2) = 0, this means that
¢
1 /.
v(t) = —3 /23(7') dr.
2
Its graph is shown below.
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(c) The instantaneous power absorbed by the voltage source is
Pipst(t) = vs(t)io(t). To get ip(t) we can apply KCL
io(t) +i(t) = is(t) = io(t) =1s(t) —i(t).

Thus, the graph of ig(t) is

io(t)
4__
1 2 3

—4
and the graph of Pj,s:(%) is
Pinst(t)
| I\
t
1
44+

(d) The instantaneous power absorbed by the current source is
Prinst(t) = va(t)is(2). (1.7)
Furthermore, by KVL we know that
v(t) —va(t) —vs(t) =0
or that
va(t) = v(t) — vs(t).
This waveform is graphed below.
va(t) 5 3
1 T~
3
-1

From this graph and (1.7), we can draw the graph of the in-
stantaneous absorbed power.

Tpinst (t) 9 3

NI

W=
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P-1.48 (2,3) Determine the value of the resistance R in the circuit in Figure 1.48
for which the instantaneous power absorbed by that resistor, Pj,s: is maxi-
mized. Hint: To find the value of R for which P, (R) is maximized, set the
derivative of P,,s:(R) to zero.

+
2A CT 10Q § R gv
" Figure 1.48: Circuit for Problem P-
1.48.

Solution: The instantaneous power absorbed by the resistor is

b _ (2R )’ 1 _ 400R
mst=\10+R) R (10+R)?

dPinst _ o _ (10+ R)? - 400 — 800R(10 + R)
d (10 + R)? '

Thus,
(10 + R)400 = 800R = R = 10Q.

P-1.49 (4) Consider the four-terminal network N shown in Figure 1.49a.

(a) When network N; is connected to the two subnetworks N, and N3 as
shown in Figure 1.49b, what is the relation between currents ¢;(¢t) and
i2(t)?

(b) Does the result that you derived in (a) apply to i;(¢) and is(t) when Nj is
embedded in a larger (but unknown) network as shown in Figure 1.49¢?
Explain.

Solution:
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ig(t) il(t)

O——— L 5
. N )
i4(t) ! ia(t)
O——— ———<—0

N2 Nl

Figure 1.49: (a) A four-terminal net-
work Ny for Problem P-1.50. (b) N;
connected to two two-terminal net-

works. (c) N1 embedded into a more
(c) general network.

(a) If we enclose the subnetwork Ny by a surrounding surface, we
can apply KCL and derive the constraint

’ig(t) — Z4(t) =0 = lg(t) = ’L4(t)
Similarly if we enclose the subnetwork N3 by such a surface,

KCL will show that
i1(t) = ia(2).

(b) Here the only constraint on the currents is the single KCL equa-
tion
i1(t) —ia(t) — is(t) +ia(t) = 0.

i1(t) is not necessarily equal to is(t) and i3(t) is not necessarily
equal to i4(t).
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P-1.50 (5) In the text it was claimed that that the set of KVL equations formed on
the closed paths that encircle the meshes in a planar network are independent.
In this problem we prove this claim. A planar network is one that can be
drawn on a piece of paper with none of the wires crossing each other. Our
proof (and our methodology) is limited to planar networks because these are
the only ones for which the concept of a mesh is defined. (Nonplanar circuits
can be solved using the mesh method, which will be described in Chapter 2.)

(a) Our proof proceeds by induction. Recall the basis behind these proofs.

1. Verify that the statement is true for £ = 1.
2. Assume that it is valid for £ = k.

3. Prove that if it is valid for £ = k, then it must also be true for
£=Fk+1.

For this problem £ corresponds to the number of meshes in a simplified
circuit formed from the original by removing some of the elements. Begin
by removing all of the interior elements from the network, leaving a single
path going around the outside of the original circuit and write a KVL
equation around that path. Since there is only a single equation, which
is non-trivial, it is independent. This corresponds to Step 1 above. Next
assume that several elements have been reinserted into the circuit so
that the partially completed circuit now contains k¥ meshes for whose
paths the KVL equations are independent. This corresponds to Step
2. Finally, we add enough additional elements back into the circuit to
create an additional mesh. This can only happen by dividing one of the
meshes from the k*" stage, called the parent, into two meshes at the next
stage, called the children. Let I equal the sum of the voltages across the
inserted elements, A equal the sum of the voltages from the parent that
go to child #1 and B equal the sum of the voltages that go to child #2.

(i) Write a KVL equation for the path corresponding to the parent in
terms of A, B, and I.

(ii) Write two KVL equations for the paths corresponding to the children
in terms of A, B, and I.

(iii) Show that these two equations are independent, i.e., that neither
can be derived from the other.

(iv) Show that neither of these equations can be derived from the other
meshes in the circuit at this level.

This completes the inductive proof.

(b) Use the constructive procedure of your proof to verify that the KVL
equations for the meshes in the network below are independent.
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Figure 1.50: A network containing
a number of elements for proving the

independence of mesh equations in
Problem P-1.50.

Solution: To help with visualization, consider the circuit shown in
Figure 1.51.

I—| A I—I
+ vy — tug .

U1

U7

F — P—-]
+'U5_ +'U6‘-

— 1

* 10T

+

Vg

+
Vg

Figure 1.51: Figure to illustrate the
inductive proof,

(a) For this circuit we define the following quantities

I=vs+wg
A=—vi+vo+v3+uy
B =wvg —vi0—vg — vz

(i) The original mesh at stage k is the outer path. Its KVL
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equation is

A+ B=0.
(ii) At the (k+1)%* stage we add the two branches in the center.
The two KVL equations that result are:
A-T=0
B+1=0.
(iii) A and B have no elements in common; hence they have
no element voltages in common. Since there are element
voltages in the first equation that do not appear in the

second and vice-versa, neither of these equations can be
derived from the other.

(iv) Adding the two equations gives the KVL equation from the
kth stage, which is known to be independent of the other
mesh equations. Therefore, these two equations must also
be independent.

(b) At Stage 1 we have the single KVL equation around the outer
path

Uab+vbc+vcd+vdh+/Uh2+vep_vop_‘vno_‘vmn_Uim_l"vei""vae =0
At stage 2 we break this into two smaller loops

—Vge + Vab + Vbe + Ved + Vdh — Ugh — VUfg — Vef = 0
Vef +Vfg + Vgh + Vhe + Vep — Vop — Vno — Umn — Vim — Vei = 0

At stage 3, we break the latter loop into two smaller ones

—Vae + Vab + Vb + Ved + Vdh — Ugh — Vgg — Vey = 0
—Vei + Vef + Vg + Ugh + Uht — Ukt — Vjk — Vij =0
—Vim + Vij + Vjk + Vke — Vtp — Vop — Uno — Umn = 0
Stages 4 through 9 continue the process. The final result is the
set of nine independent KVL equations
—Vge + Vab + Vbf — Vg =0
—Upg + Vpe + Veg —Vpg =0
—Veg + Ved + Vdn — Vgh =0
—Vei + Vep + V5 — 35 =0
—Vfj +Vfg + Vgl — Vi =0
~Vgk + Ugh + Vpe — Vge = 0
~Vim + Vij + Vjn ~— Umn =0
—Vjn + Vjk + Vgo — Upno =0

~Vko + Vke + Vep — Vop = 0.
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P-1.51 (4) In Problem P-1.50 a method of proof was outlined for showing that the
KVL equations derived from the paths surrounding the meshes in a planar
circuit were independent. In this problem we tackle the KCL equations. Prove
that the KCL equations written at all but one of the nodes of a circuit are
also independent, i.e., that no one of the equations can be derived from the
others. As for the KVL equations this can also be proved by induction. Begin
with a single enclosing surface that surrounds all of the nodes of the circuit
but one and write a single KCL equation for that circuit. Then divide that
surface (or one of the eligible surfaces when later there is more than one) into
two parts, each of which contains at least one node, and show that the two
KCL equations derived from the new surfaces are independent of each other
and from the remaining equations. Continue this procedure until the number
of surfaces generated is equal to one less than the number of nodes and each
surface encloses a single node.

Solution: As with the previous problem, we proceed by induction.
At the first stage we construct an enclosing surface that encloses
all of the nodes of the circuit but one. By the general statement of
KCL, the sum of all of the currents that cross that surface is equal
to zero. At the k** stage there are k encircling surfaces, each of
which encircles at least one node. At the (k + 1)** stage, one of the
enclosing surfaces is split, with at least one node going into each of
two daughter surfaces. The procedure terminates when there are
n — 1 such surfaces, each of which encircles exactly one node.

At the first stage, there is only one KCL equation. Therefore,
it is trivially independent. At the k** stage, assume that the KCL
equations written for each of the k encircling surfaces are indepen-
dent. At the (k + 1)%! stage, we have the situation depicted in
Figure 1.52. The large gray box labelled A is a surface that encir-

A

A As

Figure 1.52: Stage k + 1 of the in-
rest of circuit ductive procedure for establishing in-
dependence of nodal KCL equations.
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cles more than two nodes at stage k. The other nodes are encircled
by the surface labelled “rest of circuit.” At stage k + 1, A is di-
vided into two surfaces, A1 and As. Let S; denote the sum of the
currents on the branches that enter A; from the “rest of circuit”,
Sy the sum of the currents on the branches that enter A5 from the
“rest of circuit” and S5 the sum of the currents on the branches
that flow from A; to As.
From KCL at stage k, we have

S1+ 82 =0.

Furthermore this equation cannot be derived from the other KCL
equations. Applying KCL to the new surfaces:

S1+S3=0
Sy —S3=0.

These two equations are independent of each other, (each has at
least one current that the other does not have) and each is inde-
pendent of the rest of the circuit because of the independence of

A.

P-1.52 (1,4,5,6) Consider the circuit in Figure 1.53.

L ut)
VWY
3Q
i(t) 4Q
—VW
5Q is(t) 3Q

Figure 1.53: Circuit for Problem P-
1.52.

(a) In that circuit, only one voltage and one current have been labelled, since
these are the only ones that we eventually want. In order to analyze the
circuit, however, we need to assign (explicitly or implicitly) voltages and
currents for all of the elements and a voltage drop across the terminals of
the current source. On a drawing of the circuit, indicate such a complete
set of variables. Adhere to the default sign convention.
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on to those that are indicated, write the

following set of equations: one KVL equation at each mesh, one KCL
equation at each node, and one element relation for each resistor.

(c) Solve your equations for the quantities v(¢) and i(t). Since the other
element variables are not requested, you should eliminate them first in
solving your equations. Notice that you may not need all of the equations

that you wrote in part (c).
Kiis(t), i(t) = Kais(t).

Your answer will be in the form v(t) =

Solution:

(a)

is(t) + o) -
> MW
30

4Q is(t)

i1(t)

+
gsﬂ Va2

v (t)

+

®

+

is(t)3Q 2 vs(t)

3

(b) The two solid dots that are connected by the short circuit bear-
ing the current i(¢) are part of the same node. Nonetheless, it
is convenient to treat this as two separate nodes so that the
current i(t) is not lost, since this is a variable of interest. Call
the four “nodes” a, b, ¢, and d.

KVL top:
KVL left:
KVL right:
KCL a:
KCL b:
KCL ¢:
KCL d:
v—1 1:
v—1 2
v—1 3:

v—14:

v(t) —vg(t) =0

—v1(t) + va(t) =0
—va(t) + va(t) +v3(t) =0
i (t) +i(t) +is(t) =0
—i(t) + i5(t) +i4(t) =0
i3(t) — ia(t) — is(t) = 0
—ia(t) — is(t) — 12 (£) = 0
v1(t) = 5i1(t)

vs3(t) = 3is(t)

va(t) = 4ia(t)

o(t) = 3is(t)

(c) We will ignore (KCL d), since we have written KCL equations
at one more node than necessary. We will also add (KVL left)
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56 CHAPTER 1. CIRCUIT ELEMENTS AND MODELS

to (KVL right) to eliminate the variable vy(t), which is not
of interest. Then we use the four v — i relations to eliminate
the variables vy (t), vs(t), va(t), and i5(t). At this point the
equations look like the following:

o(t) = dig(t) = 0
—5i1(t) -+ 4’i4(t) + 37:3(25) =0

1
i1(t) +4(t) + —?;v(t) =0
—i(t) +is(t) +ia(t) =0
. . 1
ig(t) —ia(t) — §U(t) =0.
The first of these equations allows us to get rid of i4(%).
—5i1(t) + v(t) + 3is(t) =0
1
i1(t) +i(t) + 3v(t) =0
1
—i(t) +is(t) + Zv(t) =0
) 7
is(t) — Ev(t) =0.
The last equation allows us to get rid of i3(¢).
5 (£) + 1741@(1:) ~0
1
i1(t) +i(t) + gv(t) =0
1
—i(t) +1s(t) + 0(t) = 0.

Now, we can use the top equation to get rid of 41 (¢).

53
() 4 03 _
i(t) + 6Ov(t) 0
. 1 .
—i(t) + Zv(t) = —ig(t).
Solving these two equations in two unknowns gives the solution
o(t) = —12is(t)

i(t) = Z—:—z’s(t).
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is(t)
+
is(t) f) v(t) §12 Q §24Q <_+_> vs(t)
- Figure 1.54: Circuit for Problem P
1.53.

8

P-1.53 (4,5,6) Determine v(t) and i(t) in the network shown in Figure 1.54

Solution: The two variables of interest, v(t) and i(t), can readily
be expressed in terms of the element variables as

v(t) = vs(t)

i(t) = i2(t) +14(2).
Therefore, it will be sufficient to solve for the resistor voltages and
currents. If there are eight variables, we must have eight indepen-

dent equations. We can get four of these from the element relations
for the resistors

one from KCL at the large node at the upper left
i1(t) + 32(t) +13(t) + ia(t) = is(2),

and three from KVL equations (ignoring the mesh with the current
source)

’Ul(t) - Uz(t) =0
Ug(t) - ’U4(t) =0
—va(t) + va(t) = vs(2).
The four element relations will allow us to express the resistor

voltages in terms of their currents. Furthermore, the first two KVL
equations allow us to eliminate two of the currents since

Ul(t) = Ug(t) = 24 (t) = ig(t)
’Ug(t) = U4(t) —— 2i4(t) = ig(t).
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58 CHAPTER 1. CIRCUIT ELEMENTS AND MODELS

Thus the KCL equation reduces to

1(8) +ia0) = 3ia(0)

and the remaining KVL equation becomes

Cir(t) + ia(t) = Q}Evs(t).

These final equations are straightforward to solve. Adding the two

equations gives
1 1
iq(t) = =i —vs(%).
ia(t) = is(t) + 75e()

Substituting this result into the first of these equations gives

1(0) = gis(t) — (0.

Since 2i4(t) = i3(t), we have

v(t) = v3(t) = 24i4(t) = 4is(t) + Svs(t)

and

i(£) = ia(t) + ia(t) = 201 (t) + ia(t) = Jis(t) — Zvs(t).

P-1.54 (4,5,6) The circuit in Figure 1.55 contains a two-terminal nonlinear ele-
ment N that satisfies the v — i relation

[ 9-4%1), 0<i(t)<9
u(t) = { 0, otherwise.

Determine two possible equilibrium values for the current, i(t). Note: Al-
though you have not yet seen any examples involving nonlinear elements,
Kirchhoff’s Laws still apply to the circuit and Ohm’s Law still applies to the
resistor.

Solution: We can begin by writing a KVL equation around the
closed path:
—7+1i(t) +v(t) =0. (1.8)

If a solution lies in the range 0 < i(t) < 3, then after substituting
the appropriate relation for the the v — i relation, (1.8) becomes

~7+i(t) +9—i*(t) =0 = %(t) —i(t) —2 = 0.
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1Q
AR £16)
+
™V Cﬁ) N v(t)
- Figure 1.55: Circuit containing a nonlinear el-
—l ement for Problem P-1.54.

for 0 < i(t) < 3. This quadratic equation has two solutions: i(¢) = 2
and i(t) = —1, but only the former lies in the required range.
For other values of i(t), (1.8) becomes

—7+i(t) +0=0,

whose solution is i(t) = 7. Thus, the two equilibrium solutions are
i(t) =2 and i(¢t) = 7.

P-1.55 (4,5,6) In the center of Figure 1.56 is a model of a one-transistor pream-
plifier that is used to amplify the output of a low amplitude magnetic pickup,
and drive a 25k(} load. Express the voltage v (t) measured across the load
in terms of vs(t).

PICKUP PREAMPLIFIER _______________ LOAD
: 2K [ :
i a0 L i
i Lo ot i
: vs(t)CiD b §8kﬂ <i> 1001, (t) §100k9 ! ;vL§25in

Figure 1.56: Circuit for Problem P-1.55.

Solution: We begin by writing a KVL equation around the left
mesh. This will allow us to solve for i1 (¢) in terms of v;(¢):

vs(t) = 200041 (t) + 8000iy (t)

or

) 1
'Ll(t) = '1—6'0—00@5 (t)
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60 CHAPTER 1. CIRCUIT ELEMENTS AND MODELS

The voltage across the 100 kQ resistor is vr(t). Writing a KCL
equation at the node connected to the + terminal of the load gives

1 1

—_wn(t) + —————wr(t) = —100iy (2).
55000~ () * 100,000 () n(t)

From this we deduce

vp(t) = —2,000,000 i (£) = —200v,(£).

P-1.56 (2,5) Two resistors connected in series act like a single resistor. Simi-
larly, two resistors connected in parallel behave like a single resistor. In this
problem, we derive these basic results.

(a) Consider two resistors connected in series and connected across a voltage
source, as in Figure 1.57a. Show that the current flowing through them
is proportional to the source voltage.

i(t)

Ré i(t)

e wo) (& SRy
Figure 1.57: Two resistors con-

R
; nected in series and their equivalent
(a) (b) ~ resistance.

(b) This implies that from the point-of-view of the voltage source, the se-
ries connection of resistors is equivalent to a single resistor as shown in
Figure 1.57b. Express R, in terms of R; and Ra.

(c) We can similarly consider two resistors connected in parallel across a
voltage source, as in Figure 1.58a. Show again that the current flowing
through them is proportional to the source voltage.

(d) Find the equivalent resistance of the parallel combination as you did in
part (b).
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Figure 1.58:

resistance.

Solution:

(a) From KVL

vs(t) = v1(t) + va(?)
= Rqyi(t) + Rai(?)
= (R1 -+ Rz)l(t)

or
1

i(t) = ———v,(2).
i(t) = e (®)
(b) From the equivalent circuit

1
R,

i(t) = vs(2).

Therefore,
Req = Rl + RZ
(¢) From KCL

i) = 11(t) +142(2)

vs(t)  vs(t) 1 1

1 _ 1,1
Req Rl RZ
or
po_ 1 RiR,
eq —
RLI—FT%— R+ Ry

61

Two resistor:

nected in parallel and their equ
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i, 10000
A , :
2] i3

15 (i) §2000 Q §2000 Q

Figure 1.59: Circuit for Problem P-
1.57.

P-1.57 (3,4,5,6) Consider the circuit shown in Figure 1.59.

(a) This circuit contains three elements and thus there are six element vari-
ables, all of which are constant since the voltage source is constant. The
currents are labelled and the voltages across the terminals of the three
resistors are implied by the default sign convention. Write a set of six
linear equations in the variables vy, vg, v3, i1, 19, and i3 that specify the
complete solution. These should take the form of three element relations,
one KCL equation, and two KVL equations.

(b) Solve the above set of equations to determine the values of the element
variables.

(c) Evaluate the power absorbed by all of the elements and sources. Show
that the total power absorbed in the resistors is equal to the total power
supplied by the source.

The net power in any circuit must always be zero, i.e. the total power ab-
sorbed must always equal the total power supplied. This problem demon-
strates that fact for one particular circuit. We will prove the general case
later.

Solution:

(a)

R;: v1 = 1000,

Ry : Vg = 200014

Rs: v3 = 2000i3
KCL: i1—ip—i3=0
KVLi: vi+wvy=1.5
KVIy: —vg4+v3=0

(b) The solution of these six equations in six unknowns is straight-
forward. The solution is:

v = 0.75V 1:1 = 0.75mA

© 2006 Pearson Education, Inc., Upper Saddle River, NJ. Allrights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



63

vg = 0.75V i3 =0.375mA
vy =0.75V i3 =0.375mA

P; = (0.75V)(0.75mA) = 0.5625mW
P, = (0.75V)(0.375mA) = 0.28125mW
P; = (0.75V)(0.375mA) = 0.28125mW
Therefore, the total power absorbed is:
Pd = P1 + P2 + P3 = 1.125mW.
The total power supplied by the battery is
P; = (1.5V)(0.75mA) = 1.125mW.

P-1.58 (2,4,5) Find the differential equation that relates the current i(¢) to the
source voltage vs(t) in the circuit of Figure 1.60.

2H
i(t)

vs(t) i) §4Q QQH

Figure 1.60: Circuit for Problem P-
1.58.

Solution: Let the current through the horizontal inductor be 1 (%).
Then from KCL the resistor current is 41(¢) — i(t). Using these
currents, we can write KVL equations on the two meshes.

Qg%P +4(i1(t) — i(t)) = vs(¢)
43i(t) — i1(t)) + 2‘%}1 =0
From the second equation
0 =22 i)
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If we substitute this result into the first equation we get

d%i(t)  _di(t) _di(t)
@w e T

which simplifies to

T+ 4i(t) — 4i(t) = vs(2),

2 i

Design Problems

P-1.59 (3) Determine the minimum and maximum values of the resistance R in
the circuit of Figure 1.61 such that the following two conditions will be met:

(i) ¢ > 25mA
(i) Pist < 500mW,

where Py, is the instantaneous power absorbed by the resistor.

1

6V @ 3
Figure 1.61: Circuit for Problem P-
1.59.

Solution: Computing the current and applying its bound gives

6V 6V
= — >0.025A <—= .
'TR = = RS Gogsa - 20
The constraint on the instantaneous power gives
(6V)? 36
Pist = <05W= R > — =T2Q.
‘"R 0.5

Therefore,
7200 < R < 2400
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P-1.60 (3,4,5,6)
(a) Determine the voltage v in the circuit in Figure 1.62 as a function of the
resistance R.
(b) Determine the maximum and minimum values of R such that both of the
following conditions will be true:
(i) v>10V.
(ii)) Pipst > 5W.

+
500 mA 1‘) 1OOQ§ R§’U

Figure 1.62: Circuit for Problem P-
1.60.

Solution:
(a) Let the voltage across both resistors be v. Then, from KCL

v v
ﬁ+m—500mA

»(100 + R) = 50R
50R

YT 100+ R

(b) The requirement that v > 10 implies

50R
— >
1004+ R — 10

or
50R > 1000 + 10R = 40R > 1000 = R > 25.

The instantaneous power absorbed by the resistor is

p_(_59R \° 1 _ 2500R
et = \100+R/) R~ (100 + R)?

Thus, we must also have

2500R S
100+ Rz =

This is equivalent to the polynomial constraint

R? — 300R + 10,000 < 0
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The polynomial on the left side has roots at R = 38.2 and
R = 261.8. It is negative if 38.2 < R < 261.8. For the voltage
and power inequalities to both be true, we must have 238.2 <
R < 261.8.

P-1.61 (2,3) Resistors are specified by their maximum power rating as well as
by their resistance. For example, a resistor with a power rating of 1 W can
absorb 1W of power indefinitely. The larger the power rating, the bulkier
and more expensive the resistor, so good design practice dictates that the
power ratings should be large enough to handle the load, but no larger than
necessary. If the resistors in the circuit in Figure 1.63 are available in power
ratings of 1 W, 1/2W, 1/4 W, and 1/10 W, specify the power ratings needed.

12V <¢> §2009 §400s2 §600§2

Figure 1.63: Circuit for Problem P-
1.61.

Solution: The power absorbed by a resistor with a voltage drop
of V and a resistance of R is
VZ

Pi'nst ==

R
For V =12 and R = 200,400, 600 we have

144

200
144

400
144

600
Therefore, we should use a 20012 resistor with a 1 W power rating, a

40092 resistor with a 1/2 W power rating, and a 600€) resistor with
a 1/4 W power rating.

Pinst = =0.72

Pt = =0.36

Pinst = 024
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