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Chapter 1 The algebra and calculus of vectors 4

Problem 1 . 1

In terms of the standard basis setfi ; j ;kg, a D 2i � j � 2k, b D 3i � 4k and
c D i � 5j C 3k.

(i) Find 3a C 2b � 4c andja � b j2.
(ii) Find ja j, jb j anda � b. Deduce the angle betweena andb.

(iii) Find the component ofc in the direction ofa and in the direction ofb.
(iv) Find a�b, b�c and.a�b/�.b�c/.
(v) Finda � .b�c/ and.a�b/ �c and verify that they are equal. Is the setfa; b; cg

right- or left-handed?
(vi) By evaluating each side, verify the identitya�.b�c/ D .a � c/b � .a � b/c.

Solution

(i)

3a C 2b � 4c D 3.2i � j � 2k/C 2.3i � 4k/ � 4.i � 5j C 3k/

D 8i C 17j � 26k:

ja � b j2 D .a � b/ � .a � b/

D .�i � j C 2k/ � .�i � j C 2k/

D .�1/2 C .�1/2 C 22 D 6:

(ii)

jaj2 D a � a

D .2i � j � 2k/ � .2i � j � 2k/

D 22 C .�1/2 C .�2/2 D 9:

Hencejaj D 3.

jbj2 D b � b

D .3i � 4k/ � .3i � 4k/

D 32 C .�4/2 D 25:

Hencejbj D 5.

a � b D .2i � j � 2k/ � .3i � 4k/

D
�
2 � 3

�
C
�
.�1/ � 0

�
C
�
.�2/ � .�4/

�

D 14:
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Chapter 1 The algebra and calculus of vectors 5

The anglę betweena andb is then given by

cos˛ D a � b

jaj jbj

D 14

3 � 5
D 14

15
:

Thus˛ D tan�1 14
15

.

(iii) The component ofc in the direction ofa is

c �ba D c �

�
a

jaj

�

D .i � 5j C 3k/ �

�
2i � j � 2k

j2i � j � 2kj

�

D
�
1 � 2

�
C
�
.�5/ � .�1/

�
C
�
3 � .�2/

�

3

D 1

3
:

The component ofc in the direction ofb is

c �bb D c �

�
b

jbj

�

D .i � 5j C 3k/ �

�
3i � 4k

j3i � 4kj

�

D
�
1 � 3

�
C
�
.�5/ � 0

�
C
�
3 � .�4/

�

5

D �9

5
:

(iv)

a�b D .2i � j � 2k/�.3i � 4k/

D

ˇ̌
ˇ̌
ˇ̌
i j k

2 �1 �2

3 0 �4

ˇ̌
ˇ̌
ˇ̌

D
�
4 � 0

�
i �

�
.�8/� .�6/

�
j C

�
0 � .�3/

�
k

D 4i C 2j C 3k:
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b�c D .3i � 4k/�.i � 5j C 3k/

D

ˇ̌
ˇ̌
ˇ̌
i j k

3 0 �4

1 �5 3

ˇ̌
ˇ̌
ˇ̌

D
�
0 � 20

�
i �

�
9 � .�4/

�
j C

�
.�15/� 0

�
k

D �20i � 13j � 15k:

Hence

.a�b/�.b�c/ D .4i C 2j C 3k/�.�20i � 13j � 15k/

D

ˇ̌
ˇ̌
ˇ̌

i j k

4 2 3

�20 �13 �15

ˇ̌
ˇ̌
ˇ̌

D
�
.�30/� .�39/

�
i �

�
.�60/� .�60/

�
j C

�
.�52/� .�40/

�
k

D 9i � 12k:

(v)

a � .b�c/ D .2i � j � 2k/ � .�20i � 13j � 15k/

D
�
2 � .�20/

�
C
�
.�1/ � .�13/

�
C
�
.�2/ � .�15/

�

D 3:

.a�b/ � c D .4i C 2j C 3k/ � .i � 5j C 3k/

D
�
4 � 1/

�
C
�
2 � .�5/

�
C
�
3 � 3

�

D 3:

These values are equal and thisverifies the identity

a � .b�c/ D .a�b/ � c:

Sincea � .b�c/ is positive, the setfa;b; cg must beright-handed.

(vi) The left sideof the identity is

a�.b�c/ D .2i � j � 2k/�.�20i � 13j � 15k/

D

ˇ̌
ˇ̌
ˇ̌

i j k

2 �1 �2

�20 �13 �15

ˇ̌
ˇ̌
ˇ̌

D
�
15 � 26

�
i �

�
.�30/� 40

�
j C

�
.�26/� 20

�
k

D �11i C 70j � 46k:
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Since

.a � c/b D
��

2 � 1
�

C
�
.�1/ � .�5/

�
C
�
.�2/ � 3

��
b

D b

D 3i � 4k;

.a � b/ c D
��

2 � 3
�

C
�
.�1/ � 0

�
C
�
.�2/ � .�4/

��
c

D 14c D 14.i � 5j C 3k/

D 14i � 70j C 42k;

theright side of the identity is

.a � c/b � .a � b/c D .3i � 4k/ � .14i � 70j C 42k/

D �11i C 70j � 46k:

Thus the right and left sides are equal and thisverifies the identity.
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Problem 1 . 2

Find the angle between any two diagonals of a cube.

FIGURE 1.1 Two diagonals of a cube.

E

A

C

D

O

B
αααα

a

Solution
Figure 1.1 shows a cube of sidea; OE andAD are two of its diagonals. LetO

be the origin of position vectors and suppose the pointsA, B andC have position

vectorsai , aj , ak respectively. Then the line segment
�!
OE represents the vector

ai C aj C ak

and the line segment
�!
AD represents the vector

.aj C ak/ � ai D �ai C aj C ak:

Let ˛ be the angle betweenOE andAD. Then

cos˛ D .ai C aj C ak/ � .�ai C aj C ak/

jai C aj C akj j � ai C aj C akj

D �a2 C a2 C a2

�p
3a
��p

3a
� D 1

3
:

Hence theangle between the diagonalsis cos�1 1
3
, which is approximately70:5ı.
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Problem 1 . 3

ABCDEF is a regular hexagon with centreO which is also the origin of position
vectors. Find the position vectors of the verticesC , D, E, F in terms of the position
vectorsa, b of A andB.

FIGURE 1.2 ABCDEF is a regular
hexagon.

A

BC

D

E F

O a

b

Solution

(i) The position vectorc is represented by the line segment
�!
OC which has the

same magnitude and direction as the line segment
�!
AB. Hence

c D b � a:

(ii) The position vectord is represented by the line segment
�!
OD which has the

same magnitude as, butoppositedirection to, the line segment
�!
OA. Hence

d D �a:

(iii) The position vectore is represented by the line segment
�!
OE which has the

same magnitude as, butoppositedirection to, the line segment
�!
OB. Hence

e D �b:

(iv) The position vectorf is represented by the line segment
�!
OF which has the

c
 Cambridge University Press, 2006
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same magnitude as, butoppositedirection to, the line segment
�!
AB. Hence

e D �.b � a/ D a � b:
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 Cambridge University Press, 2006
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Problem 1 . 4

Let ABCD be a general (skew) quadrilateral and letP , Q, R, S be the mid-points
of the sidesAB, BC , CD, DA respectively. Show thatPQRS is a parallelogram.

Solution
Let the pointsA, B, C , D have position vectorsa, b, c, d relative to some origin
O . Then the position vectors of the pointsP , Q, R, S are given by

p D 1
2
.a C b/; q D 1

2
.b C c/; r D 1

2
.c C d/; s D 1

2
.d C a/:

Now the line segment
�!
PQ represents the vector

q � p D 1
2
.b C c/ � 1

2
.a C b/ D 1

2
.c � a/;

and the line segment
�!
SR represents the vector

r � s D 1
2
.c C d/ � 1

2
.d C a/ D 1

2
.c � a/:

The linesPQ andSR are therefore parallel. Similarly, the linesQR andPS are
parallel. The quadrilateralPQRS is therefore aparallelogram.
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 Cambridge University Press, 2006
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Problem 1 . 5

In a general tetrahedron, lines are drawn connecting the mid-point of each side with
the mid-point of the side opposite. Show that these three lines meet in a point that
bisects each of them.

Solution
Let the vertices of the tetrahedron beA, B, C , D and suppose that these points have
position vectorsa, b, c, d relative to some originO . ThenX , the mid-point ofAB,
has position vector

x D 1
2
.a C b/;

andY , the mid-point ofCD, has position vector

y D 1
2
.c C d/:

Hence the mid-point ofXY has position vector

1
2
.x C y/ D 1

2

�
1
2
.a C b/C 1

2
.c C d/

�
D 1

4

�
a C b C c C d

�
:

The mid-points of the other two lines that join the mid-points of opposite sides of
the tetrahedron are found to have the same position vector. These three points are
therefore coincident. Hencethe three lines that join the mid-points of opposite sides
of the tetrahedron meet in a point that bisects each of them.

c
 Cambridge University Press, 2006
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Problem 1 . 6

Let ABCD be a general tetrahedron and letP , Q, R, S be the median centres of the
faces opposite to the verticesA, B, C , D respectively. Show that the linesAP , BQ,
CR, DS all meet in a point (called thecentroidof the tetrahedron), which divides
each line in the ratio 3:1.

Solution
Let the vertices of the tetrahedron beA, B, C , D and suppose that these points

have position vectorsa, b, c, d respectively, relative to some originO . ThenP , the
median centre of the faceBCD has position vector

p D 1
3
.b C c C d/:

The point that divides the lineAP in the ratio 3:1 therefore has position vector

a C 3p

4
D 1

4

�
a C b C c C d

�
:

The corresponding points on the other three lines that join the vertices of the tetra-
hedron to the median centres of the opposite faces are all found to have the same
position vector. These four points are therefore coincident. Hencethe four lines
that join the vertices of the tetrahedron to the median centres of the opposite faces
meet in a point that divides each line in the ratio 3:1. It is the same point as was
constructed in Problem 1.5.
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Problem 1 . 7

A number of particles with massesm1;m2;m3; : : : are situated at the points with
position vectorsr1; r2; r3; : : : relative to an originO . The centre of massG of the
particles is defined to be the point of space with position vector

R D m1r1 C m2r2 C m3r3 C � � �
m1 C m2 C m3 C � � �

Show that if a different originO 0 were used, this definition would still placeG at
the same point of space.

Solution

Suppose the line segment
�!

OO 0 (that connects the two origins) represents the vector
a. Thenr 0

1, r 0
2, r 0

3; : : : , the position vectors of the masses relative to the originO 0,
are given by the triangle law of addition to be

r 0
i D r i � a:

The position vector of the centre of mass measured relative to O 0 is defined to be

R0 D
m1r 0

1
C m2r 0

2
C m3r 0

3
C � � �

m1 C m2 C m3 C � � �

D m1.r1 � a/C m2.r2 � a/C m3.r3 � a/C � � �
m1 C m2 C m3 C � � �

D
�

m1r1 C m2r2 C m3r3 C � � �
m1 C m2 C m3 C � � �

�
� a

D R � a:

By the triangle law of addition, this defines thesame point of spaceas before.
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 Cambridge University Press, 2006
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Problem 1 . 8

Prove that the three perpendiculars of a triangle are concurrent.

FIGURE 1.3 AL and BM are two of the
perpendiculars of the triangleABC .

A

B C

O

L

M
N

Solution
Let ABC be the triangle and construct the perpendicularsAL andBM from A and
B; let O be their point of intersection. Now construct the lineCO and extend it to
meetAB in the pointN . We wish to show thatCN is perpendicular toAB.

Suppose the pointsA, B, C have position vectorsa, b, c relative toO . Then,
sinceAL is perpendicular toBC , we have

a � .c � b/ D 0;

and, sinceBM is perpendicular toCA, we have

b � .a � c/ D 0:

On adding these equalities, we obtain

c � .a � b/ D 0;

which shows that the lineCN is perpendicular to the sideAB.

c
 Cambridge University Press, 2006
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Problem 1 . 9

If a1 D �1i C�1j C�1k, a2 D �2i C�2j C�2k, a3 D �3i C�3j C�3k, where
fi ; j ;kg is a standard basis, show that

a1 � .a2�a3/ D

ˇ̌
ˇ̌
ˇ̌
�1 �1 �1

�2 �2 �2

�3 �3 �3

ˇ̌
ˇ̌
ˇ̌ :

Deduce that cyclic rotation of the vectors in a triple scalarproduct leaves the value
of the product unchanged.

Solution
Since

a2�a3 D

ˇ̌
ˇ̌
ˇ̌

i j k

�2 �2 �2

�3 �3 �3

ˇ̌
ˇ̌
ˇ̌

D i

ˇ̌
ˇ̌�2 �2

�3 �3

ˇ̌
ˇ̌ � j

ˇ̌
ˇ̌�2 �2

�3 �3

ˇ̌
ˇ̌C k

ˇ̌
ˇ̌�2 �2

�3 �3

ˇ̌
ˇ̌ ;

it follows that

a1 � .a2�a3/ D
�
�1i C �1j C �1k

�
�

�
i

ˇ̌
ˇ̌�2 �2

�3 �3

ˇ̌
ˇ̌ � j

ˇ̌
ˇ̌�2 �2

�3 �3

ˇ̌
ˇ̌C k

ˇ̌
ˇ̌�2 �2

�3 �3

ˇ̌
ˇ̌
�

D �1

ˇ̌
ˇ̌�2 �2

�3 �3

ˇ̌
ˇ̌ � �1

ˇ̌
ˇ̌�2 �2

�3 �3

ˇ̌
ˇ̌C �1

ˇ̌
ˇ̌�2 �2

�3 �3

ˇ̌
ˇ̌

D

ˇ̌
ˇ̌
ˇ̌
�1 �1 �1

�2 �2 �2

�3 �3 �3

ˇ̌
ˇ̌
ˇ̌ :

Since the value of this determinant is unchanged a cyclic rotation of its rows, it
follows thatthe value of a triple scalar product is unchanged by a cyclic rotation of
its vectors.
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Problem 1 . 10

By expressing the vectorsa, b, c in terms of a suitable standard basis, prove the
identitya�.b�c/ D .a � c/b � .a � b/c.

Solution
The algebra in this solution is reduced by selecting a special basis setfi ; j ;kg so

that

a D a1i ;

b D b1i C b2j ;

c D c1i C c2j C c3k:

Such a choice is always possible. Then

b�c D

ˇ̌
ˇ̌
ˇ̌

i j k

b1 b2 0

c1 c2 c3

ˇ̌
ˇ̌
ˇ̌

D
�
b2c3 � 0

�
i �

�
b1c3 � 0

�
j C

�
b1c2 � b2c1

�
k

D b2c3 i � b1c3 j C
�
b1c2 � b2c1

�
k

and hence theleft sideof the identity is

a�.b�c/ D

ˇ̌
ˇ̌
ˇ̌

i j k

a1 0 0

b2c3 �b1c3 b1c2 � b2c1

ˇ̌
ˇ̌
ˇ̌

D
�
0 � 0

�
i �

�
a1.b1c2 � b2c1/ � 0

�
j C

�
a1.�b1c3/ � 0

�
k

D a1.b2c1 � b1c2/j � a1b1c3 k:

Theright side of the identity is

.a � c/b � .a � b/c D .a1c1/b � .a1b1/c

D a1c1

�
b1i C b2j

�
� a1b1 .c1i C c2j C c3k/

D a1.b2c1 � b1c2/j � .a1b1c3/k:

Thus the right and left sides are equal andthis proves the identity.

c
 Cambridge University Press, 2006
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Problem 1 . 11

Prove the identities

(i) .a�b/ � .c�d/ D .a � c/.b � d/ � .a � d/.b � c/

(ii) .a�b/�.c�d/ D Œa;b;d �c � Œa; b; c �d

(iii) a�.b�c/C c�.a�b/C b�.c�a/ D 0 (Jacobi’s identity)

Solution

(i)

.a�b/ � .c�d/ D a �
�
b�.c�d/

�

D a �
�
.b � d/c � .b � c/d

�

D .a � c/.b � d/ � .a � d/.b � c/:

(ii)

.a�b/�.c�d/ D
�
.a�b/ � d

�
c �

�
.a�b/ � c

�
d

D Œa; b;d �c � Œa; b; c �d :

(iii)

a�.b�c/C c�.a�b/C b�.c�a/

D
�
.a � c/b � .a � b/c

�
C
�
.c � b/a � .c � a/b

�
C
�
.b � a/c � .b � c/a

�

D
�
c � b � b � c

�
a C

�
a � c � c � a

�
b C

�
b � a � a � b

�
c

D 0:

c
 Cambridge University Press, 2006
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Problem 1 . 12 Reciprocal basis

Let fa; b; cg be any basis set. Then the correspondingreciprocal basisfa�;b�; c�g
is defined by

a� D b�c

Œa; b; c �
; b� D c�a

Œa; b; c �
; c� D a�b

Œa; b; c �
:

(i) If fi ; j ;kg is a standard basis, show thatfi �; j �;k�g D fi ; j ;kg.
(ii) Show that Œa�; b�; c� � D 1=Œa; b; c �. Deduce that iffa; b; c g is a right

handed set then so isfa�;b�; c� g.
(iii) Show thatf.a�/�; .b�/�; .c�/� � D fa; b; c g.
(iv) If a vectorv is expanded in terms of the basis setfa; b; c g in the form

v D �a C �b C � c;

show that the coefficients�, �, � are given by� D v � a�, � D v � b�,
� D v � c�.

Solution

(i) If fi ; j ;kg is a standard basis, then

i � D j �k

i � .j �k/

D i

i � i
D i

1

D i :

Similar arguments hold forj � andk� and hencefi �; j �;k�g D fi ; j ;kg.
(ii)

Œa�; b�; c� � D a�
�
�
b��c��

D a�
�

�
c�a

Œa; b; c �
� a�b

Œa; b; c �

�

D a�

Œa; b; c �2
�

�
.c�a/ � b/a � .c�a/ � a/b

�

D b�c

Œa; b; c �3
�

�
Œa; b; c �a � 0

�

D 1

Œa; b; c �
:

c
 Cambridge University Press, 2006
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If fa; b; c g is a right-handed basis set, thenŒa;b; c � is positive. It follows
that Œa�; b�; c� � must also be positive and therefore alsoright-handed.

(iii)

�
a��� D b��c�

Œa�;b�; c� �

D Œa;b; c �

�
c�a

Œa; b; c �
� a�b

Œa; b; c �

�

D 1

Œa; b; c �

�
.c�a/ � b/a � .c�a/ � a/b

�

D 1

Œa; b; c �

�
Œa; b; c �a � 0

�

D a:

Similar arguments hold for
�
b��� and.c�/� and hencef.a�/�; .b�/�; .c�/� g D

fa; b; c g.
(iv) Supposev is expanded in terms of the basis setfa;b; c g in the form

v D �a C �b C � c:

On taking the scalar product of this equation witha�, we obtain

v � a� D �a � a� C �b � a� C � c � a�

D �a �

�
b�c

Œa; b; c �

�
C �b �

�
b�c

Œa;b; c �

�
C � c �

�
b�c

Œa; b; c �

�

D �C 0 C 0

D �:

Hence� D v � a�, and, by similar arguments,� D v � b� and� D v � c�.
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Problem 1 . 13

Lamé’s equationsThe directions in which X-rays are strongly scattered by a crystal
are determined from the solutionsx of Lamé’s equations, namely

x � a D L; x � b D M; x � c D N;

wherefa; b; cg are the basis vectors of the crystal lattice, andL, M , N areany
integers. Show that the solutions of Lamé’s equations are

x D La� C M b� C N c�;

wherefa�;b�; c�g is the reciprocal basis tofa; b; cg.

Solution
Let us seek solutions of Lamé’s equations in the form

x D �a� C �b� C � c�;

wherefa�; b�; c�g is thereciprocal basiscorresponding to the lattice basisfa;b; cg.
On substituting this expansion into Lamé’s equations, we find that� D L, � D M

and� D N . The onlysolution of Lamé’s equations(corresponding to given values
of L, M , N ) is therefore

x D La� C M b� C N c�:

c
 Cambridge University Press, 2006
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Problem 1 . 14

If r.t/ D .3t2 � 4/i C t3 j C .t C 3/k, wherefi ; j ;kg is a constant standard basis,
find Pr and Rr . Deduce the time derivative ofr� Pr .

Solution
If r.t/ D .3t2 � 4/i C t3 j C .t C 3/k, then

Pr D 6t i C 3t2 j C k;

Rr D 6i C 6t j :

Hence

d

dt

�
r� Pr

�
D Pr� Pr C r� Rr

D 0 C r� Rr

D

ˇ̌
ˇ̌
ˇ̌

i j k

3t2 � 4 t3 t C 3

6 6t 0

ˇ̌
ˇ̌
ˇ̌

D �6t.t C 3/i C 6.t C 3/j C 12t.t2 � 2/k:
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Problem 1 . 15

The vectorv is a function of the timet andk is a constant vector. Find the time
derivatives of (i)jv j2, (ii) .v � k/ v, (iii) Œv; Pv;k �.

Solution

(i)

d

dt
jv j2 D d

dt

�
v � v

�

D Pv � v C v � Pv

D 2v � Pv:

(ii)

d

dt

�
.v � k/v

�
D
�
Pv � k C v � Pk

�
v C .v � k/ Pv

D . Pv � k/v C .v � k/ Pv:

(iii)

d

dt
Œv; Pv;k � D Œ Pv; Pv;k �C Œv; Rv;k �C Œv; Pv; Pk �

D 0 C Œv; Rv;k �C 0

D Œv; Rv;k �:

c
 Cambridge University Press, 2006



Chapter 1 The algebra and calculus of vectors 24

Problem 1 . 16

Find the unit tangent vector, the unit normal vector and the curvature of the circle
x D a cos� , y D a sin� , z D 0 at the point with parameter� .

Solution
Let i , j be unit vectors in the directionsOx, Oy respectively. Then the vector

form of the equation for the circle is

r D a cos� i C a sin� j :

Then

dr

d�
D �a sin� i C a cos� j

and so
ˇ̌
ˇ̌dr

d�

ˇ̌
ˇ̌ D a:

Theunit tangent vector to the circle is therefore

t.�/ D dr

d�

�ˇ̌
ˇ̌dr

d�

ˇ̌
ˇ̌ D � sin� i C cos� j :

By the chain rule,

dt

ds
D dt=d�

ds=d�
D dt=d�

jdr=d� j D � cos� i � sin� j

a
:

Hence theunit normal vector andcurvature of the circle are given by

n.�/ D � cos� i � sin� j ; �.�/ D 1

a
:

Theradius of curvature of the circle isa.
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Problem 1 . 17

Find the unit tangent vector, the unit normal vector and the curvature of the helix
x D a cos� , y D a sin� , z D b� at the point with parameter� .

Solution
Let i , j , k be unit vectors in the directionsOx, Oy, Oz respectively. Then the

vector form of the equation for the helix is

r D a cos� i C a sin� j C b� k:

Then

dr

d�
D �a sin� i C a cos� j C b k

and so
ˇ̌
ˇ̌dr

d�

ˇ̌
ˇ̌ D

�
a2 C b2

�1=2

:

Theunit tangent vector to the helix is therefore

t.�/ D dr

d�

�ˇ̌
ˇ̌dr

d�

ˇ̌
ˇ̌

D �a sin� i C a cos� j C b k
�
a2 C b2

�1=2 :

By the chain rule,

dt

ds
D dt=d�

ds=d�
D dt=d�

jdr=d� j

D �a cos� i � a sin� j

a2 C b2
:

Hence theunit normal vector andcurvature of the helix are given by

n.�/ D � cos� i � sin� j ; �.�/ D a

a2 C b2

Theradius of curvature of the helix is
�
a2 C b2

�
=a.
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Problem 1 . 18

Find the unit tangent vector, the unit normal vector and the curvature of the parabola
x D ap2, y D 2ap, z D 0 at the point with parameterp.

Solution
Let i , j be unit vectors in the directionsOx, Oy respectively. Then the vector

form of the equation for the parabola is

r D ap2i C 2apj :

Then

dr

dp
D 2ap i C 2aj and

ˇ̌
ˇ̌dr

dp

ˇ̌
ˇ̌ D 2a

�
p2 C 1

�1=2

:

Theunit tangent vector to the parabola is therefore

t.p/ D dr

dp

�ˇ̌
ˇ̌dr

dp

ˇ̌
ˇ̌

D p i C j
�
p2 C 1

�1=2 :

By the chain rule,

dt

ds
D dt=dp

ds=dp
D dt=dp

jdr=dpj

D 1

2a
�
p2 C 1

�1=2

 
i

�
p2 C 1

�1=2 � p.p i C j /
�
p2 C 1

�3=2

!

D i � pj

2a
�
p2 C 1

�2 :

Hence theunit normal vector andcurvature of the parabola are given by

n.�/ D i � pj
�
p2 C 1

�1=2 �.�/ D 1

2a
�
p2 C 1

�3=2 :

Theradius of curvature of the parabola is2a
�
p2 C 1

�3=2

.
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Problem 2 . 1

A particleP moves along thex-axis with its displacement at timet given byx D
6t2 � t3 C 1, wherex is measured in metres andt in seconds. Find the velocity and
acceleration ofP at timet . Find the times at whichP is at rest and find its position
at these times.

Solution
Since the displacement ofP at timet is

x D 6t2 � t3 C 1;

thevelocity of P at timet is given by

v D dx

dt
D 12t � 3t2 m s�1;

and theaccelerationof P at timet is given by

a D dv

dt
D 12 � 6t m s�2:

P is instantaneouslyat rest whenv D 0, that is, when

12t � 3t2 D 0:

This equation can be written in the form

3t.4 � t/ D 0

and its solutions are thereforet D 0 s andt D 4 s.
Whent D 0 s, the displacement ofP is x D 6.02/ � 03 C 1 D 1 m and when

t D 4 s, the displacement ofP is x D 6.42/ � 43 C 1 D 33 m.
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Problem 2 . 2

A particleP moves along thex-axis with its accelerationa at timet given by

a D 6t � 4 m s�2:

Initially P is at the pointx D 20 m and is moving with speed15 m s�1 in the
negativex-direction. Find the velocity and displacement ofP at timet . Find when
P comes to rest and its displacement at this time.

Solution
Since the acceleration ofP at timet is given to be

a D 6t � 4;

the velocityv of P at timet must satisfy the ODE

dv

dt
D 6t � 4:

Integrating with respect tot gives

v D 3t2 � 4t C C;

whereC is a constant of integration. The initial condition thatv D �15 whent D 0

gives

�15 D 3.02/� 4.0/C C;

from whichC D �15. Hence thevelocity of P at timet is

v D 3t2 � 4t � 15 m s�1:

By writing v D dx=dt and integrating again, we obtain

x D t3 � 2t2 � 15t C D;

whereD is a second constant of integration. The initial condition thatx D 20 when
t D 0 gives

20 D 03 � 2.02/ � 15.0/C D;
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from whichD D 20. Hence thedisplacementof P at timet is

x D t3 � 2t2 � 15t C 20 m:

P comes to rest whenv D 0, that is, when

3t2 � 4t � 15 D 0:

This equation can be written in the form

.t � 3/.3t C 5/ D 0

and its solutions are thereforet D 3 s andt D �5
3

s. The timet D �5
3

s isbeforethe
motion started and is therefore not a permissible solution.It follows thatP comes
to rest only whent D 3 s. Thedisplacementof P at this time is

x D 33 � 2.32/ � 15.3/C 20 D �16 m:
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Problem 2 . 3 Constant acceleration formulae

A particle P moves along thex-axis with constantaccelerationa in the positive
x-direction. InitiallyP is at the origin and is moving with velocityu in the positive
x-direction. Show that the velocityv and displacementx of P at timet are given
by

v D u C at; x D ut C 1
2
at2;

and deduce that

v2 D u2 C 2ax:

In a standing quarter mile test, the Suzuki Bandit 1200 motorcycle covered the quar-
ter mile (from rest) in 11.4 seconds and crossed the finish line doing 116 miles per
hour. Are these figures consistent with the assumption of constant acceleration?

Solution
When the accelerationa is aconstant, the ODE

dv

dt
D a

integrates to give

v D at C C;

whereC is a constant of integration. The initial conditionv D u whent D 0 gives

u D 0 C C;

from whichC D u. Hence thevelocity of P at timet is given by

v D u C at: (1)

On writingv D dx=dt and integrating again, we obtain

x D ut C 1
2
at2 C D;

whereD is a second constant of integration. The initial conditionx D 0 whent D 0

givesD D 0 so that thedisplacementof P at timet is given by

x D ut C 1
2
at2: (2)
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From equation (1),

v2 D .u C at/2

D u2 C 2uat C a2t2

D u2 C 2a
�
ut C 1

2
at2
�

D u2 C 2ax;

on using equation (1). We have thus obtained the relation

v2 D u2 C 2ax: (3)

In the notation used above, the results of the Bandit test runwere

u D 0; v D 116 mph.D 170 ft s�1/;

x D 1320 ft; t D 11:4 s;

in Imperial units.
Suppose that the Bandit does have constant accelerationa. Then formula (1)

gives

170 D 0 C 11:4 a;

from whicha D 14:9 ft s�2. However, formula (2) gives

1320 D 0 C 1
2
a.11:4/2

from whicha D 20:3 ft s�2. These two values fora do not agree and so the Bandit
must have hadnon constant acceleration.
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Problem 2 . 4

The trajectory of a charged particle moving in a magnetic field is given by

r D b cos�t i C b sin�t j C ct k;

whereb,� andc are positive constants. Show that the particle moves with constant
speed and find the magnitude of its acceleration.

Solution
Since the position vector ofP at timet is

r D b cos�t i C b sin�t j C ct k;

thevelocity of P at timet is given by

v D dr

dt
D ��b sin�t i C�b cos�t j C c k;

and theaccelerationof P at timet is given by

a D dv

dt
D ��2b cos�t i ��2b sin�t j :

It follows that

jvj2 D .��b sin�t/2 C .�b cos�t/2 C c2

D �2b2
�
sin2�t C cos2�t

�
C c2

D �2b2 C c2:

Hencejvj D
�
�2b2 C c2

�1=2
, which is a constant.

Furthermore,

jaj2 D .��2b cos�t/2 C .��2b sin�t/2

D �4b2
�
cos2�t C sin2�t

�

D �4b2:

Hencejaj D �2b, which is also a constant.
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Problem 2 . 5 Acceleration due to rotation and orbit of the Earth

A body is at rest at a location on the Earth’s equator. Find itsacceleration due to
the Earth’s rotation. [Take the Earth’s radius at the equator to be 6400 km.]

Find also the acceleration of the Earth in its orbit around the Sun. [Take the Sun
to be fixed and regard the Earth as a particle following a circular path with centre
the Sun and radius15 � 1010 m.

Solution

(i) The distance travelled by a body on the equator in one rotation of the Earth
is 2�R, whereR is the Earth’s radius. This distance is traversed in one day.
Thespeedof the body is therefore

v D 2� � 6; 400; 000

24 � 60 � 60
D 465 m s�1;

in S.I. units. Theaccelerationof the body is directed towards the centre of
the Earth and has magnitude

a D v2

R
D 0:034 m s�2:

(ii) The distance travelled by the Earth in one orbit of the Sun is 2�R, whereR

is now the radius of the Earth’sorbit. This distance is traversed in one year.
Thespeedof the Earth in its orbit is therefore

v D
2�
�
15 � 1010

�

365 � 24 � 60 � 60
D 3:0 � 104 m s�1;

in S.I. units. Theaccelerationof the Earth is directed towards the Sun and
has magnitude

a D v2

R
D 0:0060 m s�2:
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Problem 2 . 6

An insect flies on a spiral trajectory such that its polar coordinates at timet are given
by

r D be�t ; � D �t;

whereb and� are positive constants. Find the velocity and accelerationvectors of
the insect at timet , and show that the angle between these vectors is always�=4.

Solution
Thevelocity of the insect at timet is given by

v D Prbr C
�
r P�
�
b�

D
�
�be�t

�
br C

�
�be�t

�
b�

and theaccelerationof the insect at timet is given by

a D
�

Rr � r P�2
�
br C

�
r R� C 2 Pr P�

�
b�

D
�
�2be�t ��2be�t

�
br C

�
0 C 2�2be�t

�
b�

D 2�2be�t b�:

It follows that

jv j D
p

2�be�t and ja j D 2�2be�t :

Theangle˛ betweenv anda is then given by

cos˛ D v � a

jv jja j

D 2�3b2e2�t

�p
2�be�t

� �
2�2be�t

�

D 1p
2
:

Hence the angle between the vectorsv anda is always�=4.
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Problem 2 . 7

A racing car moves on a circular track of radiusb. The car starts from rest and
its speedincreases at a constant rate˛. Find the angle between its velocity and
acceleration vectors at timet .

Solution
Since the car has speedv D ˛t at timet , its velocity is

v D vb� D ˛tb�

and itsaccelerationis

a D
�

�v
2

b

�
br C Pvb� D

�
�˛

2t2

b

�
br C ˛br:

Theangleˇ betweenv anda is then given by

cosˇ D v � a

jv jja j

D ˛2t

˛t

�
˛4t4

b2
C ˛2

�1=2

D b
�
b2 C ˛2t4

�1=2 :

The angle between the vectorsv anda at timet is therefore

ˇ D cos�1

 
b

�
b2 C ˛2t4

�1=2

!
:
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Problem 2 . 8

A particleP moves on a circle with centreO and radiusb. At a certain instant the
speed ofP is v and its acceleration vector makes an angle˛ with PO . Find the
magnitude of the acceleration vector at this instant.

FIGURE 2.1 The velocity and acceleration
vectors of the particleP .

αa

v

P

O

b

Solution
In the standard notation, thevelocity andaccelerationvectors ofP have the form

v D vb� ;

a D �v
2

b
br C Pvb�;

wherev is thecircumferential velocityof P .

Consider the component ofa in the direction
�!
PO . This can be written in the

geometrical formjaj cos˛ and also in the algebraic forma � .�br/. Hence

jaj cos˛ D a � .�br/

D
�

�v
2

b
br C Pvb�

�
� .�br/

D v2

b
:

It follows that

jaj D v2

b cos˛
:
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Problem 2 . 9 �

A bee flies on a trajectory such that its polar coordinates at time t are given by

r D bt

�2
.2� � t/ � D t

�
.0 � t � 2�/;

whereb and� are positive constants. Find the velocity vector of the bee at time t .
Show that the least speed achieved by the bee isb=� . Find the acceleration of

the bee at this instant.

Solution
Thevelocity vector of the bee is given by

v D Prbr C
�
r P�
�
b�

D 2b

�2
.� � t/br C bt

�3
.2� � t/b�:

It follows that

jv j2 D 4b2

�4
.� � t/2 C b2t2

�6
.2� � t/2

D b2

�6

�
t4 � 4� t3 C 8�2t2 � 8�3t C 4�4

�
;

after some simplification.
To find the maximum value ofjv j, consider the time derivative ofjv j2.

d

dt
jv j2 D b2

�6

�
4t3 � 12� t2 C 16�2t � 8�3

�

D 4b2

�6
.t � �/

�
t2 � 2� t C 2�2

�
:

The expressiont2 � 2� t C 2�2 is always positive and hence

d

dt
jv j2

8
<
:
< 0 for t < �;

D 0 for t D �;

> 0 for t > �:

Hencejv j achieves its minimum value whent D � . At this instant,

jv j D b

�
;
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which is therefore theminimum speedof the bee.

Theaccelerationvector of the bee at timet is given by

a D
�

Rr � r P�2
�
br C

�
r R� C 2 Pr P�

�
b�

D
�

�2b

�2
� bt

�4
.2� � t/

�
br C

�
0 C 4b

�3
.� � t/

�
b�

D �3b

�2
br ;

whent D � . Hence, when the speed of the bee is a minimum,

jaj D 3b

�2
:
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Problem 2 . 10 � A pursuit problem: Daniel and the Lion

The luckless Daniel (D) is thrown into a circular arena of radiusa containing a lion
(L). Initially the lion is at the centreO of the arena while Daniel is at the perimeter.
Daniel’s strategy is to run with his maximum speedu around the perimeter. The
lion responds by running at its maximum speedU in such a way that it remains
on the (moving) radiusOD. Show thatr , the distance ofL from O , satisfies the
differential equation

Pr2 D u2

a2

�
U 2a2

u2
� r2

�
:

Find r as a function oft . If U � u, show that Daniel will be caught, and find how
long this will take.

Show that the path taken by the lion is a circle. For the special case in which
U D u, sketch the path taken by the lion and find the point of capture.

D

O

u

ṙr θ˙

r

θ

L

FIGURE 2.2 Daniel D is pursued by the lionL. The lion
remains on the rotating radiusOD.

Solution
Let the lion have polar coordinatesr , � as shown in Figure 2.2. Then thevelocity
vector of the lion is

v D Prbr C
�
r P�
�
b�

D Prbr C
�ur

a

�
b�;
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