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Chapter One

The algebra and calculus
of vectors
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Chapter 1 The algebra and calculus of vectors

Problem 1.1

In terms of the standard basis $ét j,k},a = 2i — j — 2k, b = 3i — 4k and
c=i—-5j+3k.

(i) Find3a +2b —4c and|a — b |*.

(i) Find |a|, |b| anda - b. Deduce the angle betweerandb.

(ili) Find the component o in the direction ofz and in the direction ob.
(iv) Findaxhb, bxc and(axb)x(bxc).

(v) Finda-(bxc) and(axh)-c and verify that they are equal. Is the éetb, ¢}
right- or left-handed?

(vi) By evaluating each side, verify the identiyk (b x¢) = (a-¢)b — (a-b)c.

Solution

()
3a+2b—4¢=3Q2i—j—2k)+23i —4k)— 4@ —5j + 3k)
=8i +17j —26k.m

la—b>=(a—b)-(a—b)
=(—i—j+2k)-(—i —j +2k)
=(-1)?+(-1)*+2*>=6.m
(i)
la> =a-a
=Q2i—j—2k)-Q2i —j —2k)
=22+ (-1 + (-2)* =09.

Hencela| = 3. m
6> =b-b

= (3i —4k)-(3i —4k)
=3? + (—4)* =25

Hencelb| = 5. m

a-b=Q2i—j—2k)(3i —4k)

= (2%3) 4 ((=1) x 0) + ((=2) x (—4))
=14.m
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Chapter 1 The algebra and calculus of vectors

The anglex betweeru andb is then given by

COSsx = a-b

la||b]
14 14
3x5 15

Thusa =tarm! 1. m

(i) The component ot in the direction ofz is

2 —j —2k
= -57 3k) | ———M8
(=37 +3K) (|2i—j —2k|)

_ (1x2) 4+ ((=5) x (=) + (3 x (-2))
3

W —

The component of in the direction of is

~ b
c.b:c.(—)
|b]

3i — 4k
=G =57 +3k)-[———=
(=37 438 (|3i—4k|)

(1 x3) + ((=5) x 0) + (3 x (—4))
5

(iv)

axh = (i — j —2k)x(3i — 4k)
i ok
212
3 0-4
= (4—-0)i — ((-8) = (—6))j + (0— (-3))k
—4i +2j +3k.m
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Chapter 1 The algebra and calculus of vectors

bxe=3i —4k)x(i —5j +3k)
i j k
3 04
1-5 3
=(0-20)i —(9—(-4)j + ((—=15) —0)k
=—20i —13j — 15k.m

Hence

(axb)x(bxc) = (4i +2j +3k)x(=20i —13j —15k)
i j k
4 2 3

—20 —13 —15

= ((=30) — (—39))i — ((—60) — (—60))j + ((—52) — (—40))k

=9i —12k.m

(V)
a-(bxe)= i —j—2k)-(=20i —13j — 15k)
= (2 x (=20)) + ((—=1) x (—=13)) + ((-=2) x (—15))
=3.

(axb)y-c= @i +2j +3k)-(i —5j +3k)
=(4x1)+ (2x(=5)+(3x3)
= 3.

These values are equal and thesifies the identity
a-(bxc)=(axb)-c.

Sincea - (b xc¢) is positive the sef{a, b, ¢} must beright-handed. m
(vi) Theleft side of the identity is

ax(bxc)=Q2i —j —2k)x(-20i —13j — 15k)

i j ok
| 2 -1 =2
20 —13 —15

= (15—26)i — ((—30) —40)j + ((—26) —20)k
=—11i +70j — 46k.
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Chapter 1 The algebra and calculus of vectors

Since

(@a-b)c = ((2 x3) + ((=1) x 0) + ((—2) x (—4)))(‘
— lde = 14(i =5 + 3k)
— 14i —70j + 42k,

theright side of the identity is

(@a-c)b—(a-b)c=3i —4k)—(14i —70j + 42k)
=—11i +70j —46k.

Thus the right and left sides are equal and th@sfies the identity. m
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Chapter 1 The algebra and calculus of vectors

Problem 1.2
Find the angle between any two diagonals of a cube.

D

FIGURE 1.1 Two diagonals of a cube.

Solution

Figure 1.1 shows a cube of side OF and A D are two of its diagonals. LeD
be the origin of position vectors and suppose the pait® andC have position

—_
vectorsai, a j, ak respectively. Then the line segment represents the vector

ai +aj +ak

and the line segmem D represents the vector
(aj +ak)—ai =—ai +aj +ak.
Let o be the angle betweefE andA D. Then

(ai +aj +ak)-(—ai +aj +ak)
lai +aj +ak||—ai +aj+ak|
—a’>+a’>+a* 1

Cosx =

(V3a)(V3a) 3

Hence theangle between the diagonalss cos™ 1, which is approximately0.5°.
|
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Chapter 1 The algebra and calculus of vectors

Problem 1.3

ABCDEF is aregular hexagon with cent@ which is also the origin of position
vectors. Find the position vectors of the verticésD, E, F in terms of the position
vectorsa, b of A andB.

C B
b
D A
O a
FIGURE 12 ABCDEF is a regular ¥ i
hexagon. E

Solution

—_
() The position vector is represented by the line segmen which has the
—_
same magnitude and direction as the line segmdht Hence

c=b—a.nm

—_
(i) The position vectow is represented by the line segme&nd which has the
—_
same magnitude as, boppositedirection to, the line segmei@4. Hence

d=—-a.m

(iii) The position vectore is represented by the line segme&nE which has the

—

same magnitude as, boppositedirection to, the line segmeid@B. Hence

e=—-b.m

(iv) The position vectorf is represented by the line segme&nk’ which has the
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Chapter 1 The algebra and calculus of vectors

—

same magnitude as, boppositedirection to, the line segmentB. Hence

e=—(b—-—-a)=a—-b.m
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Chapter 1 The algebra and calculus of vectors

Problem 1.4

Let A BCD be a general (skew) quadrilateral and BtQ, R, S be the mid-points
of the sidesA B, BC, CD, DA respectively. Show thaPQRS is a parallelogram.

Solution

Let the points4, B, C, D have position vectora, b, ¢, d relative to some origin
0. Then the position vectors of the poin®s Q, R, S are given by

p= %(a+b), q = %(b—l—c), r= %(c—i—d), s = %(d +a).
Now the line segmenPQ represents the vector
g—p=10b+c)—L@a+b) =1ic-a),

—_
and the line segmeriR represents the vector
r—s = %(c—l—d —%(d—l—a) = %(c—a).

The linesPQ and SR are therefore parallel. Similarly, the ling€gR and PSS are
parallel. The quadrilaterd® QRS is therefore garallelogram. m
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Chapter 1 The algebra and calculus of vectors 12

Problem 1.5

In a general tetrahedron, lines are drawn connecting thepmiick of each side with
the mid-point of the side opposite. Show that these thrasslmeet in a point that
bisects each of them.

Solution
Let the vertices of the tetrahedron He B, C, D and suppose that these points have

position vectors, b, ¢, d relative to some origir®. ThenX’, the mid-point of4 B,
has position vector
x =1(a+b),
andY, the mid-point ofC D, has position vector
y = %(c +d).
Hence the mid-point ok'Y has position vector
Ix+y)= %(%(a—i—b)—l—%(c—l—d)) =la+b+c+d).
The mid-points of the other two lines that join the mid-psiof opposite sides of
the tetrahedron are found to have the same position vectwselthree points are

therefore coincident. Hendke three lines that join the mid-points of opposite sides
of the tetrahedron meet in a point that bisects each of tmem
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Chapter 1 The algebra and calculus of vectors 13

Problem 1.6

Let ABCD be a general tetrahedron and BtQ, R, S be the median centres of the
faces opposite to the verticds B, C, D respectively. Show that the linesP, BQ,
CR, DS all meet in a point (called theentroidof the tetrahedron), which divides
each line in the ratio 3:1.

Solution

Let the vertices of the tetrahedron be B, C, D and suppose that these points
have position vectora, b, ¢, d respectively, relative to some origi. ThenP, the
median centre of the facBC D has position vector

p=1b+c+d).
The point that divides the lind P in the ratio 3:1 therefore has position vector

3
“+4 P:%(a+b+c+d).

The corresponding points on the other three lines that foénvertices of the tetra-
hedron to the median centres of the opposite faces are altifomhave the same
position vector. These four points are therefore coindidétencethe four lines
that join the vertices of the tetrahedron to the median @nuf the opposite faces
meet in a point that divides each line in the ratio 3:t is the same point as was
constructed in Problem 1.&.
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Chapter 1 The algebra and calculus of vectors 14

Problem 1.7

A number of particles with masses,, m,, ms, ... are situated at the points with
position vectors |, r,, r3, ... relative to an origin0. The centre of mas§ of the
particles is defined to be the point of space with positioriarec

mirq1+ mor, +msry + -
mip +my +m3 + -

R =

Show that if a different origirD’ were used, this definition would still placg at
the same point of space.
Solution

N
Suppose the line segmetO’ (that connects the two origins) represents the vector
a. Thenr', r), r’, ..., the position vectors of the masses relative to the origfin

are given by the triangle law of addition to be

/

The position vector of the centre of mass measured relati¢k ts defined to be

mir 4+ mory, +msr’y 4 -

mi +my +m3 +---

R =

my(riy—a)+my(r,—a)+ms(rz—a)+---
ni +WZ2+WZ3+"'

(Whh + mary + msrs —l—) .
mp +my +mz +---

=R —a.

By the triangle law of addition, this defines thkeame point of spaces beforem
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Chapter 1 The algebra and calculus of vectors 15

Problem 1.8
Prove that the three perpendiculars of a triangle are coscur

A
N
M
@)
FIGURE 1.3 AL and BM are two of the B ¢ - *C
perpendiculars of the triangl¢ BC. L

Solution
Let A BC be the triangle and construct the perpendiculaisand BM from 4 and

B; let O be their point of intersection. Now construct the li® and extend it to
meetA B in the pointN. We wish to show thaf’ N is perpendicular tod B.
Suppose the pointd, B, C have position vectors, b, ¢ relative toO. Then,

sinceA L is perpendicular t3C, we have

a-(c—b)=0,
and, sinceBM is perpendicular t@’ 4, we have

b-(a—c)=0.
On adding these equalities, we obtain

c-(a—b)=0,

which shows that the lin€ N is perpendicular to the sideAB. m
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Chapter 1 The algebra and calculus of vectors

Problem 1.9

Ifa1 = )\11. +M1j +vik,a, = )\21. +M2j + vk, a3 = )\31' +M3j +V3k,where
{i,j,k}is astandard basis, show that

A1 1 v
ai-(arxaz) = Ay 2 va|.
A3 (3 v3

Deduce that cyclic rotation of the vectors in a triple scalarduct leaves the value
of the product unchanged.

Solution
Since
ik
axaz = Ay (a v2
A3 (3 v3
L pm2va| A2 Ay 2
=1 — k ,
13 V3 Az V3 A3 43
it follows that
a; - (axajz) = (Mi +u1j + Vlk) . (i HaVal s Az va k Az g )
M3 V3 A3 V3 A3 13
U2 V2 A2 vy Ao 2
=A — +v
1‘#31)3 1‘)»31)3 1‘)&3%
A1y v
= )\2 M2 V2| . A
A3 3 v3

Since the value of this determinant is unchanged a cyclatiaot of its rows, it
follows thatthe value of a triple scalar product is unchanged by a cydiation of
its vectorsm

© Cambridge University Press, 2006
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Chapter 1 The algebra and calculus of vectors 17

Problem 1.10

By expressing the vectos, b, ¢ in terms of a suitable standard basis, prove the
identityax(bxc) = (a-¢c)b —(a-b)c.

Solution

The algebra in this solution is reduced by selecting a spbesis sefi, j,k} so
that

a=al,
bzb]i +b2j7
¢c=cii +c3j +csik.

Such a choice is always possible. Then

ik
by by 0
C1 C2 C3
= (b2C3 — O)I — (b]C3 — O)_] + (b]Cz — szl)k
=byczi —bicsj + (blCz —szl)k

bxc =

and hence thieft side of the identity is

i k

aq 0 0

b26’3 —b16’3 b]Cz —b201
= (0 — 0)1 — (al(b162 — bZCl) — 0)] + (dl(—b16’3) — O)k
=ai(baci —bica)j —aibicsk.

ax(bxc) =

Theright side of the identity is

(@a-c)b—(a-b)c = (ajc1)b — (a1by)c
=a1C1(b1i —I—sz) —a1by (c1i + c2j + c3k)
= ay(bycy —bica)j — (arbic3)k.

Thus the right and left sides are equal @nid proves the identity. m
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Chapter 1 The algebra and calculus of vectors 18

Problem 1.11
Prove the identities
() (axb)-(cxd)=(a-c)b-d)—(a-d)b-c)

(i) (axb)x(cxd) =[a,b,d]c—[a,b,c]ld
(i) ax(bxc)+cx(axb)+ bx(cxa)=0 (Jacobi’s identity)

Solution

0)
(axb)-(exd) =a- (bx(cxd))
—a-((b-d)c—(b-c)d)
=(a-c)b-d)—(a-d)b-c).m

(i)
(axb)x(exd) = ((axb) -d)c — ((axb) -c)d
=la,b,d]c —[a,b,c]ld.m
(iii)
ax(bxec) +cx(axb)+ bx(cxa)
((@-c)b—(a-b)c)+ ((c-b)a—(c-a)b) + ((b-a)c—(b-c)a)

=(c-b-b-c)a+(a-c—c-a)b+(b-a—a-b)c
0.m
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Chapter 1 The algebra and calculus of vectors

Problem 1.12 Reciprocal basis

Let{a,b,c} be any basis set. Then the correspondéauiprocal basis{a*,b*, c*}
is defined by

bxc « cxa " axb

“lab.c] “lab.el ¢ T lab.el

*

(i) If {i,j,k}is astandard basis, show tHat, j*, k*} = {i, j, k}.
(i) Show that[a*,b*,c*] = 1/[a,b,c]. Deduce that if{a,b,c} is a right
handed set then so{a*,b*, c*}.
(iii) Show that{(a*)*, (b*)*, (¢*)*] = {a.b,c}.
(iv) If a vectorv is expanded in terms of the basis §eth, ¢ } in the form

v=»XAa+ub+vec,

show that the coefficients, u, v are given byh = v - a*, u = v - b*,
v=uv-c*.

Solution

() If {i, j,k}isastandard basis, then
ok Jj xk

Cq - (jxk)

Similar arguments hold foj * andk™* and hencgi *, j*. k*} = {i . j . k}. m
(if)

[@a*,b",c*]=a" - (b*xc*)

" cxa axb
=a - X
([a,b,C] [a,b,C])
a*

= e ((cxa) -b)a — (cxa) -a)b)

B bxc

"~ la,b,c]?
1

T la.b.c]

. ([a,b,c]a —0)

© Cambridge University Press, 2006
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Chapter 1 The algebra and calculus of vectors

If {a,b,c} is a right-handed basis set, thn b, ¢] is positive. It follows
that[a*,b™, ¢*] must also be positive and therefore alight-handed. m
(iii)
o b*xc*
(@) = [a*,b", c*]

cxa axb
= la.b.c] ([a,b,c] % [a,b,c])
1

- [a,b,c]

= : ([a,b,c]a—O)

- [a,b,c]
=a.

((cxa) -b)a — (cxa) -a)b)

Similar arguments hold fdi*) " and(c*)* and hencé (a*)*, (b*)*, (¢*)*} =
{a,b,c}. m

(iv) Supposev is expanded in terms of the basis §&t b, ¢ } in the form
v=Aa+pub+ve.
On taking the scalar product of this equation with we obtain
vea*=Aa-a* +pub-a*+ve-a*
) bxc © b bxc N ( bxc
= Ad - ol ——— VC »
[a,b,c] H [a,b,c] [a,b,c]

=A+0+0
=A.

Hencel = v - a*, and, by similar argumentg, = v -b* andu = v - c¢*. m

© Cambridge University Press, 2006
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Chapter 1 The algebra and calculus of vectors 21

Problem 1.13

Lamé’s equationsThe directions in which X-rays are strongly scattered byyated
are determined from the solutionsof Lamé’s equations, namely

x-a=1, x-b=M, x-c=N,

where{a, b, ¢} are the basis vectors of the crystal lattice, dndM, N areany
integers. Show that the solutions of Lamé’s equations are

x=La*+ Mb*+ Nc*,
where{a*,b*, c*} is the reciprocal basis t@, b, ¢}.

Solution
Let us seek solutions of Lamé’s equations in the form

x=Aa*+ub* +vc*,
where{a*, b*, ¢*} is thereciprocal basiscorresponding to the lattice basis b, ¢}.
On substituting this expansion into Lamé’s equations, weé fhathA = L, u = M
andv = N. The onlysolution of Lamé’s equations(corresponding to given values
of L, M, N) is therefore

x=La*"+Mb*+ Nc*.m
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Chapter 1 The algebra and calculus of vectors

Problem 1.14

If r(t) = (3t2—4)i +1*j + (t +3) k, where{i, j, k} is a constant standard basis,
find /¥ and#. Deduce the time derivative ofx r.

Solution
If r(t) = (32 —4)i +13j + (t + 3)k, then

i=6ti +3t%j + k,
F=6i +6tj.

Hence

—(rxF) = FXF + rxF

dt
=04+ rxr
i ik
=(3t2—4 3 t+3
6 61 0

= —6t(t +3)i +6(t+3)j +12t(t* —2)k.m

© Cambridge University Press, 2006
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Chapter 1 The algebra and calculus of vectors 23

Problem 1.15

The vectorv is a function of the time andk is a constant vector. Find the time
derivatives of (i)|v |2, (i) (v - k) v, (iii) [v, v, k].

Solution
(i)
d 2
vl =—(v-v)
=0V-V+UV-V
=2v-.0.1
(if)
d ) . .
E((v.k)v):(v-k—i—v-k)v—l—(v-k)v
=@W-kv+(v-k)o.m
(iii)
E[v,v,k]=[v,v,k]+[v,v»k]+[v’”’k]
:0+[v,v,k]+0
=[v,v,k].m
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Chapter 1 The algebra and calculus of vectors

Problem 1.16

Find the unit tangent vector, the unit normal vector and thwature of the circle
x =acosf, y = asind, z = 0 at the point with parametér.

Solution

Leti, j be unit vectors in the direction@x, Oy respectively. Then the vector
form of the equation for the circle is

r =acosfi +asinf j.

Then
dr L. .
0= —asinfi + acosh j
and so
dr B
a6| - ¢

Theunit tangent vector to the circle is therefore

dr dr o .
t(0) = %/'% = —sinfi +cosf j.m

By the chain rule,

ﬂ _dt/df  dt/d  —cosfi —sind j
ds  ds/do  |dr/dO| a ’

Hence theaunit normal vector andcurvature of the circle are given by

Q| =

n(f) = —cosfi —sind j, k() =

Theradius of curvature of the circle isa. m
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Chapter 1 The algebra and calculus of vectors

Problem 1.17

Find the unit tangent vector, the unit normal vector and tneature of the helix
x =acosf, y = asinf, z = b0 at the point with parameté.

Solution

Leti, j, k be unit vectors in the direction@x, Oy, Oz respectively. Then the
vector form of the equation for the helix is

r=acosfi +asinfj + bok.

Then
dr L. .
7 —asinfi +acosfj + bk
and so
dr ) N\ /2

Theunit tangent vector to the helix is therefore

dr dr
t(0) = 75/ |78
__—asinfi +acost j +bk .
B (a? +b2)1/2 '

By the chain rule,
dt _dt/do _ dt/db
ds ds/d8  |dr/db|

__ —acosfi —asing j
a? + b2

Hence thaunit normal vector andcurvature of the helix are given by

a

n(f) = —cosfi —sind j, k(0) = ml

Theradius of curvature of the helix is(a* + b%) /a. m
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Chapter 1 The algebra and calculus of vectors 26

Problem 1.18

Find the unit tangent vector, the unit normal vector and thrgature of the parabola
x = ap?, y = 2ap, z = 0 at the point with parametegr.

Solution

Leti, j be unit vectors in the direction@x, Oy respectively. Then the vector
form of the equation for the parabola is

r =ap?i +2apj.

Then

dr . . 1/2
— =2api +2aj and
dp

dr

o =2a<p2—|— 1)

Theunit tangent vector to the parabola is therefore

d
=1/

pi+j
(p2 + 1)1/2

dr
dp

By the chain rule,

dt _dt/dp _ dt/dp
ds ds/dp  |dr/dp|

_ ! ( i _pwi+n)
2a(p2+1)"2\ P2+ 1) (p24+1)?
__i-pj
2a (p? +1)°

Hence theaunit normal vector andcurvature of the parabola are given by

— @ =— 1 m

no)=——=29 .
(p>+ 1) 2a (p? +1)"?

3/2
Theradius of curvature of the parabola iga (p2 + 1) .m
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Chapter 2 Velocity, acceleration and scalar angular veloci ty 28

Problem 2.1

A particle P moves along ther-axis with its displacement at tinregiven byx =
6t2 —t* + 1, wherex is measured in metres anih seconds. Find the velocity and
acceleration ofP at timez. Find the times at whiclP is at rest and find its position
at these times.

Solution
Since the displacement @f at timer is

x=06t2—13+1,
thevelocity of P at timez is given by

d
v=2 0232 ms
d

and theaccelerationof P at timer is given by

dv
=— =12—-6/ms 2,
“ dt

P is instantaneouslgt rest whenv = 0, that is, when
12t — 3t = 0.
This equation can be written in the form
3t(4—1)=0
and its solutions are therefore= 0 s andr = 4 s.

Whent = 0 s, the displacement @ is x = 6(0%) — 03 + 1 = 1 m and when
t = 4 s, the displacement @ isx = 6(4*>) —4>* +1=33m.m
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Chapter 2 Velocity, acceleration and scalar angular veloci ty 29

Problem 2.2
A particle P moves along the-axis with its acceleration at timez given by

a=6t—4ms?2,
Initially P is at the pointx = 20 m and is moving with speedl5 ms™! in the
negativex-direction. Find the velocity and displacement®fat timez. Find when

P comes to rest and its displacement at this time.

Solution
Since the acceleration @t at timer is given to be

a=6t—4,
the velocityv of P at timer must satisfy the ODE

W _ 64
dt '
Integrating with respect togives
v=23"—4t+C,

whereC is a constant of integration. The initial condition that —15 whenz = 0
gives

—15 =3(0%) — 4(0) + C,
from whichC = —15. Hence therelocity of P at timer is
v=3t"—4r—15ms".
By writing v = dx/dt and integrating again, we obtain
x=1>—2t*— 15t + D,

whereD is a second constant of integration. The initial conditivet = 20 when
t = 0 gives

20 = 0° —2(0%) — 15(0) + D,

© Cambridge University Press, 2006



Chapter 2 Velocity, acceleration and scalar angular veloci ty 30

from which D = 20. Hence thalisplacementof P at timet is
x =13 —2t>— 15t +20m.
P comes to rest when = 0, that is, when

3t2 -4t —15=0.
This equation can be written in the form

(t—3)3t+5) =0
and its solutions are therefare= 3 sandt = —% S. Thetime = —% s isbeforethe
motion started and is therefore not a permissible solutibfollows that P comes

to rest only whens = 3 s. Thedisplacementof P at this time is

x=3-23H-153)+20=—16m.m
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Problem 2.3 Constant acceleration formulae

A particle P moves along thec-axis with constantacceleration: in the positive
x-direction. Initially P is at the origin and is moving with velocityin the positive
x-direction. Show that the velocity and displacement of P at timer are given

by
— _ 1 2
vV =u-+at, X =ut + zat”,
and deduce that

v? = u? + 2ax.

In a standing quarter mile test, the Suzuki Bandit 1200 noytde covered the quar-
ter mile (from rest) in 11.4 seconds and crossed the finighdwing 116 miles per
hour. Are these figures consistent with the assumption ctem acceleration?

Solution
When the acceleratiomis aconstantthe ODE
dv
— =a
dt
integrates to give
v=at+ C,

whereC is a constant of integration. The initial condition= u whenz = 0 gives
u=0+C,
from whichC = u. Hence theselocity of P at timet is given by
v=u+at. (1)
On writingv = dx/dt and integrating again, we obtain
x=ut+%at2+D,

whereD is a second constant of integration. The initial conditioa: 0 whenz = 0
gives D = 0 so that thedisplacementof P at timet is given by

x = ut + 1ar*. (2)

© Cambridge University Press, 2006



Chapter 2 Velocity, acceleration and scalar angular veloci ty

From equation (1),

v? = (u + at)?
u? + 2uat + a*t*
=u? 4+ 2a (ut + %alz)

= u? + 2ax,
on using equation (1). We have thus obtained the relation

v? = u? + 2ax. (3)

In the notation used above, the results of the Bandit tesivene

u=0, v = 116 mph(= 170 fts™!),
x = 1320 ft, t=114s,

in Imperial units.
Suppose that the Bandit does have constant acceleratidmen formula (1)
gives
170 =0+ 11.4a,
from whicha = 14.9 fts~2. However, formula (2) gives

1320 = 0 + 1a(11.4)

from whicha = 20.3 fts™2. These two values far do not agree and so the Bandit
must have hadon constant accelerationm
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Problem 2.4
The trajectory of a charged particle moving in a magnetidfiglgiven by

r =bcosQti +bsinQtj + ctk,

whereb, Q andc are positive constants. Show that the particle moves witistemt
speed and find the magnitude of its acceleration.

Solution
Since the position vector a? at timet is

r =bcosQti +bsinQtj + ctk,

thevelocity of P at timez is given by

d .
v = d_’; = —QbsinQti + Qbcostj + ck,

and theaccelerationof P at timer is given by

d .
a= d—'[’ — —Q%bcosQri — Q2bsinQuj.

It follows that

[v]? = (=QbsinQ1)* + (b cosQt)? + ¢
= Q?h? (sin2 Qt + cos Qt) + c?
= Q%b* + 2.

Hencelv| = (Q%b% + cz)l/z, which is a constant.
Furthermore,

la)*> = (—Q%b cosQt)? + (—Q%bsinQr)?
= Q*h? (cos2 Qt + sin? Qz)
= Q*h?.

Hencela| = 22b, which is also a constarm
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Problem 2.5 Acceleration due to rotation and orbit of the Earth

A body is at rest at a location on the Earth’s equator. Fin@dtseleration due to
the Earth’s rotation. [Take the Earth’s radius at the equatbe 6400 km.]

Find also the acceleration of the Earth in its orbit arouredShin. [Take the Sun
to be fixed and regard the Earth as a particle following a trcpath with centre
the Sun and radiuks x 10 m.

Solution

() The distance travelled by a body on the equator in ondiostaf the Earth
is 2w R, whereR is the Earth’s radius. This distance is traversed in one day.
Thespeedof the body is therefore

_ 27 x 6,400,000

v = =465ms !,
24 x 60 x 60

in S.1. units. Theaccelerationof the body is directed towards the centre of
the Earth and has magnitude

U2

a=—=0.034ms>m
R

(i) The distance travelled by the Earth in one orbit of thev&27 R, whereR
is now the radius of the Earth&rbit. This distance is traversed in one year.
The speedof the Earth in its orbit is therefore

27 (15 x 101°)

v = =3.0x10*ms!,
365 x 24 x 60 x 60

in S.I. units. Theaccelerationof the Earth is directed towards the Sun and
has magnitude

U2
a=—=0.0060ms>.m
R
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Problem 2.6

An insect flies on a spiral trajectory such that its polar dowates at time are given
by

r = be®t, 0 = Qt,

whereb and<2 are positive constants. Find the velocity and acceleratgmors of
the insect at time, and show that the angle between these vectors is ablway.s

Solution
Thevelocity of the insect at time is given by

v="FT+ (r@) 0
= (Qbem) T+ (Qbem> 0
and theaccelerationof the insect at time is given by
a=(i-r0?)7+ (ri+20)0
= (szem — szem)?—i— (O + ZszeQ’> 0
=2Q2%be® 9.
It follows that
lv] = V2Qbe® and  |a| = 2Q%be®.
Theanglea betweerw anda is then given by

vea
COoSx =

lv|la|
2Q3p2e201
(ﬁﬂbe9’> <2Q2be9’>
1

-

Hence the angle between the vecto@nda is alwaysrz/4. m
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Problem 2.7

A racing car moves on a circular track of radikis The car starts from rest and
its speedincreases at a constant rate Find the angle between its velocity and
acceleration vectors at time

Solution
Since the car has speed= «r at timet, its velocity is

and itsaccelerationis

(b2 + a2)'*

The angle between the vectaranda at timez is therefore

b
B = cos’! (— .m
(b2 + a214)1/2
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Problem 2.8

A particle P moves on a circle with centr@ and radiug. At a certain instant the
speed ofP is v and its acceleration vector makes an angl&ith PO. Find the
magnitude of the acceleration vector at this instant.

FIGURE 2.1 The velocity and acceleration
vectors of the particle.

Solution
In the standard notation, tlvelocity andaccelerationvectors of P have the form

v =100,
2
[N Lo
a=——7+100,
b

whereuv is thecircumferential velocityf P.

—_
Consider the component afin the directionPO. This can be written in the
geometrical forma| cosa and also in the algebraic form- (—¥). Hence

It follows that
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Problem 2.9 %
A bee flies on a trajectory such that its polar coordinatesra £ are given by

V=b—;(2f—t) o=L" 0<i1<2)
T T

whereb andr are positive constants. Find the velocity vector of the liggree .
Show that the least speed achieved by the bé¢is Find the acceleration of
the bee at this instant.

Solution
Thevelocity vector of the bee is given by

V=77 + (r9>§
2 ~
- —f(f—z)?+ b—g(zz—z)o.
T T

It follows that

4b* h2t?
v = — (-0 +—Qr—1)°
T T

b2

=— (z“ — 473 + 8722 — 873 + 4r4> ,
T

after some simplification.
To find the maximum value dfv|, consider the time derivative ¢ |?.

d b?
E|v|2 =— (4t3 —127¢% + 167% — 8r3)
T

4p?
= —(—1) (12 —2tt + 2r2> .
T

The expression? — 2t¢ + 272 is always positive and hence
d <0 for t<m,
d—|v|2 =0 for t=r,

! >0 for t>rt.

Hence|v | achieves its minimum value when= . At this instant,

o] = -,
T
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which is therefore theninimum speedof the bee.
Theaccelerationvector of the bee at timeis given by

a= ('r'—réz)?+ (ré)'+2r'é)§

= (—§ —b—i(zr—t))?Jr (O+ %(r—t))a
T T

2

whens = 1. Hence, when the speed of the bee is a minimum,

3b
_2.

la| = —.m
T

© Cambridge University Press, 2006

39



Chapter 2 Velocity, acceleration and scalar angular veloci ty 40

Problem 2.10 % A pursuit problem: Daniel and the Lion

The luckless Daniel) is thrown into a circular arena of radiusontaining a lion
(L). Initially the lion is at the centr@® of the arena while Daniel is at the perimeter.
Daniel’s strategy is to run with his maximum speedround the perimeter. The
lion responds by running at its maximum spdédn such a way that it remains
on the (moving) radiu®)D. Show thatr, the distance of. from O, satisfies the

differential equation
2 2.2
u U<a
2= — ( — r2) .
ar \ u?

Find r as a function of. If U > u, show that Daniel will be caught, and find how
long this will take.

Show that the path taken by the lion is a circle. For the speeise in which
U = u, sketch the path taken by the lion and find the point of capture

FIGURE 2.2 Daniel D is pursued by the lior.. The lion
remains on the rotating radiugD.

Solution

Let the lion have polar coordinates® as shown in Figure 2.2. Then tkelocity
vector of the lion is
(r6)8

()
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