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Introduction

The second edition of Mathematical Methods for Physics and Engineering carried

more than twice as many exercises, based on its various chapters, as did the first.

In the Preface we discussed the general question of how such exercises should

be treated but, in the end, decided to provide hints and outline answers to all

problems, as in the first edition. This decision was an uneasy one as, on the one

hand, it did not allow the exercises to be set as totally unaided homework that

could be used for assessment purposes but, on the other, it did not give a full

explanation of how to tackle a problem when a student needed explicit guidance

or a model answer.

In order to allow both of these educationally desirable goals to be achieved we

have, in the third edition, completely changed the way this matter is handled.

All of the exercises from the second edition, plus a number of additional ones

testing the newly-added material, have been included in penultimate subsections

of the appropriate, sometimes reorganised, chapters. Hints and outline answers

are given, as previously, in the final subsections, but only to the odd-numbered

exercises. This leaves all even-numbered exercises free to be set as unaided

homework, as described below.

For the four hundred plus odd-numbered exercises, complete solutions are avail-

able, to both students and their teachers, in the form of a separate manual, K. F.

Riley and M. P. Hobson, Student Solutions Manual for Mathematical Methods for

Physics and Engineering, 3rd edn. (Cambridge: CUP, 2006). These full solutions

are additional to the hints and outline answers given in the main text. For each

exercise, the original question is reproduced and then followed by a fully-worked

solution. For those exercises that make internal reference to the main text or to

other (even-numbered) exercises not included in the manual, the questions have

been reworded, usually by including additional information, so that the questions

can stand alone.
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INTRODUCTION

The remaining four hundred or so even-numbered exercises have no hints or

answers, outlined or detailed, available for general access. They can therefore be

used by instructors as a basis for setting unaided homework. Full solutions to

these exercises, in the same general format as those appearing in the manual

(though they may contain cross-references to the main text or to other exercises),

form the body of the material on this website.

In many cases, in the manual as well as here, the solution given is even fuller than

one that might be expected of a good student who has understood the material.

This is because we have aimed to make the solutions instructional as well as

utilitarian. To this end, we have included comments that are intended to show

how the plan for the solution is fomulated and have given the justifications for

particular intermediate steps (something not always done, even by the best of

students). We have also tried to write each individual substituted formula in the

form that best indicates how it was obtained, before simplifying it at the next

or a subsequent stage. Where several lines of algebraic manipulation or calculus

are needed to obtain a final result they are normally included in full; this should

enable the instructor to determine whether a student’s incorrect answer is due to

a misunderstanding of principles or to a technical error.

In all new publications, on paper or on a website, errors and typographical

mistakes are virtually unavoidable and we would be grateful to any instructor

who brings instances to our attention.

Ken Riley, kfr1000@cam.ac.uk,

Michael Hobson, mph@mrao.cam.ac.uk,

Cambridge, 2006
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Preliminary algebra

Polynomial equations

1.2 Determine how the number of real roots of the equation

g(x) = 4x3 − 17x2 + 10x+ k = 0

depends upon k. Are there any cases for which the equation has exactly two distinct

real roots?

We first determine the positions of the turning points (if any) of g(x) by equating

its derivative g′(x) = 12x2 − 34x + 10 to zero. The roots of g′(x) = 0 are given,

either by factorising g′(x), or by the standard formula,

α1,2 =
34 ±

√
1156 − 480

24
,

as 5
2 and 1

3 .

We now determine the values of g(x) at these turning points; they are g( 5
2 ) =

− 75
4 + k and g( 1

3 ) = 43
27 + k. These will remain of opposite signs, as is required for

three real roots, provided k remains in the range − 43
27
< k < 75

4
. If k is equal to

one of these two extreme values, a graph of g(x) just touches the x-axis and two

of the roots become coincident, resulting in only two distinct real roots.

1.4 Given that x = 2 is one root of

g(x) = 2x4 + 4x3 − 9x2 − 11x− 6 = 0,

use factorisation to determine how many real roots it has.
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PRELIMINARY ALGEBRA

Given that x = 2 is one root of g(x) = 0, we write g(x) = (x − 2)h(x) or, more

explicitly,

2x4 + 4x3 − 9x2 − 11x− 6 = (x− 2)(b3x
3 + b2x

2 + b1x+ b0).

Equating the coefficients of successive (decreasing) powers of x, we obtain

b3 = 2, b2 − 2b3 = 4, b1 − 2b2 = −9, b0 − 2b1 = −11, −2b0 = −6.

These five equations have the consistent solution for the four unknowns bi of

b3 = 2, b2 = 8, b1 = 7 and b0 = 3. Thus h(x) = 2x3 + 8x2 + 7x+ 3.

Clearly, since all of its coefficients are positive, h(x) can have no zeros for positive

values of x. A few tests with negative integer values of x (with the initial intention

of making a rough sketch) reveal that h(−3) = 0, implying that (x+3) is a factor

of h(x). We therefore write

2x3 + 8x2 + 7x+ 3 = (x+ 3)(c2x
2 + c1x+ c0),

and, proceeding as previously, obtain c2 = 2, c1 + 3c2 = 8, c0 + 3c1 = 7 and

3c0 = 3, with corresponding solution c2 = 2, c1 = 2 and c0 = 1.

We now have that g(x) = (x− 2)(x+ 3)(2x2 +2x+ 1). If we now try to determine

the zeros of the quadratic term using the standard form (1.4) we find that, since

22 − (4 × 2 × 1), i.e. −4, is negative, its zeros are complex. In summary, the only

real roots of g(x) = 0 are x = 2 and x = −3.

1.6 Use the results of (i) equation (1.13), (ii) equation (1.12) and (iii) equation

(1.14) to prove that if the roots of 3x3 − x2 − 10x+ 8 = 0 are α1, α2 and α3 then

(a) α−1
1 + α−1

2 + α−1
3 = 5/4,

(b) α2
1 + α2

2 + α2
3 = 61/9,

(c) α3
1 + α3

2 + α3
3 = −125/27.

(d) Convince yourself that eliminating (say) α2 and α3 from (i), (ii) and (iii)

does not give a simple explicit way of finding α1.

If the roots of 3x3 − x2 − 10x+ 8 = 0 are α1, α2 and α3, then:

(i) from equation (1.13), α1 + α2 + α3 = −−1

3
=

1

3
;

(ii) from equation (1.12), α1α2α3 = (−1)3
8

3
= −8

3
;

(iii) from equation (1.14), α1α2 + α2α3 + α3α1 =
−10

3
= −10

3
.
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PRELIMINARY ALGEBRA

We now use these results in various combinations to obtain expressions for the

given quantities:

(a)
1

α1
+

1

α2
+

1

α3
=
α2α3 + α1α3 + α2α1

α1α2α3
=

−(10/3)

−(8/3)
=

5

4
;

(b) α2
1 + α2

2 + α2
3 = (α1 + α2 + α3)

2 − 2(α1α2 + α2α3 + α3α1)

=
(

1
3

)2 − 2
(
− 10

3

)
= 61

9 ;

(c) α3
1 + α3

2 + α3
3 =

(α1 + α2 + α3)
3 − 3(α1 + α2 + α3)(α1α2 + α2α3 + α3α1) + 3α1α2α3

= ( 1
3 )

3 − 3( 1
3 )(− 10

3 ) + 3(− 8
3 ) = − 125

27 .

(d) No answer is given as it cannot be done. All manipulation is complicated

and, at best, leads back to the original equation. Unfortunately, the ‘convincing’

will have to come from frustration, rather than from a proof by contradiction!

Trigonometric identities

1.8 The following exercises are based on the half-angle formulae.

(a) Use the fact that sin(π/6) = 1/2 to prove that tan(π/12) = 2 −
√

3.

(b) Use the result of (a) to show further that tan(π/24) = q(2 − q), where

q2 = 2 +
√

3.

(a) Writing tan(π/12) as t and using (1.32), we have

1

2
= sin

π

6
=

2t

1 + t2
,

from which it follows that t2 − 4t+ 1 = 0.

The quadratic solution (1.6) then shows that t = 2 ±
√

22 − 1 = 2 ±
√

3; there are

two solutions because sin(5π/6) is also equal to 1/2. To resolve the ambiguity,

we note that, since π/12 < π/4 and tan(π/4) = 1, we must have t < 1; hence, the

negative sign is the appropriate choice.

(b) Writing tan(π/24) as u and using (1.34) and the result of part (a), we have

2 −
√

3 =
2u

1 − u2
.

Multiplying both sides by q2 = 2 +
√

3, and then using (2 +
√

3)(2 −
√

3) = 1,

gives

1 − u2 = 2q2u.
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PRELIMINARY ALGEBRA

This quadratic equation has the (positive) solution

u = −q2 +
√
q4 + 1

= −q2 +

√
4 + 4

√
3 + 3 + 1

= −q2 + 2

√
2 +

√
3

= −q2 + 2q = q(2 − q),

as stated in the question.

1.10 If s = sin(π/8), prove that

8s4 − 8s2 + 1 = 0,

and hence show that s = [(2 −
√

2)/4]1/2.

With s = sin(π/8), using (1.29) gives

sin
π

4
= 2s(1 − s2)1/2.

Squaring both sides, and then using sin(π/4) = 1/
√

2, leads to

1

2
= 4s2(1 − s2),

i.e. 8s4 − 8s2 + 1 = 0. This is a quadratic equation in u = s2, with solutions

s2 = u =
8 ±

√
64 − 32

16
=

2 ±
√

2

4
.

Since π/8 < π/4 and sin(π/4) = 1/
√

2 =
√

2/4, it is clear that the minus sign is

the appropriate one. Taking the square root of both sides then yields the stated

answer.

Coordinate geometry

1.12 Obtain in the form (1.38), the equations that describe the following:

(a) a circle of radius 5 with its centre at (1,−1);

(b) the line 2x+ 3y + 4 = 0 and the line orthogonal to it which passes through

(1, 1);

(c) an ellipse of eccentricity 0.6 with centre (1, 1) and its major axis of length

10 parallel to the y-axis.
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(a) Using (1.42) gives (x− 1)2 + (y + 1)2 = 52, i.e. x2 + y2 − 2x+ 2y − 23 = 0.

(b) From (1.24), a line orthogonal to 2x + 3y + 4 = 0 must have the form

3x− 2y + c = 0, and, if it is to pass through (1, 1), then c = −1. Expressed in the

form (1.38), the pair of lines takes the form

0 = (2x+ 3y + 4)(3x− 2y − 1) = 6x2 − 6y2 + 5xy + 10x− 11y − 4.

(c) As the major semi-axis has length 5 and the eccentricity is 0.6, the minor

semi-axis has length 5[1 − (0.6)2]1/2 = 4. The equation of the ellipse is therefore

(x− 1)2

42
+

(y − 1)2

52
= 1,

which can be written as 25x2 + 16y2 − 50x− 32y − 359 = 0.

1.14 For the ellipse

x2

a2
+
y2

b2
= 1

with eccentricity e, the two points (−ae, 0) and (ae, 0) are known as its foci. Show

that the sum of the distances from any point on the ellipse to the foci is 2a.

[ The constancy of the sum of the distances from two fixed points can be used as

an alternative defining property of an ellipse. ]

Let the sum of the distances be s. Then, for a point (x, y) on the ellipse,

s = [ (x+ ae)2 + y2 ]1/2 + [ (x− ae)2 + y2 ]1/2,

where the positive square roots are to be taken.

Now, y2 = b2[1 − (x/a)2], with b2 = a2(1 − e2). Thus, y2 = (1 − e2)(a2 − x2) and

s = (x2 + 2aex+ a2e2 + a2 − a2e2 − x2 + e2x2)1/2

+ (x2 − 2aex+ a2e2 + a2 − a2e2 − x2 + e2x2)1/2

= (a+ ex) + (a− ex) = 2a.

This result is independent of x and hence holds for any point on the ellipse.

Partial fractions

1.16 Express the following in partial fraction form:

(a)
2x3 − 5x+ 1

x2 − 2x− 8
, (b)

x2 + x− 1

x2 + x− 2
.
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(a) For

f(x) =
2x3 − 5x+ 1

x2 − 2x− 8
,

we note that the degree of the numerator is higher than that of the denominator,

and so we must first divide through by the latter. Write

2x3 − 5x+ 1 = (2x+ s0)(x
2 − 2x− 8) + (r1x+ r0).

Equating the coefficients of the powers of x: 0 = s0 − 4, −5 = −16 − 2s0 + r1, and

1 = −8s0 + r0, giving s0 = 4, r1 = 19, and r0 = 33. Thus,

f(x) = 2x+ 4 +
19x+ 33

x2 − 2x− 8
.

The denominator in the final term factorises as (x − 4)(x + 2), and so we write

the term as
A

x− 4
+

B

x+ 2
.

Using the third method given in section 1.4:

A =
19(4) + 33

4 + 2
and B =

19(−2) + 33

−2 − 4
.

Thus,

f(x) = 2x+ 4 +
109

6(x− 4)
+

5

6(x+ 2)
.

(b) Since the highest powers of x in the denominator and numerator are equal,

the partial–fraction expansion takes the form

f(x) =
x2 + x− 1

x2 + x− 2
= 1 +

1

x2 + x− 2
= 1 +

A

x+ 2
+

B

x− 1
.

Using the same method as above, we have

A =
1

−2 − 1
; B =

1

1 + 2
.

Thus,

f(x) = 1 − 1

3(x+ 2)
+

1

3(x− 1)
.

1.18 Resolve the following into partial fractions in such a way that x does not

appear in any numerator:

(a)
2x2 + x+ 1

(x− 1)2(x+ 3)
, (b)

x2 − 2

x3 + 8x2 + 16x
, (c)

x3 − x− 1

(x+ 3)3(x+ 1)
.
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Since no factor x may appear in a numerator, all repeated factors appearing in

the denominator give rise to as many terms in the partial fraction expansion as

the power to which that factor is raised in the denominator.

(a) The denominator is already factorised but contains the repeated factor (x−1)2.

Thus the expansion will contain a term of the form (x − 1)−1, as well as one of

the form (x− 1)−2. So,

2x2 + x+ 1

(x− 1)2(x+ 3)
=

A

x+ 3
+

B

(x− 1)2
+

C

x− 1
.

We can evaluate A and B using the third method given in section 1.4:

A =
2(−3)2 − 3 + 1

(−3 − 1)2
= 1 and B =

2(1)2 + 1 + 1

1 + 3
= 1.

We now evaluate C by setting x = 0 (say):

1

(−1)23
=

1

3
+

1

(−1)2
+

C

−1
,

giving C = 1 and the full expansion as

2x2 + x+ 1

(x− 1)2(x+ 3)
=

1

x+ 3
+

1

(x− 1)2
+

1

x− 1
.

(b) Here the denominator needs factorising, but this is elementary,

x2 − 2

x3 + 8x2 + 16x
=

x2 − 2

x(x+ 4)2
=
A

x
+

B

(x+ 4)2
+

C

x+ 4
.

Now, using the same method as in part (a):

A =
0 − 2

(0 + 4)2
= −1

8
and B =

(−4)2 − 2

−4
= −7

2
.

Setting x = 1 (say) determines C through

−1

25
= − 1

8(1)
− 7

2(5)2
+
C

5
.

Thus C = 9/8, and the full expression is

x2 − 2

x3 + 8x2 + 16x
= − 1

8x
− 7

2(x+ 4)2
+

9

8(x+ 4)
.

(c)

x3 − x− 1

(x+ 3)3(x+ 1)
=

A

x+ 1
+

B

(x+ 3)3
+

C

(x+ 3)2
+

D

x+ 3
.

As in parts (a) and (b), the third method in section 1.4 gives A and B as

A =
(−1)3 − (−1) − 1

(−1 + 3)3
= −1

8
and B =

(−3)3 − (−3) − 1

−3 + 1
=

25

2
.

7
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Setting x = 0 requires that

−1

27
= −1

8
+

25

54
+
C

9
+
D

3
i.e. C + 3D = −27

8
.

Setting x = 1 gives the additional requirement that

−1

128
= − 1

16
+

25

128
+
C

16
+
D

4
i.e. C + 4D = −18

8
.

Solving these two equations for C and D now yields D = 9/8 and C = −54/8.

Thus,

x3 − x− 1

(x+ 3)3(x+ 1)
= − 1

8(x+ 1)
+

1

8

[
100

(x+ 3)3
− 54

(x+ 3)2
+

9

x+ 3

]
.

If necessary, that the expansion is valid for all x (and not just for 0 and 1) can

be checked by writing all of its terms so as to have the common denominator

(x+ 3)3(x+ 1).

Binomial expansion

1.20 Use a binomial expansion to evaluate 1/
√

4.2 to five places of decimals, and

compare it with the accurate answer obtained using a calculator.

To use the binomial expansion, we need to express the inverse square root in the

form (1 + a)−1/2 with |a| < 1. We do this as follows.

1√
4.2

=
1

(4 + 0.2)1/2
=

1

2(1 + 0.05)1/2

=
1

2

[
1 − 1

2
(0.05) +

3

8
(0.05)2 − 15

48
(0.05)3 + · · ·

]

= 0.487949218.

This four-term sum and the accurate value differ by about 8 × 10−7.

Proof by induction and contradiction

1.22 Prove by induction that

1 + r + r2 + · · · + rk + · · · + rn =
1 − rn+1

1 − r
.

8



PRELIMINARY ALGEBRA

To prove that
n∑

k=0

rk =
1 − rn+1

1 − r
,

assume that the result is valid for n = N, and consider the corresponding sum

for n = N + 1, which is the original sum plus one additional term:

N+1∑

k=0

rk =

N∑

k=0

rk + rN+1

=
1 − rN+1

1 − r
+ rN+1, using the assumption,

=
1 − rN+1 + rN+1 − rN+2

1 − r

=
1 − rN+2

1 − r
.

This is the same form as in the assumption, except that N has been replaced by

N + 1, and shows that the result is valid for n = N + 1 if it is valid for n = N.

But, since (1 − r)/(1 − r) = 1, the result is trivially valid for n = 0. It therefore

follows that it is valid for all n.

1.24 If a sequence of terms un satisfies the recurrence relation un+1 = (1 −x)un +

nx, with u1 = 0, then show by induction that, for n ≥ 1,

un =
1

x
[nx− 1 + (1 − x)n].

Assume that the stated result is valid for n = N, and consider the expression for

the next term in the sequence:

uN+1 = (1 − x)uN +Nx

=
1 − x

x

[
Nx− 1 + (1 − x)N

]
+Nx, using the assumption,

=
1

x

[
Nx−Nx2 − 1 + x+ (1 − x)N+1 +Nx2

]

=
1

x

[
(N + 1)x− 1 + (1 − x)N+1

]
.

This has the same form as in the assumption, except that N has been replaced

by N + 1, and shows that the result is valid for n = N + 1 if it is valid for n = N.

The assumed result gives u1 as x−1(x−1+1−x) = 0 (i.e. as stated in the question),

and so is valid for n = 1. It now follows, from the result proved earlier, that the

given expression is valid for all n ≥ 1.

9
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1.26 The quantities ai in this exercise are all positive real numbers.

(a) Show that

a1a2 ≤
(
a1 + a2

2

)2

.

(b) Hence, prove by induction on m that

a1a2 · · · ap ≤
(
a1 + a2 + · · · + ap

p

)p
,

where p = 2m with m a positive integer. Note that each increase of m by

unity doubles the number of factors in the product.

(a) Consider (a1 − a2)
2 which is always non-negative:

(a1 − a2)
2 ≥ 0,

a2
1 − 2a1a2 + a2

2 ≥ 0,

a2
1 + 2a1a2 + a2

2 ≥ 4a1a2,

(a1 + a2)
2 ≥ 4a1a2,(

a1 + a2

2

)2

≥ a1a2.

(b) With p = 2m, assume that

a1a2 · · · ap ≤
(
a1 + a2 + · · · + ap

p

)p

is valid for some m = M. Write P = 2M , P ′ = 2P , b1 = a1 + a2 + · · · + aP and

b2 = aP+1 + aP+2 + · · · + aP ′ . Note that both b1 and b2 consist of P terms.

Now consider the multiple product u = a1a2 · · · aPaP+1aP+2 · · · aP ′ .

u ≤
(
a1 + a2 + · · · + aP

P

)P (
aP+1 + aP+2 + · · · + aP ′

P

)P

=

(
b1b2

P 2

)P
,

where the assumed result has been applied twice, once to a set consisting of the

first P numbers, and then for a second time to the remaining set of P numbers,

aP+1, aP+2, . . . , aP ′ . We have also used the fact that, for positive real numbers, if

q ≤ r and s ≤ t then qs ≤ rt.

But, from part (a),

b1b2 ≤
(
b1 + b2

2

)2

.

10
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Thus,

a1a2 · · · aPaP+1aP+2 · · · aP ′ ≤
(

1

P 2

)P (
b1 + b2

2

)2P

=
(b1 + b2)

P ′

(2P )2P

=

(
b1 + b2

P ′

)P ′

.

This shows that the result is valid for P ′ = 2M+1 if it is valid for P = 2M . But

for m = M = 1 the postulated inequality is simply result (a), which was shown

directly. Thus the inequality holds for all positive integer values of m.

1.28 An arithmetic progression of integers an is one in which an = a0 + nd, where

a0 and d are integers and n takes successive values 0, 1, 2, . . . .

(a) Show that if any one term of the progression is the cube of an integer, then

so are infinitely many others.

(b) Show that no cube of an integer can be expressed as 7n+5 for some positive

integer n.

(a) We proceed by the method of contradiction. Suppose d > 0. Assume that there

is a finite, but non-zero, number of natural cubes in the arithmetic progression.

Then there must be a largest cube. Let it be aN = a0 + Nd, and write it as

aN = a0 +Nd = m3. Now consider (m+ d)3:

(m+ d)3 = m3 + 3dm2 + 3d2m+ d3

= a0 +Nd+ d(3m2 + 3dm+ d2)

= a0 + dN1,

where N1 = N + 3m2 + 3dm + d2 is necessarily an integer, since N, m and d all

are. Further, N1 > N. Thus aN1
= a0 +N1d is also the cube of a natural number

and is greater than aN; this contradicts the assumption that it is possible to select

a largest cube in the series and establishes the result that, if there is one such

cube, then there are infinitely many of them. A similar argument (considering the

smallest term in the series) can be carried through if d < 0.

We note that the result is also formally true in the case in which d = 0; if a0 is a

natural cube, then so is every term, since they are all equal to a0.

(b) Again, we proceed by the method of contradiction. Suppose that 7N+5 = m3

11
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for some pair of positive integers N and m. Consider the quantity

(m− 7)3 = m3 − 21m2 + 147m− 343

= 7N + 5 − 7(3m2 − 21m+ 49)

= 7N1 + 5,

where N1 = N−3m2 +21m−49 is an integer smaller than N. From this, it follows

that if m3 can be expressed in the form 7N+5 then so can (m−7)3, (m−14)3, etc.

Further, for some finite integer p, (m − 7p) must lie in the range 0 ≤ m− 7p ≤ 6

and will have the property (m− 7p)3 = 7Np + 5.

However, explicit calculation shows that, when expressed in the form 7n+ q, the

cubes of the integers 0, 1, 2, · · · , 6 have respective values of q of 0, 1, 1, 6, 1,

6, 6; none of these is equal to 5. This contradicts the conclusion that followed

from our initial supposition and subsequent argument. It was therefore wrong to

assume that there is a natural cube that can be expressed in the form 7N + 5.

[ Note that it is not sufficient to carry out the above explicit calculations and then

rely on the construct from part (a), as this does not guarantee to generate every

cube. ]

Necessary and sufficient conditions

1.30 Prove that the equation ax2 + bx+ c = 0, in which a, b and c are real and

a > 0, has two real distinct solutions IFF b2 > 4ac.

As is usual for IFF proofs, this answer will consist of two parts.

Firstly, assume that b2 > 4ac. We can then write the equation as

a

(
x2 +

b

a
x+

c

a

)
= 0,

a

(
x+

b

2a

)2

− b2

4a
+ c = 0,

a

(
x+

b

2a

)2

=
b2 − 4ac

4a
= λ2.

Since b2 > 4ac and a > 0, λ is real, positive and non-zero. So, taking the square

roots of both sides of the final equation gives

x = − b

2a
± λ√

a
,

i.e. both roots are real and they are distinct; thus, the ‘if ’ part of the proposition

is established.

12
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Now assume that both roots are real, α and β say, with α 6= β. Then,

aα2 + bα+ c = 0,

aβ2 + bβ + c = 0.

Subtraction of the two equations gives

a(α2 − β2) + b(α− β) = 0 ⇒ b = −(α+ β)a, since α− β 6= 0.

Multiplying the first displayed equation by β and the second by α and then

subtracting, gives

a(α2β − β2α) + c(β − α) = 0 ⇒ c = αβa, since α− β 6= 0.

Now, recalling that α 6= β and that a > 0, consider the inequality

0 < (α− β)2 = α2 − 2αβ + β2

= (α+ β)2 − 4αβ

=
b2

a2
− 4

c

a
=
b2 − 4ac

a2
.

This inequality shows that b2 is necessarily greater than 4ac, and so establishes

the ‘only if’ part of the proof.

1.32 Given that at least one of a and b, and at least one of c and d, are non-zero,

show that ad = bc is both a necessary and sufficient condition for the equations

ax+ by = 0,

cx+ dy = 0,

to have a solution in which at least one of x and y is non-zero.

First, suppose that ad = bc with at least one of a and b, and at least one of c and

d, non-zero. Assume, for definiteness, that a and c are non-zero; if this is not the

case, then the following proof is modified in an obvious way by interchanging the

roles of a and b and/or of c and d, as necessary:

ax+ by = 0 ⇒ x = −b

a
y,

cx+ dy = 0 ⇒ x = −d

c
y.

Now

ad = bc ⇒ d =
bc

a
⇒ d

c
=
b

a
,

where we have used, in turn, that a 6= 0 and c 6= 0. Thus the two solutions for x

13
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in terms of y are the same. Any non-zero value for y may be chosen, but that

for x is then determined (and may be zero). This establishes that the condition is

sufficient.

To show that it is a necessary condition, suppose that there is a non-trivial

solution to the original equations and that, say, x 6= 0. Multiply the first equation

by d and the second by b to obtain

dax+ dby = 0,

bcx+ bdy = 0.

Subtracting these equations gives (ad− bc)x = 0 and, since x 6= 0, it follows that

ad = bc.

If x = 0 then y 6= 0, and multiplying the first of the original equations by c and

the second by a leads to the same conclusion.

This completes the proof that the condition is both necessary and sufficient.

14
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Preliminary calculus

2.2 Find from first principles the first derivative of (x + 3)2 and compare your

answer with that obtained using the chain rule.

Using the definition of a derivative, we consider the difference between (x+∆x+3)2

and (x+ 3)2, and determine the following limit (if it exists):

f′(x) = lim
∆x→0

(x+ ∆x+ 3)2 − (x+ 3)2

∆x

= lim
∆x→0

[(x+ 3)2 + 2(x+ 3)∆x+ (∆x)2] − (x+ 3)2

∆x

= lim
∆x→0

(2(x+ 3)∆x+ (∆x)2

∆x

= 2x+ 6.

The limit does exist, and so the derivative is 2x+ 6.

Rewriting the function as f(x) = u2, where u(x) = x+3, and using the chain rule:

f′(x) = 2u× du

dx
= 2u× 1 = 2u = 2x+ 6,

i.e. the same, as expected.

2.4 Find the first derivatives of

(a) x/(a+ x)2, (b) x/(1 − x)1/2, (c) tanx, as sin x/ cosx,

(d) (3x2 + 2x+ 1)/(8x2 − 4x+ 2).

15
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In each case, using (2.13) for a quotient:

(a) f′(x) =
[ (a+ x)2 × 1 ] − [ x× 2(a+ x) ]

(a+ x)4
=
a2 − x2

(a+ x)4
=

a− x

(a+ x)3
;

(b) f′(x) =
[ (1 − x)1/2 × 1 ] − [ x× − 1

2 (1 − x)−1/2 ]

1 − x
=

1 − 1
2x

(1 − x)3/2
;

(c) f′(x) =
[ cosx× cosx ] − [ sinx× (− sinx) ]

cos2 x
=

1

cos2 x
= sec2 x;

(d) f′(x) =
[(8x2 − 4x+ 2) × (6x+ 2)] − [(3x2 + 2x+ 1) × (16x− 4)]

(8x2 − 4x+ 2)2

=
x3(48 − 48) + x2(16 − 24 + 12 − 32) + · · ·

(8x2 − 4x+ 2)2

· · · + x(−8 + 12 + 8 − 16) + (4 + 4)

(8x2 − 4x+ 2)2

=
−28x2 − 4x+ 8

(8x2 − 4x+ 2)2
=

−7x2 − x+ 2

(4x2 − 2x+ 1)2
.

2.6 Show that the function y(x) = exp(−|x|) defined as

exp x for x < 0,

1 for x = 0,

exp(−x) for x > 0,

is not differentiable at x = 0. Consider the limiting process for both ∆x > 0 and

∆x < 0.

For x > 0, let ∆x = η. Then,

y′(x > 0) = lim
η→0

e−0−η − 1

η

= lim
η→0

1 − η + 1
2!
η2 · · · − 1

η
= −1.

For x < 0, let ∆x = −η. Then,

y′(x > 0) = lim
η→0

e0−η − 1

−η

= lim
η→0

1 − η + 1
2!
η2 · · · − 1

−η = 1.

The two limits are not equal, and so y(x) is not differentiable at x = 0.

16
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2.8 If 2y + sin y + 5 = x4 + 4x3 + 2π, show that dy/dx = 16 when x = 1.

For this equation neither x nor y can be made the subject of the equation, i.e

neither can be written explicitly as a function of the other, and so we are forced

to use implicit differentiation. Starting from

2y + sin y + 5 = x4 + 4x3 + 2π

implicit differentiation, and the use of the chain rule when differentiating sin y

with respect to x, gives

2
dy

dx
+ cos y

dy

dx
= 4x3 + 12x2.

When x = 1 the original equation reduces to 2y + sin y = 2π with the obvious

(and unique, as can be verified from a simple sketch) solution y = π. Thus, with

x = 1 and y = π,

dy

dx

∣∣∣∣
x=1

=
4 + 12

2 + cosπ
= 16.

2.10 The function y(x) is defined by y(x) = (1 + xm)n.

(a) Use the chain rule to show that the first derivative of y is nmxm−1(1+xm)n−1.

(b) The binomial expansion (see section 1.5) of (1 + z)n is

(1 + z)n = 1 + nz +
n(n− 1)

2!
z2 + · · · +

n(n− 1) · · · (n− r + 1)

r!
zr + · · · .

Keeping only the terms of zeroth and first order in dx, apply this result twice

to derive result (a) from first principles.

(c) Expand y in a series of powers of x before differentiating term by term.

Show that the result is the series obtained by expanding the answer given

for dy/dx in part (a).

(a) Writing 1 + xm as u, y(x) = un, and so dy/du = nun−1, whilst du/dx = mxm−1.

Thus, from the chain rule,

dy

dx
= nun−1 × mxm−1 = nmxm−1(1 + xm)n−1.

17
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(b) From the defining process for a derivative,

y′(x) = lim
∆x→0

[1 + (x+ ∆x)m]n − (1 + xm)n

∆x

= lim
∆x→0

[1 + xm(1 + ∆x
x

)m]n − (1 + xm)n

∆x

= lim
∆x→0

[1 + xm(1 + m∆x
x

+ · · · )]n − (1 + xm)n

∆x

= lim
∆x→0

(1 + xm + mxm−1∆x+ · · · )n − (1 + xm)n

∆x

= lim
∆x→0

[
(1 + xm)

(
1 + mxm−1∆x

1+xm
+ · · ·

)]n
− (1 + xm)n

∆x

= lim
∆x→0

(1 + xm)n
(
1 + mnxm−1∆x

1+xm + · · ·
)

− (1 + xm)n

∆x

= lim
∆x→0

mn(1 + xm)n−1xm−1∆x+ · · ·

∆x

= nmxm−1(1 + xm)n−1,

i.e. the same as the result in part (a).

(c) Expanding in a power series before differentiating:

y(x) = 1 + nxm +
n(n− 1)

2!
x2m + · · ·

+
n(n− 1) · · · (n− r + 1)

r!
xrm + · · · ,

y′(x) = mnxm−1 +
2mn(n− 1)

2!
x2m−1 + · · ·

+
rm n(n− 1) · · · (n− r + 1)

r!
xrm−1 + · · · .

Now, expanding the result given in part (a) gives

y′(x) = nmxm−1(1 + xm)n−1

= nmxm−1

(
1 + · · · +

(n− 1)(n− 2) · · · (n− s)

s!
xms + · · ·

)

= nmxm−1 + · · · +
mn(n− 1)(n− 2) · · · (n− s)

s!
xms+m−1 + · · · .

This is the same as the previous expansion of y′(x) if, in the general term, the

index is moved by one, i.e. s = r − 1.
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2.12 Find the positions and natures of the stationary points of the following func-

tions:

(a) x3 − 3x+ 3; (b) x3 − 3x2 + 3x; (c) x3 + 3x+ 3;

(d) sin ax with a 6= 0; (e) x5 + x3; (f) x5 − x3.

In each case, we need to determine the first and second derivatives of the function.

The zeros of the 1st derivative give the positions of the stationary points, and the

values of the 2nd derivatives at those points determine their natures.

(a) y = x3−3x+3; y′ = 3x2−3; y′′ = 6x.

y′ = 0 has roots at x = ±1, where the values of y′′ are ±6. Therefore, there is a

minimum at x = 1 and a maximum at x = −1.

(b) y = x3−3x2+3x; y′ = 3x2−6x+3; y′′ = 6x−6.

y′ = 0 has a double root at x = 1, where the value of y′′ is 0. Therefore, there

is a point of inflection at x = 1, but no other stationary points. At the point of

inflection, the tangent to the curve y = y(x) is horizontal.

(c) y = x3+3x+3; y′ = 3x2+3; y′′ = 6x.

y′ = 0 has no real roots, and so there are no stationary points.

(d) y = sin ax; y′ = a cos ax; y′′ = −a2 sin ax.

y′ = 0 has roots at x = (n+ 1
2
)π/a for integer n. The corresponding values of y′′

are ∓a2, depending on whether n is even or odd. Therefore, there is a maximum

for even n and a minimum where n is odd.

(e) y = x5+x3; y′ = 5x4+3x2; y′′ = 20x3+6x.

y′ = 0 has, as its only real root, a double root at x = 0, where the value of y′′ is 0.

Thus, there is a (horizontal) point of inflection at x = 0, but no other stationary

point.

(f) y = x5−x3; y′ = 5x4−3x2; y′′ = 20x3−6x.

y′ = 0 has a double root at x = 0 and simple roots at x = ±( 3
5
)1/2, where the

respective values of y′′ are 0 and ±6( 3
5
)1/2. Therefore, there is a point of inflection

at x = 0, a maximum at x = −( 3
5 )

1/2 and a minimum at x = ( 3
5 )

1/2.
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Figure 2.1 The solutions to exercise 2.14.

2.14 By finding their stationary points and examining their general forms, deter-

mine the range of values that each of the following functions y(x) can take. In

each case make a sketch-graph incorporating the features you have identified.

(a) y(x) = (x− 1)/(x2 + 2x+ 6).

(b) y(x) = 1/(4 + 3x− x2).

(c) y(x) = (8 sin x)/(15 + 8 tan2 x).

See figure 2.1 (a)–(c).

(a) Some simple points to calculate for

y =
x− 1

x2 + 2x+ 6

are y(0) = − 1
6 , y(1) = 0 and y(±∞) = 0, and, since the denominator has no real

roots (22 < 4 × 1 × 6), there are no infinities. Its 1st derivative is

y′ =
−x2 + 2x+ 8

(x2 + 2x+ 6)2
=

−(x+ 2)(x− 4)

(x2 + 2x+ 6)2
.

Thus there are turning points only at x = −2, with y(−2) = − 1
2
, and at x = 4,

with y(4) = 1
10

. The former must be a minimum and the latter a maximum. The

range in which y(x) lies is − 1
2 ≤ y ≤ 1

10 .
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(b) Some simple points to calculate for

y =
1

4 + 3x− x2
.

are y(0) = 1
4 and y(±∞) = 0, approached from negative values. Since the

denominator can be written as (4−x)(1+x), the function has infinities at x = −1

and x = 4 and is positive in the range of x between them.

The 1st derivative is

y′ =
2x− 3

(4 + 3x− x2)2
.

Thus there is only one turning point; this is at x = 3
2
, with corresponding

y( 3
2 ) = 4

25 . Since 3
2 lies in the range −1 < x < 4, at the ends of which the function

→ +∞, the stationary point must be a minimum. This sets a lower limit on the

positive values of y(x) and so the ranges in which it lies are y < 0 and y ≥ 4
25 .

(c) The function

y =
8 sinx

15 + 8 tan2 x

is clearly periodic with period 2π.

Since sinx and tan2 x are both symmetric about x = 1
2π, so is the function. Also,

since sinx is antisymmetric about x = π whilst tan2 x is symmetric, the function

is antisymmetric about x = π.

Some simple points to calculate are y(nπ) = 0 for all integers n. Further, since

tan(n+ 1
2 )π = ∞, y((n+ 1

2 )π) = 0. As the denominator has no real roots there are

no infinities.

Setting the derivative of y(x) ≡ 8u(x)/v(x) equal to zero, i.e. writing vu′ = uv′,
and expressing all terms as powers of cosx gives (using tan2 z = sec2 z − 1 and

sin2 z = 1 − cos2 z)

(15 + 8 tan2 x) cosx = 16 sinx tanx sec2 x,

15 +
8

cos2 x
− 8 =

16(1 − cos2 x)

cos4 x
,

7 cos4 x+ 24 cos2 x− 16 = 0.

This quadratic equation for cos2 x has roots of 4
7 and −4. Only the first of these

gives real values for cosx of ± 2√
7
. The corresponding turning values of y(x) are

± 8
7
√

21
. The value of y always lies between these two limits.
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2.16 The curve 4y3 = a2(x+3y) can be parameterised as x = a cos 3θ, y = a cos θ.

(a) Obtain expressions for dy/dx (i) by implicit differentiation and (ii) in param-

eterised form. Verify that they are equivalent.

(b) Show that the only point of inflection occurs at the origin. Is it a stationary

point of inflection?

(c) Use the information gained in (a) and (b) to sketch the curve, paying par-

ticular attention to its shape near the points (−a, a/2) and (a,−a/2) and to

its slope at the ‘end points’ (a, a) and (−a,−a).

(a) (i) Differentiating the equation of the curve implicitly:

12y2 dy

dx
= a2 + 3a2 dy

dx
, ⇒ dy

dx
=

a2

12y2 − 3a2
.

(ii) In parameterised form:

dy

dθ
= −a sin θ,

dx

dθ
= −3a sin 3θ, ⇒ dy

dx
=

−a sin θ

−3a sin 3θ
.

But, using the results from section 1.2, we have that

sin 3θ = sin(2θ + θ)

= sin 2θ cos θ + cos 2θ sin θ

= 2 sin θ cos2 θ + (2 cos2 θ − 1) sin θ

= sin θ(4 cos2 θ − 1),

thus giving dy/dx as

dy

dx
=

1

12 cos2 θ − 3
=

a2

12a2 cos2 θ − 3a2
,

with a cos θ = y, i.e. as in (i).

(b) At a point of inflection y′′ = 0. For the given function,

d2y

dx2
=

d

dy

(
dy

dx

)
× dy

dx
= − a2

(12y2 − 3a2)2
× 24y × a2

12y2 − 3a2
.

This can only equal zero at y = 0, when x = 0 also. But, when y = 0 it follows

from (a)(i) that dy/dx = 1/(−3) = − 1
3 . As this is non-zero the point of inflection

is not a stationary point.

(c) See figure 2.2. Note in particular that the curve has vertical tangents when

y = ±a/2 and that dy/dx = 1
9

at y = ±a, i.e. the tangents at the end points of

the ‘S’-shaped curve are not horizontal.
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x = a cos 3θ

y = a cos θ

a

a−a

−a

Figure 2.2 The parametric curve described in exercise 2.16.

2.18 Show that the maximum curvature on the catenary y(x) = a cosh(x/a) is

1/a. You will need some of the results about hyperbolic functions stated in sub-

section 3.7.6.

The general expression for the curvature, ρ−1, of the curve y = y(x) is

1

ρ
=

y′′

(1 + y′2)3/2
,

and so we begin by calculating the first two derivatives of y. Starting from

y = a cosh(x/a), we obtain

y′ = a
1

a
sinh

x

a
,

y′′ =
1

a
cosh

x

a
.

Therefore the curvature of the catenary at the point (x, y) is given by

1

ρ
=

1

a
cosh

x

a[
1 + sinh2 x

a

]3/2 =
1

a

cosh
x

a

cosh3 x

a

=
a

y2
.

To obtain this result we have used the identity cosh2 z = 1 + sinh2 z. We see that

the curvature is maximal when y is minimal; this occurs when x = 0 and y = a.

The maximum curvature is therefore 1/a.
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p
p+ ∆p

Figure 2.3 The coordinate system described in exercise 2.20.

2.20 A two-dimensional coordinate system useful for orbit problems is the tangential-

polar coordinate system (figure 2.3). In this system a curve is defined by r, the

distance from a fixed point O to a general point P of the curve, and p, the per-

pendicular distance from O to the tangent to the curve at P . By proceeding as

indicated below, show that the radius of curvature at P can be written in the form

ρ = r dr/dp.

Consider two neighbouring points P and Q on the curve. The normals to the curve

through those points meet at C , with (in the limit Q → P) CP = CQ = ρ. Apply

the cosine rule to triangles OPC and OQC to obtain two expressions for c2, one

in terms of r and p and the other in terms of r+∆r and p+∆p. By equating them

and letting Q → P deduce the stated result.

We first note that cos OPC is equal to the sine of the angle between OP and the

tangent at P , and that this in turn has the value p/r. Now, applying the cosine

rule to the triangles OCP and OCQ, we have

c2 = r2 + ρ2 − 2rρ cosOPC = r2 + ρ2 − 2ρp

c2 = (r + ∆r)2 + ρ2 − 2(r + ∆r)ρ cosOQC

= (r + ∆r)2 + ρ2 − 2ρ(p+ ∆p).

Subtracting and rearranging then yields

ρ =
r∆r + 1

2 (∆r)
2

∆p
,

or, in the limit Q → P , that ρ = r(dr/dp).
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2.22 If y = exp(−x2), show that dy/dx = −2xy and hence, by applying Leibnitz’

theorem, prove that for n ≥ 1

y(n+1) + 2xy(n) + 2ny(n−1) = 0.

With y(x) = exp(−x2),

dy

dx
= −2x exp(−x2) = −2xy.

We now take the nth derivatives of both sides and use Leibnitz’ theorem to find

that of the product xy, noting that all derivatives of x beyond the first are zero:

y(n+1) = −2[ (y(n))(x) + n(y(n−1))(1) + 0 ].

i.e.

y(n+1) + 2xy(n) + 2ny(n−1) = 0,

as stated in the question.

2.24 Determine what can be learned from applying Rolle’s theorem to the following

functions f(x): (a)ex; (b)x2 +6x; (c)2x2 +3x+1; (d)2x2 +3x+2; (e)2x3 −21x2 +

60x + k. (f)If k = −45 in (e), show that x = 3 is one root of f(x) = 0, find the

other roots, and verify that the conclusions from (e) are satisfied.

(a) Since the derivative of f(x) = ex is f′(x) = ex, Rolle’s theorem states that

between any two consecutive roots of f(x) = ex = 0 there must be a root

of f′(x) = ex = 0, i.e. another root of the same equation. This is clearly a

contradiction and it is wrong to suppose that there is more than one root of

ex = 0. In fact, there are no finite roots of the equation and the only zero of ex

lies formally at x = −∞.

(b) Since f(x) = x(x+ 6), it has zeros at x = −6 and x = 0. Therefore the (only)

root of f′(x) = 2x + 6 = 0 must lie between these values; it clearly does, as

−6 < −3 < 0.

(c) With f(x) = 2x2 + 3x + 1 and hence f′(x) = 4x + 3, any roots of f(x) = 0

(actually −1 and − 1
2
) must lie on either side of the root of f′(x) = 0, i.e. x = − 3

4
.

They clearly do.

(d) This is as in (c), but there are no real roots. However, it can be more generally

stated that if there are two values of x that give 2x2 + 3x + k equal values then

they lie one on each side of x = − 3
4 .
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(e) With f(x) = 2x3 − 21x2 + 60x+ k,

f′(x) = 6x2 − 42x+ 60 = 6(x− 5)(x− 2)

and f′(x) = 0 has roots 2 and 5. Therefore, if f(x) = 0 has three real roots αi
with α1 < α2 < α3, then α1 < 2 < α2 < 5 < α3.

(f) When k = −45, f(3) = 54 − 189 + 180 − 45 = 0 and so x = 3 is a root of

f(x) = 0 and (x − 3) is a factor of f(x). Writing f(x) = 2x3 − 21x2 + 60x − 45

as (x − 3)(a2x
2 + a1x + a0) and equating coefficients gives a2 = 2, a1 = −15 and

a0 = 15. The other two roots are therefore

15 ±
√

225 − 120

4
=

1

4
(15 ±

√
105) = 1.19 or 6.31.

Result (e) is verified in this case since 1.19 < 2 < 3 < 5 < 6.31.

2.26 Use the mean value theorem to establish bounds

(a) for − ln(1 − y), by considering lnx in the range 0 < 1 − y < x < 1,

(b) for ey − 1, by considering ex − 1 in the range 0 < x < y.

(a) The mean value theorem applied to ln x within limits 1 − y and 1 gives

ln(1) − ln(1 − y)

1 − (1 − y)
=

d

dx
(lnx) =

1

x
(∗)

for some x in the range 1 − y < x < 1. Now, since 1 − y < x < 1 it follows that
1

1 − y
>

1

x
> 1,

⇒ 1

1 − y
>

− ln(1 − y)

y
> 1,

⇒ y

1 − y
> − ln(1 − y) > y.

The second line was obtained by substitution from (∗).

(b) The mean value theorem applied to ex − 1 within limits 0 and y gives

ey − 1 − 0

y − 0
= ex for some x in the range 0 < x < y.

Now, since 0 < x < y it follows that

1 < ex < ey ,

⇒ 1 <
ey − 1

y
< ey ,

⇒ y < ey − 1 < yey .
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Again, the second line was obtained by substitution for x from the mean value

theorem result.

2.28 Use Rolle’s theorem to deduce that if the equation f(x) = 0 has a repeated

root x1 then x1 is also a root of the equation f′(x) = 0.

(a) Apply this result to the ‘standard’ quadratic equation ax2 + bx + c = 0, to

show that a necessary condition for equal roots is b2 = 4ac.

(b) Find all the roots of f(x) = x3 + 4x2 − 3x− 18 = 0, given that one of them

is a repeated root.

(c) The equation f(x) = x4 + 4x3 + 7x2 + 6x + 2 = 0 has a repeated integer

root. How many real roots does it have altogether?

If two roots of f(x) = 0 are x1 and x2, i.e. f(x1) = f(x2) = 0, then it follows

from Rolle’s theorem that there is some x3 in the range x1 ≤ x3 ≤ x2 for which

f′(x3) = 0. Now let x2 → x1 to form the repeated root; x3 must also tend to the

limit x1, i.e. x1 is a root of f′(x) = 0 as well as of f(x) = 0.

(a) A quadratic equation f(x) = ax2 + bx + c = 0 only has two roots and so if

they are equal the common root α must also be a root of f′(x) = 2ax+ b = 0, i.e.

α = −b/2a. Thus

a
b2

4a2
+ b

−b
2a

+ c = 0.

It then follows that c− (b2/4a) = 0 and that b2 = 4ac.

(b) With f(x) = x3 + 4x2 − 3x− 18, the repeated root must satisfy

f′(x) = 3x2 + 8x− 3 = (3x− 1)(x+ 3) = 0 i.e. x =
1

3
or x = −3.

Trying the two possibilities: f( 1
3 ) 6= 0 but f(−3) = −27 + 36 + 9 − 18 = 0. Thus

f(x) must factorise as (x + 3)2(x − b), and comparing the constant terms in the

two expressions for f(x) immediately gives b = 2. Hence, x = 2 is the third root.

(c) Here f(x) = x4 + 4x3 + 7x2 + 6x + 2. As previously, we examine f′(x) = 0,

i.e. f′(x) = 4x3 + 12x2 + 14x + 6 = 0. This has to have an integer solution and,

by inspection, this is x = −1. We can therefore factorise f(x) as the product

(x + 1)2(a2x
2 + a1x + a0). Comparison of the coefficients gives immediately that

a2 = 1 and a0 = 2. From the coefficients of x3 we have 2a2 + a1 = 4; hence

a1 = 2. Thus f(x) can be written

f(x) = (x+ 1)2(x2 + 2x+ 2) = (x+ 1)2[ (x+ 1)2 + 1 ].
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The second factor, containing only positive terms, can have no real zeros and

hence f(x) = 0 has only two real roots (coincident at x = −1).

2.30 Find the following indefinite integrals:

(a)
∫

(4 + x2)−1 dx; (b)
∫

(8 + 2x− x2)−1/2 dx for 2 ≤ x ≤ 4;

(c)
∫

(1 + sin θ)−1 dθ; (d)
∫
(x

√
1 − x)−1 dx for 0 < x ≤ 1.

We make reference to the 12 standard forms given in subsection 2.2.3 and, where

relevant, select the appropriate model.

(a) Using model 9, ∫
1

4 + x2
dx =

1

2
tan−1 x

2
+ c.

(b) We rearrange the integrand in the form of model 12:
∫

1√
8 + 2x− x2

dx =

∫
1√

8 + 1 − (x− 1)2
dx = sin−1 x− 1

3
+ c.

(c) See equation (2.35) and the subsequent text.
∫

1

1 + sin θ
dθ =

∫
1

1 +
2t

1 + t2

2

1 + t2
dt

=

∫
2

(1 + t)2
dt

= − 2

1 + t
+ c

= − 2

1 + tan
θ

2

+ c.

(d) To remove the square root, set u2 = 1 − x; then 2u du = −dx and
∫

1

x
√

1 − x
dx =

∫
1

(1 − u2)u
× −2u du

=

∫ −2

1 − u2
du

=

∫ ( −1

1 − u
+

−1

1 + u

)
du

= ln(1 − u) − ln(1 + u) + c

= ln
1 −

√
1 − x

1 +
√

1 − x
+ c.
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2.32 Express x2(ax+b)−1 as the sum of powers of x and another integrable term,

and hence evaluate ∫ b/a

0

x2

ax+ b
dx.

We need to write the numerator in such a way that every term in it that involves

x contains a factor ax+ b. Therefore, write x2 as

x2 =
x

a
(ax+ b) − b

a2
(ax+ b) +

b2

a2
.

Then,
∫ b/a

0

x2

ax+ b
dx =

∫ b/a

0

(
x

a
− b

a2
+

b2

a2(ax+ b)

)
dx

=

[
x2

2a
− bx

a2
+
b2

a3
ln(ax+ b)

]b/a

0

=
b2

a3

(
ln 2 − 1

2

)
.

An alternative approach, consistent with the wording of the question, is to use

the binomial theorem to write the integrand as

x2

ax+ b
=
x2

b

(
1 +

ax

b

)−1

=
x2

b

∞∑

n=0

(
−ax

b

)n
.

Then the integral is

∫ b/a

0

x2

ax+ b
dx =

1

b

∫ b/a

0

∞∑

n=0

(−1)n
(a
b

)n
xn+2 dx

=
1

b

∞∑

n=0

(−1)n
(a
b

)n 1

n+ 3

(
b

a

)n+3

=
b2

a3

∞∑

n=0

(−1)n

n+ 3
.

That these two solutions are the same can be seen by writing ln 2 − 1
2 as

ln 2 − 1

2
=

(
1 − 1

2
+

1

3
− 1

4
+

1

5
− · · ·

)
− 1

2

=
1

3
− 1

4
+

1

5
− · · · =

∞∑

n=0

(−1)n

n+ 3
.
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2.34 Use logarithmic integration to find the indefinite integrals J of the following:

(a) sin 2x/(1 + 4 sin2 x);

(b) ex/(ex − e−x);
(c) (1 + x lnx)/(x lnx);

(d) [x(xn + an)]−1.

To use logarithmic integration each integrand needs to be arranged as a fraction

that has the derivative of the denominator appearing in the numerator.

(a) Either by noting that sin 2x = 2 sinx cosx and so is proportional to the

derivative of sin2 x or by recognising that sin2 x can be written in terms of cos 2x

and constants and that sin 2x is then its derivative, we have

J =

∫
sin 2x

1 + 4 sin2 x
dx

=

∫
2 sinx cosx

1 + 4 sin2 x
dx =

1

4
ln(1 + 4 sin2 x) + c,

or

J =

∫
sin 2x

1 + 2(1 − cos 2x)
dx =

1

4
ln(3 − 2 cos 2x) + c.

These two answers are equivalent since 3 − 2 cos 2x = 3 − 2(1 − 2 sin2 x) =

1 + 4 sin2 x.

(b) This is straightforward if it is noticed that multiplying both numerator and

denominator by ex produces the required form:

J =

∫
ex

ex − e−x dx =

∫
e2x

e2x − 1
dx =

1

2
ln(e2x − 1) + c.

An alternative, but longer, method is to write the numerator as coshx + sinhx

and the denominator as 2 sinhx. This leads to J = 1
2 (x+ ln sinhx), which can be

re-written as

J = 1
2 (ln e

x + ln sinhx) = 1
2 ln(ex sinhx) = 1

2 ln(e2x − 1) + 1
2 ln 1

2 .

The 1
2
ln 1

2
forms part of c.

(c) Here we must first divide the numerator by the denominator to produce two

separate terms, and then twice apply the result that 1/z is the derivative of ln z:

J =

∫
1 + x lnx

x lnx
dx =

∫ (
1

x lnx
+ 1

)
dx = ln(lnx) + x+ c.

(d) To put the integrand in a form suitable for logaritmic integration, we must

first multiply both numerator and denominator by nxn−1 and then use partial
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fractions so that each denominator contains x only in the form xm, of which

mxm−1 is the derivative.

J =

∫
dx

x(xn + an)
=

∫
nxn−1

nxn(xn + an)
dx

=
1

nan

∫ (
nxn−1

xn
− nxn−1

xn + an

)
dx

=
1

nan
[ n lnx− ln(xn + an) ] + c

=
1

nan
ln

(
xn

xn + an

)
+ c.

2.36 Find the indefinite integrals J of the following functions involving sinusoids:

(a) cos5 x− cos3 x;

(b) (1 − cosx)/(1 + cosx);

(c) cosx sinx/(1 + cosx);

(d) sec2 x/(1 − tan2 x).

(a) As the integrand contains only odd powers of cosx, take cosx out as a

common factor and express the remainder in terms of sin x, of which cosx is the

derivative:

cos5 x− cos3 x = [ (1 − sin2 x)2 − (1 − sin2 x) ] cosx

= (sin4 x− sin2 x) cosx.

Hence,

J =

∫
(sin4 x− sin2 x) cosx dx =

1

5
sin5 x− 1

3
sin3 x+ c.

A more formal way of expressing this approach is to say ‘set sinx = u with

cosx dx = du.’

(b) This integral can be found either by writing the numerator and denominator

in terms of sinusoidal functions of x/2 or by making the substitution t = tan(x/2).

Using first the half-angle identities, we have

J =

∫
1 − cosx

1 + cosx
dx =

∫
2 sin2 x

2

2 cos2 x
2

=

∫
tan2 x

2
dx =

∫ (
sec2 x

2
− 1
)
dx = 2 tan

x

2
− x+ c.
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The second approach (see subsection 2.2.7) is

J =

∫ 1 − 1 − t2

1 + t2

1 +
1 − t2

1 + t2

2 dt

1 + t2

=

∫
2t2

1 + t2
dt

=

∫
2 dt−

∫
2

1 + t2
dt

= 2t− 2 tan−1 t+ c = 2 tan
x

2
− x+ c.

(c) This integrand, containing only sinusoidal functions, can be converted to an

algebraic one by writing t = tan(x/2) and expressing the functions appearing in

the integrand in terms of it,

cosx sinx

1 + cosx
dx =

1 − t2

1 + t2
2t

1 + t2
2

1 + t2

1 +
1 − t2

1 + t2

dt

=
2t(1 − t2)

(1 + t2)2
dt

= 2t

[
A

(1 + t2)2
+

B

1 + t2

]
dt,

with A+ B(1 + t2) = 1 − t2, implying that B = −1 and A = 2.

And so, recalling that 1 + t2 = sec2(x/2) = 1/[cos2(x/2)],

J =

∫ (
4t

(1 + t2)2
− 2t

1 + t2

)
dt

= − 2

1 + t2
− ln(1 + t2) + c

= −2 cos2 x

2
+ ln(cos2 x

2
) + c.

(d) We can either set tan x = u or show that the integrand is sec 2x and then use

the result of exercise 2.35; here we use the latter method.

∫
sec2 x

1 − tan2 x
dx =

∫
1

cos2 x− sin2 x
dx =

∫
sec 2x dx.

It then follows from the earlier result that J = 1
2
ln(sec 2x+ tan 2x) + c. This can

also be written as 1
2 ln[(1 + tanx)/(1 − tan x)] + c.
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