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Introduction

The second edition of Mathematical Methods for Physics and Engineering carried
more than twice as many exercises, based on its various chapters, as did the first.
In the Preface we discussed the general question of how such exercises should
be treated but, in the end, decided to provide hints and outline answers to all
problems, as in the first edition. This decision was an uneasy one as, on the one
hand, it did not allow the exercises to be set as totally unaided homework that
could be used for assessment purposes but, on the other, it did not give a full
explanation of how to tackle a problem when a student needed explicit guidance
or a model answer.

In order to allow both of these educationally desirable goals to be achieved we
have, in the third edition, completely changed the way this matter is handled.
All of the exercises from the second edition, plus a number of additional ones
testing the newly-added material, have been included in penultimate subsections
of the appropriate, sometimes reorganised, chapters. Hints and outline answers
are given, as previously, in the final subsections, but only to the odd-numbered
exercises. This leaves all even-numbered exercises free to be set as unaided
homework, as described below.

For the four hundred plus odd-numbered exercises, complete solutions are avail-
able, to both students and their teachers, in the form of a separate manual, K. F.
Riley and M. P. Hobson, Student Solutions Manual for Mathematical Methods for
Physics and Engineering, 3rd edn. (Cambridge: CUP, 2006). These full solutions
are additional to the hints and outline answers given in the main text. For each
exercise, the original question is reproduced and then followed by a fully-worked
solution. For those exercises that make internal reference to the main text or to
other (even-numbered) exercises not included in the manual, the questions have
been reworded, usually by including additional information, so that the questions
can stand alone.
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INTRODUCTION

The remaining four hundred or so even-numbered exercises have no hints or
answers, outlined or detailed, available for general access. They can therefore be
used by instructors as a basis for setting unaided homework. Full solutions to
these exercises, in the same general format as those appearing in the manual
(though they may contain cross-references to the main text or to other exercises),
form the body of the material on this website.

In many cases, in the manual as well as here, the solution given is even fuller than
one that might be expected of a good student who has understood the material.
This is because we have aimed to make the solutions instructional as well as
utilitarian. To this end, we have included comments that are intended to show
how the plan for the solution is fomulated and have given the justifications for
particular intermediate steps (something not always done, even by the best of
students). We have also tried to write each individual substituted formula in the
form that best indicates how it was obtained, before simplifying it at the next
or a subsequent stage. Where several lines of algebraic manipulation or calculus
are needed to obtain a final result they are normally included in full; this should
enable the instructor to determine whether a student’s incorrect answer is due to
a misunderstanding of principles or to a technical error.

In all new publications, on paper or on a website, errors and typographical
mistakes are virtually unavoidable and we would be grateful to any instructor
who brings instances to our attention.

Ken Riley, kfr1000@cam.ac.uk,
Michael Hobson, mph@mrao.cam.ac.uk,
Cambridge, 2006
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Preliminary algebra

Polynomial equations

1.2 Determine how the number of real roots of the equation
g(x) =4x> —17x* + 10x +k =0

depends upon k. Are there any cases for which the equation has exactly two distinct
real roots?

We first determine the positions of the turning points (if any) of g(x) by equating
its derivative g'(x) = 12x*> — 34x + 10 to zero. The roots of g/(x) = 0 are given,
either by factorising g’(x), or by the standard formula,

34 + /1156 — 480
24 ’

oo =

5 1

as 3 and 3.
We now determine the values of g(x) at these turning points; they are g(%) =
—% +k and g(%) = % + k. These will remain of opposite signs, as is required for
three real roots, provided k remains in the range —‘2‘—3 <k< %. If k is equal to

one of these two extreme values, a graph of g(x) just touches the x-axis and two
of the roots become coincident, resulting in only two distinct real roots.

1.4 Given that x = 2 is one root of
g(x) =2x* +4x* —9x* —11x— 6 =0,

use factorisation to determine how many real roots it has.




PRELIMINARY ALGEBRA

Given that x = 2 is one root of g(x) = 0, we write g(x) = (x — 2)h(x) or, more
explicitly,

2x* +4x3 —9x? — 11x — 6 = (x — 2)(bsx® + bax? + byx + by).
Equating the coefficients of successive (decreasing) powers of x, we obtain
by =2, by—2b3=4, b —2by=-9, by—2b =—-11, —2by=—6.
These five equations have the consistent solution for the four unknowns b; of
b3 =2, by =8, by =7 and by = 3. Thus h(x) = 2x* + 8x> + 7x + 3.

Clearly, since all of its coefficients are positive, h(x) can have no zeros for positive
values of x. A few tests with negative integer values of x (with the initial intention
of making a rough sketch) reveal that h(—3) = 0, implying that (x 4 3) is a factor
of h(x). We therefore write

2x3 4+ 8x% + Tx + 3 = (x 4+ 3)(e2x? + c1x + <o),

and, proceeding as previously, obtain ¢; = 2, ¢; +3¢c; = 8, ¢9 + 3¢; = 7 and
3c¢o = 3, with corresponding solution ¢, =2, ¢; =2 and ¢y = 1.

We now have that g(x) = (x —2)(x + 3)(2x?> + 2x + 1). If we now try to determine
the zeros of the quadratic term using the standard form (1.4) we find that, since
22 — (4 x 2 x 1), i.e. —4, is negative, its zeros are complex. In summary, the only
real roots of g(x) =0 are x =2 and x = —3.

1.6 Use the results of (1) equation (1.13), (i) equation (1.12) and (iii) equation
(1.14) to prove that if the roots of 3x> — x> —10x + 8 = 0 are oy, and o3 then

)
) of +0f 403 =61/9,
(c) of + 03 + 03 =—125/27.

) Convince yourself that eliminating (say) o and o3 from (i), (ii) and (iii)
does not give a simple explicit way of finding o;.

If the roots of 3x® — x> — 10x 4+ 8 = 0 are oy, o, and a3, then:

. . -1 1

(1) from equation (1.13), oy +oy +o3 = -5 = §;

. . 38 8
(ii)) from equation (1.12), ooy = (—1) 3= —3;

. —10 10
(iii) from equation (1.14), oy + ooz + 3oy = = =7



PRELIMINARY ALGEBRA

We now use these results in various combinations to obtain expressions for the
given quantities:

1 1 1 o3 + oo + oo —(10/3 5
@ L4 L1 wutuntan (10/3) _ 5,

a w0 o003 T —8/3) 4

(b) of +of + o3 = (o + 02 + 13)* — 2(01002 + o203 + 0131

_ (1)? 10y _ 61.

=(3) -2(-%)=%:

(€) o +0o3+03 =

(o1 + 0 + a3)* — 3oty + o2 + 013)(ot1 02 + 00203 + 2301) + 301102003

=P =3 43 = -1

(d) No answer is given as it cannot be done. All manipulation is complicated

and, at best, leads back to the original equation. Unfortunately, the ‘convincing’
will have to come from frustration, rather than from a proof by contradiction!

Trigonometric identities

1.8 The following exercises are based on the half-angle formulae.

(a) Use the fact that sin(n/6) = 1/2 to prove that tan(rw/12) = 2 — \/§
(b) Use the result of (a) to show further that tan(w/24) = q(2 — q), where
@ =2+.3

(a) Writing tan(n/12) as t and using (1.32), we have

I sin L

276 1+
from which it follows that t> — 4t +1 = 0.
The quadratic solution (1.6) then shows that t =2+ /22 —1 =2+ \/5; there are
two solutions because sin(57/6) is also equal to 1/2. To resolve the ambiguity,
we note that, since /12 < n/4 and tan(n/4) = 1, we must have t < 1; hence, the
negative sign is the appropriate choice.

(b) Writing tan(z/24) as u and using (1.34) and the result of part (a), we have
2u
2-3=1—0

Multiplying both sides by ¢> = 2 + \/§, and then using (2 + \/5)(2 — \/5) =1,
gives

1 —u? =24%u

3



PRELIMINARY ALGEBRA

This quadratic equation has the (positive) solution
u=—q"+ \/m
=—¢ +\/4+43+3+1
=—q*+2\/2+3

= —¢>+2¢ =q(2—q),

as stated in the question.

1.10 If s = sin(n/8), prove that
8s* —8s*+1=0,
and hence show that s = [(2 — \/E)/4]1/2.

With s = sin(n/8), using (1.29) gives

sin = = 25(1 — %)/,
4
Squaring both sides, and then using sin(w/4) = 1/ﬁ, leads to
1
5= 452 (1 — s%),
ie. 8s* — 85> + 1 = 0. This is a quadratic equation in u = s?, with solutions
s 8k64—32 242
sSS=u= = .
16 4
Since /8 < n/4 and sin(n/4) = 1/4/2 = \/2/4, it is clear that the minus sign is
the appropriate one. Taking the square root of both sides then yields the stated
answer.

Coordinate geometry

1.12 Obtain in the form (1.38), the equations that describe the following:

(a) a circle of radius 5 with its centre at (1,—1);

(b) the line 2x + 3y + 4 = 0 and the line orthogonal to it which passes through
(1,1);

(c) an ellipse of eccentricity 0.6 with centre (1,1) and its major axis of length
10 parallel to the y-axis.




PRELIMINARY ALGEBRA

(a) Using (1.42) gives (x — 1)+ (y +1)> = 5%, ie. x> + y> —2x + 2y — 23 = 0.
(b) From (1.24), a line orthogonal to 2x + 3y + 4 = 0 must have the form
3x —2y+¢ =0, and, if it is to pass through (1, 1), then ¢ = —1. Expressed in the
form (1.38), the pair of lines takes the form

0=02x+3y+4)(3x—2y —1)=6x>—6y> + 5xy + 10x — 11y — 4.

(c) As the major semi-axis has length 5 and the eccentricity is 0.6, the minor
semi-axis has length 5[1 — (0.6)?]!/2 = 4. The equation of the ellipse is therefore

(x—=1?% (=1
x42 +y52 =

which can be written as 25x? + 16y — 50x — 32y — 359 = 0.

1,

1.14 For the ellipse
2 2
T+l
a>  b?
with eccentricity e, the two points (—ae,0) and (ae,0) are known as its foci. Show
that the sum of the distances from any point on the ellipse to the foci is 2a.

[ The constancy of the sum of the distances from two fixed points can be used as
an alternative defining property of an ellipse. |

Let the sum of the distances be s. Then, for a point (x, y) on the ellipse,
s = [(x +ae)* +y* 1V + [(x — ae)® + y* 12,
where the positive square roots are to be taken.
Now, y? = b*[1 — (x/a)?], with b> = a*(1 — €?). Thus, y? = (1 — €?)(a> — x?) and
s = (x> 4 2aex + d*¢® + a* — d*e* — x> + 2xH)1/?
+ (x> — 2aex + a*¢® + a* — d*e* — x* + X212
= (a+ ex)+ (a — ex) = 2a.

This result is independent of x and hence holds for any point on the ellipse.

Partial fractions

1.16 Express the following in partial fraction form:

2x3 —5x + 1 X24+x—1

@ T g ® T —




PRELIMINARY ALGEBRA

(a) For
2x3 —5x +1
f0=F— "%
we note that the degree of the numerator is higher than that of the denominator,
and so we must first divide through by the latter. Write

2x3 —5x 4+ 1 = (2x + 50) (x> — 2x — 8) + (r1x + ro).
Equating the coefficients of the powers of x: 0 = sy —4, —5 = —16 — 259 +r1, and
1 = —8sg + ro, giving so = 4, ry = 19, and rg = 33. Thus,
19x 4+ 33
x2—2x—28"
The denominator in the final term factorises as (x — 4)(x + 2), and so we write
the term as

flx)=2x+4+

A n B
x—4 x+2
Using the third method given in section 1.4:
19(4) + 33 19(-2) 433
i+2 24
Thus,
109 5
flx)=2x+4+

6x—4) T 6(x12)
(b) Since the highest powers of x in the denominator and numerator are equal,
the partial-fraction expansion takes the form

X2 4+x—1 1 A B
== — - =1 .
fx) x24x—2 +x2+x—2 +x+2+x—1
Using the same method as above, we have
1 1
A= ————; = —.
21’ B 1+2
Thus,
1 1
flx)=1

T3x12) 3x—1)

1.18 Resolve the following into partial fractions in such a way that x does not
appear in any numerator:

2x2 4+ x4+ 1 x2—2 x> —x—1

@ ary P rseriee Qayarn




PRELIMINARY ALGEBRA

Since no factor x may appear in a numerator, all repeated factors appearing in
the denominator give rise to as many terms in the partial fraction expansion as
the power to which that factor is raised in the denominator.

(a) The denominator is already factorised but contains the repeated factor (x—1).
Thus the expansion will contain a term of the form (x — 1)~!, as well as one of
the form (x — 1)~2. So,
2x? +x + 1 A B C
3 = + 5 + .
(x—1)2x+3) x+3 (x—1) x—1

We can evaluate A4 and B using the third method given in section 1.4:

We now evaluate C by setting x = 0 (say):
1 1 1 C
P33 o
giving C =1 and the full expansion as
22 +x+1 1 1 1

G143 43 -1p T x—T
(b) Here the denominator needs factorising, but this is elementary,

x2—2 x2 =2 A B C

O 82+ 16x X +A?  x T xt4? T x+a

Now, using the same method as in part (a):

0-—2 1 (—4)> =2 7
=——=—C d B=———=—-.
©0+42 g M —4 2
Setting x = 1 (say) determines C through
—1 1 7 C

25 - 80 262 5
Thus C = 9/8, and the full expression is
x2—2 1 7 9

82+ 16x  8x  2x+42 T 8xt4)

(c)
xP—x—1 4 n B n C n D
(x+3B3x+1) x+1  (x+33  (x+32 x+3
As in parts (a) and (b), the third method in section 1.4 gives A and B as

=P —(=D—1_ 1 (=3P (=3 —1 25
i i S S




PRELIMINARY ALGEBRA

Setting x = 0 requires that

—1 1 25 C D . 27
E——§+5—4+§+§ 1.6.C+3D——§.
Setting x = 1 gives the additional requirement that
—1 1 25 C D . 18
@——E‘FE‘FE‘FZ 1.€.C+4D——§.

Solving these two equations for C and D now yields D = 9/8 and C = —54/8.
Thus,

xP—x—1 1 1 100 54 9

GF3Pe+D) . 8exD) 8|37 3 Txg3l
If necessary, that the expansion is valid for all x (and not just for 0 and 1) can
be checked by writing all of its terms so as to have the common denominator
(x +3P3(x+1).

Binomial expansion

1.20 Use a binomial expansion to evaluate 1/./4.2 to five places of decimals, and
compare it with the accurate answer obtained using a calculator.

To use the binomial expansion, we need to express the inverse square root in the
form (1 4+ a)~'/? with |a| < 1. We do this as follows.

1 1 1
JA2 T (44+02)12 7 2(1+0.05)1/2
1 1 3 15
== |1— (0. ~(0.05)> — —=(0.05)> 4 - --
5 5(0.05) + 2(0.05)* — 22(0.05)° +
= 0.487949218.

This four-term sum and the accurate value differ by about 8 x 107,

Proof by induction and contradiction

1.22 Prove by induction that

Ltr4r4 4+ =
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To prove that
1— rn+1

n

Zrk_ 1 >
—r

k=0

assume that the result is valid for n = N, and consider the corresponding sum
for n = N + 1, which is the original sum plus one additional term:

N+1 N
Z Pk = STk g N
k=0 k=0
1— rN+1 |
i ——— + Nt using the assumption,
1 — pN+L o N+L N2
1—r
1— rN+2
o 1—r

This is the same form as in the assumption, except that N has been replaced by
N + 1, and shows that the result is valid for n = N + 1 if it is valid for n = N.

But, since (1 —r)/(1 —r) = 1, the result is trivially valid for n = 0. It therefore
follows that it is valid for all n.

1.24 If a sequence of terms u, satisfies the recurrence relation u,; = (1 — x)u, +
nx, with uy = 0, then show by induction that, for n > 1,

U, = 1[nx—l-l—(l—x)"].
X

Assume that the stated result is valid for n = N, and consider the expression for
the next term in the sequence:

un+1 = (I —x)uy + Nx

1— ) .
= = [Nx —1+(1—x)"] + Nx, using the assumption,

1
< [Nx = No? — T x4 (1 =)™ 4 Nx?]
1

. [(N+1)x—1+(1—x)N+1].

This has the same form as in the assumption, except that N has been replaced
by N + 1, and shows that the result is valid for n = N + 1 if it is valid for n = N.

The assumed result gives u; as x ' (x—1+1—x) = 0 (i.e. as stated in the question),
and so is valid for n = 1. It now follows, from the result proved earlier, that the
given expression is valid for all n > 1.
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1.26 The quantities a; in this exercise are all positive real numbers.

2
a+a
al“zﬁ( 12 2)

(b) Hence, prove by induction on m that
a1+a2+---+ap>p
p b

where p = 2™ with m a positive integer. Note that each increase of m by
unity doubles the number of factors in the product.

(a) Show that

0102"'apﬁ<

(a) Consider (a; — a)*> which is always non-negative:
(a1 — a2)* >0,
a% —2aia; + a% > 0,
a% + 2a1a; + a% > 4aay,

(a1 + a2)* > 4ajas,

2
<(11 ;—az) > aidy.

a1+az+-~-+ap>p
14

is valid for some m = M. Write P =2M, P’ = 2P, by =a; +a» +--- + ap and
by = apyy +apyr + -+ + ap. Note that both b; and b, consist of P terms.

(b) With p = 2™, assume that

alaz...aps<

Now consider the multiple product u = aya; - - - apapi1apia - ap:.

(a1+a2+~~~+aP)P <aP+1+ap+2+"'+ap/>P
P P

AN

=P )
where the assumed result has been applied twice, once to a set consisting of the
first P numbers, and then for a second time to the remaining set of P numbers,

api1,dp+2,--- ,apr. We have also used the fact that, for positive real numbers, if
q <rand s <t then gs < rt.

u=<

But, from part (a),

2
s (22)

10
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Thus,

P2 2
(b1 + b)"
(ZP)ZP

(b1 +by i
= 7 )

This shows that the result is valid for P’ = 2M*1 if it is valid for P = 2™, But
for m = M = 1 the postulated inequality is simply result (a), which was shown
directly. Thus the inequality holds for all positive integer values of m.

1\ by + by 2P
ajay - --apapiidpyy - - apr <

1.28 An arithmetic progression of integers a, is one in which a, = ay + nd, where
ag and d are integers and n takes successive values 0,1,2,....

(a) Show that if any one term of the progression is the cube of an integer, then
so are infinitely many others.

(b) Show that no cube of an integer can be expressed as Tn+5 for some positive
integer n.

(a) We proceed by the method of contradiction. Suppose d > 0. Assume that there
is a finite, but non-zero, number of natural cubes in the arithmetic progression.
Then there must be a largest cube. Let it be ay = ayp + Nd, and write it as
ay = ay + Nd = m*. Now consider (m + d)*:

(m+dy* =m® + 3dm® + 3d*m + &*
= ay+ Nd + d(3m? + 3dm + d°)
=ap + dNy,
where N = N + 3m? + 3dm + d? is necessarily an integer, since N, m and d all
are. Further, Ny > N. Thus an, = ap + Nid is also the cube of a natural number
and is greater than ay; this contradicts the assumption that it is possible to select
a largest cube in the series and establishes the result that, if there is one such

cube, then there are infinitely many of them. A similar argument (considering the
smallest term in the series) can be carried through if d < 0.

We note that the result is also formally true in the case in which d = 0; if g is a
natural cube, then so is every term, since they are all equal to ap.

(b) Again, we proceed by the method of contradiction. Suppose that 7N +5 = m?

11
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for some pair of positive integers N and m. Consider the quantity
(m—17) =m® —21m* 4 147m — 343
=N +5—7(3m* — 21m + 49)
=TN; +5,

where N| = N —3m?+421m—49 is an integer smaller than N. From this, it follows
that if m> can be expressed in the form 7N + 5 then so can (m—7)3, (m— 14)*, etc.
Further, for some finite integer p, (m — 7p) must lie in the range 0 <m —Tp < 6
and will have the property (m — 7p)* = 7N, + 5.

However, explicit calculation shows that, when expressed in the form 7n + ¢, the
cubes of the integers 0, 1, 2, ---, 6 have respective values of g of 0, 1, 1, 6, 1,
6, 6; none of these is equal to 5. This contradicts the conclusion that followed
from our initial supposition and subsequent argument. It was therefore wrong to
assume that there is a natural cube that can be expressed in the form 7N + 5.

[ Note that it is not sufficient to carry out the above explicit calculations and then
rely on the construct from part (a), as this does not guarantee to generate every
cube. ]

Necessary and sufficient conditions

1.30 Prove that the equation ax*> + bx + ¢ = 0, in which a, b and ¢ are real and
a > 0, has two real distinct solutions IFF b*> > 4ac.

As is usual for IFF proofs, this answer will consist of two parts.

Firstly, assume that b> > 4ac. We can then write the equation as

a(xz—i—éx—i—g):O,
a a

b\ b
a(x—i—z—a) —E—i—c:O,

b\* b —dac

Since b?> > 4ac and a > 0, 1 is real, positive and non-zero. So, taking the square
roots of both sides of the final equation gives

b A

~ i et}

2a = \Ja

i.e. both roots are real and they are distinct; thus, the ‘if” part of the proposition
is established.

X =—

12



PRELIMINARY ALGEBRA

Now assume that both roots are real, « and f say, with o # f. Then,
as® +ba+c=0,
ap? +bp+c=0.
Subtraction of the two equations gives
a(@* — ) +ba—p)=0 = b=—(x+ f)a, since x — f # 0.

Multiplying the first displayed equation by f and the second by « and then
subtracting, gives

a(?p—pPa)+c(f—u)=0 = ¢=apfa,since a—f #0.
Now, recalling that o # f and that a > 0, consider the inequality
0 < (0—p)* =o?—20p + p>

— (a+ )} — dap
_b72_45_b2—4ac
a? a @

This inequality shows that b? is necessarily greater than 4ac, and so establishes
the ‘only if” part of the proof.

1.32 Given that at least one of a and b, and at least one of ¢ and d, are non-zero,
show that ad = bc is both a necessary and sufficient condition for the equations

ax + by =0,
cx+dy =0,

to have a solution in which at least one of x and y is non-zero.

First, suppose that ad = bc with at least one of a and b, and at least one of ¢ and
d, non-zero. Assume, for definiteness, that a and ¢ are non-zero; if this is not the
case, then the following proof is modified in an obvious way by interchanging the
roles of a and b and/or of ¢ and d, as necessary:

b
ax+by=0:>x=—;y,

cx+dy=0:>x=—gy.
c

Now

ad =bc = d=E = 51:9,
a c a

where we have used, in turn, that a # 0 and ¢ # 0. Thus the two solutions for x

13
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in terms of y are the same. Any non-zero value for y may be chosen, but that
for x is then determined (and may be zero). This establishes that the condition is
sufficient.

To show that it is a necessary condition, suppose that there is a non-trivial
solution to the original equations and that, say, x # 0. Multiply the first equation
by d and the second by b to obtain

dax 4+ dby = 0,
bex + bdy = 0.

Subtracting these equations gives (ad — bc)x = 0 and, since x # 0, it follows that
ad = bc.

If x = 0 then y # 0, and multiplying the first of the original equations by ¢ and
the second by a leads to the same conclusion.

This completes the proof that the condition is both necessary and sufficient.

14
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Preliminary calculus

2.2 Find from first principles the first derivative of (x + 3)* and compare your
answer with that obtained using the chain rule.

Using the definition of a derivative, we consider the difference between (x+Ax+3)>
and (x 4 3)?, and determine the following limit (if it exists):

(x + Ax +3)> — (x + 3)?

f'(x) = lim

-0 Ax

i [(x+ 3)2 4+ 2(x + 3)Ax + (Ax)z] —(x+ 3)2
= lim

Ax—0 Ax

2

~ lim (2(x + 3)Ax + (Ax)

Ax—0 Ax
=2x+ 6.

The limit does exist, and so the derivative is 2x + 6.

Rewriting the function as f(x) = u?, where u(x) = x + 3, and using the chain rule:

f’(x)=2uxj—z=2uxl=2u=2x+6,

i.e. the same, as expected.

2.4 Find the first derivatives of
(@) x/(a+x)% (b) x/(1 —x)2, (c) tanx, as sinx/ cosx,

(d) (3x* +2x +1)/(8x* — 4x + 2).

15
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In each case, using (2.13) for a quotient:

=[(a—l—x)zx1]—[x><2(a—i—x)] a* — x? a—x

(a) f,(x) (a_|_x)4 = (a+x)4 = (a_|_x)3’
Lo =) x 1] —[xx—5(1—x7"2] 1-3x
(b)  fix)= T~ T U—xp
, [ X ] —[sinx X (—sinx)] 1
(C) f (x) _ COS X COS X COSzS)ICnX Sin x _ Coszx _ SeCZX;
@ )= [(8x? — 4x +2) x (6x +2)] — [(3x> 4+ 2x + 1) x (16x — 4)]

(8x2 — 4x + 2)?
X348 —48) + x2(16 —24 + 12— 32) + - --
N (8x2 — 4x + 2)?
o+ x(—8+12+8—16)+ (4 +4)
(8x2 — dx + 2)?
—28x? —4x+8  —Tx?—x+2
(8x2 —dx +2)2  (4x2—2x+ 1)

2.6 Show that the function y(x) = exp(—|x|) defined as

exp x for x <0,
1 for x =0,
exp(—x) for x > 0,

is not differentiable at x = 0. Consider the limiting process for both Ax > 0 and
Ax < 0.

For x > 0, let Ax = 5. Then,

V(x>0)=lim &=
n—0 n
1,2
TN i M Y
n—0 n
For x <0, let Ax = —#. Then,
0—n _ 1
¥ (x > 0) = lim
n—=0  —n
1,2
TN Bk L/ Y
n—0 —-n

The two limits are not equal, and so y(x) is not differentiable at x = 0.

16



PRELIMINARY CALCULUS

‘2.8 If 2y +siny + 5 = x* + 4x> + 2x, show that dy/dx = 16 when x = 1.

For this equation neither x nor y can be made the subject of the equation, i.e
neither can be written explicitly as a function of the other, and so we are forced
to use implicit differentiation. Starting from

2y +siny+5=x*+4x"+2n

implicit differentiation, and the use of the chain rule when differentiating sin y
with respect to x, gives

d d
phad + Cosy—y =4x> 4 12x°,
dx dx

When x = 1 the original equation reduces to 2y + siny = 27 with the obvious
(and unique, as can be verified from a simple sketch) solution y = n. Thus, with
x=1and y=m,

dy 4412

dx| _, 2+cosm

210 The function y(x) is defined by y(x) = (1 + x™)".

(a) Use the chain rule to show that the first derivative of y is nmx"™'(14+x")"1,
(b) The binomial expansion (see section 1.5) of (1 + z)" is
1 —1)---(n— 1)
n(n )22+...+n(n Jocol=rar )z’+...
2! r!
Keeping only the terms of zeroth and first order in dx, apply this result twice
to derive result (a) from first principles.
(c) Expand y in a series of powers of x before differentiating term by term.
Show that the result is the series obtained by expanding the answer given
for dy/dx in part (a).

(I+z)'=14+nz+

(a) Writing 1 + x™ as u, y(x) = u", and so dy/du = nu""!, whilst du/dx = mx"!.
Thus, from the chain rule,

dy _

7 — nunfl % mxmfl — nmx'"*l(l + xm)nfl'
X

17
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(b) From the defining process for a derivative,

[1 + (X + Ax)m]n _ (1 + xm)n

’ .
0= 4, A
— lim [1+x"(1+ %)m]n — (1 4 x™)"
Ax—0 Ax
— lim [1+Xm(1+%+)]n_(1+xm)n
Ax—0 Ax
— lim (1 4+ x" +mx" TAx + - )" — (1 + x™)"
Ax—0 Ax
' [(1+xm) (1+ m)lc_;Ax +,..):|n_(1+xm)n
- g, -
) (1 _|_xm)n (1 + mrﬁ’_’;i}A\ _|_) _(1 +x/n)n
= am, e
_ lim mn(1 4+ x™)"=Ix"TAx 4 - -
Ax—0 Ax

— nmx’"ﬁl(l + xm)nfl’

i.e. the same as the result in part (a).

(c) Expanding in a power series before differentiating:

(n—1)

y(x)=1+nx’"+nTx2m+
nmn—1)---n—r+1) .,
+ r! XEE
2 —1
y(x) =mnx""' + ammn— ) n(zn' ) X
rmum—1)---(n—r+1) .4
_|_ r! X _l_....

Now, expanding the result given in part (a) gives

y/(x) _ nmx'"*l(l 4 xln)nfl

:nmxmil (1+"'+(n_1)(}1_32!).“(”_8)xms—i—..~>

mnn—1)(n—2)---(n—s) xmstmel

:nmx”1_1+...+ '
S.

This is the same as the previous expansion of y/(x) if, in the general term, the
index is moved by one, i.e. s =7 — 1.

18
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2.12 Find the positions and natures of the stationary points of the following func-
tions:

(@) x> —=3x+3; (b) x* —3x% +3x; (c) x* +3x+3;
(d) sinax with a #0; (e) x* + x*; (f) x> — x°.

In each case, we need to determine the first and second derivatives of the function.
The zeros of the 1st derivative give the positions of the stationary points, and the
values of the 2nd derivatives at those points determine their natures.

(a) y=x=3x+3; )y =3x>-3; ) =6x.

y" = 0 has roots at x = +1, where the values of y” are +6. Therefore, there is a
minimum at x = 1 and a maximum at x = —1.

(b) y=x=3x>4+3x; )y =3x>—6x+3; ' = 6x—6.

y' = 0 has a double root at x = 1, where the value of y” is 0. Therefore, there
is a point of inflection at x = 1, but no other stationary points. At the point of
inflection, the tangent to the curve y = y(x) is horizontal.

(c) y=x43x+3; Y =3x43; )’ =6x.

y’ = 0 has no real roots, and so there are no stationary points.

(d) y=sinax; y =acosax; y' = —a*sinax.

y' =0 has roots at x = (n + %)n/a for integer n. The corresponding values of y”
are Fa?, depending on whether n is even or odd. Therefore, there is a maximum
for even n and a minimum where n is odd.

(e) y=x"4+x°; ¥ =5x*+3x%; ¥ =20x’+6x.

y" = 0 has, as its only real root, a double root at x = 0, where the value of y” is 0.
Thus, there is a (horizontal) point of inflection at x = 0, but no other stationary
point.

() y=x"=x% ¥y =5x"-3x* ' =20x—6x.

¥ =0 has a double root at x = 0 and simple roots at x = +(2)!/2, where the
respective values of y” are 0 and i6(%)1/ 2, Therefore, there is a point of inflection
at x =0, a maximum at x = —(2)!/? and a minimum at x = (£)!/2,

19
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04 |
0.2
5 10 15 — —1 1 2 3 4 6
—0.4
0.8
(b)
) A /\A
0 b 3
—0.2

()

Figure 2.1 The solutions to exercise 2.14.

2.14 By finding their stationary points and examining their general forms, deter-
mine the range of values that each of the following functions y(x) can take. In
each case make a sketch-graph incorporating the features you have identified.

(@) y(x) = (x—1)/(x*+2x + 6).
(b) y(x)=1/(4+ 3x — x?).
(c) y(x) = (8sinx)/(15 + 8 tan®x).

See figure 2.1 (a)—(c).

(a) Some simple points to calculate for

_ x—1
V=% +2x+6
are y(0) = —%, y(1) =0 and y(4o0) = 0, and, since the denominator has no real

roots (2> < 4 x 1 x 6), there are no infinities. Its 1st derivative is
;L —x>4+2x+8 (x4 2)(x—4)
YT 1 2x 162 (12xt6R
Thus there are turning points only at x = —2, with y(—2) = —%, and at x = 4,

with y(4) = %. The former must be a minimum and the latter a maximum. The
range in which y(x) lies is —§ <y < .

20



PRELIMINARY CALCULUS

(b) Some simple points to calculate for

1
YT
are y(0) = % and y(+oo) = 0, approached from negative values. Since the
denominator can be written as (4 — x)(1 + x), the function has infinities at x = —1

and x = 4 and is positive in the range of x between them.

The 1st derivative is

;o 2x —3
M T
Thus there is only one turning point; this is at x = %, with corresponding

y(%) = %. Since % lies in the range —1 < x < 4, at the ends of which the function
— +o00, the stationary point must be a minimum. This sets a lower limit on the
positive values of y(x) and so the ranges in which it lies are y < 0 and y > %.

(c) The function

8sinx

r= 15+ 8tan? x

is clearly periodic with period 2.

Since sin x and tan’ x are both symmetric about x = %n, so is the function. Also,
since sin x is antisymmetric about x = 7 whilst tan x is symmetric, the function
is antisymmetric about x = 7.

Some simple points to calculate are y(nm) = O for all integers n. Further, since
tan(n + %)n = o0, y((n+ %)n) = 0. As the denominator has no real roots there are
no infinities.

Setting the derivative of y(x) = 8u(x)/v(x) equal to zero, i.e. writing vu' = w/,
and expressing all terms as powers of cosx gives (using tan’z = sec’>z — 1 and
sin®z =1 —cos?z)
(15 + 8 tan® x) cos x = 16sin x tan x sec” x,
8 16(1 — cos?
154 ———8= ( - X)
cos? x cos* x
7cos* x + 24 cos’ x — 16 = 0.

This quadratic equation for cos® x has roots of % and —4. Only the first of these
gives real values for cos x of i%. The corresponding turning values of y(x) are

-_F% The value of y always lies between these two limits.

N
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2.16 The curve 4y® = a*(x+3y) can be parameterised as x = acos 30, y = acos 0.

(a) Obtain expressions for dy/dx (1) by implicit differentiation and (ii) in param-
eterised form. Verify that they are equivalent.

(b) Show that the only point of inflection occurs at the origin. Is it a stationary
point of inflection?

(c) Use the information gained in (a) and (b) to sketch the curve, paying par-
ticular attention to its shape near the points (—a,a/2) and (a,—a/2) and to
its slope at the ‘end points’ (a,a) and (—a,—a).

(a) (1) Differentiating the equation of the curve implicitly:

dy dy dy a’
12y2—= = &? 22 — =
Vax — ¢ +3a i’ dx 12y2 — 342
(ii) In parameterised form:
dy . dx . dy  —asin0
0= —asin 0, 0= —3asin30, = = “3asin30°

But, using the results from section 1.2, we have that

sin 30 = sin(20 + 0)
= sin20 cos 0 + cos20sin 0
=2sinfcos’ 0 + (2cos’> 6 — 1)sin
= sin0(4 cos’ 0 — 1),

thus giving dy/dx as
dy 1 _ a?
dx ~ 12cos20 —3  12a%cos?0 — 3a2’

with acosf =y, i.e. as in (i).

(b) At a point of inflection y” = 0. For the given function,

dy d (dy) dy a’ a’

Gy _L(w) € gy
dx?  dy \dx *dx (12y% — 342)? XAy X 12y2 = 3a?

This can only equal zero at y = 0, when x = 0 also. But, when y = 0 it follows
from (a)(i) that dy/dx = 1/(-=3) = —%. As this is non-zero the point of inflection
is not a stationary point.

(c) See figure 2.2. Note in particular that the curve has vertical tangents when
y = +a/2 and that dy/dx = é at y = —+a, ie. the tangents at the end points of
the ‘S’-shaped curve are not horizontal.
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y =acosf

a~/

. . : - x=acos30
a

Figure 2.2 The parametric curve described in exercise 2.16.

2.18 Show that the maximum curvature on the catenary y(x) = acosh(x/a) is
1/a. You will need some of the results about hyperbolic functions stated in sub-
section 3.7.6.

The general expression for the curvature, p~!

1 y//

P (L y?)

and so we begin by calculating the first two derivatives of y. Starting from
y = acosh(x/a), we obtain

, of the curve y = y(x) is

1 .. x
y' = a~— sinh =,
a a
1 X
y" = - cosh ~.
a a

Therefore the curvature of the catenary at the point (x,y) is given by

1 X b9
— cosh — cosh —
_ a a :1 a _ 4
0 L2 XT3 A ogh3 Xy
{1 + sinh 5] P

To obtain this result we have used the identity cosh? z = 1 + sinh? z. We see that
the curvature is maximal when y is minimal; this occurs when x =0 and y = a.
The maximum curvature is therefore 1/a.
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Figure 2.3 The coordinate system described in exercise 2.20.

2.20 A two-dimensional coordinate system useful for orbit problems is the tangential
polar coordinate system (figure 2.3). In this system a curve is defined by r, the
distance from a fixed point O to a general point P of the curve, and p, the per-
pendicular distance from O to the tangent to the curve at P. By proceeding as
indicated below, show that the radius of curvature at P can be written in the form

p =rdr/dp.

Consider two neighbouring points P and Q on the curve. The normals to the curve
through those points meet at C, with (in the limit Q — P ) CP = CQ = p. Apply
the cosine rule to triangles OPC and OQC to obtain two expressions for c*, one
in terms of r and p and the other in terms of r + Ar and p+ Ap. By equating them
and letting Q — P deduce the stated result.

We first note that cos OPC is equal to the sine of the angle between OP and the
tangent at P, and that this in turn has the value p/r. Now, applying the cosine
rule to the triangles OCP and OCQ, we have
=14 p>—2rpcosOPC = r* + p> — 2pp
=+ Ar)? + p* = 2(r + Ar)pcos 0QC
= (r+Ar)> + p> = 2p(p + Ap).

Subtracting and rearranging then yields

B rAr + %(Ar)2
p - Ap s
or, in the limit Q — P, that p = r(dr/dp).
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2.22 If y = exp(—x?), show that dy/dx = —2xy and hence, by applying Leibnitz’
theorem, prove that for n > 1

YD L 2xy® 4 opyn=D — o,

With y(x) = exp(—x?),

— = —2xexp(—x?) = —2xy.
dx

We now take the nth derivatives of both sides and use Leibnitz’ theorem to find
that of the product xy, noting that all derivatives of x beyond the first are zero:

= =20 () + n(r ")) + 0],

ie.
y(n-H) 4 zxy(n) 4 Zny(nfl) — 0,

as stated in the question.

2.24 Determine what can be learned from applying Rolle’s theorem to the following
functions f(x): (a)e¥; (b)x?+6x; (c)2x>+3x+1; (d)2x24+3x+2; (€)2x> —21x> +
60x + k. (f)If k = —45 in (e), show that x = 3 is one root of f(x) = 0, find the
other roots, and verify that the conclusions from (e) are satisfied.

(a) Since the derivative of f(x) = e* is f'(x) = ¥, Rolle’s theorem states that
between any two consecutive roots of f(x) = ¢* = 0 there must be a root
of f'(x) = ¢ = 0, ie. another root of the same equation. This is clearly a
contradiction and it is wrong to suppose that there is more than one root of
e* = 0. In fact, there are no finite roots of the equation and the only zero of e~
lies formally at x = —o0.

(b) Since f(x) = x(x + 6), it has zeros at x = —6 and x = 0. Therefore the (only)
root of f'(x) = 2x + 6 = 0 must lie between these values; it clearly does, as
—6<-3<0.

(c) With f(x) = 2x> + 3x + 1 and hence f'(x) = 4x + 3, any roots of f(x) = 0
(actually —1 and —%) must lie on either side of the root of f'(x) =0, ie. x = —%.

They clearly do.

(d) This is as in (c), but there are no real roots. However, it can be more generally
stated that if there are two values of x that give 2x> + 3x + k equal values then

they lie one on each side of x = —%.
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(e) With f(x) = 2x* — 21x% + 60x + k,
f'(x) = 6x* — 42x + 60 = 6(x — 5)(x — 2)

and f'(x) = 0 has roots 2 and 5. Therefore, if f(x) = 0 has three real roots o;
with oy <oy <oz, then oy <2 <o <5 < as.

(f) When k = —45, f(3) = 54 — 189 + 180 — 45 = 0 and so x = 3 is a root of
f(x) =0 and (x — 3) is a factor of f(x). Writing f(x) = 2x* — 21x?> 4+ 60x — 45
as (x — 3)(axx? + a;x + ag) and equating coefficients gives a; = 2, a; = —15 and
aog = 15. The other two roots are therefore

154+ 4/225—120 1
— 2 = Z(lSi\/IOS): 1.19 or 6.31.
Result (e) is verified in this case since 1.19 <2 <3 < 5 < 6.31.

2.26 Use the mean value theorem to establish bounds

(a) for —In(1 — y), by considering Inx in the range 0 <1 —y <x < 1,
(b) for ¢ — 1, by considering e* — 1 in the range 0 < x < y.

(a) The mean value theorem applied to In x within limits 1 — y and 1 gives

In(1) —In(1—y) d _ 1 .
—1—(1—y) _E(lnx)_x (*)

for some x in the range 1 —y < x < 1. Now, since 1 —y < x < 1 it follows that

1
—_— > — > 1,
1—y X
1 —In(1 —
= - > n(iy) > 1,
I—y y
y
= — > —In(l—y) > y.
lI—y

The second line was obtained by substitution from (*).

(b) The mean value theorem applied to e¥ — 1 within limits 0 and y gives

e/ —1-0 . .
——o = ¢* for some x in the range 0 < x < y.
y —_—
Now, since 0 < x < y it follows that
1 < e* < &,
Y —1

= 1 < ¢ < &,

Yy

= y < &—-1 < ye.
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Again, the second line was obtained by substitution for x from the mean value
theorem result.

2.28 Use Rolle’s theorem to deduce that if the equation f(x) = 0 has a repeated
root xi1 then xi is also a root of the equation f'(x) = 0.

(a) Apply this result to the ‘standard’ quadratic equation ax® + bx + ¢ = 0, to
show that a necessary condition for equal roots is b*> = 4ac.

(b) Find all the roots of f(x) = x> +4x> —3x — 18 = 0, given that one of them
is a repeated root.

(c) The equation f(x) = x* 4+ 4x3 + 7x*> 4+ 6x + 2 = 0 has a repeated integer
root. How many real roots does it have altogether?

If two roots of f(x) = 0 are x; and x», i.e. f(x1) = f(xz) = 0, then it follows
from Rolle’s theorem that there is some x; in the range x; < x3 < x; for which
f'(x3) = 0. Now let x, — x; to form the repeated root; x3 must also tend to the
limit xq, i.e. x is a root of f'(x) = 0 as well as of f(x) = 0.

(a) A quadratic equation f(x) = ax®> + bx 4+ ¢ = 0 only has two roots and so if

they are equal the common root & must also be a root of f'(x) = 2ax+b =0, i.e.
o = —b/2a. Thus

b? —b
It then follows that ¢ — (b*>/4a) = 0 and that b*> = 4ac.

(b) With f(x) = x* + 4x*> — 3x — 18, the repeated root must satisfy
fl(x)=3x*+8x—3=0CBx—1)(x+3)=0 iex= % or x = —3.

Trying the two possibilities: f(%) # 0 but f(—3)=—-27+36+9—18 =0. Thus
f(x) must factorise as (x + 3)?(x — b), and comparing the constant terms in the
two expressions for f(x) immediately gives b = 2. Hence, x = 2 is the third root.

(c) Here f(x) = x* + 4x3 4+ 7x? + 6x + 2. As previously, we examine f'(x) = 0,
ie. f'(x) = 4x> + 12x> + 14x + 6 = 0. This has to have an integer solution and,
by inspection, this is x = —1. We can therefore factorise f(x) as the product
(x + 1)*(arx? + a1 x + ap). Comparison of the coefficients gives immediately that
a, = 1 and ap = 2. From the coefficients of x* we have 2a, + a; = 4: hence
ap; = 2. Thus f(x) can be written

fx)=x+ 1 +2x+2) = (x+ ) [(x+1)> +11.
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The second factor, containing only positive terms, can have no real zeros and
hence f(x) = 0 has only two real roots (coincident at x = —1).

2.30 Find the following indefinite integrals:

(@) [4+x*)"dx;  (b) [G+2x—x})"2dx for 2<x<4;
(© [(14sin0)7'do; () [(xyT—x)"ldx for 0<x<I.

We make reference to the 12 standard forms given in subsection 2.2.3 and, where
relevant, select the appropriate model.

/ ! dx—ltanflx—}-c
44+x277 2 2 T

(b) We rearrange the integrand in the form of model 12:

(a) Using model 9,

/;dx—/ ! dx—sin_lxi_1+c
J8F2x — X2 8+1—(x—1)2 3 '
(c) See equation (2.35) and the subsequent text.
1 1 2
—df = dt
/1+sm9 /1+ 2t 1412
14
2
= | ——dt
/ (141)?
-2 +c
I+t
2
=— +c.
1+ tan <
(d) To remove the square root, set u> = 1 — x; then 2udu = —dx and

X —2udu

1 1
/xdl—xdx:/(l—uz)”
_ —2 d
_/1—142 "
—1 —1
2/(1—u+l+u>du
=In(l —u)—In(1+u)+c

14+ J1—x
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2.32 Express x*(ax+b)~" as the sum of powers of x and another integrable term,

and hence evaluate
bla |2
/ dx.
o ax-+b

We need to write the numerator in such a way that every term in it that involves
X contains a factor ax + b. Therefore, write x2 as

2

xzzf(ax—i—b) b(ax+b)+ b—z
a a

2
Then,
b/a x2 b/a X b b2
/0 ax—l—bdx:/o (5_;—’— az(ax—i-b)) dx
x2  bx b? bla
= |:2(1 - ; + asln(ax—i-b)]o

An alternative approach, consistent with the wording of the question, is to use
the binomial theorem to write the integrand as

e sy (e

Then the integral is

b/a x2 1 bja LaN"
/0 ax—l—bdx:B/o ;(_1) (5) X" dx
I L rayt 1 b\
=320 (5) w3 (‘)
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2.34 Use logarithmic integration to find the indefinite integrals J of the following:

To use logarithmic integration each integrand needs to be arranged as a fraction
that has the derivative of the denominator appearing in the numerator.

(a) Either by noting that sin2x = 2sinxcosx and so is proportional to the
derivative of sin’ x or by recognising that sin® x can be written in terms of cos 2x
and constants and that sin 2x is then its derivative, we have

J:/ s1n2.x2 dx
1+ 4sin“ x

2 si 1 .

=/de=—ln(l+4sm2x)+c,
1+4sin” x 4

or

sin 2x 1
= [ — 7" dx=-1n(3—=2cos2 .
/ /1+2(1—0052x) dx 4 a3 cos 2x) + ¢

These two answers are equivalent since 3 — 2cos2x = 3 — 2(1 — 2sin’x) =
1+ 4sin® x.

(b) This is straightforward if it is noticed that multiplying both numerator and
denominator by e* produces the required form:

er e 1 2
J_/iex_e_xdx_/—eZX_ldX—zln(e —1)+ec

An alternative, but longer, method is to write the numerator as cosh x + sinh x
and the denominator as 2 sinh x. This leads to J = %(x + In sinh x), which can be
re-written as

J = %(ln e¥ 4+ Insinh x) = %ln(ex sinh x) = %ln(ez“" -1+ %ln %
The %ln% forms part of c.

(c) Here we must first divide the numerator by the denominator to produce two
separate terms, and then twice apply the result that 1/z is the derivative of Inz:

1 1 1
J:/de:/ — +1)dx=1In(lnx)+x+ec
xInx xInx

(d) To put the integrand in a form suitable for logaritmic integration, we must
first multiply both numerator and denominator by nx"~! and then use partial
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fractions so that each denominator contains x only in the form x™, of which
mx™~1 is the derivative.

dx nx"1

J = = d
/ x(x" + a") / nx"(x" + a") X
1 n—1 n—1
_ / (nx . onx ) x
nan xl’l xn + an

= =S [nlnx —In(x" +d")] + ¢
na"

1 x"
= W In 7)‘” Tan +c.

2.36 Find the indefinite integrals J of the following functions involving sinusoids:

cos’ x — cos’ x;

(1 —cosx)/(1 4 cosx);
cos x sinx/(1 4 cos x);
sec’ x/(1 — tan® x).

(a
(b
(c
(d

— — —

(a) As the integrand contains only odd powers of cosx, take cosx out as a
common factor and express the remainder in terms of sin x, of which cos x is the

derivative:
cos® x — cos® x = [(1 —sin® x)> — (1 — sin® x)] cos x

4 2

= (sin” x — sin” x) cOs X.

Hence,
. 4 . 2 1 . 5 1 . 3
J = [ (sin” x —sin” x) cos x dx = gsm X — gsm x+c.

A more formal way of expressing this approach is to say ‘set sinx = u with
cosxdx = du’

(b) This integral can be found either by writing the numerator and denominator
in terms of sinusoidal functions of x/2 or by making the substitution ¢t = tan(x/2).
Using first the half-angle identities, we have

1 —cosx 2sin* 3
J_/1+cosxdx_/20052§
=/tan2§dx=/(seczg—l) dx=2tan§—x+c.
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The second approach (see subsection 2.2.7) is

. 1—1¢2
J_/ 142 2dt
B 1—2 1412

Il
R — —
)
&
|
\ = +
+
N&

—2tan’1t+c=2tan§—x+c.

(c) This integrand, containing only sinusoidal functions, can be converted to an
algebraic one by writing r = tan(x/2) and expressing the functions appearing in
the integrand in terms of it,

1—2 2t 2

i 2 2 2
COSXSlnxdle—i-tl—i-tl—i-t di
1+ cosx 1—¢2

A B
=2 {(1 + 12)2 + 1+t2] a,

with 4 + B(1 4 t*) = 1 — %, implying that B= —1 and 4 = 2.
And so, recalling that 1 + > = sec’(x/2) = 1/[cos*(x/2)],

4t 2t
- - dt
! /((1 TP 1+t2)

2
==  _In(1+£ .
Tz In(1 +¢7) +c

= —2cos’ g + In(cos? %) +c.

(d) We can ecither set tan x = u or show that the integrand is sec 2x and then use
the result of exercise 2.35; here we use the latter method.

2
sec” x 1
/ﬁdxz/—_zdxz/secbcdx.
1 —tan®x cos? x — sin” x

It then follows from the earlier result that J = %ln(sec 2x + tan 2x) + ¢. This can
also be written as %ln[(l + tanx)/(1 — tan x)] + c.
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