
For PHPTR
O
nly

Complex Networks
A Networking and Signal Processing Perspective

The Solution Manual

for

End-of-Chapter Exercise Problems

For PHPTR
O
nly

Complex Networks
A Networking and Signal Processing Perspective

B. S. Manoj

Indian Institute of Space Science and Technology,

Thiruvananthapuram, Kerala, India

Abhishek Chakraborty

Indian Institute of Space Science and Technology,

Thiruvananthapuram, Kerala, India

Rahul Singh

Iowa State University, Ames, Iowa, USA

Copyright © 2018 by B. S. Manoj, Abhishek Chakraborty, and Rahul Singh.

All rights reserved. No part of this material may be reproduced, stored in a retrieval system, or
transmitted, in any form or in any means – by electronic, mechanical, photocopying, recording, or
otherwise – without permission in writing from the authors. Any commercial or non-commercial
public distribution of any part of this material must obtain a priori written permission from the
authors.

For PHPTR
O
nly

Contents

Guidelines for the Instructors 4

2 Graph Theory Preliminaries 5

3 Introduction to Complex Networks 18

4 Small-World Networks 28

5 Scale-Free Networks 36

6 Small-World Wireless Mesh Networks 42

7 Small-World Wireless Sensor Networks 48

8 Spectra of Complex Networks 57

9 Signal Processing on Complex Networks 67

10 Graph Signal Processing Approaches 89

11 Multiscale Analysis of Complex Networks 116

Bibliography 127

3

For PHPTR
O
nly

Guidelines for the Instructors

This solution manual provides answer keys to most of the end-of-chapter exercises in the book
“Complex Networks: A Networking and Signal Processing Perspective”. Instructors may request
a copy of the solution manual from the publisher. Computer-based exercises, marked with the

symbol, require a computer to execute programs to solve and obtain results by the readers.
Challenge exercises are problems, marked with the symbol N, for which no solution exists in the
current literature, and they are good research problems that can challenge an aspiring researcher.
The solution manual provides answers or hints for answers for all exercise problems other than
computer-based and challenge exercises.

In order to support the solution manual as well as the textbook, a set of code fractions for selected
algorithms/programming exercises are available for download through the Authors’ support website
https://complexnetworksbook.github.io/. Additional programming samples, exercises, and support
materials are available online through the same authors’ support website. The support websites may
also provide additional questions/exercises for instructors that could not be included in the main
text. Similarly, code fractions will be continued to be added to the support website. Instructors
may use the code fractions for introducing programming exercises, real-world course projects, as
well as specific data analysis exercises that may be required for their courses.

We have made sufficient care to make the solution manual error free and accurate. We also have
attempted to ensure the answers are sufficiently elaborate that instructors may find it satisfactory.
We welcome feedback on the contents of this solution manual so that any undetected mistakes, that
may have crept in without our knowledge, could be removed.

B. S. Manoj (bsmanoj@ieee.org)
Abhishek Chakraborty (abhishek2003slg@ieee.org)
Rahul Singh (rahul.s.in@ieee.org)

https://complexnetworksbook.github.io/

For PHPTR
O
nly

Chapter 2

Graph Theory Preliminaries

1. Find the adjacency matrix of the graph corresponding to the Königsberg bridge problem.

Answer:
Using the graph shown in Figure 2.1 in the textbook, the adjacency matrix for the Königsberg
bridges is as follows:

A =


A B C D
− 0 1 1
0 − 1 1
1 1 − 1
1 0 1 1


2. Find the weight matrix, adjacency matrix, and Laplacian matrix for the graphs shown in

Figure 2.1.

v1 v2

v3 v4

0.9 0.2

0.7

1

0.5

(a) G1.

v1 v2

v3 v4

0.9 0.2

0.7

1

0.5

(b) G2.

Figure 2.1: Example graphs (Question 2).

Answer:
Weight matrix of Figure 2.1 (a) is as follows:

W =


v1 v2 v3 v4

− 0.7 0.5 0
0.7 − 0.9 0.2
0.5 0.9 − 1
0 0.2 1 −

 .
5

For PHPTR
O
nly

6 Graph Theory Preliminaries Chapter 2

Adjacency matrix of Figure 2.1 (a) is as follows:

A =


v1 v2 v3 v4

− 1 1 0
1 − 1 1
1 1 − 1
0 1 1 −

 .

Laplacian matrix of Figure 2.1 (a) is as follows:

L =


v1 v2 v3 v4

1.2 −0.7 −0.5 0
−0.7 1.8 −0.9 −0.2
−0.5 −0.9 2.4 −1

0 −0.2 −1 1.2

 .

Weight matrix of Figure 2.1 (b) is as follows:

W =


v1 v2 v3 v4

− 0 0.5 0
0.7 − 0.9 0.2
0.5 0.9 − 1
0 0 0 −

 .

Adjacency matrix of Figure 2.1 (b) is as follows:

A =


v1 v2 v3 v4

− 0 1 0
1 − 1 1
1 1 − 1
0 0 0 −

 .

Laplacian matrix of Figure 2.1 (b) is as follows:

L =


v1 v2 v3 v4

0.5 0 −0.5 0
−0.7 1.8 −0.9 −0.2
−0.5 −0.9 2.4 −1

0 0 0 0

 .

3. Draw the graphs whose weight matrices are

W1 =


0 2 3 0
2 0 5 0
3 5 0 1
0 0 1 0

 W2 =


0 3 −1 0
3 1 0 2
−1 0 0 2
0 2 2 0

 W3 =


0 0 4 0
3 0 0 2
1 8 0 2
0 0 1 3

 .

For PHPTR
O
nly

7

Also comment on graph types.

Answer:
W1 is weighted undirected graph.

W2 is weighted undirected graph with self-loop and negative edge weights.

W3 is Weighted directed graph.

4. Temperature sensors are deployed in a geographical area, as shown in Figure 2.2 of this
solution manual, where the circles represent sensors. Each small square box is equivalent to
100 square miles. Construct a graph by connecting two sensors i and j with weights according
to the formula

wij =

{
exp

(
− [dist(i, j)]2

2

)
if dist(i, j) < 22 miles

0 otherwise,

where dist(i, j) is the physical distance between two sensors.

Figure 2.2: Sensor deployment in a geographical area (Question 4).

Answer:
Each sensor node of Figure 2.2 has given an identity as shown in Figure 2.3.

1

2

345

6

7

1
0
 m

iles

10 miles

Figure 2.3: Assignment of sensor identity.

To construct a weighted graph where sensors are vertices and their connectivities are mimicked
as edges, we need to measure the Euclidean distances among nodes. Note that as the weight
of an edge is 0 if the distance between two sensor nodes are more than or equal to 22 miles, we

For PHPTR
O
nly

8 Graph Theory Preliminaries Chapter 2

show distance estimations only between those sensor nodes where creating positive weighted
links are possible.

Distance between sensor nodes 1 and 2: 14.14 miles.

Distance between sensor nodes 1 and 7: 20 miles.

Distance between sensor nodes 2 and 3: 20 miles.

Distance between sensor nodes 2 and 7: 14.14 miles.

Distance between sensor nodes 3 and 4: 20 miles.

Distance between sensor nodes 3 and 7: 14.14 miles.

Distance between sensor nodes 4 and 5: 10 miles.

Distance between sensor nodes 4 and 7: 14.14 miles.

Distance between sensor nodes 5 and 6: 20 miles.

In order to assign weight to each edge, the values are as follows:

Weight assigned for the edge length of 10 miles: exp(−50) (say x)

Weight assigned for the edge length of 14.14 miles: exp(−100) (say y)

Weight assigned for the edge length of 20 miles: exp(−200) (say z)

Therefore, the resultant graph is shown in Figure 2.4. Note that edge weights are mentioned
as x, y, and z in the figure.

1

2

345

6

7

1
0
 m

iles

10 miles

x

y

y

yy

z

z

z

z

Figure 2.4: The constructed weighted graph.

5. Draw the graphs whose Laplacian matrices are (assuming that no self loops exist)

L1 =


5 −1 −4 0
−1 8 −5 −2
−4 −5 8 1
0 −2 1 1

 L2 =


5 −2 −3 0
−1 8 −3 0
1 −5 8 −4
0 −2 1 1

 .
What if “no self loops” assumption is not taken into account? Whether the graphs can be
uniquely determined in this case?

For PHPTR
O
nly

9

Answer:

W1 =


0 1 4 0
1 0 5 2
4 5 0 −1
0 2 1 0

 W2 =


0 2 3 0
1 0 3 0
−1 5 0 4
0 2 −1 0

 .
If “self loops” assumption is taken into account, we need to have the edge weight of the self
loop for obtaining a unique answer. Without the edge weight of the self loop, we will not be
able to obtain a unique answer. The answer below assumes a unit weight for self loops for
each node.

W1 =


0 1 4 0
1 0 5 2
4 5 0 −1
0 2 1 0

 W2 =


0 2 3 0
1 0 3 0
−1 5 0 4
0 2 −1 0

 .
6. What can be said about the weight matrix and the Laplacian matrix of a disconnected graph

with three components?

Answer:
Weight matrix of graph with three components will be block diagonal with three blocks.
Laplacian matrix of the graph with three components will also be block diagonal with three
blocks.

7. Consider the graph G shown in Figure 2.47 (reproduced in this document as Figure 2.5).
Answer the following.
(a) Is G planar? If yes, draw a planar embedding of G.
(b) Identify all the faces in the planar embedding of G and verify Euler’s formula.
(c) Draw the dual graph G∗ of G.
(d) Again find the dual graph (G∗)∗ of G∗. Whether (G∗)∗ ≡ G?

v1 v2

v3 v4

v5

Figure 2.5: Graph G (Question 7).

Answer:
(a) Yes, G is planar. The planar embedding is shown in Figure 2.6.

(b) All faces of the planar embedding of G is shown in Figure 2.6 as {f1, f2, f3, f4, f5}.
In this embedding, N = 5 (total number of nodes), E = 8 (total number of links), and
F = 5 (total number of faces). Therefore, N − E + F = 5 − 8 + 5 = 2, which satisfies the
Euler’s formula.

For PHPTR
O
nly

10 Graph Theory Preliminaries Chapter 2

3v 4v

5v

2v1v
1f

2f

3f

4f

5f

Figure 2.6: Planar embedding of G.

(c) The dual graph G∗ of G and its planar embedding are shown in Figure 2.7.

3v 4v

5v

2v1v
1f

2f

3f

4f

5f

(a)

1f 2f

3f4f

5
f

(b)

Figure 2.7: (a) G∗ of G and (b) its planar embedding.

(d) Follow the similar steps, as shown in (c), to draw (G∗)∗ of G∗.
Yes, (G∗)∗ ≡ G.

8. Draw 5-node connected planar graph with chromatic numbers of (a) 1, (b) 2, (c) 3, (d) 4, and
(e) 5. .

Answer:
(a) A connected graph with more than one node cannot have chromatic number 1. Only a
single node graph can have a chromatic number equal to 1.

(b) For chromatic number equal to 2, refer to Figures 2.8(a)-(b).

(c) For chromatic number equal to 3, refer to Figures 2.9(a)-(b).

(d) For chromatic number equal to 4, refer to Figures 2.10(a)-(b).

(e) For chromatic number equal to 5, refer to Figures 2.11(a)-(b).

9. Identify all the maximal and maximum cliques in graph G shown in Figure 2.48 in the text
book (reproduced in this document as Figure 2.12). What is the clique number of the graph?

Answer:
Maximum clique size of the graph is 4. Therefore, clique number of the graph is 4. Max-

For PHPTR
O
nly

11

Figure 2.8: 5-node planar graph with Chromatic number of 2.

Figure 2.9: 5-node planar graph with Chromatic number of 3.

Figure 2.10: 5-node planar graph with Chromatic number of 4.

Figure 2.11: 5-node planar graph with Chromatic number of 5.

imum clique is (v2, v4, v6, v7). This graph has six maximal 3-cliques:(v1, v3, v5), (v1, v2, v5),
(v2, v4, v6), (v2, v6, v7), (v4, v6, v7), and (v2, v4, v7).

For PHPTR
O
nly

12 Graph Theory Preliminaries Chapter 2

v1 v2

v3 v4

v5 v6 v7

Figure 2.12: Graph G (Question 9).

10. What will happen if an edge from a tree is removed? What if an edge is added arbitrarily to
a vertex pair of the tree?

Answer:
A tree follows three important properties: (i) existence of a unique path between every pair
of vertices, (ii) minimal connectivity, and (iii) maximal acyclicity.

When an existing edge is removed from the tree, the property (ii) is violated and the con-
nectivity of the network is affected. That is, the tree will get partitioned into two separate
trees.

When a new edge is added to the tree, then the property (iii) is violated. That is, addition
of an edge results in formation of a cycle in the tree.

11. Prove that a tree is a bipartite graph.

Answer:
One can prove this by mathematical induction. Before proceeding with the proof, we know
that every tree T with N vertices contains atleast one vertex with degree 1. Let this 1-degree
vertex be v. It is also true that T − v can also be found to be a tree.

Now proceed with mathematical induction for the cases N=1 and 2. For N=1 and 2, we have
only two possibilities of trees, T1 and T2. Now T1 has only one node and T2 has only two
nodes. Both these trees are bi-partite from the definition of bipartite trees.

Now consider the tree with N − 1 nodes that is bipartite where atleast one node exist with
degree 1 as well as there exist a bipartite partition A−B.

Now consider the tree with N nodes where vertex a is the vertex with degree 1, b is the only
neighbor for vertex a, and T − a is a tree with N − 1 nodes where it has a bipartite partition
A − B exists where one set of vertices are in set A and another in set B. Now, if a is in A,
then A,BUb is a bipartition of T . However, if a is in B, then B,AUb is a bipartition of T .
Thus the proof.

12. Find the number of spanning trees in the graph shown in Figure 2.5 in this document.

Answer:
For a complete graph with N nodes, the number of spanning trees can be estimated as N (N−2).
However, here we consider not a complete graph. The following algorithm can be used for
estimating the number of possible spanning trees:

Figure 2.13 illustrates Algorithm 2.1 for the graph in Figure 2.5 of this solution manual.

For PHPTR
O
nly

13

Algorithm 2.1 Algorithm for estimating the number of Spanning Trees in a graph
Require: Graph G
1: Let matrix A contains the adjacency matrix of the Graph G
2: Let N be the number of nodes in G.
3: Step-I: A1 = Matrix obtained by replacing the diagonal elements in the matrix A with the degree of the corresponding

node.
4: Step-II: A2 = Matrix obtained by replacing all elements with 1 in A1 with -1.
5: return The co-factor for any element of the matrix A2.


v1 v2 v3 v4 v5

v1 − 1 1 0 1
v2 1 − 0 1 1
v3 1 0 − 1 1
v4 0 1 1 − 1
v5 1 1 1 1 −


(a) Step-0: Adjacency matrix


v1 v2 v3 v4 v5

v1 3 1 1 0 1
v2 1 3 0 1 1
v3 1 0 3 1 1
v4 0 1 1 3 1
v5 1 1 1 1 4


(b) Step 1


v1 v2 v3 v4 v5

v1 3 −1 −1 0 −1
v2 −1 3 0 −1 −1
v3 −1 0 3 −1 −1
v4 0 −1 −1 3 −1
v5 −1 −1 −1 −1 4


(c) Step 2

Figure 2.13: Illustration of the operation of Algorithm 2.1 (see Figure 2.5 of this solution manual).

From the figure, it can be found that the co-factor of any element of the matrix is 45. There-
fore, 45 spanning trees are possible with the graph shown in Figure 2.5 of this solution manual.

13. Draw a graph whose line graph is isomorphic to the graph.

Answer:
Refer to Figure 2.14 for details of the answer.

BA

C

(a) A graph G.

BCAB

CA

(b) Line graph Ǵ of graph G.

Figure 2.14: A graph and its line graph which is isomorphic.

14. Draw two graphs with 5 nodes that cannot be line graphs.

Answer:
If a 4-node star graph is an induced subgraph of a graph G, then G cannot be a line graph.
For example, Figure 2.42 of the textbook shows an example graph which is not the line graph
of any graph. That is, the 4-node star graph of Figure 2.42 consisting of nodes V2, V3, V4, and

For PHPTR
O
nly

14 Graph Theory Preliminaries Chapter 2

V5 is an induced subgraph. Another example is the graph that is obtained after removing the
edge between vertices v1 and v5 of Figure 2.42.

15. Check whether the given graph shown in Figure 2.15 of this solution manual has cycles.

1 2 3

45 6

Figure 2.15: Graph G (Question 15).

Answer:
No. The graph does not have cycles.

16. Take the adjacency matrix of a directed graph A shown below. Write a MATLAB program to
graphically visualize the graph. On the graph you visualized, (i) check if you can visually find
any cycles; (ii) implement Acyclicity test algorithm using MATLAB program and conduct an
Acyclicity test; (iii) create your own larger adjacency matrices and conduct an Acyclicity test.

A =


0 0 1 1 1
0 0 0 1 1
0 1 0 1 0
0 0 0 0 1
0 0 1 0 0


Answer:
The following command(s) in MATLAB version 2016a can be used to visualize the graph:

view(biograph(DG))

To check if a graph is Directed Acyclic Graph the following command can be used:

graphisdag(DG),

where DG is and N-by-N sparse matrix that represents a directed graph. Nonzero entries in
matrix DG indicate the presence of an edge.

17. Prove that the existence of a back-edge, in the DFS output of a directed graph, is sufficient
for detecting the presence of cycles.

Answer:
Assume a cyclic Graph G on which you execute DFS algorithm as shown in Figure 2.16 (a).

Assume p is the vertex on the cycle with lowest DFS number. Since p is on a cycle, there
must exist another vertex q with a directed edge q → p. Further, q is a descendant of p due

For PHPTR
O
nly

15

to p′s low DFS number (as can be seen from Figure 2.16(b). The edge q → p cannot be a
tree arc because DFS number of p is lower than DFS number of q. Further the edge q → p
cannot be a forward arc as the edge q → p is not a tree arc. Since vertices q and p are on the
same tree, it cannot be a cross arc either. The only possibility is that q → p is a back arc.
Therefore, presence of a back arc indicates presence of a cycle in the graph.

Figure 2.16: (a) Example Cycle Graph G for (Question 17).

18. Does Dijkstra’s shortest path algorithm work effectively with negative values as edge weights?
Justify your answer.

Answer:
No. Dijkstra’s shortest path algorithm does not work when the edge weights are negative
values. The reason for this is that the function used for finding minimal path cost (Min
function) does not work correctly due to the addition of edges with negative edge weights. A
simple example of a graph with negative edge weights can prove this fact.

19. Provide a proof of correctness for Dijkstra’s shortest path algorithm.

Answer:
Dijkstra’s shortest path algorithm is provided in Algorithm 2.4 and is reproduced in this
document as Algorithm 2.2.

//For the algorithm, the proof can be attempted using mathematical induction.

//Our aim is to show that Dist[x] is shortest distance for every vertex x //from source node
i when the algorithm terminates. It can be proved by //mathematical induction the set |T |
using the following lemma: //

Lemma 2.1. //For each x ∈ T, Dist(x) is shortest.

For PHPTR
O
nly

16 Graph Theory Preliminaries Chapter 2

Algorithm 2.2 Dijkstra’s Shortest Path Algorithm

Require:
G = (V, E) — A network graph with V nodes and E edges where each edge (x, y) is weighed
by the cost of the edge
Dist[] is an array at node i storing the distance to various nodes

1: for each node j ∈ V and j 6= i do
2: Dist[j] = W[i, j]; // Initialize the Dist array with edge weights of each neighbor node.

Non-neighbor nodes will have Distance value ∞.

3: end for
4: P = {i}
5: T = V − P // P is a set of nodes selected at each iteration of the algorithm and is

initialized with node i. T is a set of nodes yet to be selected for inclusion in P . It is initialized with all

nodes except node i.

6: for All nodes j ∈ V and j 6= i do
7: Choose node x ∈ T such that Dist[x] minimum
8: P ← P |x // Newly selected node x is included in Set P .

9: T ← T − x
10: for each node r ∈ T do
11: if Dist[x] + W [x, r] < Dist[r] then
12: Dist[r] = W [x, r] + Dist[x] // Cost is updated for all nodes in the Set T .

13: P [r] = x // Updating the predecessor information.

14: end if
15: end for
16: end for

//Initial case (|T | = 1): The unique situation where |T | = 1 is when x = i //and Dist[x] =
Dist[i] = 0 which is correct.

//Inductive hypothesis: Let k be the last vertex added to T . //Let R0 = R
⋃
u. Our I.H. is:

for each x ∈ R0, //Dist(x) is shortest.

//Let us assume a contradiction that Dist(x) is not the shortest where the //shortest distance
is Dist‘(x) where Dist(x) > Dist‘(x). //

Lemma 2.2. Shortest paths are composed of shortest sub-paths.

The proof of this lemma is based on the idea that if there was a shorter sub-path for any
segment of the path exists, then the shorter sub-path would have replaced the the path segment
in order to make the entire path shorter. For example, consider a path between source node
S and destination node D: S− > a− > b− > c− > d− > e− > f− > g− > D. Take one
segment of the path: c− > d− > e− > f . If the path between S − D is shortest, then the
sub-path for the segment c− > d− > e− > f shall also be shortest. Otherwise, including a
shorter-subpath between c and f would have made the S −D path shorter.

Proof follows from the above two Lemmas.

For PHPTR
O
nly

17

20. Compare the time complexities of Dijkstra’s shortest path algorithm modified for All Pair
Shortest Path finding and Floyd’s all pair shortest path algorithm.

Answer:
Asymptotically, they both have the same complexity of O(N3) for dense graphs. In practice,
Floyd’s algorithm runs faster in finite sized graphs as its implementation can be done more
efficient in dense graphs. However, for sparse graphs, repeated Dijkstra’s algorithm can be
implemented with fibonacci heaps resulting in a time complexity of O(N2 logN) which is
better than Floyd’s algorithm.

21. Write a simple computer program to list the shortest paths between all node pairs.

Answer:
The following recursive pseudo code/algorithm can be translated to a computer program to
achieve the path listing.

Algorithm 2.3 APSP PathListing(x, y) Algorithm
Require: Path
1: Let PR[] metric contains the predecessor information generated by running Floyd’s All Pair Shortest Path algorithm.

p=x, q=y; x and y are source and destination nodes.
2: TempNode = PR[p, q]
3: if TempNode = 0 then Return
4: end if
5: APSP PathListing(p, TempNode)
6: printf(TempNode);

For PHPTR
O
nly

Chapter 3

Introduction to Complex Networks

1. For the given network in Figure 3.1 of this solution manual, estimate the following: (i) degree
centrality (DC), (ii) closeness centrality (CC), and (iii) betweenness centrality (BC).

1 2 3

4 5 6

7 8 9

Figure 3.1: An unweighted grid network topology for Problem 1

Answer:
Refer to Table 3.1 for DC, CC, and BC values of all nodes in the network of Figure 3.1.

Table 3.1
DC, CC, and BC values of all nodes in Figure 3.1

Node DC CC BC

1 2 0.0556 1.3333

2 3 0.0667 5.0000

3 2 0.0556 1.3333

4 3 0.0667 5.0000

5 4 0.0833 10.6667

6 3 0.0667 5.0000

7 2 0.0556 1.3333

8 3 0.0667 5.0000

9 2 0.0556 1.3333

2. Estimate (i) graph degree centrality (GDC), (ii) graph closeness centrality (GCC), and (iii) graph
betweenness centrality (GBC) for the network in Figure 3.2.

18

For PHPTR
O
nly

19

1

2

3

4

5

6

7

8

9

Figure 3.2: Network for Problem 2

Answer:
The values are as follows: GDC = 0.1071, GCC = 0.0482, and GBC = 0.2455. Please refer to
Section 3.2.6 for more details on graph centrality metrics.

3. Create a large ER network with G(10000, 0.1) and estimate the following: (i) graph degree
centrality (GDC), (ii) graph closeness centrality (GCC), and (iii) graph betweenness central-
ity (GBC).

Answer:
This problem is a computer-based exercise. Use any of the following network simulators:
NS-2, NS-3, QualNet, OPNET, or write a Matlab program on your own to simulate the
network. Some Matlab code fractions available for simulations can be found at https://
complexnetworksbook.github.io.

4. Derive the closed-form expressions for (i) graph degree centrality (GDC), (ii) graph closeness
centrality (GCC), and (iii) graph betweenness centrality (GBC).

Answer:
In Equation 3.2.7 of the textbook, the maximum sum difference at the denominator (i.e.,

Max
∑N
i=1[GCmetric(x

?)−GCmetric(xi)]) can be estimated as (N−2) in an N node network if
the maximum value of GCmetric(x

?) is (N−1). Therefore, the difference sum is (N−1)(N−2)
as there are (N − 1) components.

Therefore,

GCDC =

∑N
i=1[GCDC(x?)−GCDC(xi)]

(N − 1)(N − 2)
=

∑N
i=1[GCDC(x?)−GCDC(xi)]

N2 − 3N + 2
.

Conversely, the maximum possible closeness for a node only takes place when its closeness
sum is 1. Rest of the nodes are at the unit distance from the center node and at most two
from the other nodes in a network. Therefore, the closeness sum for each node is

N − 1

1 + 2(N − 2)
=

N − 1

2N − 3
.

Hence, the difference becomes

1− N − 1

2N − 3
=

N − 2

2N − 3
.

https://complexnetworksbook.github.io
https://complexnetworksbook.github.io

For PHPTR
O
nly

20 Introduction to Complex Networks Chapter 3

Now, there are (N − 1) such nodes in the network, and the maximum possible difference
becomes

N − 1

2N − 3
(N − 1) =

N2 − 3N + 2

2N − 3
.

The graph closeness centrality can be estimated as

GCCC =

∑N
i=1[GCCC(x?)−GCCC(xi)]

(N2 − 3N + 2)/(2N − 3)
.

Now, to estimate GCBC , we take the normalized point betweenness centrality values as men-
tioned in Equation 3.2.6 (ignoring the term 2) in the textbook and for (N − 1) nodes the
graph betweenness centrality becomes

GCBC =

∑N
i=1[GCBC(x?)−GCBC(xi)]

(N − 1)(N − 2)× (N − 1)
=

∑N
i=1[GCBC(x?)−GCBC(xi)]

N3 − 4N2 + 5N − 2
.

Please refer to [1] for more details.

5. Estimate (i) eigenvector centrality (EC) and (ii) graph Fourier transform centrality (GFT-C)
for the network shown in Figure 3.1. Make your own observation on the most central node in
the network. Consider necessary assumptions.

Answer:
Eigenvector centralities (EC) of the nodes 1 through 9 are
0.0858, 0.1213, 0.0858, 0.1213, 0.1716, 0.1213, 0.0858, 0.1213, 0.0858.

Graph Fourier transform centralities (GFT-C) of the nodes 1 through 9 are
0.0815, 0.1396, 0.0815, 0.1396, 0.1159, 0.1396, 0.0815, 0.1396, 0.0815.

Refer to Section 9.7.2 for more details on GFT-C.

6. For the network shown in Figures 3.3(a) and 3.3(b), estimate the degree correlations. Make
your observation on the degree correlations for the two networks.

Answer:
This problem is a computer-based exercise. Use any of the following network simulators:
NS-2, NS-3, QualNet, OPNET, or write a Matlab program on your own to simulate the
network. Some Matlab code fractions available for simulations can be found at https://
complexnetworksbook.github.io.

7. Estimate the network resistance distance for the following: (a) nodes 12 and 20 as well as
nodes 11 and 9 in Figure 3.3(a) of this solution manual and (b) nodes 1 (club instructor)
and 34 (club administrator) in Zachary’s karate club network depicted in Figure 1.1 of the
textbook.

Answer:
(a) The network resistance distance between nodes 12 and 20 is 6, and nodes 11 and 9 is 1.5
when Figure 3.3(a) of this solution manual is concerned.

https://complexnetworksbook.github.io
https://complexnetworksbook.github.io

