https://selldocx.com/products/solution-manual-data-networks-2e-bertsekas

SOLUTIONS MANUAL
Second Edition

Data
Networks

DIMITRI BERTSEKAS

Massachusetts Institute of Technology

ROBERT GALLAGER

Massachusetts Institute of Technology

PRENTICE HALL, Upper Saddle River, New Jersey 07458

https://selldocx.com/products/solution-manual-data-networks-2e-bertsekas

© 1993 Prentice-Hall, Inc.
A Pearson Education Company
Upper Saddle River, NJ 07458

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

12

ISBN 0-13-200924-2

Prentice-Hall International (UK) Limited,London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Pearson Education Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

Solutions Manual -- Data Networks, 2/E by Dimitri Bertsekas and Robert Gallager

TABLE OF CONTENTS
CHAPTER 1 .cctemiieceeiessessesmsaseecessassss s eesaseesssesssssese s ssasseeseessss s essesssasses e senassesss s 1
CHAPTER 2 cocoeevaaiecevummneeceseasaeseessasasesseessissesesesssssesssssseassessacssess s essesssssssesssasassesesessassesssssnnes 2
CHAPTER 3 cococreuuuauearessssssesmsssessssesssssssessassees essessess s esssessesessassass et ssssssessesssssesessssssssesssssnsas 23
CHAPTER 4 cooooorovmeicecessssesceesaseseeessssssessssssssssss essssssns sesssssesss easaseessssessssessssessnsesssssessssssseens 91
CHAPTER 5 cevuoeeeeuaeneecesusssneesassssseesssssssssssessssssesssesssesesss esssssas s eses s et essssssessssssessssssssaessssens 114

CHAPTER 6 eeeeeeetettetc ettt et s et cs e ss e s e sesssseseae s sess e seaeaeaaessssesassasteseesnsasneesnasasannse 148

ACKNOWLEDGMENTS

Several of our students have contributed to this solutions manual. We are particularly
thankful to Rajesh Pankaj, Jane Simmons, John Spinelli, and Manos Varvarigos.

CHAPTER 1 SOLUTIONS

1.1

There are 250,000 pixels per square inch, and multiplying by the number of square inches
and the number of bits per pixel gives 5.61 x 108 bits.

1.2

a) There are 16 x 109 bits going into the network per hour. Thus there are 48 x 109 bits per
hour traveling through the network, or 13.33 million bits per second. This requires 209
links of 64 kbit/sec. each.

b) Since a telephone conversation requires two people, and 10% of the people are busy on
the average, we have 50,000 simultaneous calls on the average, which requires 150,000
links on the average. Both the answer in a) and b) must be multiplied by some factor to
provide enough links to avoid congestion (and to provide local access loops to each
telephone), but the point of the problem is to illustrate how little data, both in absolute and
comparative terms, is required for ordinary data transactions by people.

1.3

There are two possible interpretations of the problem. In the first, packets can be arbitrarily
delayed or lost and can also get out of order in the network. In this interpretation, if a

packet from A to B is sent at time T and not received by some later time t, there is no way to
tell whether that packet will ever arrive later. Thus if any data packet or protocol packet
from A to B is lost, node B can never terminate with the assurance that it will never receive
another packet.

In the second interpretation, packets can be arbitrarily delayed or lost, but cannot get out of
order. Assume that each node is initially in a communication state, exchanging data
packets. Then each node, perhaps at different times, goes into a state or set of states in
which it sends protocol packets in an attempt to terminate. Assume that a node can enter
the final termination state only on the receipt of one of these protocol packets (since timing
information cannot help, since there is no side information, and since any data packet could
be followed by another data packet). As in the three army problem, assume any particular
ordering in which the two nodes receive protocol packets. The first node to receive a
protocol packet cannot go to the final termination state since it has no assurance that any
protocol packet will ever be received by the other node, and thus no assurance that the other
node will ever terminate. The next protocol packet to be received then finds neither node
in the final termination state. Thus again the receiving node cannot terminate without the
possibility that the other node will receive no more protocol packets and thus never
terminate. The same situation occurs on each received protocol packet, and thus it is
impossible to guarantee that both nodes can eventually terminate. This is essentially the
same argument as used for the three army problem.

CHAPTER 2 SOLUTIONS

2.1

Let x(t) be the output for the single pulse shown in Fig. 2.3(a) and let y(t) be the output for
the sequence of pulses in Fig. 2.3(b). The input for 2.3(b) is the sum of six input pulses
of the type in 2.3(a); the first such pulse is identical to that of 2.3(a), the second is delayed
by T time units, the third is inverted and delayed by 2T time units, etc. From the time
invariance property, the response to the second pulse above is x(t-T) (i.e. x(t) delayed by
T); from the time invariance and linearity, the response to the third pulse is

-x(t-2T). Using linearity to add the responses to the six pulses, the overall output is

y(®) = x(t) + x(t-T) - x(t-2T) + x(t-3T) -x(t-4T) - x(t-5T)

To put the result in more explicit form, note that

0 : t<0
x(t) = 1—c_2l/T ;0 0<5t<T
-Vt t>T

Thus the response from the ith pulse (1 <i < 6) is zero up to time (i-1)T. For t <0, then,
yt)=0; from0<t<T

y =x®)=1-¢2T . 0<t<T
From T <t < 2T,
y(©) = x(t) + x(t-T)
= (e2-1)e 2T + [1 - 20 DTy
=1- e2VT
Similarly, for 2T <t < 3T,
y(t) = x(t) + x(t-T) - x(t-2T)
= (ez_l)e-2lfr + (62_1)6-20-'1‘)/1' -[1- e-2(:2T)/T 1
=-1+Qe41e T ; 2T<t<3T
A similar analysis for each subsequent interval leads to
y(t) =1 - (2e6 - 2e4 + 1)e 2T ; 3T <t<4T
=-1+(28-2e8+2e4-1)e?T ; 4T<t<6T

=-(e12-2e8 +2e6-2et+ 1)e?VT ; 26T

The solution is continuous over t with slope discontinuities at 0, 2T, 3T, 4T, and 6T; the
value of y(t) at these points is y(0) = 0; y(2T) = .982; y(3T) = -.732; y(4T) = .766; y(6T) =
-968. Another approach to the problem that gets the solution with less work is to use x(t)
to first find the response to a unit step and then view y(t) as the response 10 a sum of
displaced unit steps.

2.2

From the convolution equation, Eq. (2.1), the output r(t) is
oo T
(t) = J- s(th(t-t)dt = J h(t—t)dt
oo =0

Note that h(t-t) = ae-%t-1) for t-1> 0, (i.e. for T<t), and h(t-t) =0 for t>t. Thus fort<
0, h(t-t) = 0 throughout the integration interval above. For 0 <t < T, we then have

t T
rt) = J ac " Vdr+ | 0dr=1-¢* ;0<t<T
=0 =t

Fort2T, h(t-1) = 0e (D over the entire integration interval and
T
(t) = J e gt = D™ L >T
=0

Thus the response increases towards 1 for 0 < t < T with the exponential decay factor .,
and then, for t = T, decays toward 0.

2.3
From Eq. (2.1),

() = J & h(t-t)dt
Using ©' = t-1 as the variable of integration for any given t,

I(t) = rez"f““"h(f)dt

= eiz“‘J e 2™ h(t)dr

—o00

- ejantH(f)
where H(f) is as given in Eq. (2.3).

2.4

+00
h(t) = I H(f)ej2nfidf

-00

Since H(f) is 1 from -f(to fo and O elsewhere, we can integrate exp(j2rft) from -f to fo,
obtaining
sin(2nfyt)

1 : .
h(t) = mlexp(2nfot) - exp(-i2nfon)] = —

Note that this impulse response is unrealizable in the sense that the response starts before
the impulse (and, even worse, starts an infinite time before the impulse). None the less,
such ideal filters are useful abstractions in practice.

2.5

The function sj(t) is compressed by a factor of 3 on the time axis as shown below

s(t) Sl(l)

A A AR AR

S,(h) = rsl(t)e'ﬂ"f‘dt = rs(ﬁt)e‘jz"f‘d:

—00 —00

= J:s(t)c_jznﬁ/ﬁ% = %S(%)

S

. 10

Thus S1(f) is attenuated by a factor of § in amplitude and expanded by a factor of B on the
frequency scale; compressing a function in time expands it in frequency and vice versa.

2.6

a) We use the fact that cos(x) = [exp(jx) + exp(-jx)}/2. Thus the Fourier transform of
s(t)cos(2rfpt) is

= exp(j2nfyt) + exp(—j2nfyt)
J‘ s(t)

5 exp(—j2nft) dt

% exp[—j2r(f—fo)t] dt + % exp[—j2n(f+fo)t] dt

S(E—fy) S(f+fy)
=T T3

b) Here we use the identity cos2(x) = [1+cos(2x)}/2. Thus the Fourier transform of
s(t)cos2(2pf0t) is the Fourier transform of s(t)/2 plus the Fourier transform of
s(t)cos[2p(2fp)t]/2. Using the result in part a, this is S(f)/2 + S(f-2fg)/4 +S(f+2fp)/4.

2.7
a) E{frame time on 9600 bps link} = 1000 bits / 9600 bps = 0.104 sec.
E{frame time on 50,000bps link} = 0.02 sec.

b) E{time for 100 frames on 9600 bps link} = 1.04-105 sec.

E{time for 100 frames on 50,000 bps link} = 2:104 sec.

Since the frame lengths are statistically independent, the variance of the total number of bits
in 106 frames is 106 times the variance for one frame. Thus the standard deviation of the
total number of bits in 106 frames is 103 times the standard deviation of the bits in one frame
or 5-10° bits. The standard deviation of the transmission time is then

S.D.{time for 106 frames on 9600 bps link} = 5105 / 9600 = 52 sec.

S.D.{time for 106 frames on 50,000 bps link} = 5:105/ 50,000 = 10 sec.

¢) The point of all the above calculations is to see that, for a large number of frames, the
expected time to transmit the frames is very much larger than the standard deviation of the
transmission time; that is, the time per frame, averaged over a very long sequence of frames,
1s close to the expected frame time with high probability. One's intuition would then
suggest that the number of frames per unit time, averaged over a very long time period, is
close to the reciprocal of the expected frame time with high probability. This intuition is
correct and follows either from renewal theory or from direct analysis. Thus the reciprocal
of the expected frame time is the rate of frame transmissions in the usual sense of the word
"rate”.

2.8
Let xij be the bit in row i, column j. Then the ith horizontal parity check is
hi = Zj xjj

where the summation is summation modulo 2. Summing both sides of this equation
(modulo 2) over the rows i, we have

Zihj = Zjjxjj
This shows that the modulo 2 sum of all the horizontal parity checks is the same as the

modulo 2 sum of all the data bits. The corresponding argument on columns shows that the
modulo 2 sum of the vertical parity checks is the same.

2.9
a) Any pattern of the form

—110--
—011--
101 -

will fail to be detected by horizontal and vertical parity checks. More formally, for any three
Tows iy, i, and i3, and any three columns jy, j2, and j3, a pattern of six errors in positions
(i1j1), (1 j2), (12 j2), (12 j3), (i3 j1), and (i3 j3) will fail to be detected.

b) The four errors must be confined to two rows, two errors in each, and to two columns,
two errors in each; that is, geometrically, they must occur at the vertices of a rectangle
within the array. Assuming that the data part of the array is J by K, then the array including
the parity check bits is J+1 by K+1. There are (J+1)J/2 different possible pairs of rows
(counting the row of vertical parity checks), and (K+1)K/2 possible pairs of columns
(counting the column of horizontal checks). Thus there are (J+1)(K+1)JK/4 undetectable
patterns of four errors.

2.10

Let x = (x1, X2, - XN) and x' = (x'1, X'2, ... X'N) be any two distinct code words in a parity
check code. Here N = K+L is the length of the code words (K data bits plus L check bits).
Let y = (y1, -- YN) be any given binary string of length N. Let D(x,y) be the distance
between x and y (i.e. the number of positions i for which x; # y;j). Similarly let D(x',y) and
D(x,x") be the distances between x' and y and between x and x'. We now show that

D(x,x") < D(x,y) + D(x',y)

To see this, visualize changing D(x,y) bits in x to obtain y, and then changing D(x',y) bits

in y to obtain x'. If no bit has been changed twice in going from x to y and then to x', then
it was necessary to change D(x,y) + D(x',y) bits to change x to x' and the above inequality
is satisfied with equality. If some bits have been changed twice (i.e. xj = x'; # y; for some
1) then strict inequality holds above.

By definition of the minimum distance d of a code, D(x,x") 2 d. Thus, using the above
inequality, if D(x,y) < d/2, then D(x',y) > d/2. Now suppose that code word x is sent and
fewer than d/2 errors occur. Then the received string y satisfies D(x,y) < d/2 and for every
other code word x', D(x',y) > d/2. Thus a decoder that maps y into the closest code word
must select x, showing that no decoding error can be made if fewer than d/2 channel errors
occur. Note that this argument applies to any binary code rather than just parity check
codes.

2.11

The first code word given, 1001011 has only the first data bit equal to 1 and has the first,
third, and fourth parity checks equal to 1. Thus those parity checks must check on the first
data bit. Similarly, from the second code word, we see that the first, second, and fourth
parity checks must check on the second bit. From the third code word, the first, second,
and third parity check each check on the third data bit. Thus

C1 =81+ 52 +5S3

Cr=82 + 83
C3 =81 +S3
C4=81+$S

The set of all code words is given by

0000000 0011110
1001011 1010101
0101101 0110011
1100110 1111000

The minimum distance of the code is 4, as can be seen by comparing all pairs of code
words. An easier way to find the minimum distance of a parity check code is to observe that
if x and x' are each code words, then x + x' (using modulo 2 componentwise addition) is
also a code word. On the other hand, x + x' has a 1 in a position if and only if x and x'
differ in that position. Thus the distance between x and x' is the number of ones in x + x".
It follows that the minimum distance of a parity check code is the minimum, over all non-
zero code words, of the number of ones in each code word.

2.12
D
D4+D2+D+1) D’+D°+ D%
D +D+D*+D’
D3 = Remainder

2.13

Let z(D) = Dj + zj.;D¥"1 + ..+ Di and assume i<j. Multiplying G(D) times Z(D) then
yields

g(D)z(D) = DL + (zj1+ gL__l)DI-*j'.l +(zj2 + 8L-1Zj-1 + gL_Z)DL-&-j-Z + ...
+ (g1 + zi41)D*1 + D!

Clearly the coefficient of DL*i and the coefficient of Di are each 1, yielding the desired two
non-zero terms. The above case i<j arises whenever z(D) has more than one non-zero term.
For the case in which z(D) has only one non-zero term, i.e. z(D) = Dj for some j, we have

g(D)z(D) = DL+ + g1 | DL*-1 + ..+ Di
which again has at least two non-zero terms.
2.14

Suppose g(D) contains (1+D) as a factor; thus g(D) = (1+D)h(D) for some polynomial h(D).
Substituting 1 for D and evaluating with modulo 2 arithmetic, we get g(1) = 0 because of
the term (1+D) = (1+1) =0. Let e(D) be the polynomial for some arbitrary undetectable
error sequence. Then e(D) = g(D)z(D) for some z(D), and hence e(1) = g(1)z(1) = 0. Now

e(D) = Zj e;D}, so e(1) = Zi e;. Thuse(1) =0 implies that an even number of elements ¢;

are 1; i.e. that e(D) corresponds to an even number of errors. Thus all undetectable error
sequences contain an even number of errors; any error sequence with an odd number of
errors is detected.

2.15

a) Let Di*L, divided by g(D), have the quotient zZ®(D) and remainder c(®(D) so that
Di*L = g(D)z(D) + c(D)

Multplying by s; and summing over i,
s(D)DL = Z; 5iz0(D) + Z; sic)(D)

Since 3 sic@®(D) has degree less than L, this must be the remainder (and Z; siz®(D) the
quotient) on dividing s(D)DL by g(D). Thus c(D) = Z; sici)(D).

b) Two polynomials are equal if and only if their coefficients are equal, so the above
polynomial equality implies

Cj = 21 Slcj(l)

2.16

a) Consider the two scenarios below and note that these scenarios are indistinguishable to
the receiver.

0 X 0 X, 1 X

‘Ack

packet 1
accepted

-9 4]

packet 1
accepted

If the receiver releases the packet as x3 in the questioned reception, then an error occurs on
scenario 2. If the receiver returns an ack but doesn't release a packet (i.e. the appropriate
action for scenario 2), then under scenario 1, the transmitter erroneously goes on to packet
3. Finally, if the receiver returns a nak, the problem is only postponed since the transmitter
would then transmit (2,x2) in scenario 1 and (2,x;) in scenario 2. As explained on page 66,
packets x1 and x, might be identical bit strings, so the receiver can not resolve its ambiguity
by the bit values of the packets.

b) The scenarios below demonstrate incorrect operation for the modified conditions.

0 X 0 X, 1 X,
Ack
ak
packet 1 9
accepted)
O Xl 1 xl 1 X 1
Nak

!

packet 1 9
accepted

2.17

a) T=T+ Tg+2T4

b) q = (1-p(1-pf)

A packet is transmitted once with probability q, twice with probability (1-q)q, three times

with probability (1-q)2q, etc. Thus the expected number of transmissions of a given packet
is

Nl N

E{transmissions per packet} = z iq(l—q)i_1 =

=1

To verify the above summation, note that for any x,0 <x <1,

Using x for (1-q) above gives the desired result.
c) E{time per packet} = (T, + Tf + 2Tg)/q
= (1.3)/0.998 = 1.303

Note that p; and pr have very little effect on E[time per packet] in stop and wait systems
unless they are unusually large.

2.18
0
RS S S U T,
RN 0 0 1 1 2 3 4 5 6L
Node A f t —p
Node B
SN 0 1 2 3 4 516 7

Window [0,3]] [1.4] I[z,s] |[3,61|[4,71|

Assume that the transmitter always sends the next packet in order until reaching the end of
the window, and then goes back to the beginning of the window.

0
Packets 1 2
delivered
RN[0 0 0] 1 1 1 1 1 | 2
Node A t—=>p
Node B
sN| O 1 2 3 4 1 2 3
Window [0,3] | [1.4] [2,5]
2.19

The simplest such deadlock occurs if there is sufficient propagation delay in the system that
each side can send n-1 frames (containing packets numbered O to n-2) before finishing
receipt of the first frame from the other side. In this case, the nth frame from each side will
carry the packet numbered n-1 without acking any packets from the other side. Thus each
side will go back to packet 0, but in the absence of errors, each side will be looking for
packet n by time the repeat of packet 0 occurs. Each side will then cycle from 0 to n-1, and
neither side will ever receive any acks. The diagram below illustrates this for n=3. The
first number in each frame position is SN and the second is RN.

t t t

0,0) (1,0 2,0) 0,0 (1,0)

0,0) (1,0) (2,0) (0,0) (1,0)

Wow oW

2.20

The simplest example is for node A to send packets O through n-1 in the first n frames. In
case of delayed acknowledgements (i.e. no return packets in the interim), node A goes back
and retransmits packet 0. If the other node has received all the packets, it is waiting for
packet n, and if the modulus m equals n, this repeat of packet O is interpreted as packet n.

The right hand side of Eq. (2.24) is satisfied with equality if SN = SNpyn(t;)+n-1. This
occurs if node A sends packets 0 through n-1 in the first n frames with no return packets
from node B. The last such frame has SN = n-1, whereas SN, at that time (say t;) is O.

Continuing this scenario, we find an example where the right hand side of Eq. (2.25) is
satisfied with equality. If all the frames above are correctly received, then after the last
frame, RN becomes equal to n. If another frame is sent from A (now call this time t;) and
if SNin is still 0, then when it is received at B (say at t), we have RN(t2) = SNpin(t)+n.

2.21

Let RN(t) be the value of RN at node B at an arbitrary time T; SNpjn is the smallest packet
number not yet acknowledged at A at time t (which is regarded as fixed) and SNpax -1 is

the largest packet number sent from A at time t. Since RN(1) is non decreasing in 7, it is
sufficient to show that RN(t+Tp+T4) € SNmax and to show that RN(t-Tpy-Tq) 2 SNpin.

For the first inequality, note that the packet numbered SNyax (by definition of SNmax) has
not entered the DLC unit at node A by time t, and thus can not have started transmission by
time t. Since there is a delay of at least Ty +Tq from the time a packet transmission starts
until the completion of its reception, packet SNimax can not have been received by time
t+Ty+Tgq. Because of the correctness of the protocol, RN(t+Ty,+Tq) can be no greater than
the number of a packet not yet received, i.e. SNmax.

For the second inequality, note that for the transmitter to have a given value of SNp;n at
time t, that value must have been transmitted earlier as the request number in a frame
coming back from node B. The latest time that such a frame could have been formed is t-
Tm-T4, so by this ime RN must have been at least SNpjp.

2.22

a) If the transmitter never has to go back or wait in the absence of errors, then it can send a
continuous stream of new packets in the absence of errors. In order for such a continuous
stream to be sent, each packet must be acknowledged (i.e. SNp;p must advance beyond the
packet's number) before the next n-1 frames complete transmission. Thus these n-1 frame
transmission times are in a race with the time, first, for the given packet to propagate over
the channel and, second, for the acknowledgement to wait for the feedback frame in
progress, then wait to be transmitted in the next feedback frame and propagated back to the
original transmitter. In order for the feedback to always win the race, the minimum time
for the n-1 frames to be transmitted must be greater than the maximum time for the
feedback, i.e.,

Tmax < [(n-1)/2]Tmin - T4

b) If an isolated error occurs in the feedback direction, the feedback could be held up for
one additional frame, leading to

(n-1)Tmin > 2T4 + 3Tmax
Tmax < [(n-1)/3]Tmin - (2/3)Tq

2.23

After a given packet is transmitted from node A, the second subsequent frame transmission
termination from B carries the acknowledgement (recall that the frame transmission in
progress from B when A finishes its transmission cannot carry the ack for that
transmission; recall also that propagation and processing delays are negligible. Thus q is
the probability of n-1 frame terminations from A before the second frame termination from
B. This can be rephrased as the probability that out of the next n frame terminations from
either node, either n-1 or n come from node A. Since successive frame terminations are
equally likely and independently from A or B, this probability is

n
_ n! -n _ -n
a= 2, T 2 - (D)2

i=n-1
2.24

If an isolated error in the feedback direction occurs, then the ack for a given packet is held
up by one frame in the feedback direction (i.e., the number RN in the feedback frame
following the feedback frame in error reacknowledges the old packet as well as any new
packet that might have been received in the interim). Thus q is now the probability of n-1
frame terminations from A before 3 frame terminations from B (one for the frame in
progress, one for the frame in error, and one for the frame actually carrying the ack; see the
solution to problem 2.23). This is the probability that n-1 or more of the next n+1 frame
terminations come from A; since each termination is from A or B independently and with
equal probability,

n
= ﬂ -n-1 _ -1
1= i=2n-‘1 (i!(n+1-i)!)2 = [n+2+(n+1)n/2]2

2.25

As in the solution to problem 2.23, q is the probability of n-1 frame terminations coming
from node A before two frame terminations come from node B. Frame terminations from
A (and similarly from B) can be regarded as alternate points in a Poisson point process
from A (or from B). There are two cases to consider. In the first, the initial frame is
received from A after an even numbered point in the Poisson process at B, and in the
second, the initial frame is received after an odd numbered point. In the first case, q is the
probability that 2n-2 Poisson events from A occur before 4 Poisson events occur from B.
This is the probability, in a combined Poisson point process of Poisson events from A and
B, that 2n-2 or more Poisson events come from A out of the next 2n+1 events in the
combined process. In the second case, q is the probability that 2n-2 Poisson events from A
occur before 3 events occur from B. Since these cases are equally likely,

: (1)' 2 ()'
1 2n+1)! 2n-1 1 2n)! -2n
q 2 1! -1 l) Z 1! !
2i 0.2 1.(2n+1 1). 2i i 1.(2n—1).

2.26

We view the system from the receiver and ask for the expected number of frames, 7,
arriving at the receiver starting immediately after a frame containing a packet that is accepted

and running until the next frame containing a packet that is accepted. By the assumptions
of the problem, if the packet in a frame is accepted, then the next frame must contain the
next packet in order (if not, the transmitter must have gone back to some earlier packet,
which is impossible since that earlier packet was accepted earlier and by assumption was
acked in time to avoid the go back).

Since the next frame after a packet acceptance must contain the awaited packet, that packet
is accepted with probability 1-p. With probability p, on the other hand, that next frame
contains an error. In this case, some number of frames, say j, follow this next frame
before the awaited packet is again contained in a frame. This new frame might again
contain an error, but the expected number of frames until the awaited packet is accepted,
starting with this new frame, is again y. Thus, given an error in the frame after a packet
acceptance, and given j further frames before the awaited packet is repeated, the expected

number of frames from one acceptance to the next is 1+j+Y.

Note that j is the number of frames that the transmitter sends, after the above frame in error,
up to and including the frame in transmission when feedback arrives concerning the frame
in error. Thus the expected value of j is f. Combining the events of error and no error on
the next frame after a packet acceptance, we have

Y= (1-p) + p(1+p+y) = 1 + p(B+Y)
Solving for v and for v = 1/y,

Y= (1+Bp)/(1-p) v = (1-p)/(1+Bp)
2.27

Note that the sending DLC could save only one packet if it waited for acknowledgements
rather than continuing to transmit. Similarly the sending DLC could save an arbitrarily
large number of packets by taking packets from the network layer at a rate faster than they
can be transmitted. Thus what is desired is to show that at most B+1 packets need be
stored without ever forcing the transmitter to wait. Thus we assume that a new packet is
admitted from the network layer only when there are no previously transmitted packets that
are known to have been unsuccessful on the last transmission (i.e. the system repeats
nak'ed packets before accepting and transmitting new packets; the system accepts and
transmits new packets while waiting for feedback information on old packets).

When the system is first initiated, one packet is admitted to the sending DLC from the
network layer. We use this as the basis of an inductive argument on successive times at

which a new frame is generated. By the inductive hypothesis, at most B+1 packets were
stored at the end of the previous frame generatdon instant. At the time of generating the

new frame, there are at most 3 outstanding frames (including the one just being completed)
for which feedback has not been received. A new packet will be accepted from the network
layer only if all packets stored are also in frames for which no feedback has yet been
received. Thus if a new packet is accepted, the total number saved is increased to at most

B+1, and if no new packet is accepted, the total number saved remains (by the inductive
hypothesis) no more than B+1.

2.28

Under the given assumptions, the ARPANET ARQ works like ideal select repeat. That is,
frames from the 8 channels can be sent in round robin order and the feedback for a channel
is always available by time the channel is to be reused. Thus a packet is repeated if and
only if the previous transmission was unsuccessful. Since all channels are constantly busy
and only the frames in error lead to retransmission, the efficiency is 1-p.

2.29

a) When packet z is transmitted, the transmitter rule ensures that z < SNmin+n-1. At that
time, SNmin < RN since a packet cannot be acked before being received. Thus, at transmit
time

z<RN+n-1
Since RN is nondecreasing, this is also satisfied at receive time. To derive the lower bound
on z, note that the transmitter rule specifies z 2 SNmpin. Since SNmin+n has never been
sent before the current transmission of z, the first come first serve order on the link ensures

that it is not received before z. Thus yiop at receive time is less than SNpjn+n at transmit
time, SO

z 2 SNmin > Ytop - D

Z2ypp-n+ 1
b) We must ensure that m is large enough to always satisfy

z+m>ypp+k
We know from a) that z > yyop-n, and adding n+k to both sides of this equation, we know
that z+n+k > yiop+k. Thus, choosing m = n+k (or, more generally, m = n+k) always
satisfies the above equation. If m is chosen any smaller (say m = n+k-1), then when z =
yiop-n+1 (which can happen after a goback), z+m will equal yioptk, causing erroneous
operation.

¢) From b), m 2 n+k > n. From Eq. (2.47),z < RN+n-1 < RN+m; thus z-m < RN.

d) From b) and c), m2>n+k assures correct operation at the receiver. Since m > n, correct
operation at the transmitter is assured as in goback n.

e) Initially yiop = RN-1, so for k=1, the receiver can initially accept only RN. On each

accepted packet, RN and yyop are each incremented by 1, so at all times only RN can be

accepted. Thus k=1 is ordinary goback n ARQ. For k=n, all received z must satisfy z <

Yiop +k, and we have ordinary selective repeat ARQ.

2.30

a) The sequence below shows the stuffed bits underlined for easy readability:
011011111000111110101011111011111001111010

b) Here the flags are shown underlined and the removed (destuffed) bits as x's:

0111111011111x110011111x011111x11111x11

00011111101011111x
2.31

The modified destuffing rule starts at the beginning of the string and destuffs bit by bit. A
zero is removed from the string if the previous six bits in the already destuffed portion of
the string have the value 015. For the given example, the destuffed string, with flags
shown underlined and removed bits shown as X's, is as follows:

011011111x111111011111x1Q1111110
2.32

The hint shows that the data string 01501x1x7... must have a zero stuffed after 015, thus
appearing as 01500xx2.... This stuffed pattern will be indistinguishable from the original
string 01500x1x2... unless stuffing is also used after 015 in the string 01500x1x2.... Thus
stuffing must be used in this case. The general argument is then by induction. Assume
that stuffing is necessary after 015 on all strings of the form 0150kx;x5.... Then such a
stuffed sequence is 0150k+1x1x3.... It follows as before that stuffing is then necessary after
015 in the sequence 0150k+1xx7.... Thus stuffing is always necessary after 015.

2.33

The stuffed string is shown below with the stuffed bits underlined and a flag added at the
end.

11011010001001001110100101

The destuffing rule is to decode (destuff) the string bit by bit starting at the beginning. A
given O bit is then deleted from the string if the preceding three decoded bits are 010. The
flag is detected when a 1 is preceded by the three decoded bits 010 and the most recently
decoded bit was not deleted. The above is a general rule for detecting any type of flag
sequence, rather than just 0101; for this special case, it is sufficient to look for the
substring 0101 in the received string; the reason for the simplification is that if an insertion
occurs within the flag, it has to occur by simply a repetition of the first flag bit.

2.34

Let vy be logoE{K]} - j. Since j is the integer part of logoE{K}, we see that y must lie
between O and 1. Expressing A = E{K}Z'—i +j+ lin terms of yand E{K}, we get

A=2" +logE{K}-y+1
A-logE{K} =2"-y+1

This function of 7y is easily seen to be convex (i.e., it has a positive second derivative). It
has the value 2 at y=0 and at Y = 1 and is less than 2 for 0 <y< 1. This establishes that

A <logrE{K} +2
Finding the minimum of 2Y - y +1 by differentiation, the minimum occurs at
Y = -loga(ln 2)
The value of 2Y - y + 1 at this minimizing point is [In 2] +loga(n 2) + 1 = 1.914..., s0

A 210gE{K} + (In 2)'! +loga(n 2) + 1
2.35

Stuffed bits are always 0's and always follow the pattern 01°. The initial O in this pattern
could be a bit in the unstuffed data string, or could itself be a stuffed bit. As in the analysis
of subsection 2.5.2, we ignore the case where this initial 0 is a stuffed bit since it is almost
negligible compared with the other case (also a well designed flag detector would not allow
a stuffed bit as the first bit of a flag). If a stuffed bit (preceded by 013 in the data) is
converted by noise into a 1, then it is taken as a flag if the next bit is 0 and is taken as an
abort if the next bit is 1. Thus an error in a stuffed bit causes a flag to appear with
probability 1/2 and the expected number of falsely detected flags due to errors in stuffed
bits is K2-7. If one is less crude in the approximations, one sees that there are only K-6
places in the data stream where a stuffed bit could be inserted following 013 in the data;
thus a more refined answer is that the expected number of falsely detected flags due to
errors in stuffed bits is (K-6)2-7.

There are eight patterns of eight bits such that an error in one of the eight bits would turn
the pattern into a flag. Two of these patterns, 017 and 170, cannot appear in stuffed data.
Another two of the patterns, 01500 and 00150, can appear in stuffed data but must contain
a stuffed bit (i.e. the 0 following 15). The first of these cases corresponds to the case in
which an error in a stuffed bit causes a flag to appear, and we have already analyzed this.
The second corresponds to a data string 0015. Thus the substrings of data for which a
single error in a data bit can cause a flag to appear are listed below; the position in which
the error must appear is shown underlined:

0011111

01011110
01101110
01110110
01111010

For any given bit position j in the K bit data string (j < K-7), the probability that one of
these patterns starts on bit j is 2-7 + 4.2-8 = 3.2-7. Thus the probability of a false flag being
detected because of an error on a data bit, starting on bit j of the data is 3p2-7. This is also
the expected number of such flags, and summing over the bits of the data stream, the
expected number is (K-7)3p2-7. Approximating by replacing K-7 by K, and adding this to
the expected number of false flags due to errors in stuffed bits, the overall probability of a
false flag in a frame of length K is (1/32)Kp. If K-7 is not approximated by K, and if we
recognize that the first pattern above can also appear starting at j=K-6, then the overall
probability of a false flag is approximated more closely by (1/32)(K-6.5)p.

2.36

Let N be the number of overhead bits per packet, F the number of flag bits per packet, U
the number of unary code bits per packet, and I the number of insertions per packet. Then

N=F+U+1I E{N} =E{F)} + E{U} + E{I}

A flag will occur at the end of a packet if the next session has nothing to send; thus a flag
(containing K bits) occurs at the end of a packet with probability p. It follows that

E{F} = pK

The number of unary bits following a packet is 0 if the next session has something to send
and is j > 1 if the number of following sessions with nothing to send is j. Thus P{U=j} =

(1-p)pi forj = 1.

E{U} = D j(1-p)p' =
=1

Finally an insertion occurs if a packet starts with 01k-2. Assuming independent equally
likely binary digits in the packets (this is not particularly realistic for packet headers, but it
is the only reasonable assumption without looking at the details of some particular
protocol), the probability of an insertion at the beginning of a packet is 2-K-1). Thus

E{l} = 2-K-D
E{N} = pK + p/(1-p) + 2-K-D

Note that it is not really necessary to do insertions at the beginning of the first packet
following a flag; if one assumes that such insertions are not made, E{I} changes to
(1-p)2-K-D,

b) No problems occur using flags both for addressing as above and for DLC. The DLC
regards the addressing flags as part of the data (which can be arbitrary anyway), and the
stuffing due to the DLC flags is removed before the network layer sees it. This is one of
the advantages of layering, that one doesn't have to worry about such interactions. Note
however that the use of this particular flag for addressing will cause a slight increase in the
number of insertions required at the DLC layer. When efficiency is important, one can not
necessarily ignore the interactions between different layers.

2.37

a) Note that a given packet n can never be sent untl after n-1 is acked; this is true even
without the possibility of packets getting out of order on the line. To see this, consider the
example below.

n-1 n n-1

Yo', ot

n+1?

Note also that there is no possible reason to want to send a packet after it has been acked.
Thus the only question here is whether it is possible, or sensible, to retransmit a given
packet without waiting for an ack or a period 2T . The simplest rule for the transmitter (and
probably the most practical unless T is very large) is for the transmitter to wait after sending
each packet for either an ack or nak (i.e. RN equal to the sequence number just transmitted)
or for a period of 2T, which guarantees that nothing remains on the link.

In order to leave the transmitter with more freedom than the above, we observe that there
are three restrictions on when a given packet n can be transmitted. The first, that n-1 must
be acknowledged, was mentioned above. The second is that no transmission of packet n-1
can be on the forward channel. The third is that no ack of packet n-2 can be on the return
channel. The reason for the second restriction is that a transmission of packet n could
arrive before that of n-1, causing n-1 to be mistaken for n+1. The reason for the third
restriction is to avoid the ack for n-2 being mistaken for the ack for n. Letting t; be the ime
at which n-1 was last transmitted, we see that the second restriction above leads to the
following rule. In order to transmit packet n at time t, one or more of the following
conditions must be satisfied:

t2ty+T
ii) The number of acks of n-1 equals the number of transmissions of n-1 up to t
iii) The last ack of n-1 is over 2T seconds after the next to last transmission of n-1.

In addition, from restriction 2, one or more of the following conditions must also be
satisfied, where t; is the time at which n-2 was last transmitted:

)t2tp +2T

ii) The number of acks of n-2 equals the number of transmissions of n-2

iii) The last ack of n-2 is over 2T seconds after the next to last transmission of n-2.
b) An algorithm must deal with the possibility of a frame that is lost (i.e., never arrives),
and must successfully transmit packets after a frame is lost. If an algorithm succeeds in
this case, then it must fail if a frame, regarded as lost, later arrives when a new packet of
the same sequence number modulo 2 is expected.

2.38

For simplicity, look first at the case in which A and B both start at the same time.

—» p -
e—p —| [g|] —p— [&]

Node A

L L]

It can be seen that the above pattern is periodic with period D+R+2P, with one packet in

each direction per period. Thus the rate is (D+R+2P)-1,
Next, without loss of generality, suppose B starts its first transmission after A:

¢— D —> R D —¥ m

Node A

Node B

In the figure above, the pattern is periodic after the first frame in each direction. In general,
if B completes its first transmission at time t and A completes its first transmission at T<t,

then B starts its first ACK transmission at max(t, T+P), since T+P is the time at which B
has completely received the first packet from A and t is the first time that the link is free
from A to B. Node A starts to send its first ACK to B at t+P, which is thus received at B at
t+R+2P. Similarly, node A receives the first ACK from B at max(t, T+P)+R+P, at which
time it starts to send its second packet.

b) The diagram below makes it clear that the two way transmission pattern is periodic with
a period of 2D+2D, leading to rate (2D+2P)-1.

<e—pD —»| P - «— D —»

Node A

Node B

2.39
a) TC = (K+V)(-1) + K+V) M/K]

b) E{TC} = (K+V)[j-1+(M/K)+1/2]

Differentiating with respect to K and setting the result equal to 0, we get

c¢) For j=1, it can be seen directly from Eq. (2.42) that TC is minimized by choosing
KMAXx greater than the largest possible value of M (thus making all messages one packet
long). The approximation in Eq. (2.43) is very poor in this case, but the solution
KMmax=e in Eq. (2.44) is still valid, as seen above. For fixed length packets, the amount
of fill required for very large K is prohibitive, so the approximation used in part b) above is
reasonable and the resulting finite value for K is certainly reasonable.

2.40

a) Using the properties of the A->B master slave protocol, B eventually receives the
DISC message from A (perhaps after many attempts, using the assumption that each frame
is correctly received with some probability bounded away from 0). Node B, if it has not
already started to disconnect, will start to send DISC, which by the same argument is
eventually received by A. Similarly B sends ACKD, which is eventually received by A
(perhaps after many receptions of DISC at B and retransmissions of ACKD to A), and A
regards the link as down after receiving both DISC and ACKD. Finally, when A receives
DISC, it sends ACKD, which is eventually received by B, perhaps after many
retransmissions of DISC from B and ACKD from A.

b) In the argument above, A regards the link as down upon receiving both DISC and
ACKD, but there is no need for B to have received ACKD by this time. Thus A can start to
re-initialize the link before B receives ACKD, and thus before B regards the link as down.

c) Note that the case being investigated here is symmetric (interchanging initialize and
disconnect) to the example in part b, and thus the demonstration here shows that the
example there causes no problems. Node B continues to send INIT (according to the B->A
master/slave protocol) until receiving ACKI. Node A responds to each of these messages,
but also sends a piggybacked ACKI when it attempts to disconnect by sending DISC.

Thus node B must receive ACKI before or simultaneously with receiving DISC; in the
simultaneous case, B regards the link as up instantaneously before starting to disconnect,
and from this point, the scenario is the same as in part a). Note that the piggybacking is
essential here, although alternate ways exist of co-ordinating the two master/slave
protocols.

2.41

a)
DISd Fail [DIsC| |INrT| Fail DISC|{INIT| | po| Fan |DISC||INIT| | D' 0

ACKD ACKD| [ACKI ACKI} ACKI| RN O

b)

Fail |X Fail X z Fail X z RN 0

Fal |y | Fail y [[Do] il [y [[D'o

2.42

The protocol requires each node to respond to each INIT or DISC message with an ACKI
or ACKD message. Thus if an additional INIT or DISC message were sent with each such
ack, the protocol would continue to bounce messages back and forth forever, whereas there
should be no need to continue to send INIT messages during up periods or DISC messages
during down periods.

2.43

Consider integer numbering rather than numbering modulo m. Suppose packet number SN
is sent at time t; and received at t3. Let SNpin(t1) be the lower edge of the window at t;
and RN(t2) be the lowest numbered packet not received by t2. Because of the window, we
have

Since SNmin(t}) is the greatest value of RN received up to t1, and since RN(t) is increasing
with t at node B,

SNmin(t1) < RN(t2)

Combining these equations, SN < RN(tp) + n - 1. Conversely, at most M packets can be
sent after packet number SN and before SN arrives at node B. Also, the packets on the
link or already received at t] have numbers at most SNpin(t1)+n-1. Thus the highest
consecutive numbered packet received by time t must be at most SNpin(t1)+n+M-1, and
RN(t2) £ SNnin(t1)+n+M. Combining these relationships,

RN(t2) -n- M <SN <RN(t2) +n-1

Thus the range of possible values of SN that could be received at tp, including the end
points, is 2n+M, and the modulus m must be that large to enable the sequence numbers to
be properly interpreted at the receiver.

Next suppose a receive number RN = RN(t;) is sent at t] from B and is received at t3 at
node A. The largest possible value of SNpin(t2) occurs if node B receives packet RN at
t;* and has already received RN+1,..RN+n-1. Node B then sends RN+n as a receive
number, which can be received by A by t;*. Node A then sends RN+n, ...RN+n+M-1
before ty, and node B can send at most RN+n+M before tp. Thus, SNmpin(t2) £ RN+n+M.
It follows that SNmax(t2) < RN+2n+M-1. Thus, m>2n+M guarantees that RN, arriving at
t, will not be falsely interpreted as a request for SNpax(t2).

