CASE STUDY Designing a Telephone Di

Problem

You have a client who wants to store a simple telephone directory in her computer
that she can use for storage and retrieval of names and numbers. She has a data file
that contains the names and numbers of her friends. She wants to be able to insert
new names and numbers, change the number for an entry, and retrieve selected tele-
phone numbers. She also wants to save any changes in her data file.

Input/Output Requirements

Earlier we discussed some questions that would have to be answered in order to
complete the specification of the requirements for the phone directory problem.
Most of the questions dealt with input and output considerations. We will list some
answers to these questions next.

INPUTS

Initial phone directory Each name and number will be read from separate
lines of a text file. The entries will be read in
sequence until all entries are read.

Additional entries Each entry is typed by the user at the keyboard when
requested.

OUTPUTS

Name and phone numbers The name and number of each person selected by the
program user are displayed on separate output lines.

Updated phone directory ~ Each name and number will be written to separate
lines of a text file. The entries will be written in
sequence until all entries are written.

Analysis The first step in the analysis is to study the problem input and output requirements
carefully to make sure that they are understood and make sense. You can use a tool
called a use case to help you refine the system requirements.

Use Cases

A use case is a list of the user actions and system responses for a particular sub-
problem in the order that they are likely to occur.

The following four subproblems were identified for the telephone directory
program:

e Read the initial directory from an existing file
¢ Insert a new entry

e Edit an existing entry

e Retrieve and display an entry

The use case (Table 1.4) for the first subproblem (“Read the initial directory”)
shows that the user issues a single command and the system responds by either read-
ing a directory from a file or by creating an empty directory if there is no file. The
second use case (Table 1.5) is for the subproblems “Insert a new entry” and “Edit
an existing entry”. Because the names in the directory must be unique, inserting a
new entry and editing an existing entry require a search to determine whether the
name is already present. Thus, from the user’s point of view, the insert and edit
processes are the same. The last use case (Table 1.6) shows the user interaction for
the last subproblem (“Retrieve and display an entry”).

The steps shown in each use case flesh out the user interaction with the program.
The use cases should be reviewed by the client to make sure that your intentions are
the same as hers. For most of the problems we study in this book, the user interac-
tion is straightforward enough that use cases will not be required.

TABLE 1.4
Use Case for Reading the Initial Directory

Step User’s Action System’s Response

1. User issues a command to
the operating system to load
and run the Phone Directory
program, specifying the
name of the file that contains
the directory.

2. The Phone Directory program is started, and the directory con-
tents initialized from the data file. If the data file does not exist,
an initially empty directory is created.

.

TABLE 1.5

Use Case for Inserting a New Entry or Editing an Existing Entry

Step User’s Action System’s Response

1. User issues the command to
insert or change an entry.

2. System prompts for the name.

3. User enters name. If user cancels entry of name, process terminates.

4. System prompts for the number.

5. User enters number. If user cancels entry of number, process terminates.

6. The directory is updated to contain the new name and number.
If the name was not already in the directory, the user is notified that
a new name was entered. If the name already exists, the user is noti-
fied that the number was changed and is shown both the old and
new numbers.

TABLE 1.6

Use Case for Retrieving and Displaying an Entry

Step User’s Action System’s Response

1. User issues the command to
retrieve and display an entry.

2. System prompts for the name.
3. User enters name. If user cancels entry of name, process terminates.
4. The system retrieves the entry from the directory. If found, the name

and number are displayed; otherwise, a message is displayed indicat-
ing that the name is not in the directory.

Refinement of Initial Class Diagram

Earlier we used the top-down design approach to identify the subproblems to be
solved (see Figures 1.3 to Figure 1.5) and came up with the list of level 1 subprob-
lems shown in the previous section. As discussed, you can combine the second and
third subproblems (“Insert a new entry”, “Edit an existing entry”) and add a sub-
problem to save the directory. The modified list follows:

¢ Read the initial directory from an existing file
e Insert a new entry or edit an existing entry.

e Retrieve and display an entry.

¢ Save the modified directory back to the file.

23

.

—p—

FIGURE 1.9

Design

Phone Directory Application Class Diagram: Revision 1
PDAppTication
—@ mainQ o—
PDUserInterface PhoneDirectory
sends command updates
processCommands () ToadData()

addOrChangeEntry ()

U TookupEntry()

ser removeEntry ()

save()

The directory should be saved whenever the program is exited. The phone directory
has limited usefulness if updates to the directory cannot be saved from one run to
the next.

There is another way to split this problem into subproblems. Overall, we want a
phone directory application that combines a user interface as the front end and a
persistent (permanent) storage of data as the back end. Thus, Figure 1.6 can be
refined as shown in Figure 1.9. The black diamonds in Figure 1.9 indicate that a
PDAppTication object has objects of type PDUserInterface and PhoneD1irectory as its
components, and that they are created by the PDAppl1ication object.

In Section 1.4, we identified two abstract data types: the PDUserInterface and the
PhoneDirectory. They are shown in the class diagram as interfaces. In Section 1.6
classes that implement these interfaces will be designed. By splitting the design
between the user interface and the directory, we can work on them independently.
As long as the requirements defined by the interfaces are met, the front-end user
interface does not care which back end it is dealing with, and the back-end direc-
tory does not care which front end it is dealing with.

Overview of Classes and Their Interaction

Next, we identify all classes that will be part of the problem solution and describe
their interaction. Besides the classes that implement the two interfaces shown in
Figure 1.9, classes from the Java API will be used to perform input/output. We also
need a class with a main method. Table 1.7 shows a summary of some of the classes
and interfaces that will be used in our solution.

.

TABLE 1.7
Summary of Classes and Interfaces Used in Phone Directory Solution

Class/Interface Description

PDAppTlication Contains the main method. It instantiates classes that implement the PhoneDirectory
and PDUserInterface interfaces.

DirectoryEntry Contains a name-number pair.

PhoneDirectory The interface that specifies methods to retrieve, insert, modify, load, and save the
phone directory.

PDUserInterface The interface that defines the user interface, which accepts commands from the user
and calls the appropriate methods in the PhoneDirectory class to perform the desired
action.

BufferedReader A class in the Java API that breaks a stream of input characters into lines through a

Reader object.

PrintWriter A class in the Java API that provides output lines through a Writer object.

The first class in Table 1.7, PDApplication, contains a main method which starts
program execution. From the use case in Table 1.4, we know that this method must
create the PhoneDirectory object and read in the initial directory. Next, it must cre-
ate a PDUserInterface object that interacts with the user to determine which oper-
ations should be performed. The list of steps for method main follows.

Algorithm for main Method

1. Create a new PhoneDirectory object.

2. Send it a message to read the initial directory data from a file.
3. Create a new PDUserInterface object.
4

Send it a message to perform all user operations on the PhoneD1irectory
object.

To perform Step 4, the PDUserInterface method processCommands will call its own
internal methods that will, in turn, call PhoneDirectory methods that perform the
specified operation on the PhoneDirectory object.

Next we show the UML sequence diagram for the main method. A sequence dia-
gram (see Appendix B) is an OOD tool that documents the interaction between the
objects in a program. Sequence diagrams are used to show the flow of information
through the program and to identify the messages that are passed from one object
to another.

FIGURE 1.10
Sequence Diagram for main Method
i PDApplication
T
|
|
User :
|
main(sourceName) !
e »| PhoneDirectory
T
ToadData() l
new »| BufferedReader
T
readLine() |
|
addQ :
|
|
| |
new \ : »| PDUserInterface
|
|
| T
processCommands (phoneDirectory) : o
| "1
|

Sequence Diagram for main Method

The sequence diagram for the main method is shown in Figure 1.10. The first (and
only) parameter for main will be the name of the file containing the directory data.
We show this event in the sequence diagram as the user issuing the message
main(sourceName) to the PDApplication class.

The sequence diagram shows all the objects involved in this use case across the hor-
izontal axis, with each object’s type underlined. Time is shown along the vertical
axis. There is a dashed line coming down from each object that represents the
object’s life line. When a method of this object is called, the dashed line becomes a
solid line indicating that the method is executing. All interaction with an object is
indicated by a horizontal line that terminates at the object’s life line.

The PDApplication object is created when the application begins execution. Tracing
down its life line, you can see that its main method first sends the new message to a
class that implements the PhoneDirectory interface, creating a new PhoneDirectory
object. Next, main sends that object the loadData message. Method ToadData is

.

—p—

described in the PhoneDirectory interface. Looking at the life line for this
PhoneDirectory object, you see that method loadData creates a new BufferedReader
object and sends it a readLine message. Next, ToadData sends the add message to the
PhoneDirectory object. (Note that add is a new method that was not identified ear-
lier.) This is the same object as the one that received the ToadData message, so this
add message is known as a message to self. Although the sequence diagram cannot
show looping, the process of reading lines and adding entries continues until there
are no remaining entries.

After all entries are read and saved, method main creates a new object (type
PDUserInterface) and sends it the processCommands message, passing it the
PhoneDirectory object as an argument. This provides the PDUserInterface object
the necessary access to the PhoneDirectory object to process the commands. This
completes the sequence diagram for reading the initial directory from a file. It shows
all the steps performed by method main, including calling processCommands after the
directory is loaded. Method processCommands will continue executing until the user
issues the “Exit program” command.

The sequence diagram (Figure 1.10) shows that method TloadData of the
PhoneDirectory object performs most of the work for the “Read initial directory
data” use case. Method ToadData calls all the methods shown after it on the life line
for the PhoneDirectory object.

CASE STUDY Designing a Telephone Dire

Design

Design of Data Structures for the Phone Directory

Next, we consider the actual data elements that will be involved in the telephone
directory problem. We will define a class DirectoryEntry, which will contain the
name-number pairs, and a class ArrayBasedPD, which implements the PhoneD1irectory
interface. This class will contain an array of DirectoryEntrys. In later chapters we will
show alternative designs that use classes that are part of the Java API (for example,
class ArrayList).

Our new class diagram is shown in Figure 1.10. The open diamond indicates that
DirectoryEntry objects are components of ArrayBasedPD objects, but they can also
be associated wth other objects (for example, the data file). For class
DirectoryEntry, we show data fields (attributes) in the light-color screen and meth-
ods in the darker-color screen. Next, we discuss the two actual classes shown in this
diagram: DirectoryEntry and ArrayBasedPD.

SYNTAX umL syntax

In UML class diagrams, the + sign next to the method names indicate that
these methods are public. The — sign next to the attributes name and number
indicate that they are private. For the class DirectoryEntry we show the types
of the attributes, and the parameter types and return types of the methods.
Showing this information on the diagram is optional. We will generally show
this information in separate tables such as Table 1.7. Appendix B provides a
summary of UML.

FIGURE 1.11

Phone Directory Application Class Diagram: Revision 2
PDApplication
—@ mainQ <@
«interface» «interface»
PDUserInterface PhoneDirectory
sends command updates
processCommands () ToadData()
addOrChangeEntry ()
TookupEntry ()
User removeEntry ()
save()
A
1
ArrayBasedPD
+ loadData()
+ addOrChangeEntry()
+ lookupEntry()
+ removeEntry()
+ save()

DirectoryEntry

- String name
- String number

DirectoryEntry(String name, String num)
String getName()

String getNumber()

void setNumber(String num)

+ 4+ + +

Design of the DirectoryEntry Class

The DirectoryEntry objects will contain the name-and-number pairs. The name is
immutable; that is, it cannot be changed. For the purposes of your design, if you
need to change the name of a person in your directory, you must remove the old
entry and create a new one. The number, however, can be changed. Thus a straight-
forward design consists of

e Two data fields: name and number
e A constructor that sets both name and number

.

TABLE 1.8
Design of the DirectoryEntry Class

private String name The name of the individual represented in the entry.
private String number The phone number for this individual.

public DirectoryEntry(String name, Creates a new DirectoryEntry with the specified name
String number) and number.

public String getName() Retrieves the name.

public String getNumber() Retrieves the number.

public void setNumber(String number) Sets the number to the specified value.

e Accessor methods for both name and number
e A mutator method for number

This design is shown in Table 1.8.

Design of the ArrayBasedPD Class

The ArrayBasedPD class implements PhoneDirectory. We showed a portion of this
interface earlier (Listing 1.1); Table 1.9 shows the methods for the interface and
Listing 1.2 shows the complete interface.

TABLE 1.9
Methods Declared in Interface PhoneD1irectory

public void ToadData(String Loads the data from the data file whose name is given by
sourceName) sourceName.

public String addOrChangeEntry Changes the number associated with the given name to the
(String name, String number) new value, or adds a new entry with this name and number.
public String lookupEntry Searches the directory for the given name.

(String name)

public String removeEntry Removes the entry with the specified name from the direc-
(String name) tory and returns that person’s number or nu11 if not in the

directory (left as an exercise).

public void save() Werites the contents of the array of directory entries to the
data file.

.

LISTING 1.2
PhoneDirectory.java

/** The interface for the telephone directory.

7':/

public interface PhoneDirectory {

}

Class ArrayBasedPD must implement these methods. It must also declare a data field
for storage of the phone directory. Table 1.10 describes the data fields of class
ArrayBasedPD. In addition to the array of directory entries, the class includes data
fields to help keep track of the array size and capacity and whether it has been mod-

/** Load the data file containing the directory, or
establish a connection with the data source.
@param sourceName The name of the file (data source)
with the phone directory entries
7':/

void loadData(String sourceName);

/** Look up an entry.

@param name The name of the person to Took up

@return The number or null if name is not in the directory
7':/
String lookupEntry(String name);

/** Add an entry or change an existing entry.
@param name The name of the person being added or changed
@param number The new number to be assigned
@return The old number or, if a new entry, null

:’:/

String addOrChangeEntry(String name, String number);

/** Remove an entry from the directory.
@param name The name of the person to be removed
@return The current number. If not in directory, null is
returned
>':/

String removeEntry(String name);

/** Method to save the directory.
pre: The directory has been loaded with data.
post: Contents of directory written back to the file in the
form of name-number pairs on adjacent Tlines
modified is reset to false.
*/

void save();

ified. The methods will be designed in the next section.

TABLE 1.10
Data Fields of Class ArrayBasedPD

Data Field Attribute

private static final int The initial capacity of the array to hold the directory
INITIAL_CAPACITY entries.

private int capacity The current capacity of the array to hold the directory entries.
private int size The number of directory entries currently stored in the array.
private DirectoryEntry[] The array of directory entries.

theDirectory

private String sourceName The name of the data file.

private boolean modified A booTean variable to indicate whether the contents of the array

have been modified since they were last loaded or saved.

Design of ArrayBasedPD Methods

In this section you will complete the design of the ArrayBasedPD class. At this stage
you need to specify the method algorithms. We will develop pseudocode descrip-
tions of the algorithms. Pseudocode is a combination of English and Java language
constructs.

Method ToadData

Method ToadData is used to read the initial directory from a data file. The file name
is passed as an argument to lToadData when it is called.

Algorithm for Method ToadData
1. Create a BufferedReader for the input file.
2 Read the name.

3 while the name is not null

4. Read the number.

5 Add a new entry using method add.
6 Read the name.

Note that we have identified a new method, add, for class ArrayBasedPD.

Method addOrChangeEntry

Method addOrChangeEntry is used to either add a new entry to the directory or
change an existing entry if the name is already in the directory. The name and num-
ber are passed as arguments to addOrChangeEntry.

.

—p—

Algorithm for Method addOrChangeEntry

1. Call method find to see whether the name is in the directory.

2. if the name is in the directory
3. Change the number using the setNumber method of the DirectoryEntry.
4 Return the previous value of the number.
else
5. Add a new entry using method add.
6. Return null.

Note that we have identified another new method, find, for class ArrayBasedPD.

Method TookupEntry

Method TookupEntry is passed a person’s name as an argument. It retrieves the per-
son’s number or null if the name is not found.

Algorithm for 1ookupEntry

1. The PhoneDirectory object uses its internal find method to locate the entry.
2. if the entry is found
3. DirectoryEntry’s getNumber method retrieves the number, which is
returned to the caller.
else
4. null is returned.

Method save

Method save creates an output file and then writes all information stored in the
array to this file. The file name is stored in data field sourceName. The algorithm for
the save method follows.

Algorithm for save

Create a PrintWriter object associated with the file.
for each entry in the array
Call getName to get the name from the entry.

Call getNumber to get the number from the entry.

1

2

3

4. Write the name on a line.

5

6 Write the number on a line.
7

Close the PrintWriter object.

Figure 1.12 shows the final class diagram with the additional methods.

FIGURE 1.12

Phone Directory Application Class Diagram: Revision 3

sends command

PDAppTication

______<‘>

main()

o —

«interface»
PDUserInterface

User

processCommands ()

updates

«interface»
PhoneDirectory

ToadData()
addOrChangeEntry ()
TookupEntry ()
removeEntry ()
save()

o

ArrayBasedPD

ToadData()
addOrChangeEntry ()
TookupEntry ()
removeEntry ()
save()

- addQ

- findQ

- reallocate()

+ 4+ + + o+

DirectoryEntry

- String name
- String number

DirectoryEntry(String name, String num)
String getName()

String getNumber()

void setNumber(String num)

+ o+ o+ o+

a Telephone Directory Program (cont.)

Implementation Next we write the code for class ArrayBasedPD. Listing 1.3 shows the data field dec-
larations for the class. We use the Javadoc style for commenting the data fields.

LISTING 1.3
Data Field Declarations for ArrayBasedPD. java

import java.io.*;

/** This is an implementation of the PhoneDirectory interface that uses
an array to store the data.

*/

public class ArrayBasedPD implements PhoneDirectory {
// Data Fields

/** The initial capacity of the array */
private static final int INITIAL_CAPACITY = 100;

/** The current capacity of the array */
private int capacity = INITIAL_CAPACITY;

/** The current size of the array (number of directory entries) */
private int size = 0;

.

/** The array to contain the directory data */
private DirectoryEntry[] theDirectory =
new DirectoryEntry[capacity];

/** The data file that contains the directory data */
private String sourceName = null;

/** Boolean flag to indicate whether the directory was
modified since it was either loaded or saved. */
private boolean modified = false;

}
Coding the Methods

Table 1.11 reviews the private methods of class ArrayBasedPD. They are private
because they were not declared in the PhoneDirectory interface and should not be
called by a client. Two of these, add and find, were discussed previously. Method
reallocate will be discussed later in this section. Method removeEntry is left as an
exercise.

The ToadData Method

The 7loadData method (Listing 1.4) is called by the main method of class
PDApplication to read the initial directory data from an input file (parameter
sourceName). The data entry process takes place in the while loop inside the
try-catch statement. (If you are unfamiliar with the use of try-catch statements for
exception handling during file processing, you can review Appendix A. We also dis-
cuss these topics in the next chapter.) The while loop implements Steps 4 through 6
of the algorithm for loadData shown earlier. This method reads each name and
number from two consecutive data lines and adds that entry to the array.

TABLE 1.11
Private Methods of ArrayBasedPD class

Private Method Behavior

private int find(String name) Searches the array of directory entries for the name.
private void add(String name, Adds a new entry with the given name and number to the array
String number) of directory entries.

private void removeEntry(int index) Removes the entry at the given index from the directory array.

private void reallocate() Creates a new array of directory entries with twice the capacity
of the current one.

LISTING 1.4
Method ToadData for ArrayBasedPD.java

/** Method to load the data file.
pre: The directory storage has been created and it is empty.
If the file exists, it consists of name-number pairs
on adjacent Tlines.
post: The data from the file is Tloaded into the directory.
@param sourceName The name of the data file

public void loadData(String sourceName) {
// Remember the source name.
this.sourceName = sourceName;
try {
// Create a BufferedReader for the file.
BufferedReader in = new BufferedReader(
new FiTleReader(sourceName));
String name;
String number;

// Read each name and number and add the entry to the array.
while ((name = in.readLine()) != null) {

// Read name and number from successive lines.

if ((number = in.readLine()) == null) {

break; // No number read, exit Toop.

}

// Add an entry for this name and number.

add(name, number);

}

// Close the file.
in.close(Q);
} catch (FileNotFoundException ex) {
// Do nothing — no data to Tload.
return;
} catch (IOException ex) {
System.err.printin(“Load of directory failed.”);
ex.printStackTrace();
System.exit(1);

}

The readLine method of the BufferedReader class reads a line and returns it as a
String object. If there is no more data to be read, nul1 is returned, so we exit the
while loop. Note that we combined the assignment statement and the test for null
in the while statement condition

while ((name = in.readLine()) != null) {...}

Similarly we combined the assignment and test when reading the number in the if
condition

if ((number = in.readLine()) == null) {
break; // No number read, exit Toop.
}

.

—p—

Therefore, we also exit the loop (through execution of a break statement) if a name
was read but a number was not. If both a name and number are read, then a new
entry is added to the directory and we continue reading and adding entries.

If a file with name sourceName is not found, we immediately return (no data to read).
(Later, we will write the new directory to file sourceName.) If an input/output error
occurs, a stack trace is displayed and we exit the program with an exit code of 1,
indicating an error.

WPROGRAM STYLE

Use of Assignment in a Condition and Use of break

The while loop in this section uses two features of Java that simplify the code but are
considered controversial. Some programmers prefer not to combine assignment with the
evaluation of a condition. However, in this case, it simplifies the code to do it this way.
Also, the requirement to exit the loop without storing an entry is met very naturally
using the break statement. Some programmers prefer to provide only one way to exit a
loop: when the while condition fails.

The addOrChangeEntry Method

This method calls the internal method find to locate the name in the array. Method
find will either return the index of the entry, or return —1 (minus 1) to indicate that
the entry is not in the array. If the entry is in the array, that entry’s setNumber method
is called to change the number; otherwise a new entry is added by calling the add
method:

/** Add an entry or change an existing entry.
@param name The name of the person being added or changed
@param number The new number to be assigned
@return The old number or, if a new entry, null
*/
public String addOrChangeEntry(String name, String number) {
String oldNumber = null;
int index = find(name);
if (index > -1) {
oldNumber = theDirectory[index].getNumber();
theDirectory[index].setNumber (number);
} else {
add(name, number);
b
modified = true;
return oldNumber;

.

—p—

The TookupEntry Method

This method also uses the internal find method to locate the entry in the array. If
the entry is located, it is returned; otherwise nul1 is returned.

/** Look up an entry.
@param name The name of the person
@return The number. If not in the directory, null 1is returned
*/
public String lookupEntry(String name) {
int index = find(name);
if (index > -1) {
return theDirectory[index].getNumber();
} else {
return null;
}
}

The save Method

If the directory has not been modified, method save (Listing 1.5) does nothing.
Otherwise it creates a PrintWriter object and writes all phone directory entries to
it. The output file name is the same as the input file name (sourceName), so an exist-
ing directory file will be overwritten. The while loop inside the try-catch statement
writes the entries.

LISTING 1.5
Method save for ArrayBasedPD.java

/** Method to save the directory.
pre: The directory has been loaded with data.
post: Contents of directory written back to the file in the
form of name-number pairs on adjacent Tines.
modified is reset to false.
*/
public void save() {
if (modified) { // If not modified, do nothing.
try {
// Create PrintWriter for the file.
PrintWriter out = new PrintWriter(
new FileWriter(sourceName));

// Write each directory entry to the file.
for (int i = 0; i < size; i++) {
// Write the name.
out.printin(theDirectory[i].getName());
// Write the number.
out.println(theDirectory[i].getNumber());

—p—

// Close the file.
out.close();
modified = false;
} catch (Exception ex) {
System.err.printin("Save of directory failed");
ex.printStackTrace();
System.exit(1l);

}
The find Method

The find method uses a for loop to search the array for the requested name. If
located, its index is returned; otherwise —1 (minus 1) is returned.

/** Find an entry in the directory.

@param name The name to be found

@return The index of the entry with the requested name.

If the name is not in the directory, returns -1

*/
private int find(String name) {

for (int i = 0; i < size; i++) {

if (theDirectory[i].getName().equals(name)) {

return i;
h
}
return -1; // Name not found.
}
PITFALL

Returning -1 (Failure) Before Examining All Array Elements

A common logic error is to code the search loop for method find as follows:
for (int i = 0; i < size; i++) {
if (theDirectory[i].getName() .equals(name)) {
return i;
} else {
return -1; // Incorrect! - tests only one element.
}
3

This loop incorrectly returns a result after testing just the first element.

The add Method

The add method checks to see whether there is room in the array by comparing the
size to the capacity. If the size is less than the capacity, the new entry is stored at
the end of the array and size is incremented by one after the entry is stored (size++).
If the size is greater than or equal to the capacity, then the reallocate method is
called to increase the size of the array before the new item is inserted.
/** Add an entry to the directory.
@param name The name of the new person
@param number The number of the new person
*.':/
private void add(String name, String number) {
if (size >= capacity) {
reallocate(Q);
b
theDirectory[size] = new DirectoryEntry(name, number);
size++;

}
The reallocate Method

This method allocates a new array whose size is twice the current array. Method
System.arraycopy (see Appendix A) copies the contents of the old array
(theDirectory) to the new array (newDirectory):

System.arraycopy(theDirectory, @, newDirectory, 0, theDirectory.length);

and theDirectory is changed to refer to the new array. The storage allocated to the
old array will be recycled by the Java Virtual Machine (JVM)’s garbage collector.

By doubling the size each time that a reallocation is necessary, we reduce the num-
ber of times we need to do this. Surprisingly, if we do this only fourteen times, we
can store over 1 million entries.
/** Allocate a new array to hold the directory. */
private void reallocate() {
capacity *= 2;
DirectoryEntry[] newDirectory = new DirectoryEntry[capacity];
System.arraycopy(theDirectory, @, newDirectory, 0,
theDirectory.length);
theDirectory = newDirectory;

}
Using a Storage Structure Without Reallocation

In Chapter 4, you will study the ArrayList data structure, which will enable you to
store a directory of increasing size without needing to reallocate storage. You will
see that we can change to a different data structure for storing the directory with
very little effort, because the problem solution has been so carefully designed. We
will only need to code the methods declared in the PhoneDirectory interface so that
they perform the same operations on an ArrayList.

4l

.

Testing

Class ArrayBasedPD

To test this class, you should run it with data files that are empty or that contain a
single name-and-number pair. You should also run it with data files that contain an
odd number of lines (ending with a name but no number). You should see what hap-
pens when the array is completely filled and you try to add a new entry. Does
method reallocate properly double the array’s size? When you do a retrieval or an
edit operation, make sure you try to retrieve names that are not in the directory as
well as names that are in the directory. If an entry has been changed, verify that the
new number is retrieved. Finally, check that all new and edited entries are written
correctly to the output file. We will discuss testing further in the next chapter.

Kof f man Chapt 01 6/11/04 5:59 PM Page 43 $

CASE STUDY Designing a Telephc

Analysis

Design

Through the description of the interface, we know that a class that implements
PDUserInterface must contain a public method, processCommands, declared as fol-
lows in the interface:

void processCommands(PhoneDirectory theDirectory);

The interface enables clients to use method processCommands without knowing the
details of its implementation (information hiding). We will introduce new private
methods that are called by processCommands to perform its tasks, but are unavailable
to a client.

The kind of user interaction that will take place will be determined by the input/out-
put facilities used in a class that implements the interface. Three options would be
console input, GUI input using a specially designed GUI for this problem, and GUI
input using JOptionPane dialog windows. We will write classes that use the first and
last options. (If you are unfamiliar with any of these Java input/output features,
review Appendix A.)

For both classes, method processCommands should present a menu of choices to the
user:

¢ Add or Change an Entry
e Look Up an Entry

e Remove an Entry

e Save the Directory Data
¢ Exit the Program

For both classes, method processCommands will use a “menu-driven” loop to control
the interaction with the user. In a true GUI, a loop would not be necessary. After
each command is processed, the menu of choices is displayed again. This process
continues until the user selects “Exit the program”.

do {

// Get the action to perform from the user.
// The user’s choice will be a number from @ through 4.

switch (choice) {
case 0: doAddChangeEntry(); break;

case 1: doLookupEntry(); break;
case 2: doRemoveEntry(); break;
case 3: doSave(); break;
case 4: doSave(); break;

}

} while (choice < commands.length - 1);

The method processCommands calls a private method shown in the foregoing switch
statement to perform the user’s choice. Note that method doSave is called by the last
two cases. We discuss the design and coding of these methods next.

.

Implementation

The PDGUI Class

Our first class will interact with the user through a GUI It uses method
showOptionDialog of the JOptionPane class, which is part of the Java Swing API, to
present the menu to the user, request data from the user, and display the results to
the user. The initial menu is as follows:

PhoneDirectory L x|

@ Select a Command

| AddiChange Entry | | LookUpEntry || RemoveEntry || Savepirectory || Exit |

Method doAddChangeEntry

The doAddChangeEntry method uses the JOptionPane.showInputDialog method to
request the name and new number. Here are examples of these dialogs:

x5 X
¢ [Harry | L |555-123-4567 |

o [comet o [comet

If the user selects Cancel, a null string is returned. In that case the method will return
immediately without changing the directory.

The PhoneDirectory.addOrChangeEntry method is called if values are entered for the
name and number. A return value of nul1 indicates that this is a new entry, and a
confirmation dialog is displayed by JOptionPane.showMessageDialog:

ressage

Harry was added to the directory
New number: 555-123-4567

If the name was already in the directory, the previous value of the number is
returned, and the confirmation shows both the old and the new number, as follows:

reszage

Number for Sam was changed
Old number: 555-321-9876
New number: 555-456-1234

==

oK.

—p—

Algorithm for Method doAddChangeEntry

1. Read the name of the entry.

Read the number of the entry.

Send the addOrChangeEntry message to the PhoneDirectory object.
if the result of addOrChangeEntry was null

Sk wn

The message “name was added to the directory” is displayed and the
new number is displayed.

else

6. The message “number for name was changed”, and the old and new
number are displayed.

Method doLookupEntry

The doLookupEntry method uses the same dialog as doAddChangeEntry to request the
name. If the user cancels the dialog, the method returns. Otherwise the number is
looked up by calling the PhoneDirectory.lookupEntry method, and the result is dis-
played. If the name is not in the directory, a message is displayed. Examples of both
are as follows:

e o« CrTe—

@ The number for Sam is 555-456-1234 Dick is not listed in the directory

Algorithm for doLookupEntry
1. Read the name.
2 Issue a TookupEntry message to the PhoneDirectory object.
3. if the result is not null
4 The name and number are displayed.
else

(2]

A message indicating that the name is not in the directory is
displayed.

Method doSave

The doSave method calls the save method of the PhoneDirectory object.

Listing 1.6 shows the code for the PDGUI class. It implements all the methods dis-
cussed above.

TING 1.6
PDGUI. java

import javax.swing.*;

/** This class is an implementation of PDUserInterface
that uses JOptionPane to display the menu of command choices.

public class PDGUI implements PDUserInterface {

/** A reference to the PhoneDirectory object to be processed.
Globally available to the command-processing methods.

*/

private PhoneDirectory theDirectory = null;

// Methods

/** Method to display the command choices and process user
commands .
pre: The directory exists and has been Toaded with data.
post: The directory is updated based on user commands.
@param thePhoneDirectory A reference to the PhoneDirectory

to be processed.
*/

pubTlic void processCommands(PhoneDirectory thePhoneDirectory) {

String[] commands = {"Add/Change Entry",
"Look Up Entry",
"Remove Entry",
"Save Directory",

"Exit"};

theDirectory = thePhoneDirectory;

int choice;

do {

choice = JOptionPane.showOptionDialog(

null, // No parent
"SeTect a Command", // Prompt message
"PhoneDirectory", // Window title
JOptionPane.YES_NO_CANCEL_OPTION, // Option type
JOptionPane.QUESTION_MESSAGE, // Message type
null, // Icon
commands, // List of commands
commands [commands.Tength - 1]); // Default choice

switch (choice) {

case 0: doAddChangeEntry(); break;
case 1: doLookupEntry(); break;
case 2: doRemoveEntry(); break;
case 3: doSave(); break;

case 4: doSave(); break;

}
} while (choice < commands.length - 1);
System.exit(0);

.

/** Method to add or change an entry.
pre: The directory exists and has been Toaded with data.
post: A new name is added, or the value for the name is
changed, modified is set to true.
*/
private void doAddChangeEntry() {
// Request the name
String newName = JOptionPane.showInputDialog("Enter name");
if (newName == null) {
return; // Dialog was cancelled.
}
// Request the number
String newNumber = JOptionPane.showInputDialog("Enter number");
if (newNumber == null) {
return; // Dialog was cancelled.
}
// Insert/change name-number
String oldNumber = theDirectory.addOrChangeEntry(newName,
newNumber) ;
String message = null;
if (oldNumber == null) { // New entry.
message = newName + " was added to the directory"
+ "\nNew number: " + newNumber;
} else { // Changed entry.
message = "Number for " + newName + " was changed "
+ "\nOld number: " + oTdNumber
+ "\nNew number: " + newNumber;

}
// Display confirmation message.
JOptionPane.showMessageDialog(null, message);

}

/** Method to Took up an entry.
pre: The directory has been loaded with data.
post: No changes made to the directory.
*/
private void doLookupEntry() {
// Request the name.
String theName = JOptionPane.showInputDialog("Enter name");
if (theName == null) {
return; // Dialog was cancelled.
}
// Look up the name.
String theNumber = theDirectory.lookupEntry(theName);
String message = null;
if (theNumber != null) { // Name was found.
message = "The number for " + theName + " is " + theNumber;
} else { // Name was not found.
message = theName + " is not listed in the directory";
}
// Display the result.
JOptionPane.showMessageDialog(null, message);

.

/** Method to remove an entry.

pre: The directory has been loaded with data.

post: The requested name is removed, modified is set to true.
:':/
private void doRemoveEntry() {

// Programming Exercise

}

/** Method to save the directory to the data file.
pre: The directory has been loaded with data.
post: The current contents of the directory have been saved
to the data file.
*/
private void doSave() {
theDirectory.save();
b
}

Testing Testing Class PDGUI

To test this class you need a main method that creates an ArrayBasedPD object and a
PDGUI object. Method main must invoke method loadData of class ArrayBasedPD to
read the directory from a file, passing the file name as an argument; main must then
invoke method processCommands of class PDGUI, passing the PhoneDirectory object
as an argument.

/** Program to display and modify a simple phone directory. */
pubTlic class PDAppTlication {

public static void main (String args[]) {
// Check to see that there is a command Tine argument.
if (args.length == 0) {
System.err.printin("You must provide the name of the file"
+ " that contains the phone directory.™);
System.exit(1l);

}

// Create a PhoneDirectory object.

PhoneDirectory phoneDirectory = new ArrayBasedPD();
// Load the phone directory from the file.
phoneDirectory.loadData(args[0]);

// Create a PDUserInterface object.

PDUserInterface phoneDirectoryInterface = new PDGUIQ);
// Process user commands.
phoneDirectoryInterface.processCommands (phoneDirectory);

}

When this method runs, make sure you test all possible commands. Try exiting with-
out first saving the directory and verify that the file is correctly updated and saved.

.

Implementation

The PDConsoleUI Class

Listing 1.7 shows the code for the PDConsoleUI class. This class uses System.out to
display the menu of choices and results. It also uses System.in to read data from the
user.

The constructor creates a BufferedReader object that is attached to System.in. This
object has a readLine method, which reads a line of input and returns it as a String.

Method processCommands

The readLine method may throw an I0Exception, so the processCommands method
uses a try-catch block to enclose the processing of user commands. Each of the indi-
vidual methods that process the commands is declared to throw an IOException.
Thus they do not need a try-catch block. (We provide thorough coverage of excep-
tions in Chapter 2.)

Should an I0Exception be thrown, an error message will be written to System.err
and the program will exit with an exit code of 1 (error).

The initial menu is as follows:

=\ \Command Prompt - java PhoneDirectoryApplication3 Phone.dat g -10] x|
A

Select B: Add/Change Entry

Select 1: Look lp Entry

Select 2: Remove Entry

Select 3: Save Directory

Select 4: Exit —
=l

Method doAddChangeEntry

The doAddChangeEntry method requests the name followed by the number. The
PhoneDirectory.addOrChangeEntry method is called after values are entered for the
name and number. A return value of nul1 indicates that this is a new entry, and a
confirmation dialog is displayed as follows:

=\ /Command Prompt - java PhoneDirectoryApplication3 Phone.dat g =10l x|

Select B: Add-/Change Entry Zl
Select 1: Look lUp Entry

Select 2: Remove Entry

Select 3: Save Directory

gelect 4: Exit

555-111-3333

Quincy was added to the directory

New number: 555-111-3333 ~
Select B: AddsChange Entry

Select 1: Look lUp Entry
Select 2: Remove Entry
Select 3: Save Directory
Select 4: Exit

—p—

If the name was already in the directory, the previous value of the number is
returned, and the confirmation shows both the old and new number as follows:

[Command Prompt - java PhoneDirectoryApplication2 phone.dat =10l x|
)

Select B: AddsChange try
Select 1: Look lUp Entry :I

Select 2: Remove Entry
Select 3: Save Directory
gelect 4: Exit

Enter name
Tom

Enter number

123-456-7898

Numher for Tom was changed
0ld number: 111-222-3333

= Hdd/(:hangle Entry

: Look Up Entry

: Remove Entry

Select 3: Save Directory j
-

Select 4: Exit

Method doLookupEntry

The doLookupEntry method uses the same prompt as doAddChangeEntry to request
the name. If the user cancels the data entry, the method returns. Otherwise the num-
ber is looked up by calling the PhoneDirectory.lookupEntry method, and the result
is displayed. If the name is not in the directory, a message is displayed. Examples of
both cases follow:

¢4 Command Prompt - java PhoneDirectoryApplication3 Phone.dat

Select B: AddsChange Entry
Select 1: Look Up Entry
Select 2: Remove Entry
Select 3: Save Directory
gelect 4: Exit

Enter name

Tom

The number for Tom is 123-456-7898

Select @: AddsChange Entry

Select 1: Look Up Entry

Select 2: Remove Entry =

Select 3: Save Directory
Select 4: Exit

=
<* Command Prompt - java PhoneDirectoryApplication3 Phone.dat .=J._]D .EI
The number for Tom is 123-456-7898 zl

Select 8: Add/Chan Entry
Select 1: Look Up Entry
Select 2: Remove Entry
Select 3: Save Directory
?elect 4: Exit

Enter name
Dick

Dick is not listed in the directory

Select B: Add-Change Entry

Select 1: Look Up Entry

Select 2: Remove Entry |
Select 3: Save Directory

Select 4: Exit

Method doSave

The doSave method calls the save method of the PhoneDirectory.

LISTING 1.7
PDConsoleUI.java

import java.io.*;

/** This class is an implementation of PDUserInterface
that uses the console to display the menu of command choices.
*/

public class PDConsoleUI implements PDUserInterface {

/** A reference to the PhoneDirectory object to be processed.
Globally available to the command-processing methods.

7':/

private PhoneDirectory theDirectory = null;

/** Buffered reader to read from the input console. */

private BufferedReader in = null;

// Constructor
/** Default constructor. */
public PDConsoleUI() {
in = new BufferedReader(new InputStreamReader(System.in));

b

// Methods

/** Method to display the command choices and process user
commands .
pre: The directory exists and has been Tloaded with data.
post: The directory is updated based on user commands.
@param thePhoneDirectory A reference to the PhoneDirectory

to be processed
*/

pubTic void processCommands(PhoneDirectory thePhoneDirectory) {
String[] commands = {"Add/Change Entry",
"Look Up Entry",
"Remove Entry",
"Save Directory",
"Exit"};

theDirectory = thePhoneDirectory;
int choice;
try {
do {
for (int i = 0; i < commands.length; i++) {
System.out.printin("Select " + i + ": "
+ commands[i]);

Kof f man Chapt 01 6/11/04 6:00 PM Page 52 CE

52

Chapter 1

Introduction to Software Design

String line = in.readLine();
if (line != null)

choice = Integer.parseIlnt(line);
else

choice = commands.length - 1;
switch (choice) {

case 0: doAddChangeEntry(); break;

case 1: doLookupEntry(); break;
case 2: doRemoveEntry(); break;
case 3: doSave(); break;
case 4: doSave(); break;

} while (choice < commands.length - 1);
System.exit(0);
} catch (IOException ex) {
System.err.println
("IO Exception while reading from System.in");
System.exit(1);

}

/** Method to add or change an entry.
pre: The directory exists and has been loaded with data.
post: A new name is added, or the value for the name is
changed, modified is set to true.
@throws IOException - if an IO error occurs
-,’:/
private void doAddChangeEntry() throws IOException {
// Request the name.
System.out.println("Enter name");
String newName = null;
newName = in.readLine();
if (newName == null) {
return;
}
// Request the number.
System.out.println("Enter number™);
String newNumber = null;
newNumber = in.readLine();
if (newNumber == null) {
return;
B
// Insert/change name-number.
String oldNumber =
(theDirectory.addOrChangeEntry(newName, newNumber) ;
String message = null;
if (oldNumber == null) { // New entry.
message = newName + " was added to the directory"
+ "\nNew number: " + newNumber;

—p—

} else { // Changed entry.
message = "Number for " + newName + " was changed"
+ "\nOld number: " + oldNumber
+ "\nNew number: " + newNumber;

}
// Display confirmation message.
System.out.printin(message);

}

/** Method to Took up an entry.

pre: The directory has been loaded with data.

post: No changes made to the directory.

@throws IOException - If an IO error occurs
*/
private void doLookupEntry() throws IOException {

// Request the name.

System.out.println("Enter name");

String theName = null;

theName = in.readLine();

if (theName == null) {

return; // Dialog was cancelled.

h

// Look up the name.

String theNumber = theDirectory.lookupEntry(theName);

String message = null;

if (theNumber != null) { // Name was found.

message = "The number for " + theName + " is " + theNumber;

} else { // Name was not found.

message = theName + " is not Tisted in the directory";
B
// Display the result.
System.out.println(message);

/** Method to remove an entry.
pre: The directory has been loaded with data.
post: The requested name is removed, modifed is set to true.
@throws IOException - If there is an IO Error
-,’:/
private void doRemoveEntry() throws IOException {
// Programming Exercise

}

/** Method to save the directory to the data file.
pre: The directory has been loaded with data.
post: The current contents of the directory have been saved
to the data file.
-,’:/
private void doSave() {
theDirectory.save();

}

.

