
Solutions Manual

Data Structures and Algorithms in Java, 5th edition

M. T. Goodrich and R. Tamassia

Chapter 1

Reinforcement

Solution R-1.3

Since, after the clone,A[4] andB[4] are both pointing to the sameGameEntry object,B[4].score is
now 550.

Solution R-1.7

for (int i=1; i<=58; i++) {
wallet[0].chargeIt((double)i);
wallet[1].chargeIt(2.0*i);
wallet[2].chargeIt((double)3*i);

}

This change will cause credit card 2 to go over its limit.

Solution R-1.10

public boolean isMultiple(long n, long m) {
if (n%m == 0)

return true;
else

return false;
}

Solution R-1.12

public integer sumToN(integer N) {
if (n == 1)

return 1;
else

return (n−1 + sumToN(n−1));
}

Creativity

Solution C-1.3

public boolean allDistinct(int[] ints) {
for(int i = 0; i < ints.length−1; i++)

// we don’t need to test numbers at indices already checked
for (int j = i+1; j < ints.length; j++)

if (ints[i]==ints[j]) return false;
return true;
}

1

import java.util.Vector;

public class CharPermutation{

private void Permute(Vector bag, Vector permutation) {

// When the bag is empty, a full permutation exists
if(bag.isEmpty()) {

System.out.println(permutation);
}
else {

// For each element left in the bag
for(int i = 0; i < bag.size(); i++) {

// Take the element out of the bag
// and put it at the end of the permutation
Character c = (Character) bag.elementAt(i);
bag.removeElementAt(i);
permutation.addElement(c);

// Permute the rest of the bag
this.Permute(bag, permutation);

// Take the element off the permutation
// and put it back in the bag
permutation.removeElementAt(permutation.size() − 1);
bag.insertElementAt(c, i);
}
}
}

Solution C-1.5

Here is a possible solution:

2

public void PrintPermutations(char[] elements) {
Vector bag = new Vector();
Vector permutation = new Vector();

for(int i = 0; i < elements.length; i++) {
bag.addElement(new Character(elements[i]));
}

this.Permute(bag, permutation);

}

public static void main(String[] args) {
char[] elements = { ’c’, ’a’, ’r’, ’b’, ’o’, ’n’ };
new CharPermutation().PrintPermutations(elements);
}
}

Solution C-1.7

class ArraySizeException extends Exception {
public ArraySizeException() { super(); }
public ArraySizeException(String s) { super(s); }

}

public int[] compute(int[] a, int[] b) throws ArraySizeException {
if(a.length != b.length) {

throw new ArraySizeException("arrays must have same length");
}

int[] c = new int[a.length];
for(int i = 0; i < a.length; i++) {

c[i]= a[i] * b[i];
}

return c;
}

3

Chapter 2

Reinforcement

Solution R-2.1

There are two immediate inefficiencies: (1) the chaining of constructors impliesa potentially long
set of method calls any time an instance of a deep class, Z, is created, and (2) the dynamic dispatch
algorithm for determining which version of a certain method to use could end uplooking through a
large number of classes before it finds the right one to use.

Solution R-2.2

Whenever a large number of classes all extend from a single class, it is likely that you are missing
out on potential code reuse from similar methods in different classes. There is likely some factoring
of methods into common classes that could be done in this case, which would save programmer
time and maintenance time, by eliminating duplicated code.

Solution R-2.4

Air traffic control software, computer integrated surgery applications, and flight navigation sys-
tems.

Solution R-2.9

256 calls to nextValue will end on the value 263. Since the maximum positive value of a long is
263−1, 256−1 calls to nextValue can be made before a long-integer overflow.

Solution R-2.11

No, d is referring to a Equestrian object that is not not also of type Racer. Casting in an inheritance
relationship can only move up or down the hierarchy, not “sideways.”

Creativity

Solution C-2.1

This is written as multiple lines, but it is really one line of code:
class P{public static void main(String[]a){String p=

”class P{public static void main(String[]a){String p=%c%s%c;System.out.printf(p,34,p,34);}}”;

System.out.printf(p,34,p,34);}}

Solution C-2.4

Inheritance in Java allows for specialized classes to be built from genericclasses. Because of this
progression from generic to specialized in the class hierarchy, there can never be a circular pattern
of inheritance. In other words, there cannot be a superclassA and derived classesB andC such that
B extendsA, thenC extendsB, and finallyA extendsC. Such a cycle is impossible becauseA is the
generic superclass from whichC is eventually extended, thus it is impossible fromA to extendC,
for this would meanA is extending itself. Therefore, there can never occur a circular relationship
which would cause an infinite loop in the dynamic dispatch.

4

