Solutions Manual

Data Structures and Algorithms in Java, 5th edition

M. T. Goodrich and R. Tamassia

Chapter 1

Reinfor cement
Solution R-1.3

Since, after the cloné)[4] andB[4] are both pointing to the sanf&ameEntry object,B[4].score is
now 550.

Solution R-1.7

for (int i=1; i<=58; i++) {
wallet[0].chargelt((double)i);
wallet[1].chargelt(2.0*i);
wallet[2].chargelt((double)3*i);

}

This change will cause credit card 2 to go over its limit.

Solution R-1.10

public boolean isMultiple(long n, long m) {
if (n%m == 0)
return true;
else
return false;

Solution R-1.12

public integer sumToN(integer N) {
if (n==1)
return 1;
else
return (n—1 4+ sumToN(n—1));

Creativity
Solution C-1.3

public boolean allDistinct(int[] ints) {
for(int i = 0; i < ints.length—1; i++)
// we don't need to test numbers at indices already checked
for (int j = i+1; j < ints.length; j++)
if (ints[i]==ints[j]) return false;
return true;

}

import java.util.Vector;
public class CharPermutation{
private void Permute(Vector bag, Vector permutation) {

// When the bag is empty, a full permutation exists

if (bag.isEmpty()) {
System.out.printIn(permutation);

}

else {

// For each element left in the bag
for(int i = 0; i < bag.size(); i++) {

// Take the element out of the bag

// and put it at the end of the permutation
Character ¢ = (Character) bag.elementAt(i);
bag.removeElementAt(i);
permutation.addElement(¢);

// Permute the rest of the bag
this.Permute(bag, permutation);

// Take the element off the permutation

// and put it back in the bag
permutation.removeElementAt(permutation.size() — 1);
bag.insertElementAt(c, i);

Solution C-1.5

Here is a possible solution:

public void PrintPermutations(char[] elements) {
Vector bag = new Vector();
Vector permutation = new Vector();

for(int i = 0; i < elements.length; i++) {
bag.addElement(new Character(elements[i]));

}

this.Permute(bag, permutation);

public static void main(String[] args) {
char[] elements = { ’c’, ’a’, ’r’, ’b’, ’0’, ’n’ };
new CharPermutation().PrintPermutations(elements);
}
}

Solution C-1.7

class ArraySizeException extends Exception {
public ArraySizeException() { super(); }
public ArraySizeException(String s) { super(s); }

}

public int[] compute(int[] a, int[] b) throws ArraySizeException {
if(a.length != b.length) {
throw new ArraySizeException("arrays must have same length");

}

int[] ¢ = new int[a.length];
for(int i = 0; i < a.length; i++) {

cli]= ali] * bli];
}

return c;

Chapter 2

Reinfor cement
Solution R-2.1

There are two immediate inefficiencies: (1) the chaining of constructors imgjiesentially long

set of method calls any time an instance of a deep class, Z, is created) dmel dgnamic dispatch
algorithm for determining which version of a certain method to use could etoblng through a
large number of classes before it finds the right one to use.

Solution R-2.2

Whenever a large number of classes all extend from a single class, itlistlike you are missing
out on potential code reuse from similar methods in different classese Tikely some factoring
of methods into common classes that could be done in this case, which woelgremrammer
time and maintenance time, by eliminating duplicated code.

Solution R-2.4

Air traffic control software, computer integrated surgery applicationsl, fight navigation sys-
tems.

Solution R-2.9

2%6 calls to nextValue will end on the valué® Since the maximum positive value of a long is
2631, 26 _1 calls to nextValue can be made before a long-integer overflow.

Solution R-2.11

No, d is referring to a Equestrian object that is not not also of type Racetingas an inheritance
relationship can only move up or down the hierarchy, not “sideways.”

Creativity
Solution C-2.1

This is written as multiple lines, but it is really one line of code:

class P{public static void main(String[]a){String p=

"class P{public static void main(String[]a){String p=%c%s%c;System.out.printf(p,34,p,34);}}";
System.out.printf(p,34,p,34);} }

Solution C-2.4

Inheritance in Java allows for specialized classes to be built from geriagses. Because of this
progression from generic to specialized in the class hierarchy, thenees@r be a circular pattern
of inheritance. In other words, there cannot be a superélasal derived classésandC such that
B extendsA, thenC extendsB, and finallyA extend<C. Such a cycle is impossible becauses the
generic superclass from whi¢his eventually extended, thus it is impossible frénio extendC,
for this would mearA is extending itself. Therefore, there can never occur a circular resdtipn
which would cause an infinite loop in the dynamic dispatch.

