Chapter 1 Exercises Solutions

1.1 Varied Answers.

1.2 College courses may build on top of prerequisite knowledge,
but teach well defined and systematically prepared information
that focuses on specific material.

1.3 Possible points may include:

top-down

bottom-up

Correct programs

Because the overall design is
first considered, individual
parts should integrate easier,
reducing chances of errors in
the integration process and
improve correctness.

When addressing individual
components first, there is less
likelihood of overlooking
intricacies of the individual
components and likely to produce
more correct components.

Efficient programs

Integration efficiency should
increase.

Individual components should be
well thought out and efficient.

General-purpose

Because interaction of
components is considered from
the beginning future general
interaction will most likely
also be considered.

Not havign a clear understanding
of the total picture can force
developers to build components
that adapt to the needs of an
application or system.

Rapidly developed

Focusing on one area (design,
implementation, testing) at a
time can improve efficiency.

Making small incremental steps
through the cycle reduces the size
or likelihood or large redesigns
and reimplementation which
could greatly increase
development time.

1.4 Assertions should be part of the full development cycle. They
should be established in the design phase, implemented and
turned on and tested in the test phase.




1.5 Comments can initially be established from the criteria in our
design phase. Further comments can be created to explain
complex or unintuitive implementations. Finally comments can
be used to establish correct use or states of components for testing
or use of the components. Should defects be found in testing,
comments may explain fixes that are added to the components.
Used this way for quality assurance, the program's correctness,
efficiency, generality, and development speed can be improved.

1.6 The class still compiles and run correctly, the difference is that
the initial value for topFace 1s 0 (the default value for numbers)
and not 1.

1.7 Constants by definition cannot be changed and therefore
require no protection from manipulation. So in this case, direct
access to the variable is appropriate.

1.8 System is a class. This class has a static variable called out
that references a nonstatic object of class PrintStream which
contains a nonstatic method println.

1.9

public void setTopFace(int topFace) {
assert topFace >= 1 && topFace <=6 :
"topFace must be a number between 1 and 6";
this.topFace = topFace;

}
1.10

public boolean getBody()
{

}

public int getEyes()
{

return body;



return eyes;

}
public int getFeelers()
{
return feelers;
}
public boolean getHead()
{
return head;
}
public int getLegs()
{
return legs;
}
public boolean getTail()
{
return tail;
}

1.11

public void setBody(boolean body)

{
this.body = body;
}
public void setEyes(int eyes)
{
assert eyes >= 0 && eyes <=2 :
"eyes must be a number between 0 and 2";
this.eyes = eyes;
}
public void setFeelers(int feelers)
{
assert feelers >= 0 && feelers <=2 :
"feelers must be a number between 0 and 2";
this.feelers = feelers;
}
public void setHead(boolean head)
{
this.head = head;
}
public void setlLegs (int legs)
{
assert legs >= 0 && legs <=6 :
"legs must be a number between 0 and 6";
this.legs = legs;
}

public void setTail(boolean tail)

{



this.tail = tail;

1.12

public static void main(String[] args) {
Beetle b = new Beetle();
System.out.println("Start:\n"+b);
b.addBody () ;
System.out.println("Added Body:\n"+b);
b.addHead() ;
System.out.println("Added Head:\n"+b);
b.addEye();
System.out.println("Added Eye:\n"+b);
b.addEye();
System.out.println("Added Eye:\n"+b);
b.addFeeler();
System.out.println("Added Feeler:\n"+b);
b.addFeeler();
System.out.println("Added Feeler:\n"+b);
b.addLeg();
System.out.println("Added Leg:\n"+b);
b.addLeg();
System.out.println("Added Leg:\n"+b);
b.addLeg();
System.out.println("Added Leg:\n"+b);
b.addLeg();
System.out.println("Added Leg:\n"+b);
b.addLeg();
System.out.println("Added Leg:\n"+b);
b.addLeg();
System.out.println("Added Leg:\n"+b);
b.addTail();
System.out.println("Added Tail:\n"+b);

1.13 The only change that is required is in the getTopFace() method.
this.topFace should be cast to an int to avoid the possible loss of
precision error.

1.14 The Die class does compile but will now longer run on its own.
The BeetleGame will still compile and run correctly because it
uses the Die class as a component which does not require the
Die's main method.

1.15 Places where this can be removed:



The reference to topFace in the Constructor.
. The reference to topFace in the getTopFace() method.
. The reference to topFace in the roll() method.

The reference to topFace in the toString() method.

1.16 The problem is that we lose control of the manipulation of the
variable. In this case because addHead() 1s not called, there i1s no
guarantee that there is a body prior to adding a head.

1.17 The program will compile but it will not run correctly because
both players rolls will be acting on the same instance of Beetle.

player = 1 this

die BeetleGame bug2

bug1

Beetle

=)
©

topFac

0]

=1 body = true
eyes =0
bug — feelers = 0
head = false
legs =0

tail = false

1.18 Encapsulation is violated because variables x and y are publicly
visible to everyone.

java.awt

Class Point

java.lang.Object
L—java.awt.geom.PointZD

L—java.awt.Point

All Implemented Interfaces:
Serializable, Cloneable

public class Pointextends Point2Dimplements Serializable



http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Object.html
http://java.sun.com/j2se/1.5.0/docs/api/java/io/Serializable.html
http://java.sun.com/j2se/1.5.0/docs/api/java/awt/geom/Point2D.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Cloneable.html
http://java.sun.com/j2se/1.5.0/docs/api/java/io/Serializable.html
http://java.sun.com/j2se/1.5.0/docs/api/java/awt/geom/Point2D.html

A point representing a location in (X, y) coordinate space, specified in integer precision.

Since:
JDK1.0
See Also:
Serialized Form

Nested Class Summary

Nested classes/interfaces inherited from class java.awt.geom. Point2D

Point2D.Double, Point2D.Float

Field Summary

int|x
The x coordinate.
int|y
The y coordinate.
Constructor Summary
Point ()

Constructs and initializes a point at the origin (0, 0) of the coordinate space.

Point (int x, int y)
Constructs and initializes a point at the specified (x, y) location in the coordinate space.

Point (Point p)
Constructs and initializes a point with the same location as the specified Point object.

Method Summary

boolean|equals (Object obj)
Determines whether or not two points are equal.

Point|getLocation ()
Returns the location of this point.

double|getX ()
Returns the X coordinate of the point in double precision.

double|getY ()
Returns the Y coordinate of the point in double precision.

voidimove (int x, int vy)
Moves this point to the specified location in the (x, y) coordinate plane.

void|setLocation (double x, double y)
Sets the location of this point to the specified double coordinates.



http://java.sun.com/j2se/1.5.0/docs/api/java/awt/Point.html#setLocation(double,%20double)
http://java.sun.com/j2se/1.5.0/docs/api/java/awt/Point.html#move(int,%20int)
http://java.sun.com/j2se/1.5.0/docs/api/java/awt/Point.html#getY()
http://java.sun.com/j2se/1.5.0/docs/api/java/awt/Point.html#getX()
http://java.sun.com/j2se/1.5.0/docs/api/java/awt/Point.html#getLocation()
http://java.sun.com/j2se/1.5.0/docs/api/java/awt/Point.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Object.html
http://java.sun.com/j2se/1.5.0/docs/api/java/awt/Point.html#equals(java.lang.Object)
http://java.sun.com/j2se/1.5.0/docs/api/java/awt/Point.html
http://java.sun.com/j2se/1.5.0/docs/api/java/awt/Point.html#Point(java.awt.Point)
http://java.sun.com/j2se/1.5.0/docs/api/java/awt/Point.html#Point(int,%20int)
http://java.sun.com/j2se/1.5.0/docs/api/java/awt/Point.html#Point()
http://java.sun.com/j2se/1.5.0/docs/api/java/awt/Point.html#y
http://java.sun.com/j2se/1.5.0/docs/api/java/awt/Point.html#x
http://java.sun.com/j2se/1.5.0/docs/api/java/awt/geom/Point2D.Float.html
http://java.sun.com/j2se/1.5.0/docs/api/java/awt/geom/Point2D.Double.html
http://java.sun.com/j2se/1.5.0/docs/api/java/awt/geom/Point2D.html
http://java.sun.com/j2se/1.5.0/docs/api/serialized-form.html#java.awt.Point

void|setLocation (int x, int vy)
Changes the point to have the specified location.

void|setLocation (Point p)
Sets the location of the point to the specified location.

String|toString ()
Returns a string representation of this point and its location in the (x, y) coordinate
space.

void|translate (int dx, int dy)
Translates this point, at location (x, y), by dx along the x axis and dy along the y
axis so that it now represents the point (x + dx, y + dy).

Methods inherited from class java.awt.geom.Point2D

clone, distance, distance, distance, distanceSq, distanceSq, distanceSq, hashCode,
setLocation

Methods inherited from class java.lang.Object

finalize, getClass, notify, notifyAll, wait, wait, wait



http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Object.html#wait(long,%20int)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Object.html#wait(long)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Object.html#wait()
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Object.html#notifyAll()
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Object.html#notify()
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Object.html#getClass()
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Object.html#finalize()
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Object.html
http://java.sun.com/j2se/1.5.0/docs/api/java/awt/geom/Point2D.html#setLocation(java.awt.geom.Point2D)
http://java.sun.com/j2se/1.5.0/docs/api/java/awt/geom/Point2D.html#hashCode()
http://java.sun.com/j2se/1.5.0/docs/api/java/awt/geom/Point2D.html#distanceSq(java.awt.geom.Point2D)
http://java.sun.com/j2se/1.5.0/docs/api/java/awt/geom/Point2D.html#distanceSq(double,%20double,%20double,%20double)
http://java.sun.com/j2se/1.5.0/docs/api/java/awt/geom/Point2D.html#distanceSq(double,%20double)
http://java.sun.com/j2se/1.5.0/docs/api/java/awt/geom/Point2D.html#distance(java.awt.geom.Point2D)
http://java.sun.com/j2se/1.5.0/docs/api/java/awt/geom/Point2D.html#distance(double,%20double,%20double,%20double)
http://java.sun.com/j2se/1.5.0/docs/api/java/awt/geom/Point2D.html#distance(double,%20double)
http://java.sun.com/j2se/1.5.0/docs/api/java/awt/geom/Point2D.html#clone()
http://java.sun.com/j2se/1.5.0/docs/api/java/awt/geom/Point2D.html
http://java.sun.com/j2se/1.5.0/docs/api/java/awt/Point.html#translate(int,%20int)
http://java.sun.com/j2se/1.5.0/docs/api/java/awt/Point.html#toString()
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.5.0/docs/api/java/awt/Point.html
http://java.sun.com/j2se/1.5.0/docs/api/java/awt/Point.html#setLocation(java.awt.Point)
http://java.sun.com/j2se/1.5.0/docs/api/java/awt/Point.html#setLocation(int,%20int)

	java.awt Class Point

