DATABASE MANAGEMENT
SYSTEMS

SOLUTIONS MANUAL
THIRD EDITION

Raghu Ramakrishnan
University of Wisconsin

Madison, WI, USA
N

Johannes Gehrke
Cornell University

Ithaca, NY, USA

Jeff Derstadt, Scott Selikoff, and Lin Zhu
Cornell University

Ithaca, NY, USA

CONTENTS

PREFACE

10

11

12

13

14

INTRODUCTION TO DATABASE SYSTEMS
INTRODUCTION TO DATABASE DESIGN
THE RELATIONAL MODEL

RELATIONAL ALGEBRA AND CALCULUS
SQL: QUERIES, CONSTRAINTS, TRIGGERS
DATABASE APPLICATION DEVELOPMENT
INTERNET APPLICATIONS

OVERVIEW OF STORAGE AND INDEXING
STORING DATA: DISKS AND FILES
TREE-STRUCTURED INDEXING
HASH-BASED INDEXING

OVERVIEW OF QUERY EVALUATION

EXTERNAL SORTING

EVALUATION OF RELATIONAL OPERATORS

iii

16

28

45

63

66

73

81

88

100

119

126

131

11IDATABASE MANAGEMENT SYSTEMS SOLUTIONS MANUAL THIRD EDITION

15 A TYPICAL QUERY OPTIMIZER 144
16 OVERVIEW OF TRANSACTION MANAGEMENT 159
17 CONCURRENCY CONTROL 167
18 CRASH RECOVERY 179
19 SCHEMA REFINEMENT AND NORMAL FORMS 189
20 PHYSICAL DATABASE DESIGN AND TUNING 204

21 SECURITY 215

PREFACE

It is not every question that deserves an answer.

Publius Syrus, 42 B.C.

I hope that most of the questions in this book deserve an answer. The set of questions
is unusually extensive, and is designed to reinforce and deepen students’ understanding
of the concepts covered in each chapter. There is a strong emphasis on quantitative
and problem-solving type exercises.

While T wrote some of the solutions myself, most were written originally by students
in the database classes at Wisconsin. I’d like to thank the many students who helped
in developing and checking the solutions to the exercises; this manual would not be
available without their contributions. In alphabetical order: X. Bao, S. Biao, M.
Chakrabarti, C. Chan, W. Chen, N. Cheung, D. Colwell, J. Derstadt, C. Fritz, V.
Ganti, J. Gehrke, G. Glass, V. Gopalakrishnan, M. Higgins, T. Jasmin, M. Krish-
naprasad, Y. Lin, C. Liu, M. Lusignan, H. Modi, S. Narayanan, D. Randolph, A.
Ranganathan, J. Reminga, A. Therber, M. Thomas, Q. Wang, R. Wang, Z. Wang and
J. Yuan. In addition, James Harrington and Martin Reames at Wisconsin and Nina
Tang at Berkeley provided especially detailed feedback.

Several students contributed to each chapter’s solutions, and answers were subse-
quently checked by me and by other students. This manual has been in use for several
semesters. I hope that it is now mostly accurate, but I'm sure it still contains er-
rors and omissions. If you are a student and you do not understand a particular
solution, contact your instructor; it may be that you are missing something, but it
may also be that the solution is incorrect! If you discover a bug, please send me mail
(raghu@cs.wisc.edu) and I will update the manual promptly.

The latest version of this solutions manual is distributed freely through the Web; go
to the home page mentioned below to obtain a copy.

For More Information

The home page for this book is at URL:

iii

DATABASE MANAGEMENT SYSTEMS SOLUTIONS MANUAL THIRD EDITION

http://www.cs.wisc.edu/~ dbbook

This page is frequently updated and contains information about the book, past and
current users, and the software. This page also contains a link to all known errors in
the book, the accompanying slides, and the software. Since the solutions manual is
distributed electronically, all known errors are immediately fixed and no list of errors is
maintained. Instructors are advised to visit this site periodically; they can also register
at this site to be notified of important changes by email.

INTRODUCTION TO DATABASE
SYSTEMS

Exercise 1.1 Why would you choose a database system instead of simply storing data
in operating system files? When would it make sense not to use a database system?

Answer 1.1 A database is an integrated collection of data, usually so large that it
has to be stored on secondary storage devices such as disks or tapes. This data can
be maintained as a collection of operating system files, or stored in a DBMS (database
management system). The advantages of using a DBMS are:

m Data independence and efficient access. Database application programs are in-
dependent of the details of data representation and storage. The conceptual and
external schemas provide independence from physical storage decisions and logical
design decisions respectively. In addition, a DBMS provides efficient storage and
retrieval mechanisms, including support for very large files, index structures and
query optimization.

m Reduced application development time. Since the DBMS provides several impor-
tant functions required by applications, such as concurrency control and crash
recovery, high level query facilities, etc., only application-specific code needs to
be written. Even this is facilitated by suites of application development tools
available from vendors for many database management systems.

m Data integrity and security. The view mechanism and the authorization facilities
of a DBMS provide a powerful access control mechanism. Further, updates to the
data that violate the semantics of the data can be detected and rejected by the
DBMS if users specify the appropriate integrity constraints.

m Data administration. By providing a common umbrella for a large collection of
data that is shared by several users, a DBMS facilitates maintenance and data
administration tasks. A good DBA can effectively shield end-users from the chores
of fine-tuning the data representation, periodic back-ups etc.

2 CHAPTER 1

m Concurrent access and crash recovery. A DBMS supports the notion of a trans-
action, which is conceptually a single user’s sequential program. Users can write
transactions as if their programs were running in isolation against the database.
The DBMS executes the actions of transactions in an interleaved fashion to obtain
good performance, but schedules them in such a way as to ensure that conflicting
operations are not permitted to proceed concurrently. Further, the DBMS main-
tains a continuous log of the changes to the data, and if there is a system crash,
it can restore the database to a transaction-consistent state. That is, the actions
of incomplete transactions are undone, so that the database state reflects only the
actions of completed transactions. Thus, if each complete transaction, executing
alone, maintains the consistency criteria, then the database state after recovery
from a crash is consistent.

If these advantages are not important for the application at hand, using a collection of
files may be a better solution because of the increased cost and overhead of purchasing
and maintaining a DBMS.

Exercise 1.2 What is logical data independence and why is it important?

Answer 1.2 Answer omitted.

Exercise 1.3 Explain the difference between logical and physical data independence.

Answer 1.3 Logical data independence means that users are shielded from changes
in the logical structure of the data, while physical data independence insulates users
from changes in the physical storage of the data. We saw an example of logical data
independence in the answer to Exercise 1.2. Consider the Students relation from that
example (and now assume that it is not replaced by the two smaller relations). We
could choose to store Students tuples in a heap file, with a clustered index on the
sname field. Alternatively, we could choose to store it with an index on the gpa field,
or to create indexes on both fields, or to store it as a file sorted by gpa. These storage
alternatives are not visible to users, except in terms of improved performance, since
they simply see a relation as a set of tuples. This is what is meant by physical data
independence.

Exercise 1.4 Explain the difference between external, internal, and conceptual sche-
mas. How are these different schema layers related to the concepts of logical and
physical data independence?

Answer 1.4 Answer omitted.

Exercise 1.5 What are the responsibilities of a DBA? If we assume that the DBA
is never interested in running his or her own queries, does the DBA still need to
understand query optimization? Why?

Introduction to Database Systems 3

Answer 1.5 The DBA is responsible for:

m Designing the logical and physical schemas, as well as widely-used portions of the
external schema.

m Security and authorization.
m Data availability and recovery from failures.

m Database tuning: The DBA is responsible for evolving the database, in particular
the conceptual and physical schemas, to ensure adequate performance as user
requirements change.

A DBA needs to understand query optimization even if s/he is not interested in run-
ning his or her own queries because some of these responsibilities (database design
and tuning) are related to query optimization. Unless the DBA understands the per-
formance needs of widely used queries, and how the DBMS will optimize and execute
these queries, good design and tuning decisions cannot be made.

Exercise 1.6 Scrooge McNugget wants to store information (names, addresses, de-
scriptions of embarrassing moments, etc.) about the many ducks on his payroll. Not
surprisingly, the volume of data compels him to buy a database system. To save
money, he wants to buy one with the fewest possible features, and he plans to run it as
a stand-alone application on his PC clone. Of course, Scrooge does not plan to share
his list with anyone. Indicate which of the following DBMS features Scrooge should
pay for; in each case, also indicate why Scrooge should (or should not) pay for that
feature in the system he buys.

1. A security facility.

2. Concurrency control.
3. Crash recovery.

4. A view mechanism.
5. A query language.

Answer 1.6 Answer omitted.

Exercise 1.7 Which of the following plays an important role in representing informa-
tion about the real world in a database? Explain briefly.

1. The data definition language.

4 CHAPTER 1

2. The data manipulation language.
3. The buffer manager.

4. The data model.

Answer 1.7 Let us discuss the choices in turn.

m The data definition language is important in representing information because it
is used to describe external and logical schemas.

m The data manipulation language is used to access and update data; it is not
important for representing the data. (Of course, the data manipulation language
must be aware of how data is represented, and reflects this in the constructs that
it supports.)

m The buffer manager is not very important for representation because it brings
arbitrary disk pages into main memory, independent of any data representation.

m The data model is fundamental to representing information. The data model
determines what data representation mechanisms are supported by the DBMS.
The data definition language is just the specific set of language constructs available
to describe an actual application’s data in terms of the data model.

Exercise 1.8 Describe the structure of a DBMS. If your operating system is upgraded
to support some new functions on OS files (e.g., the ability to force some sequence of
bytes to disk), which layer(s) of the DBMS would you have to rewrite to take advantage
of these new functions?

Answer 1.8 Answer omitted.

Exercise 1.9 Answer the following questions:

1. What is a transaction?

2. Why does a DBMS interleave the actions of different transactions instead of exe-
cuting transactions one after the other?

3. What must a user guarantee with respect to a transaction and database consis-
tency? What should a DBMS guarantee with respect to concurrent execution of
several transactions and database consistency?

4. Explain the strict two-phase locking protocol.

5. What is the WAL property, and why is it important?

Introduction to Database Systems)

Answer 1.9 Let us answer each question in turn:

1. A transaction is any one execution of a user program in a DBMS. This is the basic
unit of change in a DBMS.

2. A DBMS is typically shared among many users. Transactions from these users
can be interleaved to improve the execution time of users’ queries. By interleav-
ing queries, users do not have to wait for other user’s transactions to complete
fully before their own transaction begins. Without interleaving, if user A begins
a transaction that will take 10 seconds to complete, and user B wants to be-
gin a transaction, user B would have to wait an additional 10 seconds for user
A’s transaction to complete before the database would begin processing user B’s
request.

3. A user must guarantee that his or her transaction does not corrupt data or insert
nonsense in the database. For example, in a banking database, a user must guar-
antee that a cash withdraw transaction accurately models the amount a person
removes from his or her account. A database application would be worthless if
a person removed 20 dollars from an ATM but the transaction set their balance
to zerol A DBMS must guarantee that transactions are executed fully and in-
dependently of other transactions. An essential property of a DBMS is that a
transaction should execute atomically, or as if it is the only transaction running.
Also, transactions will either complete fully, or will be aborted and the database
returned to it’s initial state. This ensures that the database remains consistent.

4. Strict two-phase locking uses shared and exclusive locks to protect data. A trans-
action must hold all the required locks before executing, and does not release any
lock until the transaction has completely finished.

5. The WAL property affects the logging strategy in a DBMS. The WAL, Write-
Ahead Log, property states that each write action must be recorded in the log
(on disk) before the corresponding change is reflected in the database itself. This
protects the database from system crashes that happen during a transaction’s
execution. By recording the change in a log before the change is truly made, the
database knows to undo the changes to recover from a system crash. Otherwise,
if the system crashes just after making the change in the database but before
the database logs the change, then the database would not be able to detect his
change during crash recovery.

INTRODUCTION TO DATABASE
DESIGN

Exercise 2.1 Explain the following terms briefly: attribute, domain, entity, relation-
ship, entity set, relationship set, one-to-many relationship, many-to-many relationship,
participation constraint, overlap constraint, covering constraint, weak entity set, aggre-
gation, and role indicator.

Answer 2.1 Term explanations:

m Attribute - a property or description of an entity. A toy department employee
entity could have attributes describing the employee’s name, salary, and years of
service.

m Domain - a set of possible values for an attribute.

®m FEntity - an object in the real world that is distinguishable from other objects such
as the green dragon toy.

m Relationship - an association among two or more entities.

m FEntity set - a collection of similar entities such as all of the toys in the toy depart-
ment.

®m Relationship set - a collection of similar relationships

m One-to-many relationship - a key constraint that indicates that one entity can be
associated with many of another entity. An example of a one-to-many relationship
is when an employee can work for only one department, and a department can
have many employees.

m Many-to-many relationship - a key constraint that indicates that many of one
entity can be associated with many of another entity. An example of a many-
to-many relationship is employees and their hobbies: a person can have many
different hobbies, and many people can have the same hobby.

Introduction to Database Design 7

m Participation constraint - a participation constraint determines whether relation-
ships must involve certain entities. An example is if every department entity has
a manager entity. Participation constraints can either be total or partial. A total
participation constraint says that every department has a manager. A partial
participation constraint says that every employee does not have to be a manager.

m Querlap constraint - within an ISA hierarchy, an overlap constraint determines
whether or not two subclasses can contain the same entity.

m Covering constraint - within an ISA hierarchy, a covering constraint determines
where the entities in the subclasses collectively include all entities in the superclass.
For example, with an Employees entity set with subclasses HourlyEmployee and
SalaryEmployee, does every Employee entity necessarily have to be within either
HourlyEmployee or SalaryEmployee?

m Weak entity set - an entity that cannot be identified uniquely without considering
some primary key attributes of another identifying owner entity. An example is
including Dependent information for employees for insurance purposes.

m Aggregation - a feature of the entity relationship model that allows a relationship
set to participate in another relationship set. This is indicated on an ER diagram
by drawing a dashed box around the aggregation.

® Role indicator - If an entity set plays more than one role, role indicators describe
the different purpose in the relationship. An example is a single Employee entity
set with a relation Reports-To that relates supervisors and subordinates.

Exercise 2.2 A university database contains information about professors (identified
by social security number, or SSN) and courses (identified by courseid). Professors
teach courses; each of the following situations concerns the Teaches relationship set. For
each situation, draw an ER diagram that describes it (assuming no further constraints
hold).

1. Professors can teach the same course in several semesters, and each offering must
be recorded.

2. Professors can teach the same course in several semesters, and only the most
recent such offering needs to be recorded. (Assume this condition applies in all
subsequent questions.)

3. Every professor must teach some course.
4. Every professor teaches exactly one course (no more, no less).

5. Every professor teaches exactly one course (no more, no less), and every course
must be taught by some professor.

8 CHAPTER 2

6. Now suppose that certain courses can be taught by a team of professors jointly,
but it is possible that no one professor in a team can teach the course. Model this
situation, introducing additional entity sets and relationship sets if necessary.

Answer 2.2 Answer omitted.

Exercise 2.3 Consider the following information about a university database:

m Professors have an SSN, a name, an age, a rank, and a research specialty.

m Projects have a project number, a sponsor name (e.g., NSF), a starting date, an
ending date, and a budget.

m Graduate students have an SSN, a name, an age, and a degree program (e.g., M.S.
or Ph.D.).

m Each project is managed by one professor (known as the project’s principal inves-
tigator).

m Each project is worked on by one or more professors (known as the project’s
co-investigators).

m Professors can manage and/or work on multiple projects.

s Each project is worked on by one or more graduate students (known as the
project’s research assistants).

m When graduate students work on a project, a professor must supervise their work
on the project. Graduate students can work on multiple projects, in which case
they will have a (potentially different) supervisor for each one.

m Departments have a department number, a department name, and a main office.
m Departments have a professor (known as the chairman) who runs the department.

m Professors work in one or more departments, and for each department that they
work in, a time percentage is associated with their job.

m Graduate students have one major department in which they are working on their
degree.

m Each graduate student has another, more senior graduate student (known as a
student advisor) who advises him or her on what courses to take.

Design and draw an ER diagram that captures the information about the university.
Use only the basic ER model here; that is, entities, relationships, and attributes. Be
sure to indicate any key and participation constraints.

Introduction to Database Design

budget
deg_prog

project
Graduate

Supervises

work_in

Professor
Dept

@?

rank

Figure 2.1 ER Diagram for Exercise 2.3

10 CHAPTER 2

Answer 2.3 The ER diagram is shown in Figure 2.1.

Exercise 2.4 A company database needs to store information about employees (iden-
tified by ssn, with salary and phone as attributes), departments (identified by dno,
with dname and budget as attributes), and children of employees (with name and age
as attributes). Employees work in departments; each department is managed by an
employee; a child must be identified uniquely by name when the parent (who is an
employee; assume that only one parent works for the company) is known. We are not
interested in information about a child once the parent leaves the company.

Draw an ER diagram that captures this information.

Answer 2.4 Answer omitted.

Exercise 2.5 Notown Records has decided to store information about musicians who
perform on its albums (as well as other company data) in a database. The company
has wisely chosen to hire you as a database designer (at your usual consulting fee of
$2500/day).

m FEach musician that records at Notown has an SSN, a name, an address, and
a phone number. Poorly paid musicians often share the same address, and no
address has more than one phone.

m FEach instrument used in songs recorded at Notown has a unique identification
number, a name (e.g., guitar, synthesizer, flute) and a musical key (e.g., C, B-flat,
E-flat).

m Each album recorded on the Notown label has a unique identification number, a
title, a copyright date, a format (e.g., CD or MC), and an album identifier.

m Each song recorded at Notown has a title and an author.

m Each musician may play several instruments, and a given instrument may be
played by several musicians.

m Each album has a number of songs on it, but no song may appear on more than
one album.

m FEach song is performed by one or more musicians, and a musician may perform a
number of songs.

m FEach album has exactly one musician who acts as its producer. A musician may
produce several albums, of course.

—_

Introduction to Database Design 1

=]
[
f<5]
Qo
w
8
8 4 '
L | = 4
<
| | k=) 8 <
! I T = £ g §
= s < S
| | = S a2 »
! | 3 <
| | =
£
| o 2 ! 3
I ol 2 | ©
| 213 |
| o
< D !
! [=% ~ |
! |
! |
! I
! |
! |
| | _
I I 8
I I 3
! I <]
| | o
|
! |
! |
! |
! |
! |
| ‘ ‘ g
| | 2
I | —
! |
! |
| ﬁ © |
| g |
! 5 o |
C\ 8 ‘ 2 5
| | s 5
| (=] =]
! I 3 7]
| | s =
! |
! |
! |
! |
L e e e e 4

Figure 2.2 ER Diagram for Exercise 2.5

Design a conceptual schema for Notown and draw an ER diagram for your schema.
The preceding information describes the situation that the Notown database must
model. Be sure to indicate all key and cardinality constraints and any assumptions
you make. Identify any constraints you are unable to capture in the ER diagram and
briefly explain why you could not express them.

Answer 2.5 The ER diagram is shown in Figure 2.2.

12 CHAPTER 2

Exercise 2.6 Computer Sciences Department frequent fliers have been complaining to
Dane County Airport officials about the poor organization at the airport. As a result,
the officials decided that all information related to the airport should be organized
using a DBMS, and you have been hired to design the database. Your first task is
to organize the information about all the airplanes stationed and maintained at the
airport. The relevant information is as follows:

m Every airplane has a registration number, and each airplane is of a specific model.

m The airport accommodates a number of airplane models, and each model is iden-
tified by a model number (e.g., DC-10) and has a capacity and a weight.

® A number of technicians work at the airport. You need to store the name, SSN,
address, phone number, and salary of each technician.

m Each technician is an expert on one or more plane model(s), and his or her exper-
tise may overlap with that of other technicians. This information about technicians
must also be recorded.

m Traffic controllers must have an annual medical examination. For each traffic
controller, you must store the date of the most recent exam.

m All airport employees (including technicians) belong to a union. You must store
the union membership number of each employee. You can assume that each
employee is uniquely identified by a social security number.

m The airport has a number of tests that are used periodically to ensure that air-
planes are still airworthy. Each test has a Federal Aviation Administration (FAA)
test number, a name, and a maximum possible score.

m The FAA requires the airport to keep track of each time a given airplane is tested
by a given technician using a given test. For each testing event, the information
needed is the date, the number of hours the technician spent doing the test, and
the score the airplane received on the test.

1. Draw an ER diagram for the airport database. Be sure to indicate the various
attributes of each entity and relationship set; also specify the key and participation
constraints for each relationship set. Specify any necessary overlap and covering
constraints as well (in English).

2. The FAA passes a regulation that tests on a plane must be conducted by a tech-
nician who is an expert on that model. How would you express this constraint in
the ER diagram? If you cannot express it, explain briefly.

Answer 2.6 Answer omitted.

Introduction to Database Design 13

Exercise 2.7 The Prescriptions-R-X chain of pharmacies has offered to give you a
free lifetime supply of medicine if you design its database. Given the rising cost of
health care, you agree. Here’s the information that you gather:

= Patients are identified by an SSN, and their names, addresses, and ages must be
recorded.

m Doctors are identified by an SSN. For each doctor, the name, specialty, and years
of experience must be recorded.

m FEach pharmaceutical company is identified by name and has a phone number.

m For each drug, the trade name and formula must be recorded. Each drug is
sold by a given pharmaceutical company, and the trade name identifies a drug
uniquely from among the products of that company. If a pharmaceutical company
is deleted, you need not keep track of its products any longer.

m Each pharmacy has a name, address, and phone number.
m Every patient has a primary physician. Every doctor has at least one patient.

m Each pharmacy sells several drugs and has a price for each. A drug could be sold
at several pharmacies, and the price could vary from one pharmacy to another.

m Doctors prescribe drugs for patients. A doctor could prescribe one or more drugs
for several patients, and a patient could obtain prescriptions from several doctors.
Each prescription has a date and a quantity associated with it. You can assume
that, if a doctor prescribes the same drug for the same patient more than once,
only the last such prescription needs to be stored.

m Pharmaceutical companies have long-term contracts with pharmacies. A phar-
maceutical company can contract with several pharmacies, and a pharmacy can
contract with several pharmaceutical companies. For each contract, you have to
store a start date, an end date, and the text of the contract.

m Pharmacies appoint a supervisor for each contract. There must always be a super-
visor for each contract, but the contract supervisor can change over the lifetime
of the contract.

1. Draw an ER diagram that captures the preceding information. Identify any con-
straints not captured by the ER diagram.

2. How would your design change if each drug must be sold at a fixed price by all
pharmacies?

3. How would your design change if the design requirements change as follows: If a
doctor prescribes the same drug for the same patient more than once, several such
prescriptions may have to be stored.

CHAPTER 2

Conm D Coman

E =T Com >

Patient Pri_physician Doctor

date

Prescription

Pharmacy | . Drig |— o
start_date @

end_date Contract

Pharm_co

T

Figure 2.3 ER Diagram for Exercise 2.7

supervisor

Introduction to Database Design 15

Answer 2.7 1. The ER diagram is shown in Figure 2.3.

2. If the drug is to be sold at a fixed price we can add the price attribute to the Drug
entity set and eliminate the price from the Sell relationship set.

3. The date information can no longer be modeled as an attribute of Prescription.
We have to create a new entity set called Prescription_date and make Prescription
a 4-way relationship set that involves this additional entity set.

Exercise 2.8 Although you always wanted to be an artist, you ended up being an ex-
pert on databases because you love to cook data and you somehow confused database
with data baste. Your old love is still there, however, so you set up a database company,
ArtBase, that builds a product for art galleries. The core of this product is a database
with a schema that captures all the information that galleries need to maintain. Gal-
leries keep information about artists, their names (which are unique), birthplaces, age,
and style of art. For each piece of artwork, the artist, the year it was made, its unique
title, its type of art (e.g., painting, lithograph, sculpture, photograph), and its price
must be stored. Pieces of artwork are also classified into groups of various kinds, for
example, portraits, still lifes, works by Picasso, or works of the 19th century; a given
piece may belong to more than one group. Each group is identified by a name (like
those just given) that describes the group. Finally, galleries keep information about
customers. For each customer, galleries keep that person’s unique name, address, total
amount of dollars spent in the gallery (very important!), and the artists and groups of
art that the customer tends to like.

Draw the ER diagram for the database.

Answer 2.8 Answer omitted.

Exercise 2.9 Answer the following questions.

m Explain the following terms briefly: UML, use case diagrams, statechart dia-
grams, class diagrams, database diagrams, component diagrams, and deployment
diagrams.

m Explain the relationship between ER diagrams and UML.

Answer 2.9 Not yet done.

THE RELATIONAL MODEL

Exercise 3.1 Define the following terms: relation schema, relational database schema,
domain, attribute, attribute domain, relation instance, relation cardinality, and relation
degree.

Answer 3.1 A relation schema can be thought of as the basic information describing
a table or relation. This includes a set of column names, the data types associated
with each column, and the name associated with the entire table. For example, a
relation schema for the relation called Students could be expressed using the following
representation:

Students(sid: string, name: string, login: string,
age: integer, gpa: real)

There are five fields or columns, with names and types as shown above.

A relational database schema is a collection of relation schemas, describing one or more
relations.

Domain is synonymous with data type. Attributes can be thought of as columns in a
table. Therefore, an attribute domain refers to the data type associated with a column.

A relation instance is a set of tuples (also known as rows or records) that each conform
to the schema of the relation.

The relation cardinality is the number of tuples in the relation.
The relation degree is the number of fields (or columns) in the relation.
Exercise 3.2 How many distinct tuples are in a relation instance with cardinality 227

Answer 3.2 Answer omitted.

16

The Relational Model 17

Exercise 3.3 Does the relational model, as seen by an SQL query writer, provide
physical and logical data independence? Explain.

Answer 3.3 The user of SQL has no idea how the data is physically represented in the
machine. He or she relies entirely on the relation abstraction for querying. Physical
data independence is therefore assured. Since a user can define views, logical data
independence can also be achieved by using view definitions to hide changes in the
conceptual schema.

Exercise 3.4 What is the difference between a candidate key and the primary key for
a given relation? What is a superkey?

Answer 3.4 Answer omitted.

FIELDS (ATTRIBUTES, COLUMNYS)

o N

Field names =] sd | name | login | age | gpa

50000 | Dave dave@cs 19 | 33

53666 | Jones jones@cs 18 | 34

TUPLES 53688 | Smith smith@ee 18 | 32
(RECORDS, ROWS) 53650 | Smith smith@math 19 | 38
53831 | Madayan | madayan@music 11| 1.8

53832 | Guldu guldu@music 12 | 2.0

Figure 3.1 An Instance S1 of the Students Relation

Exercise 3.5 Consider the instance of the Students relation shown in Figure 3.1.

1. Give an example of an attribute (or set of attributes) that you can deduce is not
a candidate key, based on this instance being legal.

2. Is there any example of an attribute (or set of attributes) that you can deduce is
a candidate key, based on this instance being legal?

Answer 3.5 Examples of non-candidate keys include the following: {name}, {age}.
(Note that {gpa} can not be declared as a non-candidate key from this evidence alone
even though common sense tells us that clearly more than one student could have the
same grade point average.)

You cannot determine a key of a relation given only one instance of the relation. The
fact that the instance is “legal” is immaterial. A candidate key, as defined here, is a

18 CHAPTER 3

key, not something that only might be a key. The instance shown is just one possible
“snapshot” of the relation. At other times, the same relation may have an instance (or
snapshot) that contains a totally different set of tuples, and we cannot make predictions
about those instances based only upon the instance that we are given.

Exercise 3.6 What is a foreign key constraint? Why are such constraints important?
What is referential integrity?

Answer 3.6 Answer omitted.

Exercise 3.7 Consider the relations Students, Faculty, Courses, Rooms, Enrolled,
Teaches, and Meets_In defined in Section 1.5.2.

1. List all the foreign key constraints among these relations.

2. Give an example of a (plausible) constraint involving one or more of these relations
that is not a primary key or foreign key constraint.

Answer 3.7 There is no reason for a foreign key constraint (FKC) on the Students,
Faculty, Courses, or Rooms relations. These are the most basic relations and must be
free-standing. Special care must be given to entering data into these base relations.

In the Enrolled relation, sid and cid should both have FKCs placed on them. (Real
students must be enrolled in real courses.) Also, since real teachers must teach real
courses, both the fid and the cid fields in the Teaches relation should have FKCs.
Finally, Meets_In should place FKCs on both the cid and rno fields.

It would probably be wise to enforce a few other constraints on this DBMS: the length
of sid, cid, and fid could be standardized; checksums could be added to these iden-
tification numbers; limits could be placed on the size of the numbers entered into the
credits, capacity, and salary fields; an enumerated type should be assigned to the grade
field (preventing a student from receiving a grade of G, among other things); etc.

Exercise 3.8 Answer each of the following questions briefly. The questions are based
on the following relational schema:

Emp(eid: integer, ename: string, age: integer, salary: real)
Works(eid: integer, did: integer, pcitime: integer)
Dept(did: integer, dname: string, budget: real, managerid: integer)

1. Give an example of a foreign key constraint that involves the Dept relation. What
are the options for enforcing this constraint when a user attempts to delete a Dept
tuple?

The Relational Model 19

2. Write the SQL statements required to create the preceding relations, including
appropriate versions of all primary and foreign key integrity constraints.

3. Define the Dept relation in SQL so that every department is guaranteed to have
a manager.

4. Write an SQL statement to add John Doe as an employee with eid = 101, age = 32
and salary = 15,000.

5. Write an SQL statement to give every employee a 10 percent raise.

6. Write an SQL statement to delete the Toy department. Given the referential
integrity constraints you chose for this schema, explain what happens when this
statement is executed.

Answer 3.8 Answer omitted.

| sid | name | login | age | gpa |
53831 | Madayan | madayan@music | 11 | 1.8
53832 | Guldu guldu@music 12 | 2.0

Figure 3.2 Students with age < 18 on Instance S

Exercise 3.9 Consider the SQL query whose answer is shown in Figure 3.2.

1. Modify this query so that only the login column is included in the answer.

2. If the clause WHERE S.gpa >= 2 is added to the original query, what is the set of
tuples in the answer?

Answer 3.9 The answers are as follows:

1. Only login is included in the answer:

SELECT S.login
FROM Students S
WHERE S.age < 18

2. The answer tuple for Madayan is omitted then.

Exercise 3.10 Explain why the addition of NOT NULL constraints to the SQL defi-
nition of the Manages relation (in Section 3.5.3) does not enforce the constraint that
each department must have a manager. What, if anything, is achieved by requiring
that the ssn field of Manages be non-null?

20 CHAPTER 3

Answer 3.10 Answer omitted.

Exercise 3.11 Suppose that we have a ternary relationship R between entity sets A,
B, and C such that A has a key constraint and total participation and B has a key
constraint; these are the only constraints. A has attributes al and a2, with al being
the key; B and C are similar. R has no descriptive attributes. Write SQL statements
that create tables corresponding to this information so as to capture as many of the
constraints as possible. If you cannot capture some constraint, explain why.

Answer 3.11 The following SQL statements create the corresponding relations.

CREATE TABLE A (al CHAR(10),
a2 CHAR(10),
bl CHAR(10),
cl CHAR(10),

PRIMARY KEY (al),

UNIQUE (bl),

FOREIGN KEY (bl) REFERENCES B,
FOREIGN KEY (cl) REFERENCES C)

CREATE TABLE B (bl CHAR(10),
b2 CHAR(10),
PRIMARY KEY (bl))

CREATE TABLE C (bl CHAR(10),
c2 CHAR(10),
PRIMARY KEY (cl))

The first SQL statement folds the relationship R into table A and thereby guarantees
the participation constraint.

Exercise 3.12 Consider the scenario from Exercise 2.2, where you designed an ER
diagram for a university database. Write SQL statements to create the corresponding
relations and capture as many of the constraints as possible. If you cannot capture
some constraints, explain why.

Answer 3.12 Answer omitted.

Exercise 3.13 Consider the university database from Exercise 2.3 and the ER dia-
gram you designed. Write SQL statements to create the corresponding relations and
capture as many of the constraints as possible. If you cannot capture some constraints,
explain why.

The Relational Model

21

Answer 3.13 The following SQL statements create the corresponding relations.

1. CREATE TABLE Professors (

2. CREATE TABLE Depts (

3. CREATE TABLE Rumns (

4. CREATE TABLE Work Dept (

prof_ssn CHAR(10),

name CHAR(64),
age INTEGER,
rank INTEGER,

speciality CHAR(64),
PRIMARY KEY (prof_ssn))

dno INTEGER,
dname CHAR(64),
office CHAR(10),

PRIMARY KEY (dno))

dno INTEGER,

prof_ssn CHAR(10),

PRIMARY KEY (dno, prof_ssn),

FOREIGN KEY (prof_ssn) REFERENCES Professors,
FOREIGN KEY (dno) REFERENCES Depts)

dno INTEGER,

prof_ssn CHAR(10),

pc_time INTEGER,

PRIMARY KEY (dno, prof_ssn),

FOREIGN KEY (prof_ssn) REFERENCES Professors,

FOREIGN KEY (dno) REFERENCES Depts)

Observe that we would need check constraints or assertions in SQL to enforce the
rule that Professors work in at least one department.

5. CREATE TABLE Project (

6. CREATE TABLE Graduates (

pid INTEGER,
sponsor CHAR(32),
start_dateDATE,
end_date DATE,
budget FLOAT,
PRIMARY KEY (pid))

grad_ssn CHAR(10),
age INTEGER,

name CHAR(64),
deg_prog CHAR(32),

22 CHAPTER 3

major INTEGER,
PRIMARY KEY (grad._ssn),
FOREIGN KEY (major) REFERENCES Depts)

Note that the Major table is not necessary since each Graduate has only one major
and so this can be an attribute in the Graduates table.

7. CREATE TABLE Advisor (senior_ssn CHAR(10),
grad_ssn CHAR(10),
PRIMARY KEY (senior_ssn, grad_ssn),
FOREIGN KEY (senior_ssn)
REFERENCES Graduates (grad_ssn),
FOREIGN KEY (grad_ssn) REFERENCES Graduates)

8. CREATE TABLE Manages (pid INTEGER,
prof_ssn CHAR(10),
PRIMARY KEY (pid, prof_ssn),
FOREIGN KEY (prof_ssn) REFERENCES Professors,
FOREIGN KEY (pid) REFERENCES Projects)

9. CREATE TABLE Work In (pid INTEGER,
prof_ssn CHAR(10),
PRIMARY KEY (pid, prof_ssn),
FOREIGN KEY (prof_ssn) REFERENCES Professors,
FOREIGN KEY (pid) REFERENCES Projects)

Observe that we cannot enforce the participation constraint for Projects in the
Work_In table without check constraints or assertions in SQL.

10. CREATE TABLE Supervises (prof_ssn CHAR(10),
grad_ssn CHAR(10),
pid INTEGER,
PRIMARY KEY (prof_ssn, grad_ssn, pid),
FOREIGN KEY (prof_ssn) REFERENCES Professors,
FOREIGN KEY (grad.ssn) REFERENCES Graduates,
FOREIGN KEY (pid) REFERENCES Projects)

Note that we do not need an explicit table for the Work_Proj relation since every
time a Graduate works on a Project, he or she must have a Supervisor.

Exercise 3.14 Consider the scenario from Exercise 2.4, where you designed an ER
diagram for a company database. Write SQL statements to create the corresponding

The Relational Model 23

relations and capture as many of the constraints as possible. If you cannot capture
some constraints, explain why.

Answer 3.14 Answer omitted.

Exercise 3.15 Consider the Notown database from Exercise 2.5. You have decided
to recommend that Notown use a relational database system to store company data.
Show the SQL statements for creating relations corresponding to the entity sets and
relationship sets in your design. Identify any constraints in the ER diagram that you
are unable to capture in the SQL statements and briefly explain why you could not
express them.

Answer 3.15 The following SQL statements create the corresponding relations.

1. CREATE TABLE Musicians (ssn CHAR(10),
name CHAR(30),
PRIMARY KEY (ssn))

2. CREATE TABLE Instruments (instrId CHAR(10),
dname CHAR(30),
key CHAR(5),
PRIMARY KEY (instrId))

3. CREATE TABLE Plays (ssn CHAR(10),
instrld INTEGER,
PRIMARY KEY (ssn, instrld),
FOREIGN KEY (ssn) REFERENCES Musicians,
FOREIGN KEY (instrId) REFERENCES Instruments)

4. CREATE TABLE Songs_Appears (songld INTEGER,
author CHAR (30),
title CHAR.(30),

albumlIdentifier INTEGER NOT NULL,
PRIMARY KEY (songld),
FOREIGN KEY (albumldentifier)

References Album_Producer,

5. CREATE TABLE Telephone_Home (phone CHAR(11),
address CHAR (30),
PRIMARY KEY (phone),
FOREIGN KEY (address) REFERENCES Place,

24 CHAPTER 3

6. CREATE TABLE Lives (ssn CHAR(10),
phone CHAR(11),
address CHAR(30),
PRIMARY KEY (ssn, address),
FOREIGN KEY (phone, address)
References Telephone_Home,
FOREIGN KEY (ssn) REFERENCES Musicians)

7. CREATE TABLE Place (address CHAR(30))

8. CREATE TABLE Perform (songld INTEGER,
ssn CHAR(10),
PRIMARY KEY (ssn, songld),
FOREIGN KEY (songld) REFERENCES Songs,
FOREIGN KEY (ssn) REFERENCES Musicians)

9. CREATE TABLE Album Producer (albumldentifier INTEGER,

ssn CHAR(10),
copyrightDate DATE,
speed INTEGER,
title CHAR(30),

PRIMARY KEY (albumlIdentifier),
FOREIGN KEY (ssn) REFERENCES Musicians)

Exercise 3.16 Translate your ER diagram from Exercise 2.6 into a relational schema,
and show the SQL statements needed to create the relations, using only key and null
constraints. If your translation cannot capture any constraints in the ER diagram,
explain why.

In Exercise 2.6, you also modified the ER diagram to include the constraint that tests
on a plane must be conducted by a technician who is an expert on that model. Can
you modify the SQL statements defining the relations obtained by mapping the ER
diagram to check this constraint?

Answer 3.16 Answer omitted.
Exercise 3.17 Consider the ER diagram that you designed for the Prescriptions-R-X

chain of pharmacies in Exercise 2.7. Define relations corresponding to the entity sets
and relationship sets in your design using SQL.

The Relational Model 25

Answer 3.17 The statements to create tables corresponding to entity sets Doctor,
Pharmacy, and Pharm_co are straightforward and omitted. The other required tables
can be created as follows:

1. CREATE TABLE Pri_Phy_Patient (ssn CHAR(11),
name CHAR (20),
age INTEGER,

address CHAR (20),

phy_ssn CHAR(11),

PRIMARY KEY (ssn),

FOREIGN KEY (phy_ssn) REFERENCES Doctor)

2. CREATE TABLE Prescription (ssn CHAR(11),
phy_ssn CHAR(11),
date CHAR(11),

quantity INTEGER,

trade_name CHAR(20),

pharm.id CHAR(11),

PRIMARY KEY (ssn, phy_ssn),

FOREIGN KEY (ssn) REFERENCES Patient,

FOREIGN KEY (phy_ssn) REFERENCES Doctor,

FOREIGN KEY (trade_name, pharm_id)
References Make_Drug)

3. CREATE TABLE Make Drug (trade_name CHAR(20),
pharm_id CHAR(11),
PRIMARY KEY (tradename, pharm_id),
FOREIGN KEY (trade_name) REFERENCES Drug,
FOREIGN KEY (pharm-id) REFERENCES Pharm_co)

4. CREATE TABLE Sell (price INTEGER,
name CHAR(10),
trade_name CHAR(10),
PRIMARY KEY (name, trade_name),
FOREIGN KEY (name) REFERENCES Pharmacy,
FOREIGN KEY (trade_name) REFERENCES Drug)

5. CREATE TABLE Contract (mname CHAR(20),
pharm_id CHAR(11),
start_date =~ CHAR(11),
end_date CHAR(11),

