
Michael Kifer, Arthur Bernstein, Philip M. Lewis

Solutions Manual

Copyright (C) 2006 by Pearson Education, Inc.
For information on obtaining permission for use of material in this work, please

submit a written request to Pearson Education, Inc., Rights and Contract Department,
75 Arlington Street, Suite 300, Boston, MA 02116 or fax your request to (617) 848-7047.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or any other media embodiments now known or hereafter to
become known, without the prior written permission of the publisher. Printed in the
United States of America.

Contents

PART ONE Introduction 1

1 Overview of Databases and Transactions 3

Exercises 3

2 The Big Picture 5

Exercises 5

PART TWO Database Management 13

3 The Relational Data Model 15

Exercises 15

4 Conceptual Modeling of Databases with Entity-Relationship
Diagrams and the Unified Modeling Language 25

Exercises 25

5 Relational Algebra and SQL 39

Exercises 39

6 Database Design with the Relational Normalization Theory 57

Exercises 57

7 Triggers and Active Databases 71

Exercises 71

iv Contents

8 Using SQL in an Application 77

Exercises 77

PART THREE Optimizing DBMS Performance 81

9 Physical Data Organization and Indexing 83

Exercises 83

10 The Basics of Query Processing 95

Exercises 95

11 An Overview of Query Optimization 103

Exercises 103

12 Database Tuning 115

Exercises 115

PART FOUR Advanced Topics in Databases 125

13 Relational Calculus, Visual Query Languages,
and Deductive Databases 127

Exercises 127

14 Object Databases 145

Exercises 145

15 XML and Web Data 163

Exercises 163

16 Distributed Databases 201

Exercises 201

17 OLAP and Data Mining 207

Exercises 207

Contents v

PART FIVE Transaction Processing 217

18 ACID Properties of Transactions 219

Exercises 219

19 Models of Transactions 225

Exercises 225

20 Implementing Isolation 231

Exercises 231

21 Isolation in Relational Databases 247

Exercises 247

22 Atomicity and Durability 261

Exercises 261

PART SIX Distributed Applications and the Web 267

23 Architecture of Transaction Processing Systems 269

Exercises 269

24 Implementing Distributed Transactions 275

Exercises 275

25 Web Services 285

Exercises 285

26 Security and Electronic Commerce 301

Exercises 301

A An Overview of Transaction Processing A-1

Exercises A-1

vi Contents

B Requirements and Specifications B-1

Exercises B-1

C Design, Coding, and Testing C-1

Exercises C-1

PART ONE

Introduction

1
Overview of Databases

and Transactions

EXERCISES

This chapter has no exercises.

2
The Big Picture

EXERCISES

2.1 Design the following two tables (in addition to that in Figure 2.1) that might be used
in the Student Registration System. Note that the same student Id might appear in
many rows of each of these tables.

a. A table implementing the relation CoursesRegisteredFor, relating a student’s
Id and the identifying numbers of the courses for which she is registered

Solution:

Id CrsCode

111111111 CSE515

111111111 CSE505

111111111 CSE532

666666666 CSE532

666666666 CSE541

111223344 CSE504

987654321 CSE504

023456789 CSE515

123454321 CSE505

b. A table implementing the relation CoursesTaken, relating a student’s Id, the
identifying numbers of the courses he has taken, and the grade received in each
course

Solution:

Id CrsCode Grade

111111111 CSE501 A

6 CHAPTER 2 The Big Picture

111111111 CSE533 B+

666666666 CSE505 A-

666666666 CSE541 C

111223344 CSE533 B-

987654321 CSE515 B+

023456789 CSE505 A

123454321 CSE532 B+

Specify the predicate corresponding to each of these tables.

Solution:
For the first table: Student X is registered for Course Y
For the second table: Student X has taken Course Y and gotten Grade Z

2.2 Write an SQL statement that

a. Returns the Ids of all seniors in the table Student

Solution:

SELECT S.Id
FROM Student
WHERE S.Status = ’senior’

b. Deletes all seniors from Student

Solution:

DELETE

FROM Student S
WHERE S.Status = ’senior’

c. Promotes all juniors in the table Student to seniors

Solution:

UPDATE Student S
SET S.Status = ’senior’
WHERE S.Status = ’junior’

2.3 Write an SQL statement that creates the Transcript table.

Solution:

Exercises 7

CREATE TABLE Transcript (
StudId INTEGER,
CrsCode CHAR(6),
Semester CHAR(6),
Grade CHAR(1),
PRIMARY KEY (StudId, CrsCode, Semester))

2.4 Using the Transcript table, write an SQL statement that

a. Deregisters the student with Id = 123456789 from the course CS305 for the fall of
2001

Solution:

DELETE

FROM Transcript
WHERE StudId = ’123456789’

AND CrsCode = ’CS305’ AND Semester = ’F2001’

b. Changes to an A the grade assigned to the student with Id = 123456789 for the
course CS305 taken in the fall of 2000

Solution:

UPDATE Transcript
SET Grade = ’A’
WHERE StudId = ’123456789’

AND CrsCode = ’CS305’ AND Semester =’F2000’

c. Returns the Id of all students who took CS305 in the fall of 2000

Solution:

SELECT StudId
FROM Transcript
WHERE CrsCode = ’CS305’ AND Semester = ’F2000’

� 2.5 Given the relation Married that consists of tuples of the form 〈a, b〉, where a is the
husband and b is the wife, the relation Brother that has tuples of the form 〈c, d〉,
where c is the brother of d , and the relation Sibling, which has tuples of the form
〈e, f 〉, where e and f are siblings, use SQL to define the relation Brother-In-Law,
where tuples have the form 〈x , y〉 with x being the brother-in-law of y.
(Hint : This query can be represented as a union of three separate SQL queries. SQL
provides the operator UNION to achieve this effect.)

8 CHAPTER 2 The Big Picture

Solution:
The first SQL query, below, describes the situation where someone is the brother of the
wife and hence the brother-in-law of the husband. The second disjunct describes the
situation where someone is the brother of the husband and hence the brother-in-law
of the wife. The third disjunct describes the situation where, someone is the husband
and hence the brother-in-law of all the wife’s brothers and sisters.

(SELECT Brother.col1, Married.col1
FROM Married, Brother

WHERE Brother.col2 = Married.col2)
UNION

(SELECT Brother.col1, Married.col2
FROM Married, Brother

WHERE Brother.col2 = Married.col1)
UNION

(SELECT Married.col1, Sibling.col2
FROM Married, Sibling

WHERE Sibling.col1 = Married.col2)

2.6 Write an SQL statement that returns the names (not the Ids) of all students who
received an A in CS305 in the fall of 2000.

Solution:

SELECT Name
FROM Student, Transcript
WHERE StudId = Id AND Grade = ’A’

AND CrsCode = ’CS305’ AND Semester = ’F2000’

2.7 State whether or not each of the following statements could be an integrity constraint of
a checking account database for a banking application. Give reasons for your answers.

a. The value stored in the balance column of an account is greater than or equal to
$0.

Solution:
Yes. It describes a constraint on a snapshot of the database.

b. The value stored in the balance column of an account is greater than it was last
week at this time.

Solution:
No. It does not describe a snapshot.

c. The value stored in the balance column of an account is $128.32.

Solution:
No. The balance will change.

Exercises 9

d. The value stored in the balance column of an account is a decimal number with
two digits following the decimal point.

Solution:
Yes. It is a domain constraint.

e. The social_security_number column of an account is defined and contains a
nine-digit number.

Solution:
Yes. It is a domain constraint.

f. The value stored in the check_credit_in_use column of an account is less than or
equal to the value stored in the total_approved_check_credit column. (These
columns have their obvious meanings.)

Solution:
Yes. It describes a constraint on a snapshot

2.8 State five integrity constraints, other than those given in the text, for the database in
the Student Registration System.

Solution:

1. The courses for which the student enrolled (registered) must be offered this
semester(next semester).

2. An instructor cannot be assigned to two courses taught at the same time in the
same semester.

3. Two courses are not taught in the same room at the same time in a given semester.
4. No student must be registered (enrolled) in two courses taught at the same hour.
5. No student must be allowed to register for more than 20 credits in a given semester.
6. The room assigned to a course must have at least as many seats as the maximum

allowed enrollment for the course.

2.9 Give an example in the Student Registration System where the database satisfies the
integrity constraints IC0–IC3 but its state does not reflect the state of the real world.

Solution:
We register a student, but do not change the database.

2.10 State five (possible) integrity constraints for the database in an airline reservation
system.

Solution:

1. The flight for which a person makes a reservation must be on the schedule.
2. The number of reservations on each flight must not exceed the number of seats on

the plane.
3. A passenger cannot order two meals
4. The number of meals ordered must equal the number of passengers who ordered

meals
5. The same seat on the plane must not be reserved for two passengers.

10 CHAPTER 2 The Big Picture

2.11 A reservation transaction in an airline reservation system makes a reservation on a
flight, reserves a seat on the plane, issues a ticket, and debits the appropriate credit
card account. Assume that one of the integrity constraints of the reservation database
is that the number of reservations on each flight does not exceed the number of seats
on the plane. (Of course, many airlines purposely over-book and so do not use this
integrity constraint.) Explain how transactions running on this system might violate

a. Atomicity

Solution:
A passenger makes a reservation and reserves a seat. The transaction records the
reservation, but the system crashes before it records the seat reservation.

b. Consistency

Solution:
Flight is over-booked (More reservations are made than there are seats on the
airplane.)

c. Isolation

Solution:
The same seat is given to two people because of a particular interleaving of the
reservation transactions.

d. Durability

Solution:
A reservation is made; the system crashes; the system forgets the reservation

2.12 Describe informally in what ways the following events differ from or are similar to
transactions with respect to atomicity and durability.

a. A telephone call from a pay phone (Consider line busy, no answer, and wrong
number situations. When does this transaction “commit?”)

Solution:
Commit occurs when caller hangs up. Billing information is durable. For line busy or
no answer, the transaction aborts. For a wrong number the transaction commits, but
later is compensated for by returning the callers money (Read about compensation
later in the book,)

b. A wedding ceremony (Suppose that the groom refuses to say “I do.” When does
this transaction “commit?”)

Solution:
Commit occurs when license is signed. Marriage is durable (hopefully).

c. The purchase of a house (Suppose that, after a purchase agreement is signed, the
buyer is unable to obtain a mortgage. Suppose that the buyer backs out during
the closing. Suppose that two years later the buyer does not make the mortgage
payments and the bank forecloses.)

Solution:
Various levels of commit; Every time someone signs something. For example, when
purchaser makes an offer to purchase and includes a deposit, he is committed to

Exercises 11

either purchase the house at that price (assuming he is approved for the mortgage) or
forfeit the deposit. If he is not approved for the mortgage, he is no longer committed
to purchase the house and gets his deposit back. If he does not pay his mortgage
payment the transaction is compensated for when the bank forecloses.

d. A baseball game (Suppose that it rains.)

Solution:
Commit occurs after game is official. If it rains before the game is official, the game
is aborted.

2.13 Assume that, in addition to storing the grade a student has received in every course he
has completed, the system stores the student’s cumulative GPA. Describe an integrity
constraint that relates this information. Describe how the constraint would be violated
if the transaction that records a new grade were not atomic.

Solution:
The integrity constraint is that the GPA stored in the database is the GPA of the
course grades stored. That constraint could be violated if a transaction updated a
course grade and aborted before it could update the GPA.

2.14 Explain how a lost update could occur if, under the circumstances of the previous
problem, two transactions that were recording grades for a particular student (in
different courses) were run concurrently.

Solution:
The first transaction reads the course grades before the second updated its grade and
then updates the GPA. The second transaction reads the course grades before the first
updated its grade and then updates the GPA. The first update of the GPA is lost and
the final one is incorrect.

PART TWO

Database Management

3
The Relational Data Model

EXERCISES

3.1 Define data atomicity as it relates to the definition of relational databases. Contrast
data atomicity with transaction atomicity as used in a transaction processing system.

Solution:
These concepts are not related. Data atomicity means that the relational model does
not specify any means for looking into the internal structure of the values, so they
appear as indivisible to the relational operators. Transaction atomicity means that
the system must ensure that either the transaction runs to completion or, if it does
not complete, it has no effect at all. It does not mean that the transaction must be
indivisible, but it is a type of all-or-none execution.

3.2 Prove that every relation has a key.

Solution:
Since relations are sets and, thus, cannot have identical elements, the set of all
attributes in a relation must be a superkey. If this is not a minimal superkey, some
strict subset of it must also be a superkey. Since the number of the attributes in every
relation is finite, we will eventually get a minimal superkey, i.e., a key of the relation.

3.3 Define the following concepts:

a. Key

Solution:
A key, key(K̄), associated with a relation schema, S, is a minimal (by inclusion)
subset K̄ of attributes of S with the following property: An instance s of S satisfies
key(K̄) if it does not contain a pair of distinct tuples whose values agree on all of
the attributes in K̄ .

b. Candidate key

Solution:
Every key of a relation is also called a candidate key for that relation

c. Primary key

Solution:
One of the keys of a relation is designated as primary key.

16 CHAPTER 3 The Relational Data Model

d. Superkey

Solution:
A superkey is a set of attributes in a relation that contains a key of that relation

3.4 Define

a. Integrity constraint

Solution:
An integrity constraint is an application-specific restriction on the tuples in one or
several relations.

b. Static, as compared with dynamic, integrity constraint

Solution:
Static integrity constraints restrict the legal instances of a database. Examples
of static ICs are domain constraints, key constraints, foreign-key constraints, etc.
Dynamic integrity constraints restrict the evolution (over time) of legal instances of
a database, for instance, a salary increase should not exceed 5%.

c. Referential integrity

Solution:
A referential integrity constraint is a requirement that the referenced tuple must
exist.

d. Reactive constraint

Solution:
A reactive constraint is a static constraint with a trigger attached. The trigger
specifies what to do if the constraint is violated by an update.

e. Inclusion dependency

Solution:
An inclusion dependency is a statement “S(F̄) references T(K̄)”, which states that
for every tuple s ∈ s, there is a tuple t ∈ t that has the same values over the attributes
in K̄ as does s over the corresponding attributes in F̄ .

f. Foreign-key constraint

Solution:
A foreign-key constraint is an inclusion dependency in which the set of attributes
referred to is a candidate key in the referenced relation.

3.5 Looking at the data that happens to be stored in the tables for a particular application
at some particular time, explain whether or not you can tell

a. What the key constraints for the tables are

Solution:
No, in one particular instance of the table, a particular attribute might uniquely
identify the rows (and thus appear to be a key), but in other instances it might not.

b. Whether or not a particular attribute forms a key for a particular table

Exercises 17

Solution:
You cannot tell whether a particular attribute is a key (for the reasons mentioned
in (a)), but you can sometimes tell that a particular attribute cannot form a key by
itself (if two distinct rows have the same value over that attribute).

c. What the integrity constraints for the application are

Solution:
No. Again, one cannot determine integrity constraints just by looking at database
instances.

d. Whether or not a particular set of integrity constraints is satisfied

Solution:
Yes. Simply check if every constraint in the set is satisfied in the given instance.

3.6 We state in the book that once constraints have been specified in the schema, it is the
responsibility of the DBMS to make sure that they are not violated by the execution
of any transactions. SQL allows the application to control when each constraint is
checked. If a constraint is in immediate mode, it is checked immediately after the
execution of any SQL statement in a transaction that might make it false. If it is in
deferred mode, it is not checked until the transaction requests to commit. Give an
example where it is necessary for a constraint to be in deferred mode.

Solution:
Suppose the constraint states that the value of one attribute, A, is the sum of the
values of two other attributes, B and C . If we want to increment the value of B , we
must also increment the value of A in the same transaction. But no matter in what
order we do the incrementing, the constraint will be false between the two statements
that do the incrementing, and if we used immediate mode checking, the transaction
would abort when the first increment statement was attempted.

3.7 Suppose we do not require that all attributes in the primary key are non-null and
instead request that, in every tuple, at least one key (primary or candidate) does not
have nulls in it. (Tuples can have nulls in other places and the non-null key can be
different for different tuples.) Give an example of a relational instance that has two
distinct tuples that might become one once the values for all nulls become known (that
is, are replaced with real values). Explain why this is not possible when one key (such
as the primary key) is designated to be non-null for all tuples in the relation.

Solution:
Let the relation have attributes A and B, each of which is a key. The tuples can be
〈a, NULL〉 and 〈NULL, b〉. If the first NULL becomes b and the second a then these
tuples become the same.

If all tuples are non-NULL over the same key, then they must differ over that key
somewhere and thus they cannot become the same regardless of what is substituted
for nulls in other places.

3.8 Use SQL DDL to specify the schema of the Student Registration System fragment
shown in Figure 3.4, including the constraints in Figure 3.6 and Example 3.2.2. Specify
SQL domains for attributes with small numbers of values, such as DeptId and Grade.

18 CHAPTER 3 The Relational Data Model

Solution:

CREATE TABLE Student (
Id INTEGER,
Name CHAR(20),
Address CHAR(50),
Status CHAR(10)
PRIMARY KEY (Id))

CREATE TABLE Professor (
ProfId INTEGER,
Name CHAR(20),
DeptId Departments,
PRIMARY KEY (ProfId))

CREATE TABLE Course (
CrsCode CHAR(6),
DeptId Departments,
CrsName CHAR(20),
Descr CHAR(100),
PRIMARY KEY (CrsCode),
UNIQUE (DeptId, CrsName))

CREATE TABLE Transcript (
StudId INTEGER,
CrsCode CHAR(6),
Semester Semesters,
Grade Grades,
PRIMARY KEY (StudId, CrsCode, Semester),
FOREIGN KEY (StudId) REFERENCES Student (Id)

ON DELETE NO ACTION

ON UPDATE CASCADE,
FOREIGN KEY (CrsCode) REFERENCES Course (CrsCode)

ON DELETE NO ACTION

ON UPDATE CASCADE

FOREIGN KEY (CrsCode, Semester) REFERENCES

Teaching (CrsCode, Semester)
ON DELETE NO ACTION

ON UPDATE CASCADE)

Exercises 19

CREATE TABLE Teaching (
ProfId INTEGER,
CrsCode CHAR(6),
Semester Semesters,
PRIMARY KEY (CrsCode, Semester),
FOREIGN KEY (ProfId) REFERENCES Professor(Id)

ON DELETE NO ACTION

ON UPDATE CASCADE,
FOREIGN KEY (CrsCode) REFERENCES Course (CrsCode)

ON DELETE SET NULL

ON UPDATE CASCADE)

The Grades domain is defined in Section 3.3.6. The domain of departments is
defined below.

CREATE DOMAIN Departments CHAR(3)
CHECK (VALUE IN (’CS’,’MAT’,’EE’,’MUS’,’PHY’,’CHE’))

CREATE DOMAIN Semesters CHAR(6)
CHECK (VALUE IN (’fall’, ’spring’, ’summer’))

3.9 Consider a database schema with four relations: Supplier, Product, Customer,
and Contracts. Both the Supplier and the Customer relations have the attributes
Id, Name, and Address. An Id is a nine-digit number. Product has PartNumber
(an integer between 1 and 999999) and Name. Each tuple in the Contracts relation
corresponds to a contract between a supplier and a customer for a specific product in
a certain quantity for a given price.

a. Use SQL DDL to specify the schema of these relations, including the appropriate
integrity constraints (primary, candidate, and foreign key) and SQL domains.

Solution:

CREATE TABLE Supplier (
Id Suppliers,
Name CHAR(20),
Address CHAR(50),
PRIMARY KEY (Id))

CREATE TABLE Customer (
Id Customers,
Name CHAR(20),

20 CHAPTER 3 The Relational Data Model

Address CHAR(50),
PRIMARY KEY (Id))

CREATE TABLE Product (
PartNumber Products,
Name CHAR(50),
PRIMARY KEY (PartNumber))

CREATE TABLE Contract (
Customer Customers,
Supplier Suppliers,
Product Products,
Quantity INTEGER,
Price INTEGER,
PRIMARY KEY (Customer, Supplier, Product),
FOREIGN KEY (Customer) REFERENCES Customer(Id)

ON DELETE NO ACTION

ON UPDATE CASCADE,
FOREIGN KEY (Supplier) REFERENCES Supplier(Id)

ON DELETE NO ACTION

ON UPDATE CASCADE),
FOREIGN KEY (Product) REFERENCES Product(PartNumber)

ON DELETE NO ACTION

ON UPDATE CASCADE)

CREATE DOMAIN Suppliers INTEGER

CHECK (VALUE =< 999999999 AND VALUE > 0)

The domain Customers is defined identically. The domain Products is similar,
except that 999999 is used instead of 999999999.

b. Specify the following constraint as an SQL assertion: there must be more contracts
than suppliers.

Solution:

CREATE ASSERTION ContractsShaltExceedSuppliers

CHECK ((SELECT COUNT(*) FROM Supplier)
< (SELECT COUNT(*) FROM Contract)))

Exercises 21

3.10 You have been hired by a video store to create a database for tracking DVDs and
videocassettes, customers, and who rented what. The database includes these relations:
RentalItem, Customer, and Rentals. Use SQL DDL to specify the schema for this
database, including all the applicable constraints. You are free to choose reasonable
attributes for the first two relations. The relation Rentals is intended to describe who
rented what and should have these attributes: CustomerId, ItemId, RentedFrom,
RentedUntil, and DateReturned.

Solution:

3.11 You are in a real estate business renting apartments to customers. Your job is to define
an appropriate schema using SQL DDL. The relations are Property(Id, Address,
NumberOfUnits), Unit(ApartmentNumber, PropertyId, RentalPrice, Size),
Customer (choose appropriate attributes),Rentals (choose attributes; this relation
should describe who rents what, since when, and until when), and Payments (should
describe who paid for which unit, how much, and when). Assume that a customer can
rent more than one unit (in the same or different properties) and that the same unit
can be co-rented by several customers.

Solution:
The students must recognize that the key of Unit is 〈ApartmentNumber,
PropertyId〉 and not just ApartmentNumber. The students should also recog-
nize that both Rentals and Payments should include attributes that reference
〈ApartmentNumber, PropertyId〉. In addition, neither 〈ApartmentNumber,
PropertyId〉 nor customer should be a key in Payments.

3.12 You love movies and decided to create a personal database to help you with trivia
questions. You chose to have the following relations: Actor, Studio, Movie, and
PlayedIn (which actor played in which movie). The attributes of Movie are Name,
Year, Studio, and Budget. The attributes of PlayedIn are Movie and Actor. You
are free to choose the attributes for the other relations as appropriate. Use SQL DDL
to design the schema and all the applicable constraints.

Solution:

3.13 You want to get rich by operating an auction Web site, similar to eBay, at which
students can register used textbooks that they want to sell and other students can bid
on purchasing those books. The site is to use the same proxy bidding system used by
eBay (http://www.ebay.com).

Design a schema for the database required for the site. In the initial version of the
system, the database must contain the following information:

1. For each book being auctioned: name, authors, edition, ISBN number, bookId
(unique), condition, initial offering price, current bid, current maximum bid,
auction start date and time, auction end date and time, userId of the seller, userId
of the current high bidder, and an indication that the auction is either currently
active or complete

2. For each registered user: name, userId (unique), password, and e-mail address

22 CHAPTER 3 The Relational Data Model

Solution:

3.14 You want to design a room-scheduling system that can be used by the faculty and
staff of your department to schedule rooms for events, meetings, classes, etc. Design
a schema for the database required for the system. The database must contain the
following information:

1. For each registered user: name, userId (unique), password, and e-mail address
2. For each room: room number, start date of the event, start time of the event,

duration of the event, repetition of the event (once, daily, weekly, monthly,
mon-wed-fri, or tues-thurs), and end date of repetitive event

Solution:

3.15 Design the schema for a library system. The following data should either be contained
directly in the system or it should be possible to calculate it from stored information:

1. About each patron: name, password, address, Id, unpaid fines, identity of each
book the patron has currently withdrawn, and each book’s due date

2. About each book: ISBN number, title, author(s), year of publication, shelfId,
publisher, and status (on-shelf, on-loan, on-hold, or on-loan-and-on-hold). For
books on-loan the database shall contain the Id of the patron involved and the
due date. For books on hold the database shall contain a list of Ids of patrons who
have requested the book.

3. About each shelf: shelfId and capacity (in number of books)
4. About each author: year of birth

The system should enforce the following integrity constraints. You should decide
whether a particular constraint will be embedded in the schema, and, if so, show how
this is done or will be enforced in the code of a transaction.

1. The number of books on a shelf cannot exceed its capacity.
2. A patron cannot withdraw more than two books at a time.
3. A patron cannot withdraw a book if his/her unpaid fines exceed |S5. Assume that

a book becomes overdue after two weeks and that it accumulates a fine at the rate
of |S.10 a day.

Solution:

3.16 Suppose that the fragment of the Student Registration System shown in Figure 3.4 has
two user accounts: Student and Administrator. Specify the permissions appropriate
for these user categories using the SQL GRANT statement.

Solution:
An administrator should be able to read and modify all information in Student,
Professor, Course, Transcript, and Teaching — if your university is like ours,
only administrators can change information. Here is an example:

GRANT SELECT, INSERT, DELETE, UPDATE ON Transcript

TO Administrator WITH GRANT OPTION

Exercises 23

Assuming that Ids and addresses are considered private, a student should be able
to see names and student status in the Student relation, professors and departments in
the Professor relation, everything in the Course relation, nothing in Transcript,
and, perhaps, CrsCode and Semester in Teaching. Here is an example:

GRANT SELECT (CrsCode, Semester) ON Teaching

TO Student

3.17 Suppose that the video store of Exercise 3.10 has the following accounts: Owner,
Employee, and User. Specify GRANT statements appropriate for each account.

Solution:
This question is formulated with a pitfall: the student is supposed to recognize that
users should not be granted any privileges, because a user should be allowed to see
only the data pertaining to that particular user.

Employee and Owner can have the same permissions. In any case, Employee
should not be allowed to delete records. Owner might be allowed all privileges.

3.18 Explain why the REFERENCES privilege is necessary. Give an example of how it is
possible to obtain partial information about the contents of a relation by creating
foreign-key constraints referencing that relation.

Solution:
Suppose Phone number is a candidate key in the Loan relation. One can then find
out who has loans by creating a relation, Probe, with the attribute Phone, which
REFERENCES the Phone attribute in Loan. Then, by exhaustively inserting all possible
phone numbers and recording which ones produce errors, such a user would find out
the phone numbers of all people who have loans. Reverse telephone lookup using a
number of services on the Web will make it possible to also find names and addresses
of those people.

