Solutions Manual

The Design of High-Efficiency Turbomachinery and Gas Turbines

Second Edition

David Gordon Wilson • Theodosios Korakianitis

PRENTICE HALL, Upper Saddle River, NJ 07458

Executive Editor: Bill Stenquist

Special Projects Manager: Barbara A. Murray

Production Editor: Michele Wells

Supplement Cover Manager: Paul Gourhan Supplement Cover Designer: Liz Nemeth Manufacturing Manager: Trudy Pisciotti

© 1999 by Prentice Hall Upper Saddle River, NJ 07458

All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission in writing from the publisher

Printed in the United States of America

10 9 8 7 6 5 4 3 2

S-18770-E1-0 NBZI

Prentice-Hall International (UK) Limited, London Prentice-Hall of Australia Pty. Limited, Sydney Prentice-Hall Canada, Inc., London Prentice-Hall Hispanoamericana, S.A., Mexico Prentice-Hall of India Private Limited, New Delhi Prentice-Hall of Japan, Inc., Tokyo Editora Prentice-Hall do Brazil, Ltda., Rio de Janeiro

PREFACE

This preface is taken from the solutions manual to the first edition. The manual is similar. There are new problems in most chapters, and solutions to these have been added. The treatment of, particularly, compressible-flow analysis has been changed, along with small changes in nomenclature and in the distinction between stagnation and total conditions. The new problems and the existing problems all come from the senior author, so that he/I am to blame for the idiosyncracies of the presentation of the problems and of the solutions. Here, then, is the lightly edited first-edition preface.

Dave Wilson, MIT Cambridge, MA April 1999

Every author presumably believes that her/his work is markedly different – one hopes better – than that of others. A textbook takes so many years produce that it is easy for an author to become insulated from other texts. She/he then makes comparisons with work of the more-or-less distant past. I may be firmly in this category. I have tried to avoid what seems to me to be deficiencies in the academic problems I once had to solve, and to make these problems a little nearer those that I have frequently faced in an engineering career. There are three respects in which some of these problems differ from what might be regarded as the "conventional" academic problem:

- (i) frequently there is no one "correct response;
- (ii) there are sometimes provided more data, and sometimes less, than are necessary to arrive at a solution;
- (iii) the problem statement is often placed first, with the data following, rather than the usual academic practice of first giving much mysterious information, with the question to be answered stated at the end.

Because the text and these problems are aimed at designers, I force students to make choices. Young people who have been brought up on the analysis of problems for which there is normally only one solution, often only one way to arrive at it, and exactly the right amount of information needed, frequently become unsettled and unhappy at the prospect of having to choose velocity-diagram parameters, or all the choices involved in a simple heat-exchanger design, for instances. I make no apology for these types of problems when I have managed to introduce them, even though they are less tidy, and the solutions perhaps less satisfying, than the tight one-answer type of problem. (They also take a little more grading effort on the part of instructors.)

The problems are also non-uniform in difficulty and in the time taken for solving them. Real-life problems also come varied. These problems were devised for two graduate courses at MIT. In each course there were normally eight homework assignments, each of which could take from four to twelve hours. The most time-consuming problems are from this group. Each course also had three quizzes lasting about 100 minutes. The quizzes started with some simple questions that required no calculation and only a sentence or two for a response, taking five or ten minutes. The last quiz problems normally involve calculation and could take about 30 minutes. Use of textbooks was allowed in all cases. The problems are in all three categories: ten-minute, thirty-minute and four-hour challenges.

Three chapters (the brief history, starting and control system principles, and mechanical design consideration) in the main text have no problems because their topics were treated in a non-quantitative manner, suitable for background information. Some chapters, for instance chapters 6 and 12, have rather few problems, because we take the treatment to only an elementary level for which the inclusion of many problems would not be justifiable.

The solutions have been written out mainly by hand at many different times and in different places in the world. The quality is not consistently high, but I hope that the solutions are legible and understandable.

David Gordon Wilson

CONTENTS

1	Introduction
2	Review of Thermodynamics
3	Thermodynamics of Gas-Turbine Cycles
4	Diffusion and Diffusers
5	Energy Transfer in Turbomachines
6	Three-Dimensional Velocity Diagrams for Axial Turbomachines
7	The Design and Performance Prediction of Axial-Flow Turbines
8	The Design and Performance Prediction of Axial-Flow Compressors 155
9	Design Methods for Radial-Flow Turbomachines
10	Convective Heat Transfer in Blade Cooling and Heat-Exchanger Design 209
11	No Solutions
12	Combustion Systems and Combustion Calculations
13	No Solutions

Problems

This first chapter has dealt principally with definitions, and with some discussion of the characteristics and capabilities of turbomachinery and gas turbines. Answering questions on definitions does not engender a love for the subject matter. Accordingly, the following questions probe background knowledge. Few readers will have more than a few of the data asked for in the first question. Its purpose is to stimulate a survey of the engineering-society papers in the library, and perhaps the advertisements in some of the engineering magazines. Some of the other questions ask for opinions. Again, the purpose is to stimulate thought and perhaps some reading. There are not necessarily "correct" answers to these questions. August committees of eminent scientists and engineers have been frequently totally wrong when they have tried to forecast the future.

1.1. Complete as much of table P1.1 as possible, from your own knowledge or from library study. In general, every entry will be for a different machine, although in some cases there will be relationships between two figures. For instance, the highest-power steam turbine may not operate at the highest pressure used for steam turbines but may well have the largest low-pressure flow volume. Use numbered references to footnotes to identify your sources.

Table P1.1.

Give the maximum known value of	Steam turbine in generating station	Boiler-feed pump in generating station	Gas expander in gas-turbine engine	Compressor in gas-turbine engine	Axial compressor, any duty per single casing
Power (MW)	1500 (1750?)(0)	50 (G)	340(1)	200	200
Pressure	25 (a)	33	3.5	4.0	. 410
(MPa) Temperature	565 (a)	40	1320G)	245	8-15
(deg C) Pressure ratio	900	1.000	.75(b)	75(b)	75(b)
(max/min) Temperature ratio	2.7	_	7.0	3.6	3.6
(max/min) Number of stages	32	8	1.1	24(d)	81(3)
Low-pressure flow volume (m ³ /s)	30,000	14	800	410	7.650(f)
Mass flow	1400	1400	500	500	7700(f)
(kg/s) Efficiency (percent, which?)	20 byn pube	ع ليخاهساند	92 العين مجدد	93; proper	9.3 pdy/1970
Give the maximum known value of	Centrifugal compressor for any duty, per casing	Water pump for pumped- storage system	Pelton water turbine (high-head impulse)	Francis water turbine (medium-head inflow)	Kaplan water turbine (low-head axial-flow)
Power	39	250	1400 (h)	1000(j)	170
(MW) Pressure (MPa)	50	10	(1800 m) 18	7.3 (734m)	0.75 (75~)
Temperature	350	-	·	•	
(deg C) Pressure ratio	500	100	180	73	7.5
(max/min) Temperature ratio (max/min)	20	- -		-	
Number of stages	8	2	1	1	1
Low-pressure flow volume	75	2.5	17	100	500
(m ³ /s) Mass flow	-	25,000	17,000	(20,000	S00'000
(kg/s) Efficiency (percent, which?)	87 (psyrópic,t-2)	92 Chydrauki)	90 (hydraub:	93 (hydrauhic) (91 Hydrendic)

Problem 1.1, notes for table

- a. The largest steam-turbine generating units are at least 1500 MW, possibly 1750 MW. Until the energy "crises" of the 1970s, unit sizes of steam turbines were steadily increasing. The sharply increased energy price reduced demand, and many units on order were canceled. In the mid-1980s combined cycles became popular (gas turbines supplying the exhaust heat to steam generators feeding steam turbines), and these have become preferred over "straight" steam-turbine power plants. Large combined-cycle units are producing over 400 MW in the late 1990s, with efficiencies approaching 60 percent (see chapter 3).
- b. The highest compressor pressure ratio I know of is 75:1, in the Brown-Boveri L-GT 10/13 used in an compressed-air storage plant. The air mass flow is 410 kg/s, giving a low-pressure flow volume of about 400 cu m/s. It is an axial-radial compressor of 25 stages. The turbine-expander exhaust volume at 400° C or above would be approximately 760 cu m/s; the turbine has eleven stages. The highest pressure ratio for a gas-turbine engine is probably 40.5 for the GE-36.
- c. The highest turbine-inlet temperature for an operating (rather than a research) engine is about 1825 K, possibly higher, for military jets. This gives a temperature ratio with the compressor-inlet temperature, when operating at altitude approaching 7:1.
- d. The highest compressor efficiency, polytropic total-to-static to the diffuser outlet, a low-blade-speed 24-stage axial compressor of 4:1 pressure ratio for the BTH gas turbine in the Shell tanker "Auris", was stated to be almost 0.94 by the designer, C. L. G. Worn. However, in published records I have not been able to find confirmation of an efficiency higher than 0.91. I believe that modifications were made after these publications were produced.
- e. Axial-flow turbines should be capable of reaching levels of efficiency at least equal to those of axial compressors of the same size and pressure ratio. However, I cannot quote cases to verify this assumption.
- f. Some of the largest gas-moving turbomachines are for research wind tunnels. The large-scale wind tunnel at Moffet Field, NASA-Ames Research Center with a 24.4m by 36.6m section has six single-stage axial fans each of 12.2-m diameter, each driven by a 17-MW electric motor at 180 RPM.
- g. Parsons designed and built some axial-flow compressors with as many as 81 stages (see the historical chapter)
- h. The highest rating for a Pelton turbine is 1400 MW, a Sulzer-Escher-Wyss unit for Colombia.
- j. The highest head used for a Francis turbine is 734 m. These are Sulzer 180-MW units for the Hausling power station in Austria. The highest power rating of a Francis turbine is 1000 MW

For comparison of sizes, the world's biggest Diesel engine is the Sulzer 12RTA84, 42 MW, twelve-cylinder two-stroke running at 95 RPM, weighing 1750 tonnes. The smallest Diesel engines are for model aircraft, and give outputs of under 100 W.

Another comparison outside the scope of the book is the largest controllable-pitch propeller, with a power rating of 20.5 MW (Sulzer).

@ Dave with March 18 1998

Problem 1.2 Gas-turbine engines have not reached the power-output levels of the largest steam turbines. Why?

Gas turbines are increasing in output, but the largest (at under 300 MW) is still small compared with the largest steam turbines at over 1500 MW. Gas turbines may reach 1500 MW, especially in combined-cycle form. However, the trend at the end of the 1990s is towards more-distributed power rather than fewer very large generating stations. Two reasons for this trend are the result of gas-turbine characteristics. One is that high efficiencies can be produced by relatively small gas turbines, whereas only the largest steam plants can incorporate all the devices and processes needed to attain high efficiencies. A second reason is that gas turbines require far fewer supervisory personnel than do steam turbines: gas turbines can even run unattended for long periods. The large quantities of natural gas currently available, and the consequent low prices, have greatly helped the conversion of much electrical generation to gas-turbine or combined-cycle systems.

Problem 1.3 Estimate the design power output of the smallest gas-turbine engine produced in the last decade. Why aren't smaller engines made?

There are very small model-aircraft jet engines made, but these are not, perhaps, in the spirit of the question. Small shaft-power gas turbines are in the 20-30-kW range (Solar T-206, 21 kW, or Capstone, a recuperated engine with rotating parts from turbochargers, at 24 kW). The component and overall efficiencies worsen as engines are made smaller, because of increased relative tip clearances, of lower Reynolds numbers, of increased relative roughness, and of the impracticality of providing blade cooling for very small blades. At some power level it is more attractive or more cost-effective to use piston engines even for applications that might seem to be suited for gas turbines.

Problem 1.4 Give your opinion of the two most-promising new applications for gas-turbine engines in the next twenty years, and give reasons for your opinion.

Crystal balls are unreliable. I believe that gas-turbine engines have sufficient advantages over Diesel engines for trucks and buses that they are likely to be used in these applications. Nowadays, many, perhaps most, transitions of this scope are driven by government regulations or taxes, and these could produce a significant incentive. The same is true to a lesser extent for private automobiles, the engines of which have been dominated by the requirements of regulation for twenty-five years.

Problem 1.5 Why is the maximum temperature of steam turbines so much lower than the current turbine-inlet temperature of gas-turbine engines?

Steam-turbine maximum temperatures are limited at present by the corrosive nature of high-temperature steam on superheater tubes. The limit is presently about 566° C, and there is no immediate prospect that I know of (given the increasing prices of high-chromium-cobalt-nickel steels) for this "limit" to be exceeded. The efficiency of steam plants has been decreasing in recent years because of the energy requirements imposed by environmental-pollution limits. Improved methods of removing sulfur should reduce energy costs and allow the thermal efficiency to rise slightly again, but there seems little prospect of steam-plant efficiencies reaching 50 percent while remaining economically competitive.

Problem 1.6 What do you think are the two principal problems preventing gas-turbine engines from having a much wider application?

Up to close to the present time, gas-turbine engines have poorer design-point and much poorer off-design-point efficiencies than Diesel engines, while usually costing more per kilowatt of design power. The situation is changing: simple-cycle engines can have thermal efficiencies of 40%, similar to that of large Diesels, and regenerative engines can have a considerably higher efficiency. If ceramic regenerators and ceramic turbines are developed to be reliable low-cost components, two substantial blocks to the greater use of gas turbines would be removed.

Problem 1.7 Do you think that gas-turbine engines will be used in outboard motor boats by 2010? Why, or why not?

It is most unlikely. Although the higher power levels used in outboard "motors" (strictly they are not "motors" but "engines") are in the range where gas-turbine engines can be competitive (particularly where

lightness and compactness are important, as in this application) the salt-spray environment near the air intake in seagoing boats is hostile to turbine-engine survival. An inboard location where the air intake can be situated as remote from spray as possible is much more favorable.

Problem 1.8 For which of the applications in the list below do you think that the gas-turbine engine, as a prime mover, would be:

- a. suitable now, and, if so, how would it be used, or in what form?
- b. suitable after certain developments have been successfully completed, and if so, which?
- c. Unsuitable, and if so, why?

(The list is not repeated here).

When ceramics are developed to enable reliable high-temperature regenerators and turbines to be incorporated, gas turbines should be suitable for highway trucks, city buses, long-distance interurban buses, and automobiles. The automobile application is the least likely of these because of the huge changeover costs, but much, pro and con, depend on governmental regulation.

Governmental regulation also seems likely to play an increasing role in the pollution from motorcycles, snowmobiles, and lawn mowers. The uncontrolled level of emissions is very high. Gas-turbine engines are possible for all three applications, although they would suffer from the effects of small size (as do piston engines) and any applications would be near the limit of what would be possible. They would be likely to be low-pressure-ratio regenerative cycles. The exploitation of geothermal energy and sea-water thermal gradient with depth are unlikely to use Brayton cycles because the temperature differences are too small to give good measurable efficiencies. Solar energy, where mirrors are used to concentrate the radiation on to a target, and nuclear energy from high-temperature reactions are suitable applications for gas-turbine engines.

Problem 1.9 Discuss any present applications of, and future prospects for, vapor-cycle engines using fluids other than water.

Vapor-cycle engines have been frequently proposed as "bottoming" (heat-rejection) cycles for other heat engines (in the way that steam cycles act as bottoming cycles for gas-turbine engines in combined-cycle plants.) ThermoElectron of Waltham MA built and sold vapor-cycle engines for the exhaust systems of Diesel trucks. (These lost their economic worth when price of fuel dropped after the so-called "energy crises" of the 1970s and 1980s.) A major proposal was the Ocean Thermal Energy Cycle (OTEC) in which a fluid, probably ammonia, would be boiled by the warm surface waters of the Gulf of Mexico (for example), the vapor would be expanded through a large single-stage axial turbine, and the exhaust vapor would be condensed by heat exchange with deeper cooler water. This cycle also fell victim to low energy prices.

@ save wilson March 18 1998

2.1 Does the stagnation temperature of the working fluid rise or fall in passing through a gas-turbine expander? Why?

The stagnation temperature falls. The steady-flow energy equation is:

The flow is normally adiabatic, and $\Delta(\frac{9}{9})$ is negligible compared with other changes in a gaseous flow.

Therefore, for positive work, Δk_o must be negative, and ΔT_o

@ Dave willow, March 6 1998

2. Does the temperature of the water rise or fall in passing through a water turbine? Why?

The Edul temperature rules. Transfer of welful work produces no change of wrater temperature in hydraubic machines. However, dissipoted processes convert kindle energy to thermal energy. These and other frictional losses bood to the increase in temperature.

or stagnation to an incompressible fluid to take is mechanism coupling pressure and temperature when moving water is braight isentropically to rest.

2.3. By how much, and in which direction, does the temperature of water change when it falls over a waterfall 50 m high? What is the mechanism for this change?

The temperature rises. The steady-flow energy

Q-W =0= Δb+ + Δux + ΔC2 + Δξ3,

There is no power entraction, so W=0.

There should be regligible heat transfer, so $0\rightarrow0$ We'll assume a stream leaving the writefall of similar sure, and therefore relocity, as the entering stream.

The static pressure will depend on the atmospheric pressure and depth. The atmospheric pressure and depth. The atmospheric pressure will differ only through the effects of height, and the difference will be regligible for 50m and for standard air density. So for a streamline at any guien depth below the surface, Alpst = 0

 $\Delta T = + \frac{\text{Som} \times 9.81 \, \text{m/s}^2}{4186.2 \, \text{J/kg}^{\circ} \text{k}} = 0.117 \, \text{c}$

(water specific heat = 4186.2 J/kg ok)

stegration

As in P 2.2, that/temperature for a liquid is
the same as static temperature.

2 4. Sketch in your qualitative estimates of the variation of stagnation and static enthalpy and pressure through the intercooled compressor shown in figure P2.4. Some end points are shown. (Four lines are required.)

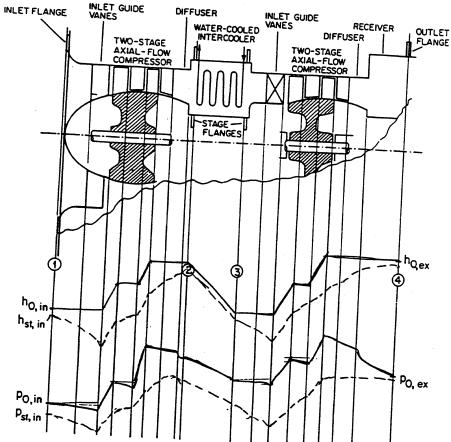


Figure P2.4

Total enthalpy is constant in places where
fruid friction causes the total pressure to drop, such
as in ducts, diffuses, and sudden enlargements.

In a sudden enlargement, the static pressure is
more likely to be constant than is the total pressure
(whereas the total enthalpy is precisely constant). All
the foregoing are adiabative. In the interoder, the total
enthalpy falls because of heat transfer out of the
gas, while the total pressure falls because of fluid
friction.

2.5. For the subsonic axial-flow air expander specified, calculate the stagnation and static pressures and temperatures and the Mach number at the rotor-inlet plane (figure P2.5). Also find the rotor rotational speed and the nozzle-inlet blade height for constant-outer-diameter blading. Sketch the form of the complete turbine expansion on an enthalpy-entropy chart. The axial velocity will be constant at this design point.

Mass flow, $\dot{m}=2$ kg/s Nozzle-inlet stagnation temperature, $T_{0,ni}=400$ °C. Absolute nozzle-inlet stagnation pressure, $p_{0,ni}=3$ bars $(=3\times10^5 \text{ N/m}^2)$ Mean diameter, $d_m=0.25$ m. Blade height at rotor entry, $l=0.1d_m (=1/2[d_s-d_h])$. Flow angle at nozzle exit, $\alpha_1=70^\circ$ to axial direction. Drop in stagnation pressure in nozzle, $\Delta p_0=0.05$ bar Rotor peripheral speed at mean diameter, $u_m=0.5\times$ (component of nozzle outlet velocity, $C_{\theta,1}$).

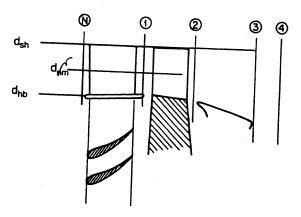


Figure P2.5

SUMMARY

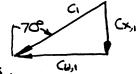
I calculated this in two ways. One was wise compressible flow rebuter (CFR) with a constant when of Y of 1.4. The other wied the steady- second/ flow energy equation (SFEE) and mean specific heats (Cp). The results show close agrament.

(See table on the next page). I will give my and compassible abulations for the moan of methods my. How/

A trust way uses Journ 2.9 2 2.10, and aquations 2.61 2 2.62.

P 2.5 cont. (2)

RESUL	ZZ		CFR	SFEE, Co
Nozzle	e-exit	total pressure, bars	2.95	2.95
4	*1	מסניב " ··	2,62	2.617
u	11	total temp., K	673	673
		static " "	6506	651.7
		Mach number	0.415	0.421
		blade height, mm	22.88	23.4
		al speed, tell/min	<i>75</i> 30	7638


CALCULATIONS

Geometry
$$d_m = 0.25 m = \frac{d_5 + d_1}{2}$$
 $l_1 = 0.025 m = \frac{d_5 - d_1}{2}$
 $d_{sf} = 0.275 m$
 $d_{sf} = 0.225 m$
 $l_1 = 0.025 m$

Annulus area, $A_{an,i} = \frac{\pi}{4} [0.275^2 - 0.225^2] = 0.01963 m^2$ Flow area $A = A_{an,i} = 50^\circ = 0.006716 m^2$

Continuity
$$\dot{m} = \beta_{st_i} AC_i$$

 $\beta_{st_i} C_i = \frac{\dot{m}}{A} = 297.82 \frac{kg}{m^2 s}$

In the table on the root page, we find fit, for various values of CI, the nozzle-exit velocity.

The bit column, for C1 = 212,8 m/s, Cu gives a close-enough match of fit, C1:

P2·5,GAL. (3) TABLE GIVING SUCCESSIVE TRIALS

C1 m/s 200 218 213.5 212.8 $C_1^2/2g_2C_1$) dag K 18.76 22.31 21.40 21.255 Tst., K 654.24 650.69 651.60 651.74 $T_m = (T_0 + T_0 + T_0$

ROTATIONAL SPEED

 $U_{3} = C_{1} \sin 70^{\circ} = 199.97 \text{ m/s}$ $U_{m} = 0.5 G_{3} = 99.983 \text{ m/s}$ $N = 4 m_{x} \left(\frac{60}{2\pi}\right) \times \left(\frac{2}{3m}\right) = 7638.2 \text{ keV/min}$

Mozzle-inlet blade Leight

CKI = C1 COS 700 = 72.782 m/s

GUESS
$$G_p = 1066.2 \text{ J/kg°K}$$
 $\frac{C_{1}^{2}}{29G_{p}} = 2.48 \text{ °K}$
 $\frac{C_{2}^{2}}{29G_{p}} = 670.52 \text{ K}$

The = $\frac{10476}{2}$ = 671.76 k

 $\frac{C_{1}}{C_{1}} = \frac{1067.4 \text{ J/kg°K}}{2}$ (second iteration)

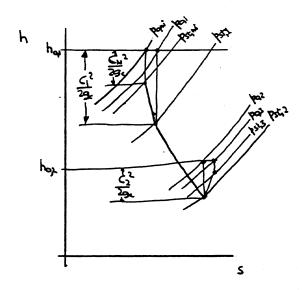
 $\frac{C_{2}^{2}}{C_{1}^{2}} = \frac{1067.4 \text{ J/kg°K}}{2}$ (second iteration)

 $\frac{C_{2}^{2}}{C_{1}^{2}} = \frac{1067.4 \text{ J/kg°K}}{2} = 0.9900$

Pst, $\frac{C_{2}^{2}}{C_{1}^{2}} = 0.9900$
 $\frac{C_{2}^{2}}{C_{1}^{2}} = \frac{1.5379 \text{ kg/m}^{3}}{28696.673} = 1.5379 \text{ kg/m}^{3}$

$$(A_{an,ni}) \qquad A_{an} = \frac{\dot{m}}{\rho_{st,ni}} = 0.00$$

$$= \frac{11}{4} (ds^2 - dn_{ini})$$


ds= 0.275 m

dhn= 0.2799 m No226 bode height at inlet = 0.275-0.2295

· Static pressure at ross exit

$$\frac{\mathbf{p}\mathbf{x}_{i}}{\mathbf{p}_{i}} = \left(\frac{\mathbf{T}\mathbf{x}_{i}}{\mathbf{T}\mathbf{q}_{i}}\right)^{\frac{1}{2}} = 0.886\%$$

19 = 2.95 bar

PROBLEM 2.5 (p.5, added 1989)

An alternative method of solution for the flow velocity (C_1) using the following curves, introduced in a later version of the text, is as follows.

At nozzle exit,
$$\frac{\dot{m}\sqrt{RT_0}}{Ap_0} = \frac{2\sqrt{286.96.6673}}{0.006716.2.95.105} = 0.4436$$

Guessing (Cp/R) = 3.71, one can read
$$N_1 = 0.418$$
 approx. from figure "2.9" (new text). In figure "2.10", $C_1 = 212.3$ m/s

Another iteration on (Cp/R) and some larger-scale graphs would give a more-accurate solution. But the iterative method given on p.3 is obvious.

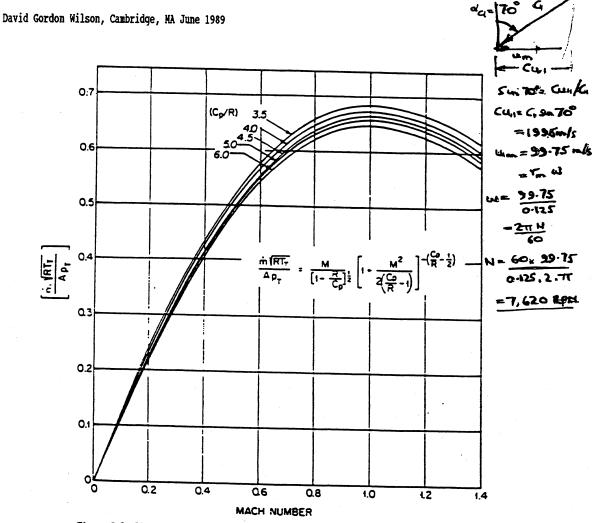


Figure 2.9 Universal flow-function plot.

© Dave Willow March 18 1998

2.6. Complete the table of efficiencies, table P2.6, for the turbine expander of problem 2.5, for inlet conditions 1,500 K and $8 \times 10^5 \text{ N/m}^2$. The turbine stagnation enthalpy drop is twice the mean blade speed squared ($\Delta h_0 = 2u_m^2$) and the mean blade speed is 500 m/s. The flow velocity at rotor exit is axial and is 0.728 of the mean blade speed, and it is reduced by 50 percent in the diffuser. The rise in static pressure in the diffuser is 75 percent of the value it would have if the diffuser flow were isentropic. Also calculate the power, in kW, delivered by the blading. (Do not count the "external" losses—bearing friction and so forth—here or in the efficiencies.) The inlet conditions to be used for the efficiencies are the stagnation conditions at plane N.

Table P2.6

Efficiency	Outlet 2	plane 3	_
$\eta_{s,tt}$ $\eta_{s,ts}$	0.95 0.84¢	0 · 302	RESULTS
$\eta_{p,tt}$ $\eta_{p,ts}$	0.817	0.916	

CALCULATIONS

Temperative drop

Aho = ho 1-hoz = 2 un²

If one has a program to interpolate exthatories

it should be used here. If not, using mean specific
heats may be as accurate, and easier, than
interpolating enthalpies.

P2.6 cont. (2)

Two more iterations lead to Cope = 1196.01/150K Power, W = m to Ua-Tail = 1.0 MW Toz = 1081.9 K

Total pressure at exit, too

This is obtained from the guien efficiency Potts

$$7stt_{12} = 0.95 = \frac{T_{01} - T_{02}}{T_{01} - T_{02}s}$$

$$T_{02} = T_{01} - \frac{\Delta T_{012}}{0.95} = 1059.9 \text{ K}$$

$$402 = 401 \left(\frac{T_{02}s}{T_{01}}\right)^{6-1} = 1.881 \times 10^{5} \text{ N/m}^{2}$$

Statie pressure at exit, Pet 2 $To_2 - T_{St_2} = \frac{C_{K2}^2}{2g_c C_{Pe}} = \frac{364^2}{2 \times 115}$

wing 1150 as a first grown of a local to A second iteration loads to Epo = 1151-4 J/kg "K and to Tst2 = 1024.4 K

$$\frac{1st_2}{Pox} = \frac{Tst_2}{Tox} = \frac{151,065}{R} N/m^2$$

Diffuser - outlat pressures Pos & PSC3

we first colculate the isentropic outlet state. We will use the above values of the as approximations.

$$\frac{\text{pst;2s}}{\text{pst;2}} = \left(\frac{T_{\text{St;7s}}}{T_{\text{SQ}_{L}}}\right)^{\frac{C_{\text{pe}}}{E}} = \left(\frac{T_{\text{Q}} - \frac{C_{\text{Vg}}^{2}}{29c_{\text{Q}}}}{T_{\text{SQ}_{L}}}\right)^{\frac{C_{\text{pe}}}{E}}$$

where C3 = C43 = 182.0 m/s

$$\frac{P \cdot 6, \text{cont}(3)}{\frac{P_{03}}{P_{5}t_{3}} = \left[\frac{T_{03}}{T_{5}t_{3}}\right]^{\frac{C_{0}}{R}}} = \left[\frac{1}{1 - \frac{C_{3}^{2}}{2g_{5}G_{0}}T_{03}}\right]^{\frac{C_{0}}{R}} \text{ where } T_{03} = T_{03}$$

P93 = 180,905 N/m2

All pressures required to enable the efficiencies to be calculated are now found. Each is designated at post in the following equations.

$$\eta_{SE} = \frac{\overline{Cp_{E}}(T_{QI} - T_{QZ})}{\overline{Q_{IE}}(T_{QI} - T_{QZ})} = \frac{(T_{QI} - T_{QZ})/T_{QI}}{\left[1 - \left(\frac{R_{QZ}}{R_{QI}}\right)^{E/Q_{P}}\right]}$$

$$\eta_{SE} = \frac{\overline{Cp_{E}}(T_{QI} - T_{QZ})}{\overline{Q_{E}}(T_{QI} - T_{QZ})} = \frac{(T_{QI} - T_{QZ})/T_{QI}}{\left[1 - \left(\frac{R_{QZ}}{R_{QI}}\right)^{E/Q_{P}}\right]}$$

$$\eta_{SE} = \frac{\overline{Cp_{E}}(T_{QI} - T_{QZ})}{\overline{Q_{E}}(T_{QI} - T_{QZ})} = \frac{(T_{QI} - T_{QZ})/T_{QI}}{\left[1 - \left(\frac{R_{QZ}}{R_{QI}}\right)^{E/Q_{P}}\right]}$$

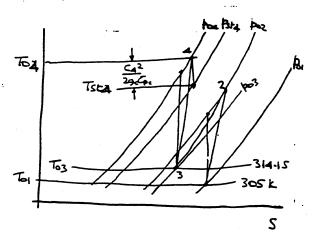
$$\eta_{SE} = \frac{\overline{Cp_{E}}(T_{QI} - T_{QZ})}{\overline{Q_{E}}(T_{QI} - T_{QZ})} = \frac{(T_{QI} - T_{QZ})/T_{QI}}{\left[1 - \left(\frac{R_{QI}}{R_{QI}}\right)^{E/Q_{P}}\right]}$$

The values obtained are given in the "RESULTS" table.

2.7. Given that an axial-compressor stage is a row of rotor blades which act as diffusers, followed by a row of stator blades which also act as diffusers, explain (from first-law and second-law considerations) why a high Mach number is necessary if the compressor is to give a high pressure ratio.

High Mach numbers are necessary for a compressor stoge to produce a relatively high pressure rice because, if the stoge were centropic, with the flow in each now also being isontropic, the pressure rates between (relative) total pressure and static pressure would be given by the relation:

pressure would be given by the relation: $\frac{1}{P_{SL}} = \left[1 + \frac{V-1}{2} H^2\right]^{\frac{1}{V-1}} = \left[1 + \frac{H^2}{2(\frac{C_0}{R} - 1)}\right]^{\frac{C_0}{H}}$


When the aim 15 to achieve a high pressure ratio per stage, therefore, the track number is chosen so that, for subscric compressors, it is as high as possible without incurring the steep rise in losses that occurs with subscric blodes hear unity thach number. A maximum relative mach number between 0.9 and 0.95 is generally used. To-called "transcric" blodes use higher relative mach numbers, perhaps 1.6, at the rotor lips, with very carefully shaped blodes, accepting an uncrease in losses as the cost of a substantial uncrease in stage pressure ratio and a decrease in overall diameter.

2.8. Calculate the isentropic stagnation-to-static internal efficiency of an intercooled air compressor (rather similar to that shown in problem 2.4) from inlet flange to outlet flange. Comment on your findings. Supppose that instead of the actual arrangement shown, two centrifugal stages are used, one upstream and one downstream of the intercooler. Each stage has a stagnation-to-stagnation flange-to-flange pressure ratio of 4:1, and each has a stagnation-to-stagnation polytropic efficiency of 88 percent for the same planes (1 to 2 and 3 to 4). The mean velocity at the outlet flange of each stage is 30 m/s. The intercooler has a stagnation-pressure loss of 6 percent of the stagnation pressure of the flow entering it, and it lowers the stagnation temperature to 1.03 times the first-stage-inject stagnation temperature of 305 K. Use a constant value of $\gamma = 1.4$. Draw a temperature-entopy diagram.

RESULT! BC, LS, 1-4= 1-012

APPROACH:

calculate the actual internal work per stage from the pressure ratio, internal temp-eratures, and poly-tropic efficiency. Then calculate the static pressure at the author flarge and the ideal isentropic work needed to attain this pressure. CALCULATIONS

* Alternatively, use
$$Cp_c = 1009 \text{ J/kg} \text{ c}$$
, approximately the mean specific heat during compression.

Then $\frac{T_{T,4}}{T_{T,3}} = \frac{T_{T,2}}{T_{T,1}} = \left(\frac{P_{T,2}}{P_{T,1}}\right)^{\frac{1}{K}} \stackrel{?}{=} 1.5652$ writing $T_{T,4}$ for $T_{G,4}$ etc. $(T_{T,2} - T_{T,1}) = 172.39 \text{ c}$ $(T_{T,4} - T_{T,3}) = 177.56 \text{ c}$ $(T_{T,4} - T_{T,3}) = 177.56 \text{ c}$ $\text{EAT}_T = 349.95 \text{ c}$ $\text{EAT}_T = 353,403 \text{ J/kg}$ (Other revised values are given in the LH exturns on $p.2$)

(Using Gc = 1000-1/69°K

(G/R) = 3.5162

14.992 ok

= 491.71 K

2-1598

353.74

1.0108 7 sc.ts =

P 2.8, cont (2)

outlet static pressure, Pst4

$$\frac{\left(\frac{h_{5}t_{4}}{h_{91}}\right) = \left(\frac{h_{5}t_{4}}{h_{94}}\right)\left(\frac{h_{92}}{h_{92}}\right)\left(\frac{h_{92}}{h_{92}}\right)\left(\frac{h_{92}}{h_{91}}\right)}$$

$$= \left(\frac{T_{5}t_{4}}{T_{6}a}\right)^{\frac{1}{1}} \times A_{1} \times 0.94 \times 4$$

$$= \left(1 - \frac{30^{3}}{2 \times 1004.4 \times 492.7}\right)^{3.5} \times 15.04 = 14.992$$

where Tox = 1.03, 305+(Tox -To3)= 492.73 K

Tous = 14.992 1.4 = 2.1675

Tous-To1 = 305x 1.1675 = 356.09 °K

7(5c, ts, 14 = 356.03 = 1.012

The isentropic efficiency is just over 100% because intercoding reduces the second-stage work enough for the total work to be less than the wentropic work.

The use of the isothermal efficiency would · be more appropriate.

$$7 it, ts, 14 = RTO, th $\frac{100}{100} / \frac{200 \cdot 6}{100} = \frac{286.96 \cdot 305 \cdot th \cdot 14.992}{351.96 \cdot 1004.4}$

$$= 0.670$$$$

Dave willow 8 ce 1 8 1 Aram @

7.9. Using figure P2.9, calculate the rotor rotational speed, the static temperature and pressure at nozzle exit, and the (absolute) Mach number at that point, of a radial-inward-flow turbine expander of nozzle-outlet diameter (surface 1) of 250 mm. As an approximation, take this as the rotor-inlet diameter also. The nozzle-exit direction of the flow is 75 degrees from the radial direction, and the axial height of the blade passage is 10 percent of the rotor diameter. The turbine nozzles are supplied with 2 kg/s of air at 2 bars stagnation pressure and 125 °C stagnation temperature. The rotor peripheral speed is 90 percent of the tangential velocity of the air at nozzle exit. The stagnation-pressure losses of the flow through the nozzles are small enough to be neglected. Sketch the nozzle expansion on a temperature-entropy diagram.

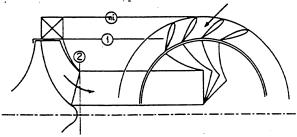
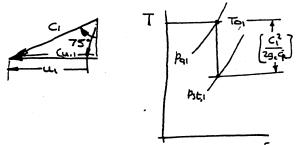



Figure P2.9

APPROACH

The principal part of this problem

13 the calculation of the relacity
necessary through the nossle throat to pass the
required mass flow. This could be solved
fairly directly by compressible-flow functions,
but only at discrete values of Y not litely
to correspond to the actual mean value. We
solve the problem have using the steady-flow
energy equation, iterating on the mean specific
heat and the throat velocity.

P29, cont. (2)

CALCULATIONS

$$\frac{\partial Limity}{\partial x} = \frac{\partial x}{\partial x} \begin{bmatrix} C_1 A \\ -C_2 \end{bmatrix} \\
= \frac{\partial x}{\partial x} \begin{bmatrix} C_1 A \\ -C_2 \end{bmatrix} \begin{bmatrix} C_2 \\ -C_2 \end{bmatrix} \begin{bmatrix} C_2 \\ -C_2 \end{bmatrix} \\
\frac{\partial x}{\partial x} \begin{bmatrix} C_2 \\ -C_2 \end{bmatrix} \begin{bmatrix} C_2 \\ -C_2$$

Men specific heat

The above equation becomes
$$\frac{101.5}{28.36} = 1$$

 $\frac{101.5}{28.36} = \frac{101.5}{28.36}$

I solved this with a short calculator program from which $C_1 = 309.32$ m/s

.'. (iii = $C_1 \sin 75^\circ = 298.78$ m/s $U_1 = 0.9 (\Theta_1 = 268.9$ m/s = $\frac{2\pi N}{60} \frac{d_1}{2}$ $N = \frac{60u}{0.25\pi} = 20,543$ rev/min

P2.9, cont (3)

Static temperature

$$T_{SC_1} = T_{O_1} - \frac{C_1^2}{29 \zeta_{P_c}}$$

$$= 125 c - \frac{309.32^2}{240115} = 77.7 c (350.7k)$$

Static pressure

Mach number

Soute velocity ast, =
$$9.72$$
 [5],
$$= \sqrt{\frac{9.72}{k} - \frac{1}{4}}$$

Mach no =
$$\frac{C_1}{a_3 t_1} = \frac{309.32}{374.83} = \frac{0.825}{}$$

Alternative method using the reused flow function pkli 2.9 = 2.10, subtituting for Jig 2.10 of the original text

$$\frac{m\sqrt{RT_1}}{A p_1} = \frac{2\sqrt{25630.358}}{0.00502.2.105} = 0.6653$$

At an exempled statu temperature of 350%, ((1/R)=3.51

From the neurosity jig 2.9. Ma 0.825

$$C_1 = 50\% \text{ m/s}$$
 $C_2 = C_1 \sin 75^2 = 297 \text{ m/s}$

$$\alpha = 0.9$$
, $(a_1 = 26.7.3 \text{ m/s} = (\frac{2\pi N}{60})(\frac{d}{2})$

@ vare with March 18 1998

2 10. Draw lines approximating the changes of stagnation and static enthalpy and pressure through the compressor test rig shown diagrammatically below (figure P2.10). The centrifugal compressor is driven by a motor and by the energy-recovery turbine, which expands the flow back to atmospheric pressure (as static pressure). A throttle valve is used to produce different back pressures on the compressor.

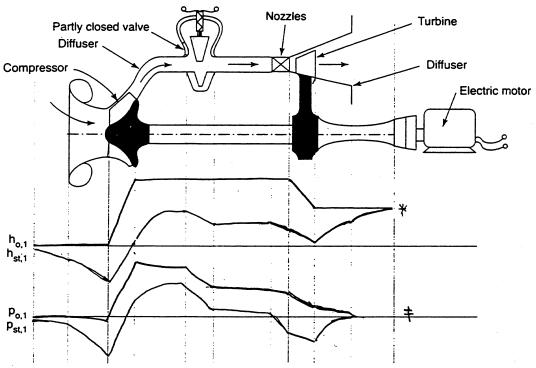


Figure P2.10. Stagnation and static pressure and enthalpy through a compressor test rig

- * There is an increase of stogration & static encharged
- + The outlet static pressure equals the inlet stagnation pressure.

[©] Dave Willow March 18 1998

2.11. Figure P2.11 shows a block diagram of the compressor test rig of problem 2.10. Your task is to draw control volumes around each of the three components, and then one around the three as an assembly, excluding the motor. Calculate and discuss the external energy flows and changes of enthalpy using the steady-flow energy equation. Do this for two different cases. In the first case, the throttle valve is wide open, so that there is no loss of stagnation pressure between the outlet of the compressor diffuser and the inlet of the turbine bell mouth. In the second case, the throttle reduces the turbine expansion ratio from 10 to 5 to 1.

In both cases the compressor takes in 25 kg/s of air at 288 K and compresses it through a stagnation-to-static pressure ratio (to diffuser exit) of 10: 1 and a polytropic efficiency (same conditions) of 0.80. The turbine takes the flow from the throttle valve and expands it to atmospheric pressure with a stagnation-to-static polytropic efficiency of 0.90. A mean specific heat of 1020 J/(kg·K) and a gas constant of 286.96 J/(kg·K) may be used throughout.

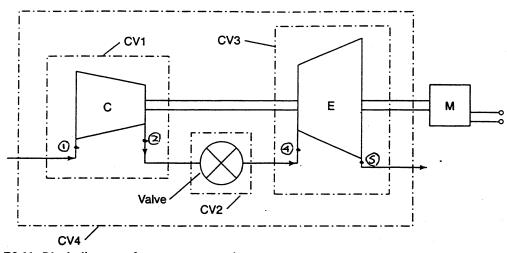


Figure P2.11. Block diagram of compressor test rig