CHAPTER 1 WHOLE NUMBERS

1.1 Reading and Writing Whole Numbers

1.1 Margin Exercises

- **1. (a)** 341
 - 4 is in the tens place.
 - **(b)** 714
 - 4 is in the *ones* place.
 - (c) 479
 - 4 is in the *hundreds* place.
- 2. The place value of each digit:
 - (a) 14,218; ones: 8; tens: 1; hundreds: 2;

thousands: 4; ten-thousands: 1

(b) 460,329; ones: 9; tens: 2; hundreds: 3;

thousands: 0; ten-thousands: 6;

hundred-thousands: 4

- 3. The digits in each period (group) of 3,251,609,328:
 - (a) 3 is in the billions period.
 - **(b)** 251 is in the millions period.
 - (c) 609 is in the thousands period.
 - (d) 328 is in the ones period.
- **4.** (a) 18 is eighteen.
 - **(b)** 36 is thirty-six.
 - (c) 418 is four hundred eighteen.
 - (d) 902 is nine hundred two.
- **5.** (a) 3104 is three thousand, one hundred four.
 - **(b)** 95,372 is ninety-five thousand, three hundred seventy-two.
 - **(c)** 100,075,002 is one hundred-million, seventy-five thousand, two.
 - **(d)** 11,022,040,000 is eleven billion, twenty-two million, forty thousand.
- **6. (a)** One thousand, four hundred thirty-seven is 1437.
 - **(b)** Nine hundred seventy-one thousand, six is 971,006.
 - **(c)** Eighty-two million, three hundred twenty-five is 82,000,325.

- 7. (a) 14 million in digits is 14,000,000.
 - **(b)** 13 million in digits is 13,000,000.
 - **(c)** \$42,936 is forty-two thousand, nine hundred thirty-six dollars.
 - (d) \$28,050 is twenty-eight thousand, fifty dollars

1.1 Section Exercises

- 1. 3065; thousands: 3; tens: 6
- **2.** 4681; thousands: 4; ones: 1
- **3.** 18,015; ten-thousands: 1; hundreds: 0
- **4.** <u>86,332</u>; ten-thousands: 8; ones: 2
- **5.** 7,628,592,183; millions: 8; thousands: 2
- **6.** 1,700,225,016; billions: 1; millions: 0
- 7. 3,561,435; millions: 3; thousands: 561; ones: 435
- **8.** <u>28,785,203;</u> millions: 28; thousands: 785; ones: 203
- **9.** <u>60,000,502,109</u>; billions: 60; millions: 000; thousands: 502; ones: 109
- **10.** <u>100,258,100,006</u>; billions: 100; millions: 258; thousands: 100; ones: 006
- 11. Evidence suggests that this is true. It is common to count using fingers.
- **12.** No doubt there is a relationship here. One answer might be that people could count using their fingers and toes and, therefore, thought of them as numbers or digits.
- **13.** 23,115 is twenty-three thousand, one hundred fifteen.
- **14.** 37,886 is thirty-seven thousand, eight hundred eighty-six.
- **15.** 346,009 is three hundred forty-six thousand, nine.
- **16.** 218,033 is two hundred eighteen thousand, thirty-three.
- **17.** 25,756,665 is twenty-five million, seven hundred fifty-six thousand, six hundred sixty-five.
- **18.** 999,993,000 is nine hundred ninety-nine million, nine hundred ninety-three thousand.
- **19.** Sixty-three thousand, one hundred sixty-three is 63,163.
- **20.** Ninety-five thousand, one hundred eleven is 95,111.
- **21.** Ten million, two hundred twenty-three is 10,000,223.

- 22. One hundred-million, two hundred is 100,000,200.
- **23.** Three million, two hundred thousand in digits is 3,200,000.
- **24.** Two hundred eighty million, four hundred eightynine thousand in digits is 280,489,000.
- **25.** Fifty million, fifty-one thousand, five hundred seven in digits is 50,051,507.
- **26.** Twenty-three million, five hundred thirty-five thousand in digits is 23,535,000.
- **27.** Fifty-four million, seven hundred fifty thousand in digits is 54,750,000.
- **28.** Two million, four hundred thousand in digits is 2,400,000.
- **29.** Eight hundred trillion, six hundred twenty-one million, twenty thousand, two hundred fifteen in digits is 800,000,621,020,215.
- **30.** 70,306,735,002,102 is seventy trillion, three hundred six billion, seven hundred thirty-five million, two thousand, one hundred two.
- 31. The least used method of transportation is public transportation. 6,069,589 in words is six million, sixty-nine thousand, five hundred eighty-nine.
- **32.** From the table, "drive alone" is the method of transportation most used. 84,215,298 written out is eighty-four million, two hundred fifteen thousand, two hundred ninety-eight.
- **33.** The number of people who walk to work or work at home is 7,894,911. In words, 7,894,911 is written as seven million, eight hundred ninety-four thousand, nine hundred eleven.
- **34.** From the table, the number of people who carpool is 15,377,634. Written out, 15,377,634 is fifteen million, three hundred seventy-seven thousand, six hundred thirty-four.

1.2 Adding Whole Numbers

1.2 Margin Exercises

- 1. (a) 2+6=8; 6+2=8
 - **(b)** 9+5=14: 5+9=14
 - (c) 4+7=11; 7+4=11
 - (d) 6+9=15; 9+6=15
- 2. (a) 3 8 3+8=11 5 11+5=16 4 16+4=20 +6 20+6=26

- (b) 5 6 5+6=11 3 11+3=14 2 14+2=16+4 16+4=20
- (c) 9 6 9+6=15 8 15+8=23 7 23+7=30+3 30+3=33
- (d) 3 8 3+8=11 6 11+6=17 4 17+4=21+8 21+8=29
- 3. (a) $26 + 73 \over 99$
 - **(b)** 534 + 265 799
 - (c) 42,305+11,56353,868
- 4. (a) $\begin{array}{r}
 1 \\
 66 \\
 +27 \\
 \hline
 93
 \end{array}$ 6 + 7 = 13
 - **(b)** 58 +33 8+3=11 91
 - (c) $\frac{1}{56}$ $\frac{437}{93}$ 6+7=13
 - (d) $\begin{array}{r} 1\\34\\+49\\\hline 83\end{array}$
- 5. (a) $\begin{array}{r}
 21 \\
 42 \\
 651 \\
 396 \\
 + 87 \\
 \hline
 1176
 \end{array}$

$$\begin{array}{c} \textbf{(b)} & \begin{array}{c} 1\ 21 \\ 162 \\ 4\ 271 \\ 372 \\ \\ +\ 8\ 976 \\ \hline 13,781 \end{array}$$

(c)
$$2\frac{2}{57}$$
4
392
804
51
+ 27
1335

(d)
$$\begin{array}{c} 221\\7821\\435\\72\\305\\+1693\\\hline10,326\\\end{array}$$

- 4 Lake Buena Vista to Resort Area
- 6 Resort Area to Pine Castle
- 3 Pine Castle to Belle Isle
- +6 Belle Isle to Conway
- 19 miles

- 5 Orlando to Pine Hills
- 8 Pine Hills to Altamonte Springs
- 5 Altamonte Springs to Casselberry
- 6 Casselberry to Bertha
- 7 Bertha to Winter Park
- +7 Winter Park to Clear Lake

9.
$$\begin{array}{c} 22\\ 526\\ 297\\ 526\\ +297\\ \hline 1646 \text{ feet} \end{array}$$

The amount of fencing needed is 1646 feet, which is the perimeter of (distance around) the project.

10. (a)
$$63$$
 4
 9
 $+ 28$
 104 correct

(b)
$$927$$

 395
 64
 $+251$
 1637 correct

1.2 Section Exercises

1.
$$43 + 54$$
 97

5.
$$317 + 572 \over 889$$

9.
$$6310$$
 252
 $+1223$
 $\overline{7785}$

10.
$$121$$
 5705
 $+3163$
 8989

19. Line up:
$$38,204 + 21,020 \over 59,224$$

21.
$$\begin{array}{r} 1 \\ 87 \\ +63 \\ \hline 150 \end{array}$$

22.
$$19$$
 $+ 92$ 111

23.
$$\begin{array}{r} 1 \\ 86 \\ + 69 \\ \hline 155 \end{array}$$

24.
$$\begin{array}{r} 1\\37\\+85\\\hline122\end{array}$$

25.
$$\begin{array}{r} 1\\ 47\\ +74\\ \hline 121 \end{array}$$

26.
$$\begin{array}{r} 1\\ 97\\ +79\\ \hline 176 \end{array}$$

27.
$$\begin{array}{r} 1 \\ 67 \\ +78 \\ \hline 145 \end{array}$$

28.
$$\begin{array}{r} 1 \\ 96 \\ +47 \\ \hline 143 \end{array}$$

29.
$$\begin{array}{r} 1\\73\\+29\\\hline102\end{array}$$

30.
$$\begin{array}{r} 1 \\ 68 \\ +37 \\ \hline 105 \end{array}$$

31.
$$7\overset{1}{46}$$
 $+905$
 1651

32.
$$6\overset{1}{2}1$$
 $+359$
 $\overline{980}$

33.
$$306$$
 $+848$
 1154

34.
$$798$$
 $+206$
 1004

35.
$$\begin{array}{r} 11\\278\\+135\\\hline 413 \end{array}$$

36.
$$172$$
 $+156$
 328

37.
$$9\frac{1}{28}$$
 $+843$
 1771

38.
$$\begin{array}{r}
11 \\
686 \\
+726 \\
\hline
1412
\end{array}$$

39.
$$\begin{array}{r}
11 \\
526 \\
+884 \\
\hline
1410
\end{array}$$

40.
$$116$$
 $+897$ 1013

41.
$$\begin{array}{r} 1 & 1 \\ 3574 \\ +2817 \\ \hline 6391 \end{array}$$

43.
$$7896$$
 $+ 3728$
 11624

44.
$$9\frac{1}{3}82$$
+ 7586
 16.968

45.
$$\begin{array}{r}
 111 \\
 9625 \\
 + 7986 \\
 \hline
 17,611
\end{array}$$

47.
$$9 \overset{22}{056}$$

$$78$$

$$6 089$$

$$+ 731$$

$$15,954$$

49.
$$\begin{array}{r}
112\\
708\\
9286\\
+636\\
\hline
10,648
\end{array}$$

50.
$$\begin{array}{r}
211\\
1708\\
321\\
61\\
+8926\\
\hline
11,016
\end{array}$$

51.
$$\begin{array}{r}
111 \\
422 \\
6074 \\
435 \\
+ 8663 \\
\hline
15,594
\end{array}$$

52.
$$6 \stackrel{12}{505}$$
 173
 $7 044$
 $+ 168$
 $13,890$

54.
$$\begin{array}{r}
2 & 1 & 2 \\
7 & 63 & 1 \\
5 & 98 & 3 \\
7 & 36 \\
+ & 505 \\
\hline
14,162
\end{array}$$

55.
$$\begin{array}{r}
1129 \\
63 \\
16 \\
3 \\
+ 9887 \\
\hline
12,078
\end{array}$$

56.
$$\begin{array}{r}
113 \\
322 \\
6508 \\
93 \\
745 \\
18 \\
+2005 \\
\hline
9691
\end{array}$$

57.
$$\begin{array}{r}
233\\
553\\
97\\
2772\\
437\\
63\\
+328\\
\hline
4250
\end{array}$$

58.
$$\begin{array}{c} 223\\ 3187\\ 810\\ 527\\ 76\\ 2665\\ +\ 317\\ \hline 7582\\ \end{array}$$

59.
$$\begin{array}{r}
212\\
413\\
85\\
9919\\
602\\
31\\
+1218\\
\hline
12,268
\end{array}$$

$$\begin{array}{r} \textbf{60.} & \begin{array}{r} 3\,32\\ 5\,76\\ 7\,934\\ 60\\ 7\,81\\ 5\,968\\ \underline{+\quad371}\\ 15,690 \end{array}$$

61. Add up to check addition.

62. Add up to check addition.

63. Add up to check addition.

64. Add up to check addition.

1120 17 296 713 + 94 1220 incorrect; should be 1120

65. Add up to check addition.

 $\begin{array}{r}
 5420 \\
 \hline
 4713 \\
 28 \\
 615 \\
 \hline
 +64 \\
 \hline
 5420 correct$

66. Add up to check addition.

11,583 3 628 72 564 + 7 319 11.583 correct

67. Add up to check addition.

11,577 678 7 952 56 718 + 2 173 11,377 incorrect; should be 11,577

68. Add up to check addition.

11,212 516 8760 24 189 +1723 11,212 correct

69. Add up to check addition.

 $\begin{array}{r}
 14,332 \\
 \hline
 4714 \\
 27 \\
 77 \\
 8878 \\
 +636 \\
 \hline
 14,332 \text{ correct}
 \end{array}$

70. Add up to check addition.

 $\begin{array}{r}
 16,709 \\
 \hline
 6715 \\
 283 \\
 9617 \\
 13 \\
 +81
 \end{array}$

16,719 incorrect; should be 16,709

71. Changing the order in which numbers are added does not change the sum. You can add from bottom to top when checking addition.

72. Grouping the addition of numbers in any order does not change the sum. You can add numbers in any order. For example, you can add pairs of numbers that add to 10.

73. The shortest route between Southtown and Rena is through Thomasville.

21 Southtown to Thomasville + 12 Thomasville to Rena 33 miles

74. The shortest route from Elk Hill to Oakton is through Thomasville.

18 Elk Hill to Thomasville + 17 Thomasville to Oakton 35 miles

75. The shortest route between Thomasville and Murphy is through Rena and Austin.

12 Thomasville to Rena 15 Rena to Austin + 11 Austin to Murphy 38 miles

76. The shortest route from Murphy to Thomasville is through Austin and Rena.

11 Murphy to Austin 15 Austin to Rena + 12 Rena to Thomasville 38 miles

77. \$3482 flea market +12,860 annual auction \$16,342 total amount raised

78. 75 tops +52 pairs of shorts 127 total items

79. 413 women + 286 men 699 total people

80.
$$283$$
 employees $+218$ employees 501 total employees

81. 13,786 on-campus day
$$3497$$
 on-campus night $+2874$ on-line $20,157$ total students

$$\begin{array}{r}
 325 \\
 160 \\
 325 \\
 + 160 \\
 \hline
 970 & feet
 \end{array}$$

970 feet is the total distance around the lot.

Maria will need 160 feet of gutters.

$$\begin{array}{r}
30 \\
24 \\
+18 \\
\hline
72
\end{array}$$
 feet

Martin will need 72 feet of lumber.

$$\begin{array}{r}
 65 \\
 73 \\
 98 \\
 +73 \\
 \hline
 309 \quad \text{meters}
 \end{array}$$

309 meters of fencing will be needed.

87. The largest four-digit number possible, using the digits 4, 1, 9, and 2 each once, will begin with the largest digit in the thousands place and the remaining digits will descend in size until the smallest digit is in the ones place. Therefore, the largest four-digit number possible is 9421.

1.3 Subtracting Whole Numbers

1.3 Margin Exercises

1. (a)
$$7 + 2 = 9$$
:
 $9 - 2 = 7$ or $9 - 7 = 2$
(b) $7 + 4 = 11$:

$$11 - 7 = 4$$
 or $11 - 4 = 7$

(c)
$$15 + 22 = 37$$
:
 $37 - 15 = 22$ or $37 - 22 = 15$

(d)
$$23 + 55 = 78$$
:
 $78 - 55 = 23$ or $78 - 23 = 55$

2. (a)
$$7-5=2$$
:
 $7=5+2$ or $7=2+5$
(b) $9-4=5$:
 $9=4+5$ or $9=5+4$

9

(c)
$$21 - 15 = 6$$
:

$$21 = 15 + 6$$
 or $21 = 6 + 15$

(d)
$$58 - 42 = 16$$
:

$$58 = 42 + 16$$
 or $58 = 16 + 42$

3. (a)
$$74 4 - 3 = 1$$

 $-43 7 - 4 = 3$

(b)
$$68 \quad 8-4=4$$

 $-24 \quad 6-2=4$

(c)
$$429$$
 -318
 111

(d)
$$3927$$

$$-2614$$

$$1313$$

4. (a)
$$76$$
 45 -45 Subtraction $+31$ Addition 76 problem

Match: 31 is correct.

Not a match: 21 is incorrect.

Rework.

Match: 31 is correct.

Not a match: 113 is incorrect.

Rework.

Match: 123 is correct.

Match: 3230 is correct.

5. (a)
$$\begin{array}{c} 418 \\ 58 \\ \hline -19 \\ \hline 39 \end{array}$$

(b)
$$\begin{array}{c} 716 \\ 86 \\ -38 \\ \hline 48 \end{array}$$

(c)
$$\begin{array}{r} 311 \\ 41 \\ -27 \\ \hline 14 \end{array}$$

(d)
$$863$$
 -47 816

(e)
$$762$$
 $\frac{-157}{605}$

6. (a)
$$927$$
 $\frac{-43}{884}$

(b)
$$\begin{array}{c} 51615 \\ 67 & 5 \\ \hline - & 86 \\ \hline & 589 \\ \end{array}$$

(c)
$$\begin{array}{r} 31617 \\ 477 \\ \hline -389 \\ \hline 88 \end{array}$$

(d)
$$\begin{array}{c} 0131017 \\ 1417 \\ -988 \\ \hline 429 \end{array}$$

(e)
$$\begin{array}{r} 71613 \\ 8739 \\ -3892 \\ \hline 4843 \end{array}$$

7. (a)
$$\begin{array}{c} 9 \\ 1 \text{ } \cancel{101} \\ 2 \text{ } \cancel{0} \text{ } \cancel{0} \\ \hline -1777 \\ 2 \text{ } \cancel{0} \end{array}$$

(b)
$$\begin{array}{c} 9 \\ 6 \% 13 \\ 7 \% 3 \\ -415 \\ \hline 288 \end{array}$$

8. (a)
$$\begin{array}{c}
9 \\
2 1/018 \\
3 0 8 \\
-159 \\
\hline
149
\end{array}$$

(b)
$$5 \frac{610}{70}$$
 $\frac{-368}{202}$

9. (a)
$$357$$
 168 -168 $+189$ 357 357

Match: 189 is correct.

$$\begin{array}{c|cccc} \textbf{(b)} & 570 & 328 \\ & -328 & & +252 \\ \hline & 252 & 580 \\ \end{array}$$

Not a match: 252 is incorrect.

Rework.

$$\begin{array}{rr}
570 & 328 \\
-328 & +242 \\
\hline
242 & 570
\end{array}$$

Match: 242 is correct.

(c)
$$14,726$$
 8839
 -8839 $+5887$ $14,726$

Match: 5887 is correct.

10. (a)
$$$56,655$$
 Bachelor's degree $-43,094$ Associate of Arts degree $$13,561$ More earnings

(b)
$$$43,094$$
 Associate of Arts degree $-27,401$ Not a high school graduate $$15,693$

1.3 Section Exercises

1. 48 *Check:* 32
$$\frac{-32}{16}$$
 $\frac{+16}{48}$

2. 17 *Check:* 13
$$\frac{-13}{4}$$
 $\frac{+4}{17}$

3. 86 *Check:* 53
$$\frac{-53}{33}$$
 $\frac{+33}{86}$

4. 78 *Check:* 35
$$\frac{-35}{43}$$
 $\frac{+43}{78}$

5. 77 *Check:* 60
$$\frac{-60}{17}$$
 $\frac{+17}{77}$

6. 87 *Check:* 63
$$\frac{-63}{24}$$
 $\frac{+24}{87}$

7. 335 *Check:* 213
$$-122$$
 $+122$ 335

8.
$$602$$
 Check: 301 -301 $+301$ 602

9.
$$552$$
 Check: 451 -451 101 552

10. 888 *Check:* 215
$$\frac{-215}{673}$$
 $\frac{+673}{888}$

11.
$$7352$$
 Check: 241

$$\begin{array}{rrr} -241 & & +7111 \\ \hline 7111 & & 7352 \end{array}$$

12.
$$4420$$
 Check: 4110 -310 $+310$ 4120

13.
$$5546$$
 Check: 3412 -2134 $+2134$ 5546

14.
$$1875$$
 Check: 1362 -1362 513 1875

15.
$$6259$$
 Check: 4148 -4148 $+2111$ 6259

17.
$$24,392$$
 Check: $13,160$ $-11,232$ $+11,232$ $24,392$

18.
$$57,921$$
 Check: $23,120$ $-34,801$ $23,120$ $+34,801$ $57,921$

19.
$$46,253$$
 Check: $41,110$ -5143 $+5143$ $41,110$ $46,253$

21. 54 *Check:* 42
$$-42$$
 12 54 correct

22. 87 *Check:* 43
$$-43$$
 44 87 correct

Rework.

24.
$$\begin{array}{ccc} 47 & \textit{Check:} & 13 \\ -35 & & & +35 \\ \hline 13 & & & 48 \end{array}$$
 incorrect

Rework.

Rework.

26.
$$754$$
 Check: 342

$$-342$$

$$412$$

$$-754$$
 correct

27.
$$4683$$
 Check: 3542 -3542 $+1141$ 4683 correct

28.
$$5217$$
 Check: 1132 -4105 $+4105$ 5237 incorrect

Rework.

29.
$$8643$$
 Check: 7212 -1421 $+1421$ -7212 -1421

Rework.

Rework.

31.
$$75$$
 -37 38

32.
$$\begin{array}{r} 716 \\ 86 \\ \hline -28 \\ \hline 58 \end{array}$$

33.
$$94$$

$$-49$$

$$45$$

$$\begin{array}{c}
 518 \\
 68 \\
 \hline
 -39 \\
 \hline
 29
\end{array}$$

35.
$$\begin{array}{c} 417 \\ 57 \\ -38 \\ \hline 19 \end{array}$$

36.
$$\begin{array}{r} 317 \\ 47 \\ \hline -29 \\ \hline 18 \end{array}$$

37.
$$\begin{array}{r} 712 \\ 828 \\ -547 \\ \hline 281 \end{array}$$

38.
$$\begin{array}{c}
81016 \\
916 \\
-618 \\
\hline
298
\end{array}$$

40.
$$\begin{array}{r}
81613 \\
97 3 \\
-788 \\
\hline
185
\end{array}$$

41.
$$\begin{array}{r}
 41218 \\
 7538 \\
 \hline
 -479 \\
 \hline
 7059
\end{array}$$

43.
$$99 \% \%$$

$$-2399$$

$$7589$$

44.
$$\begin{array}{c}
215616 \\
3576 \\
-1658 \\
\hline
1918
\end{array}$$

45.
$$\begin{array}{c}
217 & 121215 \\
38, 335 \\
-29, 476 \\
\hline
8859
\end{array}$$

46.
$$\begin{array}{r}
711 & 172 & 11 \\
8 & 2 & 7 & 3 & 1 \\
-1 & 4 & 8 & 2 & 6 \\
\hline
6 & 7 & 9 & 0 & 5
\end{array}$$

48.
$$\begin{array}{c} 710 \\ 80 \\ -73 \\ \hline \end{array}$$

49.
$$\begin{array}{c} 510 \\ 60 \\ \hline -37 \\ \hline 23 \end{array}$$

50.
$$70$$
 $\frac{610}{70}$ $\frac{-27}{43}$

53.
$$\begin{array}{c} 310\ 311 \\ 40\ 41 \\ \hline -12\ 08 \\ \hline 28\ 33 \end{array}$$

54.
$$\begin{array}{r}
5 & 1012 \\
4 & 0 & 2 \\
-2063 \\
\hline
2539
\end{array}$$

55.
$$\begin{array}{c}
81210 \\
9305 \\
-1530 \\
\hline
7775
\end{array}$$

56.
$$\begin{array}{c} 71110 \\ 7120 \\ -6033 \\ \hline 1087 \end{array}$$

57.
$$\begin{array}{r}
 710 \\
 1580 \\
 -1077 \\
 \hline
 503
\end{array}$$

58.
$$\begin{array}{r} 210 \\ 3068 \\ -2105 \\ \hline 0.63 \end{array}$$

60.
$$\begin{array}{r}
 71111013 \\
 8203 \\
 \hline
 -5365 \\
 \hline
 2838
\end{array}$$

62.
$$7050$$

$$-6045$$

$$1005$$

65.
$$\begin{array}{c}
710 & 61015 \\
80, 70 & 5 \\
-61, 667 \\
\hline
19, 038
\end{array}$$

66.
$$\begin{array}{c} 710 & 99 \\ 710 & 100 \\ 81, 000 \\ \hline -55, 456 \\ \hline 25, 544 \end{array}$$

69.
$$\begin{array}{c}
 \begin{array}{c}
 9 & 9 \\
 1 & 10 & 10 & 17 & 10 \\
 2 & 0 & 0 & 8 & 0 \\
 \hline
 -1 & 3 & 4 & 9 & 6 \\
 \hline
 6 & 5 & 8 & 4
\end{array}$$

70.
$$\begin{array}{c}
 \begin{array}{c}
 9 & 9 \\
 7 \cancel{10} \cancel{10} \cancel{10} \cancel{14} \cancel{16} \\
 8 \cancel{0}, \cancel{0} \cancel{5} \cancel{6} \\
 -2 \cancel{3}, \cancel{8} \cancel{6} \cancel{9} \\
 \hline
 5 \cancel{6}, \cancel{1} \cancel{8} \cancel{7}
\end{array}$$

71.
$$9428$$
 4509 -4509 $+4919$ 9428 correct

72.
$$1671$$
 1325 -1325 $+1346$ 2671 incorrect

Rework.

73.
$$2548$$
 2278 -2278 $+270$ 2548 correct

74.
$$5274$$
 4144 -1130 $+1130$ 1444 correct

75.
$$93,758$$
 $52,869$ $-52,869$ $40,889$ $93,758$ correct

76.
$$82,357$$
 $68,961$ $-14,396$ $+14,396$ $-14,396$ -1

Rework.

Rework.

79. Possible answers are:

$$3+2=5$$
 could be changed to $5-2=3$ or $5-3=2$.

$$6-4=2$$
 could be changed to $2+4=6$ or $4+2=6$.

- **80.** No, you cannot. Numbers must be subtracted in the order given. The difference found in subtracting is the result of subtracting the subtrahend from the minuend. Changing the order of the minuend and subtrahend *does* change the answer.
- 81. 187 calories man burns

 140 calories woman burns

 47 fewer calories woman burned

A woman burns 47 fewer calories.

82. 403 calories man burns
- 302 calories woman burns
101 more calories man burned

A man burns 101 more calories.

83. 1821 height of CN Tower

- 1454 height of Sears Tower

367 difference in heights

There is a difference in height of 367 feet.

84. 580 Boeing 747

- 217 peregrine falcon

363 difference

The plane travels 363 miles per hour faster than the falcon.

85. 1815 passengers on the ship
 -1348 passengers who go ashore
 467 passengers who remain on the ship

467 passengers are left on the ship.

86. The Ford Explorers had greater sales.

There were 11,016 more Ford Explorers sold.

There were 3270 jobs eliminated.

There are 9539 flags that remain.

In the district, 8477 students have not received eye exams.

They will pay \$263 more per month if they buy a house.

92.
$$$1568$$
 new amount -1479 old amount $$89$ difference

The monthly increase is \$89.

93. More people visited the park on Tuesday.

There were 758 more visitors on Tuesday.

Based on these predictions, the shortage in the number of nurses will be 1,010,000.

95. Rewrite one hundred one thousand, five hundred dollars using digits.

A general manager's average salary is \$57,500 more than a director's.

There were 226,900 more knee surgeries this year than six years ago.

- 98. 670 calories in a Whopper

 290 calories in a 6" Turkey Breast & Ham

 380 fewer calories in the Turkey & Ham
 - 39 grams of fat in a Whopper
 5 grams of fat in a 6" Turkey Breast & Ham
 34 fewer grams of fat in the Turkey & Ham
- 99. 330 calories in Roasted Chicken Breast
 5 calories in 2 tsp. of mustard
 + 45 calories in 1 tsp. of olive oil
 380 total calories
 - 5 grams of fat in Roasted Chicken Breast
 0 grams of fat in 2 tsp. of mustard
 + 5 grams of fat in 1 tsp. of olive oil
 10 total grams of fat
- **100.** The sandwich with the least calories is the Veggie Delite and the sandwich with the most calories is the Sweet Onion Chicken Teriyaki.
 - 230 calories in Veggie Delite + 370 calories in Sweet Onion Ch. Teriyaki 600 total calories
 - 3 grams of fat in Veggie Delite
 + 5 grams of fat in Sweet Onion Ch. Teriyaki
 8 total grams of fat

1.4 Multiplying Whole Numbers

1.4 Margin Exercises

- 1. (a) 8 factor $\times 5$ factor 40 product
 - (b) 6 factor $\times 4$ factor 24 product
 - (c) 7 factor $\times 6$ factor 42 product
 - (d) 3 factor $\times 9$ factor 27 product
- **2.** (a) $7 \times 4 = 28$
 - **(b)** $0 \times 9 = 0$
 - (c) 8(5) = 40
 - **(d)** $6 \cdot 5 = 30$
 - (e) (3)(8) = 24

- 3. (a) $3 \times 2 \times 5 = (3 \times 2) \times 5 = 6 \times 5 = 30$
 - **(b)** $4 \cdot 7 \cdot 1 = (4 \cdot 7) \cdot 1 = 28 \cdot 1 = 28$
 - (c) (8)(3)(0) = 24(0) = 0
- 4. (a) $\begin{array}{c} 1\\ 53\\ \times 5\\ \hline 265 \end{array}$
 - (b) $79 \times 0 \over 0$
 - (c) $\begin{array}{r} 46 \\ 758 \\ \times 8 \\ \hline 6064 \end{array}$
 - (d) $\begin{array}{c} 52\\2831\\ \times 7\\ \hline 19.817 \end{array}$
 - (e) $\begin{array}{r} 513 \\ 4714 \\ \times 8 \\ \hline 37,712 \end{array}$
- **5.** (a) $63 \times 10 = 630$ Attach 0.
 - **(b)** $305 \times 100 = 30{,}500$ Attach 00.
 - (c) $714 \times 1000 = 714{,}000$ Attach 000.
- 6. (a) 16×50

$$\begin{array}{c|c}
16 \\
\times 5 \\
\hline
80 & 16 \times 50 = 800 \quad Attach \ 0.
\end{array}$$

(b) 73×400

$$73$$
 \times 4
 292
 $73 \times 400 = 29,200$ Attach 00.

(c) 180×30

$$\begin{array}{c|c}
 18 \\
 \times 3 \\
\hline
 54 & 180 \times 30 = 5400 \text{ Attach } 00.
 \end{array}$$

(d) 4200×80

$$42$$
 $\times 8$
 336
 $4200 \times 80 = 336,000$ Attach 000.

(e) 800 × 600

7. (a)
$$35 \times 54 = 140 = 175 \quad Add$$

(b)
$$76 \times 49 = 684 = 304 \quad Add = 3724$$

8. (a)
$$52$$
 $\times 16$
 $312 \leftarrow 6 \times 52$
 $52 \leftarrow 1 \times 52$
 832

(b)
$$81$$
 $\times 49$
 $729 \leftarrow 9 \times 81$
 $324 \leftarrow 4 \times 81$
 3969

(c)
$$75$$

 $\times 63$
 $225 \leftarrow 3 \times 75$
 $450 \leftarrow 6 \times 75$
 4725

(d)
$$234$$

 $\times 73$
 $\overline{702} \leftarrow 3 \times 234$
 $1638 \leftarrow 7 \times 234$
 $\overline{17,082}$

(e)
$$835$$

 $\times 189$
 $7515 \leftarrow 9 \times 835$
 $6680 \leftarrow 8 \times 835$
 $835 \leftarrow 1 \times 835$
 157.815

9. (a)
$$28 \times 60 \times 60 = 1680$$

(b)
$$728 \times 50 \over 36,400$$

(c)
$$562 \times 109 \times 109 = 5058 \times 1000 \times$$

(d)
$$3526$$

 $\times 6002$
 $\overline{7052}$
 2115600 $6 \times 3526 = 21,156$ Insert 00
 $\overline{21,163,052}$

10. (a)
$$289 \times 12 = 578 = 289 = 3468$$

The total cost of 289 redwood planters is \$3468.

(b)
$$129 \times 58 = 1032 = 645 = 7482$$

The total cost of 58 compound miter saws is \$7482.

(c)
$$28,300$$
 $\times 12$
 $\overline{56600}$
 28300
 $\overline{339,600}$

The total cost of 12 delivery vans is \$339,600.

1.4 Section Exercises

1.
$$2 \times 6 \times 2 = (2 \times 6) \times 2 = 12 \times 2 = 24$$

or $2 \times (6 \times 2) = 2 \times 12 = 24$.

2.
$$3 \times 5 \times 3 = (3 \times 5) \times 3 = 15 \times 3 = 45$$

or $3 \times (5 \times 3) = 3 \times 15 = 45$.

3.
$$8 \times 6 \times 1 = (8 \times 6) \times 1 = 48 \times 1 = 48$$

or $8 \times (6 \times 1) = 8 \times 6 = 48$.

4.
$$2 \times 4 \times 5 = (2 \times 4) \times 5 = 8 \times 5 = 40$$

or $2 \times (4 \times 5) = 2 \times 20 = 40$.

5.
$$7 \cdot 8 \cdot 0 = (7 \cdot 8) \cdot 0 = 56 \cdot 0 = 0$$

or $7 \cdot (8 \cdot 0) = 7 \cdot 0 = 0$.

The product of any number and 0 is 0.

6.
$$9 \cdot 0 \cdot 5 = (9 \cdot 0) \cdot 5 = 0 \cdot 5 = 0$$

or $9 \cdot (0 \cdot 5) = 9 \cdot 0 = 0$.

The product of any number and 0 is 0.

17

8.
$$1 \cdot 5 \cdot 7 = (1 \cdot 5) \cdot 7 = 5 \cdot 7 = 35$$

or $1 \cdot (5 \cdot 7) = 1 \cdot 35 = 35$.

9.
$$(4)(5)(2) = [(4)(5)](2) = 20(2) = 40$$

or $(4)[(5)(2)] = (4)(10) = 40$.

10.
$$(4)(1)(9) = [(4)(1)](9) = 4(9) = 36$$
 or $(4)[(1)(9)] = (4)(9) = 36$.

11.
$$(3)(0)(7) = [(3)(0)](7) = 0(7) = 0$$
 or $(3)[(0)(7)] = (3)(0) = 0$.

The product of any number and 0 is 0.

12.
$$(0)(9)(4) = [(0)(9)](4) = 0(4) = 0$$
 or $(0)[(9)(4)] = (0)(36) = 0$.

The product of any number and 0 is 0.

- 13. Factors may be multiplied in any order to get the same answer. The commutative properties of addition and multiplication are similar since with either you may add or multiply numbers in any order.
- **14.** You may shift the parentheses in a multiplication problem. Just as in addition, the different grouping results in the same answer.

15.
$$\begin{array}{r} 3 \\ 35 \\ \times 6 \\ \hline 210 \end{array}$$

 $6 \cdot 5 = 30$ Write 0, carry 3 tens.

 $6 \cdot 3 = 18$ Add 3 to get 21. Write 21.

16.
$$\begin{array}{c} 2\\ 53\\ \times 7\\ \hline 371 \end{array}$$

 $7 \cdot 3 = 21$ Write 1, carry 2 tens.

 $7 \cdot 5 = 35$ Add 2 to get 37. Write 37.

17.
$$\begin{array}{r} 2\\ 34\\ \times 7\\ \hline 238 \end{array}$$

 $7 \cdot 4 = 28$ Write 8, carry 2 tens.

 $7 \cdot 3 = 21$ Add 2 to get 23. Write 23.

18.
$$\begin{array}{r} 3 \\ 76 \\ \times 5 \\ \hline 380 \end{array}$$

 $5 \cdot 6 = 30$ Write 0, carry 3 tens.

 $5 \cdot 7 = 35$ Add 3 to get 38. Write 38.

19.
$$\begin{array}{c} 21 \\ 642 \\ \times 5 \\ \hline 3210 \end{array}$$

 $5 \cdot 2 = 10$ Write 0, carry 1 ten.

 $5 \cdot 4 = 20$ Add 1 to get 21. Write 1, carry 2.

 $5 \cdot 6 = 30$ Add 2 to get 32. Write 32.

20.
$$\begin{array}{c} 2 \\ 472 \\ \times 4 \end{array}$$

 $4 \cdot 2 = 8$ Write 8.

 $4 \cdot 7 = 28$ Write 8, carry 2.

 $4 \cdot 4 = 16$ Add 2 to get 18. Write 18.

21.
$$624$$
 $\times 3$
 $\overline{1872}$

 $3 \cdot 4 = 12$ Write 2, carry 1 ten.

 $3 \cdot 2 = 6$ Add 1 to get 7. Write 7.

 $3 \cdot 6 = 18$ Write 18.

22.
$$852 \times 7$$

 $\frac{\times}{5964}$

 $7 \cdot 2 = 14$ Write 4, carry 1 ten.

 $7 \cdot 5 = 35$ Add 1 to get 36. Write 6, carry 3.

 $7 \cdot 8 = 56$ Add 3 to get 59. Write 59.

$$\frac{\times 4}{8612}$$

 $4 \cdot 3 = 12$ Write 2, carry 1 ten.

 $4 \cdot 5 = 20$ Add 1 to get 21. Write 1, carry 2.

 $4 \cdot 1 = 4$ Add 2 to get 6. Write 6.

 $4 \cdot 2 = 8$ Write 8.

24.
$$1\overset{12}{137}$$

$$\frac{\times 3}{3411}$$

 $3 \cdot 7 = 21$ Write 1, carry 2 tens.

 $3 \cdot 3 = 9$ Add 2 to get 11. Write 1, carry 1.

 $3 \cdot 1 = 3$ Add 1 to get 4. Write 4.

 $3 \cdot 1 = 3$ Write 3.

25.
$$2521 \times 4$$

0,084

continued

$$4 \cdot 1 = 4$$
 Write 4.

$$4 \cdot 2 = 8$$
 Write 8.

$$4 \cdot 5 = 20$$
 Write 0, carry 2.

$$4 \cdot 2 = 8$$
 Add 2 to get 10. Write 10.

$$\frac{\times 3}{7632}$$

$$3 \cdot 4 = 12$$
 Write 2, carry 1 ten.

$$3 \cdot 4 = 12$$
 Add 1 to get 13. Write 3, carry 1.

$$3 \cdot 5 = 15$$
 Add 1 to get 16. Write 6, carry 1.

$$3 \cdot 2 = 6$$
 Add 1 to get 7. Write 7.

$$\frac{\times 8}{20,488}$$

 $8 \cdot 1 = 8$ Write 8.

 $8 \cdot 6 = 48$ Write 8, carry 4.

 $8 \cdot 5 = 40$ Add 4 to get 44. Write 4, carry 4.

 $8 \cdot 2 = 16$ Add 4 to get 20. Write 20.

$\frac{113}{7326}$ 28.

$$\frac{\times 5}{36,630}$$

 $5 \cdot 6 = 30$ Write 0, carry 3 tens.

 $5 \cdot 2 = 10$ Add 3 to get 13. Write 3, carry 1.

 $5 \cdot 3 = 15$ Add 1 to get 16. Write 6, carry 1.

Add 1 to get 36. Write 36. $5 \cdot 7 = 35$

46 1 36,921 29.

$$\frac{\times 7}{258447}$$

 $7 \cdot 1 = 7$ Write 7.

 $7 \cdot 2 = 14$ Write 4, carry 1.

 $7 \cdot 9 = 63$ Add 1 to get 64. Write 4, carry 6.

 $7 \cdot 6 = 42$ Add 6 to get 48. Write 8, carry 4.

 $7 \cdot 3 = 21$ Add 4 to get 25. Write 25.

$\frac{3}{28,116}$ **30.**

$$\frac{\times \quad 4}{112,464}$$

 $4 \cdot 6 = 24$ Write 4, carry 2 tens.

 $4 \cdot 1 = 4$ Add 2 to get 6. Write 6.

 $4 \cdot 1 = 4$ Write 4.

 $4 \cdot 8 = 32$ Write 2, carry 3.

 $4 \cdot 2 = 8$ Add 3 to get 11. Write 11.

31. 40

$$\begin{array}{c|cccc}
40 & 4 & 40 \\
\times 7 & \times 7 & \times 7 \\
\hline
28 & 280 & Attach 0.
\end{array}$$

$$\begin{array}{c|ccccc} \times 7 & \times 7 & \times 7 \\ \hline & 14 & 140 & Attach \ 0. \end{array}$$

$$\frac{\times 6}{48} \quad \frac{\times 6}{480} \quad \frac{\times 6}{480} \quad Attach \ 0.$$

34.
$$70$$
 7 70 $\times 5$ $\times 5$ $\times 5$ $\times 5$ $\times 5$ Attach 0.

35.
$$740$$
 74 740 $\times 3$ \times

19

$$970 \cdot 50 = 48,500$$
 Attach 00.

48.
$$730 \cdot 40$$
 73×4 292

$$730 \cdot 40 = 29,200$$
 Attach 00.

$$800 \cdot 900 = 720,000$$
 Attach 0000.

$$850 \cdot 700 = 595{,}000$$
 Attach 000.

51.
$$9700 \cdot 200$$
 97×2 194

$$9700 \cdot 200 = 1,940,000$$
 Attach 0000.

52.
$$10,050 \cdot 300$$
 1005×3 3015

$$10,050 \cdot 300 = 3,015,000$$
 Attach 000.

53.
$$28$$
 $\times 17$
 $196 \leftarrow 7 \times 28$
 $28 \leftarrow 1 \times 28$
 476

54.
$$\begin{array}{c} 16 \\ \times 34 \\ \hline 64 \\ \leftarrow 4 \times 16 \\ \hline 48 \\ \hline 544 \end{array}$$

55.
$$75$$
 $\times 32$
 $150 \leftarrow 2 \times 75$
 $225 \leftarrow 3 \times 75$

56.
$$82$$
 $\times 32$
 $164 \leftarrow 2 \times 82$
 $246 \leftarrow 3 \times 82$
 2624

57.
$$83$$
 $\times 45$
 $415 \leftarrow 5 \times 83$
 $332 \leftarrow 4 \times 83$
 3735

58.
$$(75)(21)$$
 $\begin{array}{c} 75 \\ \times 21 \\ \hline 75 \\ -150 \\ \hline \end{array} \begin{array}{c} \leftarrow 1 \times 75 \\ \leftarrow 2 \times 75 \\ \hline \end{array}$

59.
$$(58)(41)$$

$$\begin{array}{r}
58 \\
\times 41 \\
\hline
58 \\
232 \\
\hline
2378
\end{array}$$
 $\leftarrow 1 \times 58$

61.
$$(67)(92)$$

$$\begin{array}{r}
67 \\
\times 92 \\
\hline
134 \\
603 \\
\hline
6164
\end{array}$$

62.
$$(26)(33)$$
 $\begin{array}{c} 26 \\ \times 33 \\ \hline 78 \\ \leftarrow 3 \times 26 \\ \hline \hline 78 \\ \leftarrow 3 \times 26 \\ \hline \hline 858 \\ \end{array}$

63.
$$(28)(564)$$

$$\begin{array}{r}
564 \\
\times 28 \\
\hline
4512 \\
\leftarrow 8 \times 564 \\
\underline{1128} \\
\hline
15,792
\end{array}$$

64.
$$(58)(312)$$
 312
 $\times 58$
 $2496 \leftarrow 8 \times 312$
 $1560 \leftarrow 5 \times 312$
 $18,096$

65.
$$(619)(35)$$
 619

$$\times 35$$

$$\hline
3095 \leftarrow 5 \times 619$$

$$\underline{1857} \leftarrow 3 \times 619$$

$$\underline{21,665}$$

66.
$$(681)(47)$$
 681
 $\times 47$
 $\overline{4767} \leftarrow 7 \times 681$
 $\underline{2724} \leftarrow 4 \times 681$
 $\overline{32,007}$

68.
$$\begin{array}{c} 286 \\ \times 574 \\ \hline 1144 & \leftarrow 4 \times 286 \\ 2002 & \leftarrow 7 \times 286 \\ \underline{1430} & \leftarrow 5 \times 286 \end{array}$$

71.
$$538$$
 $\times 342$
 $1076 \leftarrow 2 \times 538$
 $2152 \leftarrow 4 \times 538$
 $1614 \leftarrow 3 \times 538$
 183.996

72.
$$\begin{array}{c}
3228 \\
\times 751 \\
\hline
3228 \\
16140 \\
\leftarrow 5 \times 3228 \\
22596 \\
\hline
2,424,228
\end{array}$$

73.
$$\begin{array}{c} 9352 \\ \times 264 \\ \hline 37408 \leftarrow 4 \times 9352 \\ 56112 \leftarrow 6 \times 9352 \\ \underline{18704} \leftarrow 2 \times 9352 \\ 2,468,928 \end{array}$$

74.
$$528$$
 $\times 106$
 $\hline
3168 \leftarrow 6 \times 528$
 $5280 \leftarrow 10 \times 528$
 $\hline
55,968$

75.
$$215$$
 $\times 307$
 $1505 \leftarrow 7 \times 215$
 $6450 \leftarrow 30 \times 215$
 66.005

77.
$$428$$

$$\times 201$$

$$428 \leftarrow 1 \times 428$$

$$8560 \leftarrow 20 \times 428$$

$$86,028$$

78.
$$3706$$
 $\times 208$
 $29648 \leftarrow 8 \times 3706$
 $74120 \leftarrow 20 \times 3706$
 770.848

79.
$$\begin{array}{c} 6\,3\,1\,0 \\ \times\,3\,0\,7\,8 \\ \hline 50\,4\,8\,0 & \leftarrow\,8\times6310 \\ 441\,7\,0 & \leftarrow\,7\times6310 \\ \hline 18\,930\,0 & \leftarrow\,30\times6310 \\ \hline \hline 19.422.1\,8\,0 \end{array}$$

80.
$$3533$$
 $\times 5001$
 $3533 \leftarrow 1 \times 3533$
 $1766500 \leftarrow 500 \times 3533$
 $17,668,533$

81.
$$2195$$
 $\times 1038$
 $17560 \leftarrow 8 \times 2195$
 $6585 \leftarrow 3 \times 2195$
 $21950 \leftarrow 10 \times 2195$
 $2,278,410$

21

82.
$$\begin{array}{c}
1502 \\
\times 2009 \\
\hline
13518 \leftarrow 9 \times 1502 \\
300400 \leftarrow 200 \times 1502 \\
\hline
3,017,518
\end{array}$$

83. To multiply by 10, 100, or 1000, just add one, two, or three zeros, respectively, to the number you are multiplying and that's your answer.

$$\begin{array}{c|cccc} \textbf{84.} & 291 & 291 \\ \times 307 & \times 307 \\ \hline 2037 & 2037 \\ 000 & 8730 \\ \hline 873 & 89,337 \\ \hline \end{array}$$

85.
$$300$$
 cartons
 $\times 10$ balls per carton
 3000 balls

3000 balls were purchased.

86. 500 tablets per bottle
$$\times 30$$
 bottles $15,000$ tablets

15,000 tablets are in the medical supply house.

87.
$$36$$
 eggs per carton $\times 15$ cartons $\overline{180}$ $\overline{36}$ $\overline{540}$ eggs

540 eggs were purchased.

88. 65 times per second
$$\times 30$$
 seconds 1950 times

The hummingbird's wings beat 1950 times in 30 seconds.

89.
$$365$$
 days per year $\times 66$ gallons per day 2190 $24,090$ gallons per year

The average person in the United States uses 24,090 gallons of water in one year.

The total catch for the night was 1080 tons.

91. 75 first-aid kits at \$8 per kit

$$75 \times 8 \over 600$$

The total cost is \$600.

92. 38 gardeners at \$64 per day

$$\begin{array}{r}
 64 \\
 \times 38 \\
\hline
 512 \\
 192 \\
\hline
 2432
\end{array}$$

The total cost is \$2432.

93. 65 rebuilt alternators at \$24 per alternator

$$\begin{array}{r}
 65 \\
 \times 24 \\
\hline
 260 \\
\hline
 130 \\
\hline
 1560
\end{array}$$

The total cost is \$1560.

94. 62 wheelchair cushions at \$44 per cushion

$$\begin{array}{r}
 62 \\
 \times 44 \\
\hline
 248 \\
\hline
 248 \\
\hline
 2728
\end{array}$$

The total cost is \$2728.

95. 206 desktop computers at \$548 per computer

$$\begin{array}{r}
548 \\
\times 206 \\
\hline
3288 \\
\underline{10960} \\
112,888
\end{array}$$

The total cost is \$112,888.

96. 520 printers at \$219 per printer

$$\begin{array}{r}
 520 \\
 \times 219 \\
\hline
 4680 \\
 520 \\
\hline
 1040 \\
\hline
 $113,880
\end{array}$$

The total cost is \$113,880.

97.
$$21 \cdot 43 \cdot 56 = (21 \cdot 43) \cdot 56$$

$$\begin{array}{r}
21 & 903 \\
\times & 43 & \times & 56 \\
\hline
& 63 & 5418 \\
\hline
& 903 & 50.568 \\
\end{array}$$

$$\begin{array}{cccc} 600 & 48\,0\,0 & 360,000 \\ \times \,8 & \times \,7\,5 & \times \,40 \\ \hline 4800 & 24\,0\,0\,0 & 14,400,000 \\ & & 360,0\,0\,0 \end{array}$$

$$\begin{array}{c} \times 85 \\ \hline 2250 \\ \hline 3600 \\ \hline 38,250 \end{array} trees$$

38,250 trees are needed to plant 85 acres.

100.
$$15,225$$
 $\times 28$
 121800
 30450
 $426,300$

The blue whale weighs 426,300 pounds.

7,623,663 more people live in New York City than in Boston.

102.
$$3,849,378$$
 population of Los Angeles $-1,232,940$ population of Dallas $2,616,438$ more people

2,616,438 more people live in Los Angeles than in Dallas.

103.
$$880$$
 235 140

$$\begin{array}{ccc}
\times & 6 & \times & 6 \\
\hline
5280 & 1410 & 700
\end{array}$$

The total cost is the sum of these values:

$$$5280 + $1410 + $700 = $7390$$

The total number of miles traveled is 1613.

105. (a)
$$189 + 263 = 452$$

(b)
$$263 + 189 = 452$$

106. commutative

107. (a)
$$(65 + 81) + 135 = 146 + 135 = 281$$

(b)
$$65 + (81 + 135) = 65 + 216 = 281$$

108. associative

109. (a)
$$220 \times 72 = 15,840$$

(b)
$$72 \times 220 = 15,840$$

110. commutative

111. (a)
$$(26 \times 18) \times 14 = 468 \times 14 = 6552$$

(b)
$$26(18 \times 14) = 26 \times 252 = 6552$$

112. associative

113. No. Some examples are

1.
$$7 - 5 = 2$$
, but $5 - 7$ does not equal 2.

2.
$$12 - 6 = 6$$
, but $6 - 12$ does not equal 6.

3.
$$(8-2)-5=1$$
, but $8-(2-5)$ does not equal 1.

114. No. Some examples are

1.
$$10 \div 2 = 5$$
, but $2 \div 10$ does not equal 5.

2.
$$(16 \div 8) \div 2 = 1$$
, but $16 \div (8 \div 2)$ does not equal 1.

1.5 Dividing Whole Numbers

1.5 Margin Exercises

1. (a)
$$24 \div 6 = 4$$
: $6 \overline{\smash)24}$ or $\frac{24}{6} = 4$

(b)
$$9 \frac{4}{36}$$
: $36 \div 9 = 4$ or $\frac{36}{9} = 4$

(c)
$$48 \div 6 = 8$$
: $\frac{8}{6 | 48}$ or $\frac{48}{6} = 8$

(d)
$$\frac{42}{6} = 7$$
: $42 \div 6 = 7$ or $6 | \frac{7}{42} |$

2. (a) $15 \div 3 = 5$

dividend: 15; divisor: 3; quotient: 5

(b) $18 \div 6 = 3$

dividend: 18; divisor: 6; quotient: 3

(c)
$$\frac{28}{7} = 4$$

dividend: 28; divisor: 7; quotient: 4

23

dividend: 27; divisor: 9; quotient: 3

3. (a) $0 \div 5 = 0$

(b)
$$\frac{0}{9} = 0$$

(c)
$$\frac{0}{24} = 0$$

(d)
$$\frac{0}{37|0}$$

4. (a)
$$\frac{3}{5\sqrt{15}}$$
; $5 \cdot 3 = 15$ or $3 \cdot 5 = 15$

(b)
$$\frac{32}{4} = 8$$
; $4 \cdot 8 = 32$ or $8 \cdot 4 = 32$

(c)
$$45 \div 9 = 5$$
; $9 \cdot 5 = 45$ or $5 \cdot 9 = 45$

5. (a) $\frac{4}{0}$; undefined

(b)
$$\frac{0}{4} = 0$$

(c) $0\overline{36}$; undefined

(d)
$$\frac{0}{36}$$

(e) $100 \div 0$; undefined

(f)
$$0 \div 100 = 0$$

6. (a) $8 \div 8 = 1$

(b)
$$15\overline{15}$$

(c)
$$\frac{37}{37} = 1$$

7. (a) $9 \div 1 = 9$

(b)
$$1 | 18$$

(c)
$$\frac{43}{1} = 43$$

8. (a)
$$\frac{12}{24}$$
 $\frac{2}{2} = 1$, $\frac{4}{2} = 2$

(b)
$$\frac{31}{93} = \frac{9}{3} = 3$$
, $\frac{3}{3} = 1$

(c)
$$\frac{22}{488} = \frac{8}{4} = 2$$
, $\frac{8}{4} = 2$

(d)
$$\frac{312}{2 | 624} \frac{6}{2} = 3, \frac{2}{2} = 1, \frac{4}{2} = 2$$

9. (a)
$$\frac{62}{2\sqrt{125}}$$
 R1 $\frac{12}{2}$ = 6, $\frac{5}{2}$ = 2 R1

(b)
$$\frac{71}{3} \frac{\mathbf{R}2}{215}$$
 $\frac{21}{3} = 7$, $\frac{5}{3} = 1 \mathbf{R}2$

(c)
$$\frac{1}{4} \frac{3}{5} \frac{4}{3} \frac{\mathbf{R}^2}{8}$$
 $\frac{5}{4} = 1 \,\mathbf{R} 1$, $\frac{13}{4} = 3 \,\mathbf{R} 1$, $\frac{18}{4} = 4 \,\mathbf{R} 2$

(d)
$$\frac{819}{5}$$

$$\frac{1 \ 6 \ 3}{5 \left[8^{3} 1^{1} 9 \right]} \frac{\mathbf{R}^{4}}{5} = 1 \, \mathbf{R}^{3}, \ \frac{31}{5} = 6 \, \mathbf{R}^{1},$$
$$\frac{19}{5} = 3 \, \mathbf{R}^{4}$$

10. (a)
$$\frac{1}{4} \frac{30}{5^{1}23}$$
 R3

(b)
$$\frac{7 \ 3}{51^25}$$
 R4

(c)
$$\frac{62 \ 8}{3188^25}$$
 R1

(d)
$$\frac{2\ 3\ 5}{614^21^35}$$
 R5

11. (a)
$$\frac{32}{265}$$
 R1

 $\textit{divisor} \times \textit{quotient} + \textit{remainder} = \textit{dividend}$

The answer is correct.

(b)
$$\frac{83}{7586}$$
 R4

 $divisor \times quotient + remainder = dividend$

Rework.

$$\frac{8}{7} \frac{3}{58^26}$$
 Now check:

continued

 $divisor \times quotient + remainder = dividend$

The correct answer is 83 **R**5.

(c)
$$\frac{407}{3 1223}$$
 R

The answer is correct.

(d)
$$\frac{476}{5 2383}$$
 R:

The answer is correct.

- **12. (a)** 258: ends in 8, divisible by 2
 - **(b)** 307: ends in 7, not divisible by 2
 - (c) 4216: ends in 6, divisible by 2
 - (d) 73,000: ends in 0, divisible by 2
- **13.** (a) 743: 7 + 4 + 3 = 14, not divisible by 3
 - **(b)** 5325: 5 + 3 + 2 + 5 = 15, divisible by 3
 - (c) 374,214: 3+7+4+2+1+4=21, divisible by 3
 - (d) 205,633: 2+0+5+6+3+3=19, not divisible by 3
- **14.** (a) 180: ends in 0, divisible by 5
 - **(b)** 635: ends in 5, divisible by 5
 - (c) 8364: does not end in 0 or 5, not divisible by 5
 - (d) 206,105: ends in 5, divisible by 5
- **15.** (a) 270: ends in 0, divisible by 10
 - **(b)** 495: does not end in 0, not divisible by 10
 - (c) 5030: ends in 0, divisible by 10
 - (d) 14,380: ends in 0, divisible by 10

1.5 Section Exercises

1.
$$24 \div 4 = 6$$
: $\frac{6}{4\sqrt{24}}$ or $\frac{24}{4} = 6$

2.
$$36 \div 3 = 12$$
: $3\frac{12}{36}$ or $\frac{36}{3} = 12$

3.
$$\frac{45}{9} = 5$$
: $9\frac{5}{45}$ or $45 \div 9 = 5$

4.
$$\frac{56}{8} = 7$$
: $\frac{7}{8\sqrt{56}}$ or $56 \div 8 = 7$

5.
$$2 | 16 : 16 \div 2 = 8$$
 or $\frac{16}{2} = 8$

6.
$$8 \overline{\smash{\big)}\,48} : 48 \div 8 = 6 \text{ or } \frac{48}{8} = 6$$

7.
$$9 \div 9 = 1$$

Any nonzero number divided by itself is 1.

8.
$$36 \div 9 = 4$$

9.
$$\frac{14}{2} = 7$$

10.
$$\frac{10}{0}$$
 is undefined

11.
$$22 \div 0$$
 is undefined

12.
$$6 \div 6 = 1$$

13.
$$\frac{24}{1} = 24$$

14.
$$\frac{12}{1} = 12$$

15.
$$\frac{0}{15}$$

Zero divided by any nonzero number is zero.

16.
$$\frac{0}{12} = 0$$

17.
$$0\overline{43}$$
 is undefined

18.
$$\frac{8}{0}$$
 is undefined

19.
$$\frac{15}{1} = 15$$

20.
$$\frac{6}{0}$$
 is undefined

21.
$$\frac{8}{1} = 8$$

22.
$$\frac{0}{5} = 0$$

23.
$$3 | 7^{1}5$$
 Check: 25 $\times 3 | 75$

24.
$$5 | 85$$
 Check: $5 \times 17 = 85$

25.
$$7 \overline{12^{5}6}$$
 Check: 18 $\times 7$ 126

26.
$$\frac{2\ 8}{616^48}$$
 Check: $6 \times 28 = 168$

27.
$$4\overline{\smash{\big|}\,1216}$$
 Check: 304 \times 4 $\overline{\hspace{1pt}\,1216}$

28.
$$\frac{4 \ 61}{5 23^{3}05}$$
 Check: $5 \times 461 = 2305$

29.
$$4\overline{\smash{)}25^{\,1}0^{\,2}9}^{\,\mathbf{R}1}$$

Check:
$$4 \times 627 + 1 = 2508 + 1 = 2509$$

30.
$$\frac{1 \ 6 \ 6}{8 \overline{13^{5}3^{5}5}}$$
 R7

Check:
$$8 \times 166 + 7 = 1328 + 7 = 1335$$

31.
$$6 \frac{1 \cdot 5 \cdot 2 \cdot 2}{9^{3}1^{1}3^{1}7} \mathbf{R}^{5}$$

Check:
$$6 \times 1522 + 5 = 9132 + 5 = 9137$$

32.
$$9 \frac{9 \ 30}{83^2 71}$$
 R

Check:
$$9 \times 930 + 1 = 8370 + 1 = 8371$$

33.
$$\frac{309}{61854}$$

Check:
$$6 \times 309 = 1854$$

34.
$$8 | 85^{5} | 6$$
 Check: $8 \times 107 = 856$

35.
$$12,020 \div 4$$
 $\begin{array}{c} 3 \ 0.05 \\ 4 \ 1.2.020 \end{array}$

Check:
$$4 \times 3005 = 12,020$$

36.
$$8012 \div 4$$

$$\frac{200 \ 3}{4801}$$

Check:
$$4 \times 2003 = 8012$$

37.
$$30,036 \div 6$$

$$\begin{array}{c} 5 \ 006 \\ 6 \ \hline{30,036} \end{array}$$

Check:
$$6 \times 5006 = 30,036$$

38.
$$32,008 \div 8$$
 $\frac{4001}{8 | 32,008}$

Check:
$$8 \times 4001 = 32,008$$

39.
$$2434 \div 3$$
 $811 \text{ R1} \atop 3 \boxed{2434}$

Check:
$$3 \times 811 + 1 = 2433 + 1 = 2434$$

40.
$$5993 \div 7$$
 $\begin{array}{c} 8 & 5 & 6 \\ 7 \overline{)} 59 \overline{)} 9^{4} 3 \end{array}$

Check:
$$7 \times 856 + 1 = 5992 + 1 = 5993$$

Check:
$$5 \times 2589 + 2 = 12,945 + 2 = 12,947$$

42.
$$33,285 \div 9$$

$$9 \overline{\smash)33,628875}^{} \mathbf{R}^{}$$

Check:
$$9 \times 3698 + 3 = 33,282 + 3 = 33,285$$

43.
$$29,298 \div 4$$

$$\begin{array}{c} 7 & 32 & 4 \\ 4 \hline 29, {}^{1}29 & {}^{1}8 \end{array}$$

Check:
$$4 \times 7324 + 2 = 29,296 + 2 = 29,298$$

44.
$$17,937 \div 6$$

$$\frac{2 \quad 9 \quad 8 \quad 9}{6 \mid 17,^{5}9,^{5}3,^{5}7} \mathbf{R}^{3}$$

Check:
$$6 \times 2989 + 3 = 17,934 + 3 = 17,937$$

45.
$$12,630 \div 4$$

$$\frac{3 \ 1 \ 5 \ 7}{4 \ 12,6^{2}3^{3}0} \mathbf{R}^{2}$$

Check:
$$4 \times 3157 + 2 = 12,628 + 2 = 12,630$$

46.
$$46,560 \div 7$$

$$\begin{array}{c} 6 & 6 & 5 & 1 \\ 7 \overline{)} 46, {}^{4}5 {}^{3}6 {}^{1}0 \end{array}$$

Check:
$$7 \times 6651 + 3 = 46,557 + 3 = 46,560$$

47.
$$21,040 \div 8$$

$$\frac{2 \ 6 \ 30}{8 \ 21, \ ^50 \ ^240}$$

Check:
$$8 \times 2630 = 21,040$$

48.
$$\frac{8199}{9}$$
 $\frac{911}{98199}$

Check:
$$9 \times 911 = 8199$$

49.
$$\frac{74,751}{6}$$
 $\frac{1}{6}$ $\frac{2}{7}$ $\frac{4}{14}$, $\frac{5}{7}$ $\frac{8}{5}$ $\frac{1}{14}$

Check:
$$6 \times 12,458 + 3 = 74,748 + 3 = 74,751$$

50.
$$\frac{72,543}{5}$$
 $\frac{1}{5}$ $\frac{4,508}{5}$ $\frac{1}{7}$ $\frac{2,543}{43}$

Check:
$$5 \times 14,508 + 3 = 72,540 + 3 = 72,543$$

51.
$$\frac{71,776}{7}$$

Check: $7 \times 10,253 + 5 = 71,771 + 5 = 71,776$

52.
$$\frac{77,621}{3}$$

Check: $3 \times 25,873 + 2 = 77,619 + 2 = 77,621$

53.
$$\frac{128,64}{7}$$

$$\frac{1\ 8,\ 3\ 7\ 7}{712^{5}8,^{2}6^{5}4^{5}5}\mathbf{R}6$$

Check: $7 \times 18,377 + 6 = 128,639 + 6 = 128,645$

54.
$$\frac{172,255}{4}$$

Check: $4 \times 43,063 + 3 = 172,252 + 3 = 172,255$

55.
$$\frac{375}{51877}$$
 R2

Check: $5 \times 375 + 2 = 1875 + 2 = 1877$ correct

56.
$$\frac{427}{31282}$$
 R1

Check: $3 \times 427 + 1 = 1281 + 1 = 1282$ correct

57.
$$\frac{1908}{35725}$$
 R2

Check: $3 \times 1908 + 2 = 5724 + 2 = 5726$ incorrect

Rework.

Check: $3 \times 1908 + 1 = 5724 + 1 = 5725$

58.
$$\frac{432}{52158}$$
 R3

Check: $5 \times 432 + 3 = 2160 + 3 = 2163$ incorrect

Rework.

$$\frac{4 \ 31}{5158} \mathbf{R}^{3}$$

Check: $5 \times 431 + 3 = 2155 + 3 = 2158$ correct

59.
$$\frac{650}{7 | 4692}$$
 R2

Check: $7 \times 650 + 2 = 4550 + 2 = 4552$ incorrect

Rework.

$$\begin{array}{c}
6 & 70 \\
7 \overline{46^{4}92}
\end{array}$$

Check: $7 \times 670 + 2 = 4690 + 2 = 4692$ correct

60.
$$9\overline{\smash{\big|}\,5974}^{}$$
 R5

Check: $9 \times 663 + 5 = 5967 + 5 = 5972$ incorrect

Rework.

$$\frac{6 \ 6 \ 3}{59^{5}7^{3}4}$$
 R7

Check: $9 \times 663 + 7 = 5967 + 7 = 5974$ correct

61.
$$\frac{3568}{621,409}$$
 R2

Check: $6 \times 3568 + 2 = 21,408 + 2 = 21,410$ incorrect

Rework.

Check: $6 \times 3568 + 1 = 21,408 + 1 = 21,409$

62.
$$6\overline{\smash{)}3192}$$

Check: $6 \times 532 = 3192$ correct

Check: $8 \times 2002 + 3 = 16,016 + 3 = 16,019$ correct

Check: $8 \times 4208 = 33,664$ correct

65.
$$6\overline{69,140}^{\mathbf{R2}}$$

Check: $6 \times 11,523 + 2 = 69,138 + 2 = 69,140$ correct

66.
$$3 \frac{27,532}{82,598}$$
R1

Check: $3 \times 27,532 + 1 = 82,596 + 1 = 82,597$ incorrect

Rework.

Check: $3 \times 27,532 + 2 = 82,596 + 2 = 82,598$

67.
$$9628 R7$$

Check: $9 \times 9628 + 7 = 86,652 + 7 = 86,659$ incorrect

Rework.

$$9 \quad 6 \quad 2 \quad 8 \quad \mathbf{R}^{3}$$

$$9 \quad 8 \quad 6, \quad ^{5} 6 \quad ^{2} 5 \quad ^{7} 5$$

Check: $9 \times 9628 + 3 = 86,652 + 3 = 86,655$

68.
$$\frac{7258}{50,809}$$
 R4

Check: $7 \times 7258 + 4 = 50,806 + 4 = 50,810$ incorrect

Rework.

$$\frac{7 \quad 2 \quad 5 \quad 8}{7 \quad 5 \quad 0, \, {}^{1}8 \, {}^{4}0 \, {}^{5}9} \mathbf{R}^{3}$$

Check: $7 \times 7258 + 3 = 50,806 + 3 = 50,809$

69.
$$8\overline{)22,576}$$

Check: $8 \times 27,822 = 222,576$ correct

70.
$$4\overline{311,216}$$

Check: $4 \times 77,804 = 311,216$ correct

- **71.** Multiply the quotient by the divisor and add any remainder. The result should be the dividend.
- 72. Three choices might be:
 - 1. A number is divisible by 2 if it ends in a 0, 2, 4, 6, or 8.
 - 2. A number is divisible by 5 if it ends in 0 or 5.
 - 3. A number is divisible by 10 if it ends in 0.

73.
$$8 \overline{)26^{2}2^{6}4}$$

328 tables can be set.

Each school will receive 135 books.

75.
$$9600$$
 $876, 4800$

9600 drumsticks are produced each hour.

76.
$$5 \frac{8 \ 3,000,000}{41^{1}5,000,000}$$

83,000,000 or 83 million Tootsie Rolls are produced each day.

77.
$$9\overline{48,500}$$

$$9\overline{43^{7}6,^{4}500}$$

Each employee received \$48,500.

78.
$$5 \overline{\smash{\big|}\, 17, \, {}^{2}1 \, {}^{1}7 \, {}^{2}5}$$

3435 5-pound bags of flour can be filled.

79.
$$8 \overline{10^{2}8^{4}0}$$

135 acres can be fertilized.

80. Each cabin needs 9 squares. Divide to find the number of cabins that can be roofed.

126 cabins can be roofed.

81.
$$6 \overline{\smash{\big|}^{1,1\ 3\ 7,\ 500}_{6,8}}_{22} \overline{\smash{\big|}^{4}_{5,3000}}_{00}$$

Each person received \$1,137,500.

82.
$$8 \frac{5, 6 2 5,000}{45, 50^{2}0^{4}0,000}$$

Each payment is \$5,625,000.

83. There are 12 months in a year, so divide \$65,148 by 12.

The annual median household income in Maryland is \$5429 per month.

Assuming the salary each year was the same, the salary was \$5,484,375.

- **85.** 60 ends in 0, so it is divisible by 2, 5, and 10. The sum of its digits, 6, is divisible by 3, so 60 is divisible by 3.
- **86.** 35 ends in 5, so it is divisible by 5, but not divisible by 2 or 10. The sum of its digits, 8, is not divisible by 3, so 35 is not divisible by 3.
- **87.** 92 ends in 2, so it is divisible by 2, but not divisible by 5 or 10. The sum of its digits, 11, is not divisible by 3, so 92 is not divisible by 3.
- **88.** 96 ends in 6, so it is divisible by 2, but not divisible by 5 or 10. The sum of its digits, 15, is divisible by 3, so 96 is divisible by 3.

- **89.** 445 ends in 5, so it is divisible by 5, but not divisible by 2 or 10. The sum of its digits, 13, is not divisible by 3, so 445 is not divisible by 3.
- **90.** 897 ends in 7, so it is not divisible by 2, 5, or 10. The sum of its digits, 24, is divisible by 3, so 897 is divisible by 3.
- **91.** 903 ends in 3, so it is not divisible by 2, 5, or 10. The sum of its digits, 12, is divisible by 3, so 903 is divisible by 3.
- **92.** 500 ends in 0, so it is divisible by 2, 5, and 10. The sum of its digits, 5, is not divisible by 3, so 500 is not divisible by 3.
- **93.** 5166 ends in 6, so it is divisible by 2, but not divisible by 5 or 10. The sum of its digits, 18, is divisible by 3, so 5166 is divisible by 3.
- **94.** 8302 ends in 2, so it is divisible by 2, but not divisible by 5 or 10. The sum of its digits, 13, is not divisible by 3, so 8302 is not divisible by 3.
- **95.** 21,763 ends in 3, so it is not divisible by 2, 5, or 10. The sum of its digits, 19, is not divisible by 3, so 21,763 is not divisible by 3.
- **96.** 32,472 ends in 2, so it is divisible by 2, but not divisible by 5 or 10. The sum of its digits, 18, is divisible by 3, so 32,472 is divisible by 3.

1.6 Long Division

1.6 Margin Exercises

- 1. (a) $82 \over 28 \overline{\smash)2296} \over 224 \leftarrow 8 \times 28 \over \overline{56} \leftarrow 2 \times 28$
 - (b) $\begin{array}{c} 64 \\ 16 \overline{\smash{\big|}\ 1024} \\ \underline{ 96} \\ \underline{ 64} \end{array} \leftarrow 4 \times 16 \\ \end{array}$
 - (c) $\begin{array}{r}
 1 & 4 & 4 \\
 61 \overline{\smash)8784} \\
 \underline{61} \\
 2 & 6 & 8
 \end{array}$ $\underline{244} \\
 244 \\
 \underline{244} \\
 0$ $\leftarrow 4 \times 61$

(d)
$$\begin{array}{c} 29\\ 93 \overline{\smash)2697}\\ \underline{186}\\ 837\\ \underline{837}\\ -9\times 93 \end{array}$$

- 2. (a) 56 $24\overline{\smash{\big|}\, 1344}$ 120 144 144 144 6×24
 - (b) 62 R8 $72 \overline{\smash{\big)}\ 4472}$ $432 \leftarrow 6 \times 72$ $\overline{\ 152}$ $\underline{\ 444} \leftarrow 2 \times 72$
 - (c) 83 R21 $65 \overline{\smash{\big)}\ 5416}$ $\underline{520} \leftarrow 8 \times 65$ $\underline{216}$ $\underline{195} \leftarrow 3 \times 65$
 - (d) $\begin{array}{c} 7\ 4 \\ 89 \overline{\smash{\big)}\,6\ 6\ 4\ 9} \\ \underline{6\ 2\ 3} \\ 4\ 1\ 9 \\ \underline{3\ 5\ 6} \\ 6\ 3 \end{array} \leftarrow 4 \times 89 \\ \end{array}$
- 3. (a) 107 R4 $17 \overline{\smash{\big|} 1823}$ $\underline{17} \leftarrow 1 \times 17$ $\underline{123} \leftarrow 7 \times 17$ $\underline{119} \leftarrow 7 \times 17$
 - (b) $\begin{array}{c} 2\ 0\ 8 \\ 23 \overline{)4\ 7\ 9\ 1} \\ \underline{4\ 6} \\ 1\ 9\ 1 \\ \underline{1\ 8\ 4} \\ \underline{6} \\ \end{array} \leftarrow 2 \times 23$
 - (c) $\begin{array}{r}
 4 \ 0 \ 8 \\
 39 \overline{\smash) 15}, 9 \ 3 \ 3 \\
 \underline{156} \\
 3 \ 3 \ 3 \\
 \underline{312} \\
 21
 \end{array}$ $\leftarrow 4 \times 39$

(d)
$$\begin{array}{c} 3\ 0\ 0 \\ 78 \overline{\smash)2\ 3,\ 4\ 6\ 2} \\ \underline{2\ 3\ 4}_{6\ 2} \leftarrow 3 \times 78 \end{array}$$

4. (a)
$$70 \div 10 = 7$$

One zero is dropped.

(b)
$$2600 \div 100 = 26$$

Two zeros are dropped.

(c)
$$505,000 \div 1000 = 505$$

Three zeros are dropped.

5. (a)
$$50\overline{6250}$$

Drop 1 zero from the divisor and the dividend.

$$\begin{array}{c}
1 & 2 & 5 \\
5 & 6 & 2 & 5 \\
\hline
5 & 1 & 2 \\
1 & 0 & 2 & 5 \\
\hline
2 & 5 & 0
\end{array}$$

The quotient is 125.

Drop 1 zero from the divisor and the dividend.

$$\begin{array}{r}
1 & 0 & 0 & 8 \\
13 & 1 & 3 & 1 & 0 & 4 \\
\underline{1 & 3} & & & \\
& & 1 & 0 & 4 \\
\underline{1 & 0 & 4} & & \\
& & 0
\end{array}$$

The quotient is 1008.

Drop 2 zeros from the divisor and the dividend.

$$\begin{array}{r}
 5 6 \\
 34 \hline
 1 9 0 4 \\
 \underline{1 7 0} \\
 \underline{2 0 4} \\
 \underline{2 0 4} \\
 \underline{0}
\end{array}$$

The quotient is 56.

The result does not match the dividend. **Rework.**

$$\begin{array}{r}
 45 \\
426 \overline{\smash)19,170} \\
 \underline{1704} \\
 2130 \\
 \underline{2130} \\
 0
\end{array}$$

 $\begin{array}{r} 514 \ \textit{Multiply the} \\ \times 57 \ \textit{quotient and} \\ \hline 3598 \ \textit{the divisor.} \\ \hline 2570 \\ \hline 29,298 \\ + 18 \ \textit{Add the remainder} \\ \hline 29,316 \ \leftarrow \textit{correct} \\ \end{array}$

1.6 Section Exercises

1.
$$\frac{5}{50 \cdot 2650}$$
 5; 53; 530

5 goes over the 5, because $\frac{265}{50}$ is about 5. The answer must then be a two-digit number or 53.

2.
$$\frac{3}{14\sqrt{476}}$$
 3; 34; 304

3 goes over the 7, because $\frac{47}{14}$ is about 3. The answer must then be a two-digit number or 34.

3.
$$\frac{2}{18 \sqrt{4500}}$$
 2; 25; 250

2 goes over the 5, because $\frac{45}{18}$ is about 2. The answer must then be a three-digit number or 250.

4.
$$\frac{1}{35\overline{\smash{\big)}\,5600}}$$
 16; 160; 1600

1 goes over the 6, because $\frac{56}{35}$ is about 1. The answer must then be a three-digit number or 160.

5.
$$\frac{1}{86 | 10.327}$$
 12; 120 **R**7; 1200

1 goes over the 3, because $\frac{103}{86}$ is about 1. The answer must then be a three-digit number or $120 \, \mathbf{R7}$.

6.
$$\frac{5}{46 | 24,026}$$
 5; 52; 522 **R**14

5 goes over the 0, because $\frac{240}{46}$ is about 5. The answer must then be a three-digit number or $522\,\mathbf{R}14$.

7.
$$\frac{1}{26[28,735]}$$
 11; 110; 1105 **R**5

1 goes over the 8, because $\frac{28}{26}$ is about 1. The answer must then be a four-digit number or $1105 \, \mathbf{R}5$.

8.
$$\frac{9}{12 \overline{116,953}}$$
 974 **R**2; 9746 **R**1; 97,460

9 goes over the 6, because $\frac{116}{12}$ is about 9. The answer must then be a four-digit number or $9746 \, \mathbf{R}1$.

9.
$$\frac{7}{21\sqrt{149,826}}$$
 71; 713; 7134 **R**12

7 goes over the 9, because $\frac{149}{21}$ is about 7. The answer must then be a four-digit number or 7134 **R**12.

10.
$$\frac{3}{64\sqrt{208,138}}$$
 325 **R**2; 3252 **R**10; 32,521

3 goes over the 8, because $\frac{208}{64}$ is about 3. The answer must then be a four-digit number or $3252\,\mathbf{R}10$.

11.
$$\frac{9}{523\overline{\smash)470\,800}}$$
 9 R100; 90 R100; 900 R100

9 goes over the 8, because $\frac{4708}{523}$ is about 9. The answer must then be a three-digit number or $900 \, \mathbf{R} 100$.

12.
$$\frac{1}{230[253,230]}$$
 11; 110; 1101

1 goes over the 3, because $\frac{253}{230}$ is about 1. The answer must then be a four-digit number or 1101.

15.
$$476 \atop 23 \overline{\smash) 10,963} \atop 92 \atop 176 \atop 161 \atop 153 \atop 1438 \atop 15} \begin{array}{r} \textbf{R15} \ \textbf{\textit{Check:}} \\ 476 \\ \times 23 \\ \hline 1428 \\ \hline 952 \\ \hline 10,948 \\ + 15 \\ \hline 10,963 \\ \hline \end{array}$$

Rework.

$$\begin{array}{c|c}
1 & 0 & 1 & \mathbf{R} & 14 \\
35 & 3 & 5 & 4 & 9 \\
\hline
3 & 5 & & & \\
\hline
0 & 4 & 9 & & \\
& & 3 & 5 & \\
\hline
1 & 4 & & & \\
\end{array}$$

The correct answer is $101 \, \mathbf{R} 14$.

26.
$$42 \text{ R}26 \text{ Check:} 64 \\ \times 42 \\ \hline 128 \\ \hline 256 \\ \hline 2688 \\ + 26 \\ \hline 2714 \text{ incorrect}$$

Rework.

$$\begin{array}{r}
4 \ 2 \\
64 \overline{\smash)2\ 7\ 1\ 2} \\
\underline{2\ 5\ 6} \\
1\ 5\ 2 \\
\underline{1\ 2\ 8} \\
2\ 4
\end{array}$$

The correct answer is $42 \, \mathbf{R} 24$.

Rework.

$$\begin{array}{r}
 658 \\
 28 \overline{\smash{\big)}\ 18,424} \\
 \underline{168} \\
 162 \\
 \underline{140} \\
 \underline{224} \\
 \underline{224} \\
 \end{array}$$

The correct answer is 658.

Rework.

The correct answer is 62.

- 31. When dividing by 10, 100, or 1000, drop the same number of zeros from the dividend as there are in the divisor to get the quotient. One example is $2500 \div 100 = 25 \div 1 = 25$.
- 32. Multiply the quotient and the divisor and add any remainder. One example is $18 \div 5 = 3$ R3. *Check:* $(3 \times 5) + 3 = 15 + 3 = 18$

The shark averaged 50 miles each day.

The construction cost was \$25,454 per foot.

35. First, add the number of wall and table clocks.

Subtract the sum from the total number of clocks.

He worked on 56 floor clocks this year.

There are 23,993,000 small to mid-size businesses.

37. Divide.

$$\begin{array}{r}
3 55 \\
96 \overline{\smash)34,080} \\
\underline{288} \\
5 28 \\
\underline{480} \\
480 \\
\underline{480} \\
0
\end{array}$$

Judy's monthly payment is \$355.

38.
$$\begin{array}{r}
58 \\
225 \overline{\smash)13,050} \\
\underline{1125} \\
1800 \\
\underline{1800} \\
0
\end{array}$$

The consultant charged \$58 per hour.

39. If one ring is sold each minute, then 60 rings are sold each hour.

There are 43,200 diamond rings sold in 30 days.

40. If he ate one Twinkie each day, then he ate 365 Twinkies each year.

$$\begin{array}{c} 365 \quad \textit{Twinkies per year} \\ \underline{\times \ 60} \quad \textit{years} \\ \hline 21,900 \quad \textit{Twinkies} \end{array}$$

He ate 21,900 Twinkies in 60 years.

41. Divide the yearly amount spent for eating away from home by 52 (the number of weeks in one year).

$$\begin{array}{r}
39 \\
52 \overline{\smash)2028} \\
\underline{156} \\
468 \\
\underline{468} \\
0
\end{array}$$

The average weekly amount spent for eating away from home is \$39 per household.

42. $\begin{array}{r}
3 & 4 \\
120 \overline{\smash)4\ 0\ 8\ 0} \\
\underline{3\ 6\ 0} \\
4\ 8\ 0 \\
\underline{4\ 8\ 0} \\
0
\end{array}$

The average number of employees at each restaurant is 34 people.

43.
$$\frac{\$0}{3} = \$0$$

- **44.** When 0 is divided by any nonzero number, the result is 0.
- **45.** $8 \div 0$ is undefined.
- **46.** It is *impossible*. If you have 6 cookies, it is not possible to divide them among zero people.
- 47. (a) $14 \div 1 = 14$
 - **(b)** 1 7 1 7

(c)
$$\frac{38}{1} = 38$$

- **48.** Yes. Some examples are $18 \cdot 1 = 18$; $26 \cdot 1 = 26$; and $43 \cdot 1 = 43$.
- **49.** (a) $32,000 \div 10 = 3200$

Drop 1 zero from the dividend and 1 zero from the divisor.

(b) $32,000 \div 100 = 320$

Drop 2 zeros from the dividend and 2 zeros from the divisor.

(c) $32,000 \div 1000 = 32$

Drop 3 zeros from the dividend and 3 zeros from the divisor.

50. Drop the same number of zeros that appear in the divisor. The result is the quotient. With a divisor of 10, drop one zero; with 100, drop two zeros; with 1000, drop three zeros.

1.7 Rounding Whole Numbers

1.7 Margin Exercises

1. (a) 373 (nearest ten)

Underline the tens place: 373

373 is closer to $3\underline{7}0$.

(b) 1482 (nearest thousand)

Underline the thousands place: 1482

1482 is closer to 1000.

(c) 89,512 (nearest hundred)

Underline the hundreds place: 89,512

89,512 is closer to 89,<u>5</u>00.

(d) 546,325 (nearest ten-thousand)

Underline the ten-thousands place: 546,325

546,325 is closer to 550,000.

2. (a) 62

Underline the tens place. Next digit is 4 or less. Change the digit to the right of the underlined place to zero.

62 rounded to the nearest ten is 60.

(b) <u>9</u>4

Underline the tens place. Next digit is 4 or less. Change the digit to the right of the underlined place to zero.

94 rounded to the nearest ten is 90.

(c) 134

Underline the tens place. Next digit is 4 or less. Change the digit to the right of the underlined place to zero.

134 rounded to the nearest ten is 130.

(d) 7543

Underline the tens place. Next digit is 4 or less. Change the digit to the right of the underlined place to zero.

7543 rounded to the nearest ten is 7540.

3. (a) $\underline{3}683$ Next digit is 5 or more.

Change 3 to 4. All digits to the right of the underlined place are changed to zero.

3683 rounded to the nearest thousand is 4000.

(b) $\underline{6}502$ Next digit is 5 or more.

Change 6 to 7. All digits to the right of the underlined place are changed to zero.

6502 rounded to the nearest thousand is 7000.

(c) 84,621 Next digit is 5 or more.

Change 4 to 5. All digits to the right of the underlined place are changed to zero.

84,621 rounded to the nearest thousand is 85,000.

(d) $5\underline{5},960$ Next digit is 5 or more.

Change 5 to 6. All digits to the right of the underlined place are changed to zero.

55,960 rounded to the nearest thousand is 56,000.

4. (a) 3458 to the nearest ten

34<u>5</u>8 Next digit is 5 or more.

Change 5 to 6. All digits to the right of the underlined place are changed to zeros.

3458 rounded to the nearest ten is 3460.

(b) 6448 to the nearest hundred

6448 Next digit is 4 or less.

Leave 4 as 4.

All digits to the right of the underlined place are changed to zeros.

6448 rounded to the nearest hundred is 6400.

(c) 73,077 to the nearest hundred

73,077 Next digit is 5 or more.

Change 0 to 1. All digits to the right of the underlined place are changed to zeros.

73,077 rounded to the nearest hundred is 73,100.

(d) 85,972 to the nearest hundred

85,972 Next digit is 5 or more.

Change 9 to 10. Write zero and carry the 1. All digits to the right of the underlined place are changed to zeros.

85,972 rounded to the nearest hundred is 86,000.

5. (a) 14,598 to the nearest ten-thousand

14,598

The ten-thousands place does not change because the digit to the right is 4 or less.

All digits to the right of the underlined place are changed to zeros.

14,598 rounded to the nearest ten-thousand is 10,000.

(b) 724,518,715 to the nearest million

724,518,715

Change 4 to 5 because the digit to the right is 5 or more.

All digits to the right of the underlined place are changed to zeros.

724,518,715 rounded to the nearest million is 725,000,000.

6. (a) To the nearest ten: 458

Next digit is 5 or more.

Tens place (5 + 1 = 6) changes.

458 rounded to the nearest ten is 460.

To the nearest hundred: 458

Next digit is 5 or more.

Hundreds place (4 + 1 = 5) changes. All digits to the right of the underlined place are changed to zeros.

458 rounded to the nearest hundred is 500.

(b) To the nearest ten: $5\underline{4}9$

Next digit is 5 or more.

Tens place (4 + 1 = 5) changes.

549 rounded to the nearest ten is 550.

To the nearest hundred: $\underline{5}49$

Next digit is 4 or less.

Hundreds place stays the same.

549 rounded to the nearest hundred is 500.

(c) To the nearest ten: 9308

Next digit is 5 or more.

Tens place (0 + 1 = 1) changes.

9308 rounded to the nearest ten is 9310.

To the nearest hundred: 9308

Next digit is 4 or less.

Hundreds place stays the same.

9308 rounded to the nearest hundred is 9300.

7. (a) To the nearest ten: $40\underline{7}8$

Next digit is 5 or more.

Tens place (7 + 1 = 8) changes.

4078 rounded to the nearest ten is 4080.

To the nearest hundred: $4\underline{0}78$

Next digit is 5 or more.

Hundreds place (0 + 1 = 1) changes.

4078 rounded to the nearest hundred is 4100.

To the nearest thousand: 4078

Next digit is 4 or less.

Thousands place stays the same.

4078 rounded to the nearest thousand is 4000.

(b) To the nearest ten: $46,3\underline{6}4$

Next digit is 4 or less.

Tens place stays the same.

46,364 rounded to the nearest ten is 46,360.

To the nearest hundred: $46,\underline{3}64$

Next digit is 5 or more.

Hundreds place (3 + 1 = 4) changes.

46,364 rounded to the nearest hundred is 46,400.

To the nearest thousand: 46,364

Next digit is 4 or less.

Thousands place stays the same.

46,364 rounded to the nearest thousand is 46,000.

(c) To the nearest ten: 268,328

Next digit is 5 or more.

Tens place (2 + 1 = 3) changes.

268,328 rounded to the nearest ten is 268,330.

To the nearest hundred: 268,328

Next digit is 4 or less.

Hundreds place stays the same.

268,328 rounded to the nearest hundred is 268,300.

To the nearest thousand: 268,328

Next digit is 4 or less.

Thousands place stays the same.

268,328 rounded to the nearest thousand is 268,000.

- 8. (a) 16 20 rounded to the nearest ten
 74 70
 58 60
 + 31 + 30
 180 estimated answer
 - (b) 53 50 rounded to the nearest ten -19 0 estimated answer
 - (c) 46 50 rounded to the nearest ten $\times 74 \times 70 = 3500$ estimated answer
- 9. (a) 358 400 rounded to the nearest
 743 700 hundred
 822 800
 + 978 + 1000
 2900 estimated answer
 - (b) 842 800 rounded to the nearest -475 -500 hundred estimated answer
 - $\begin{array}{c|cccc} \textbf{(c)} & 723 & 700 & \text{rounded to the nearest} \\ \times 478 & \times 500 & \text{hundred} \\ \hline & 350,000 & \text{estimated answer} \end{array}$
- 10. (a) 36 40 first digit rounded; all 3852 4000 others changed to zero 749 700 +5474 +5000 estimated answer
 - (b) 2583 3000 first digit rounded; all -765 -800 others changed to zero 2200 estimated answer
 - (c) 648 600 first digit rounded; all \times 67 \times 70 others changed to zero 42,000 estimated answer

1.7 Section Exercises

1. 624 rounded to the nearest ten: 620

624 Next digit is 4 or less. Tens place does not change. All digits to the right of the underlined place change to zero.

2. 509 rounded to the nearest ten: 510

 $5\underline{0}9$ Next digit is 5 or more. Tens place changes (0+1=1). The digit to the right of the underlined place changes to zero.

- 3. 855 rounded to the nearest ten: 860
 - 855 Next digit is 5 or more. Tens place changes (5+1=6). All digits to the right of the underlined place change to zero.
- **4.** 946 rounded to the nearest ten: 950
 - $9\underline{4}6$ Next digit is 5 or more. Tens place changes (4+1=5). The digit to the right of the underlined place changes to zero.
- 5. 6771 rounded to the nearest hundred: 6800 $\frac{67}{1}$ Next digit is 5 or more. Hundreds place changes (7 + 1 = 8). All digits to the right of the underlined place change to zero.
- 6. 5847 rounded to the nearest hundred: 5800
 5847 Next digit is 4 or less. Hundreds place does not change. All digits to the right of the underlined place change to zero.
- 7. 86,813 rounded to the nearest hundred: 86,800 86,813 Next digit is 4 or less. Hundreds place does not change. All digits to the right of the underlined place change to zero.
- 8. 17,211 rounded to the nearest hundred: 17,200 17,211 Next digit is 4 or less. Hundreds place does not change. All digits to the right of the underlined place change to zero.
- 9. 28,472 rounded to the nearest hundred: 28,500 28,472 Next digit is 5 or more. Hundreds place changes (4+1=5). All digits to the right of the underlined place change to zero.
- 10. 18,273 rounded to the nearest hundred: 18,300 $18,\underline{2}73$ Next digit is 5 or more. Hundreds place changes (2+1=3). All digits to the right of the underlined place change to zero.
- 11. 5996 rounded to the nearest hundred: 6000 $5\underline{9}96$ Next digit is 5 or more. Hundreds place changes (9+1=10). Write 0 and carry 1. All digits to the right of the underlined place change to zero.
- 12. 4452 rounded to the nearest hundred: 4500 4452 Next digit is 5 or more. Hundreds place changes (4+1=5). All digits to the right of the underlined place change to zero.
- 13. 15,758 rounded to the nearest thousand: 16,000 15,758 Next digit is 5 or more. Thousands place changes (5+1=6). All digits to the right of the underlined place change to zero.

- 28,465 rounded to the nearest thousand: 28,000
 28,465 Next digit is 4 or less. Thousands place does not change. All digits to the right of the underlined place change to zero.
- 78,499 rounded to the nearest thousand: 78,000
 78,499 Next digit is 4 or less. Thousands place does not change. All digits to the right of the underlined place change to zero.
- 14,314 rounded to the nearest thousand: 14,000
 14,314 Next digit is 4 or less. Thousands place does not change. All digits to the right of the underlined place change to zero.
- 8,000,000,0007,760,058,721 Next digit is 5 or more. Billions place changes (7 + 1 = 8). All digits to the right of the underlined place change to zero.

17. 7,760,058,721 rounded to the nearest billion:

- **18.** 44,706,892 rounded to the nearest ten-million: 40,000,000
 - $\underline{44,706,892}$ Next digit is 4 or less. Ten-millions place does not change. All digits to the right of the underlined place change to zero.
- **19.** 12,987 rounded to the nearest ten-thousand: 10,000
 - $\underline{1}2,987$ Next digit is 4 or less. Ten-thousands place does not change. All digits to the right of the underlined place change to zero.
- 20. 6599 rounded to the nearest ten-thousand: 10,000
 _6599 Next digit is 5 or more. Ten-thousands place changes (0 + 1 = 1). All digits to the right of the underlined place change to zero.
- **21.** 595,008 rounded to the nearest ten-thousand: 600,000
 - $5\underline{9}5,008$ Next digit is 5 or more. Ten-thousands place changes (9+1=10). Write 0 and carry 1. All digits to the right of the underlined place change to zero.
- **22.** 725,182 rounded to the nearest ten-thousand: 730,000
 - $7\underline{2}5,182$ Next digit is 5 or more. Ten-thousands place changes (2+1=3). All digits to the right of the underlined place change to zero.
- **23.** 4,860,220 rounded to the nearest million: 5,000,000
 - $\underline{4}$,860,220 Next digit is 5 or more. Millions place changes (4 + 1 = 5). All digits to the right of the underlined place change to zero.

37

24. 13,713,409 rounded to the nearest million: 14,000,000

 $1\underline{3}$,713,409 Next digit is 5 or more. Millions place changes (3+1=4). All digits to the right of the underlined place change to zero.

25. To the nearest ten: $44\underline{7}6$

Next digit is 5 or more. All digits to the right of the underlined place are changed to zero. Add 1 to 7. 4480

To the nearest hundred: $4\underline{4}76$

Next digit is 5 or more. All digits to the right of the underlined place are changed to zero. Add 1 to 4. **4500**

To the nearest thousand: $\underline{4}476$

Next digit is 4 or less. All digits to the right of the underlined place are changed to zero. Leave 4 as 4. **4000**

26. To the nearest ten: $64\underline{8}3$

Next digit is 4 or less. All digits to the right of the underlined place are changed to zero. Leave 8 as 8. **6480**

To the nearest hundred: 6483

Next digit is 5 or more. All digits to the right of the underlined place are changed to zero. Add 1 to 4. **6500**

To the nearest thousand: 6483

Next digit is 4 or less. All digits to the right of the underlined place are changed to zero. Leave 6 as 6. **6000**

27. To the nearest ten: 3374

Next digit is 4 or less. All digits to the right of the underlined place are changed to zero. Leave 7 as 7. 3370

To the nearest hundred: 3374

Next digit is 5 or more. All digits to the right of the underlined place are changed to zero. Add 1 to 3. **3400**

To the nearest thousand: 3374

Next digit is 4 or less. All digits to the right of the underlined place are changed to zero. Leave 3 as 3. **3000**

28. To the nearest ten: 7632

Next digit is 4 or less. All digits to the right of the underlined place are changed to zero. Leave 3 as 3. **7630**

To the nearest hundred: 7632

Next digit is 4 or less. All digits to the right of the underlined place are changed to zero. Leave 6 as 6. **7600**

To the nearest thousand: $\underline{7}632$

Next digit is 5 or more. All digits to the right of the underlined place are changed to zero. Add 1 to 7. **8000**

29. To the nearest ten: 6048

Next digit is 5 or more. All digits to the right of the underlined place are changed to zero. Add 1 to 4. **6050**

To the nearest hundred: 6048

Next digit is 4 or less. All digits to the right of the underlined place are changed to zero. Leave 0 as 0. **6000**

To the nearest thousand: 6048

Next digit is 4 or less. All digits to the right of the underlined place are changed to zero. Leave 6 as 6. **6000**

30. To the nearest ten: $70\underline{6}5$

Next digit is 5 or more. All digits to the right of the underlined place are changed to zero. Add 1 to 6. **7070**

To the nearest hundred: $7\underline{0}65$

Next digit is 5 or more. All digits to the right of the underlined place are changed to zero. Add 1 to 0. **7100**

To the nearest thousand: 7065

Next digit is 4 or less. All digits to the right of the underlined place are changed to zero. Leave 7 as 7. **7000**

31. To the nearest ten: 5343

Next digit is 4 or less. All digits to the right of the underlined place are changed to zero. Leave 4 as 4. 5340

To the nearest hundred: $5\underline{3}43$

Next digit is 4 or less. All digits to the right of the underlined place are changed to zero. Leave 3 as 3. **5300**

To the nearest thousand: 5343

Next digit is 4 or less. All digits to the right of the underlined place are changed to zero. Leave 5 as 5. 5000

32. To the nearest ten: 7456

Next digit is 5 or more. All digits to the right of the underlined place are changed to zero. Add 1 to 5. **7460**

To the nearest hundred: 7456

Next digit is 5 or more. All digits to the right of the underlined place are changed to zero. Add 1 to 4. **7500**

To the nearest thousand: 7456

Next digit is 4 or less. All digits to the right of the underlined place are changed to zero. Leave 7 as 7. **7000**

33. To the nearest ten: 19,539

Next digit is 5 or more. All digits to the right of the underlined place are changed to zero. Add 1 to 3. 19.540

To the nearest hundred: 19,539

Next digit is 4 or less. All digits to the right of the underlined place are changed to zero. Leave 5 as 5. 19,500

To the nearest thousand: 19,539

Next digit is 5 or more. All digits to the right of the underlined place are changed to zero. Add 1 to 9. Write 0 and carry 1. **20,000**

34. To the nearest ten: 59,8<u>0</u>6

Next digit is 5 or more. All digits to the right of the underlined place are changed to zero. Add 1 to 0. **59.810**

To the nearest hundred: 59,806

Next digit is 4 or less. All digits to the right of the underlined place are changed to zero. Leave 8 as 8. **59,800**

To the nearest thousand: 59,806

Next digit is 5 or more. All digits to the right of the underlined place are changed to zero. Add 1 to 9. Write 0 and carry 1. **60,000**

35. To the nearest ten: 26,292

Next digit is 4 or less. All digits to the right of the underlined place are changed to zero. Leave 9 as 9. **26,290**

To the nearest hundred: 26,292

Next digit is 5 or more. All digits to the right of the underlined place are changed to zero. Add 1 to 2. **26,300**

To the nearest thousand: 26,292

Next digit is 4 or less. All digits to the right of the underlined place are changed to zero. Leave 6 as 6. **26,000**

36. To the nearest ten: $78,5\underline{1}9$

Next digit is 5 or more. All digits to the right of the underlined place are changed to zero. Add 1 to 1. **78,520**

To the nearest hundred: $78,\underline{5}19$

Next digit is 4 or less. All digits to the right of the underlined place are changed to zero. Leave 5 as 5. **78,500**

To the nearest thousand: 78,519

Next digit is 5 or more. All digits to the right of the underlined place are changed to zero. Add 1 to 8. **79.000**

37. To the nearest ten: 93,706

Next digit is 5 or more. All digits to the right of the underlined place are changed to zero. Add 1 to 0. **93,710**

To the nearest hundred: 93,706

Next digit is 4 or less. All digits to the right of the underlined place are changed to zero. Leave 7 as 7. 93,700

To the nearest thousand: 93,706

Next digit is 5 or more. All digits to the right of the underlined place are changed to zero. Add 1 to 3. **94,000**

38. To the nearest ten: 84,639

Next digit is 5 or more. All digits to the right of the underlined place are changed to zero. Add 1 to 3. **84.640**

To the nearest hundred: 84,639

Next digit is 4 or less. All digits to the right of the underlined place are changed to zero. Leave 6 as 6. **84.600**

To the nearest thousand: 84,639

Next digit is 5 or more. All digits to the right of the underlined place are changed to zero. Add 1 to 4. **85,000**

39. *Step 1* Locate the place to be rounded and underline it.

Step 2 Look only at the next digit to the right. If this digit is 5 or more, increase the underlined digit by 1.

- Step 3 Change all digits to the right of the underlined place to zeros.
- **40.** *Step 1* Locate the place to be rounded and underline it.

Step 2 Look only at the next digit to the right. If this digit is 4 or less, do not change the underlined digit.

Step 3 Change all digits to the right of the underlined place to zeros.

41. Estimate: Exact:

30	25
60	63
50	47
+80	+84
220	219

42. Estimate: Exact:

$$\begin{array}{ccc}
60 & 56 \\
20 & 24 \\
90 & 85 \\
+70 & +71 \\
\hline
240 & 236
\end{array}$$

43. Estimate: Exact:

$$\begin{array}{c|c}
80 & 78 \\
-40 & -43 \\
\hline
40 & 35
\end{array}$$

44. Estimate: Exact:

$$\begin{array}{c|c}
60 & 57 \\
-20 & -24 \\
\hline
40 & 33
\end{array}$$

45. Estimate: Exact:

$$\begin{array}{ccc}
70 & 67 \\
\times 30 & \times 34 \\
\hline
2100 & 268 \\
& 201 \\
\hline
& 2278
\end{array}$$

46. Estimate: Exact:

$$\begin{array}{ccc}
50 & 53 \\
\times 80 & \times 75 \\
\hline
4000 & 265 \\
& 371 \\
\hline
3975
\end{array}$$

- 47. Estimate:
 Exact:

 900
 863

 700
 735

 400
 438

 + 800
 + 792

 2800
 2828
- 48. Estimate:
 Exact:

 600
 623

 400
 362

 200
 189

 +700
 +736

 1900
 1910
- 49.
 Estimate:
 Exact:

 900
 883

 -400
 -448

 500
 435
- 50. Estimate: Exact: $\frac{600}{300} = \frac{614}{338}$
- 81. Estimate:
 Exact:

 800
 752

 × 400
 × 375

 320,000
 3760

 5264
 2256

 282,000
- 53.
 Estimate:
 Exact:

 8 000
 8 215

 60
 56

 700
 729

 + 4 000
 + 3 605

 12,760
 12,605

$$\begin{array}{ccc}
3\,000 & 2\,685 \\
70 & 73 \\
600 & 592 \\
+7\,000 & +7\,183 \\
\hline
10,670 & 10,533
\end{array}$$

$$\begin{array}{rrr}
700 & 687 \\
-500 & -529 \\
\hline
200 & 158
\end{array}$$

$$\begin{array}{rrr}
500 & 543 \\
-200 & -174 \\
\hline
300 & 369
\end{array}$$

57. Estimate: Exact:

$$\begin{array}{c}
900 \\
\times 30 \\
\hline
27,000
\end{array}$$

$$\begin{array}{c}
939 \\
\times 29 \\
\hline
8451 \\
1878 \\
\hline
27.231
\end{array}$$

58. Estimate: Exact:

$$\begin{array}{c}
900 \\
\times 70 \\
\hline
63,000
\end{array}$$

$$\begin{array}{c}
864 \\
\times 74 \\
\hline
63,936
\end{array}$$

- **59.** Perhaps the best explanation is that 3492 is closer to 3500 than 3400, but 3492 is closer to 3000 than to 4000.
- **60.** Rounding numbers usually allows for faster calculation and results in an estimated answer prior to getting an exact answer. One example is:

Estimate: Exact:

$$\begin{array}{rr}
400 & 432 \\
-200 & -209 \\
\hline
200 & 223
\end{array}$$

61. <u>7</u>6,000,000 Next digit is 5 or more. Change digit to the right of the underlined place to zero. Add 1 to 7. **80 million people**

 $3\underline{0}3,000,000$ Next digit is 4 or less. Change digit to the right of the underlined place to zero.

300 million people

62. <u>5</u>9 Next digit is 5 or more. Change digit to the right of the underlined place to zero. Add 1 to 5.60 hours

 $\underline{3}8$ Next digit is 5 or more. Change digit to the right of the underlined place to zero. Add 1 to 3. **40 hours**

63. To the nearest thousand: 34<u>8</u>,900

Next digit is 5 or more. Change digit to the right of the underlined place to zero. Add 1 to 8.

349,000

To the nearest ten-thousand: 348,900

Next digit is 5 or more. All digits to the right of the underlined place are changed to zero. Add 1 to 4.

350,000

64. To the nearest ten-thousand: $2\underline{3}5,000$

Next digit is 5 or more, so add 1 to 3. Change digits to the right of the underlined place to zeros.

\$240,000

To the nearest hundred-thousand: 235,000

Next digit is 4 or less. All digits to the right of the underlined place are changed to zero. \$200,000

65. To the nearest ten-thousand: $1,6\underline{6}7,300$

Next digit is 5 or more, so add 1 to 6. Change digits to the right of the underlined place to zeros.

1,670,000 pounds

To the nearest hundred-thousand: 1,667,300

Next digit is 5 or more, so add 1 to 6. Change digits to the right of the underlined place to zeros.

1,700,000 pounds

To the nearest million: $\underline{1},667,300$

Next digit is 5 or more, so add 1 to 1. Change digits to the right of the underlined place to zeros.

2,000,000 pounds

66. To the nearest ten-thousand: 1,129,8<u>6</u>6,154

Next digit is 5 or more. All digits to the right of the underlined place are changed to zero. Add 1 to 6

1,129,870,000

To the nearest hundred-thousand:

1,129,866,154

Next digit is 5 or more. All digits to the right of the underlined place are changed to zero. Add 1 to 8.

1,129,900,000

To the nearest million: 1,129,866,154

Next digit is 5 or more. All digits to the right of the underlined place are changed to zero. Add 1 to 9. Write 0 and carry 1.

1,130,000,000

67. To the nearest hundred-thousand:

\$25,765,<u>4</u>75,000

Next digit is 5 or more. All digits to the right of the underlined place are changed to zero. Add 1 to 4. \$25,765,500,000

To the nearest hundred-million:

\$25,765,475,000

Next digit is 5 or more. All digits to the right of the underlined place are changed to zero. Add 1 to 7. \$25,800,000,000

To the nearest billion: \$2<u>5</u>,765,475,000

Next digit is 5 or more. All digits to the right of the underlined place are changed to zero. Add 1 to 5. \$26,000,000,000

68. To the nearest hundred-thousand:

\$18,915,762,568

Next digit is 5 or more. Hundred-thousands place changes (7 + 1 = 8). Digits to the right of the underlined place are changed to zero.

\$18,915,800,000

To the nearest hundred-million:

\$18,915,762,568

Next digit is 4 or less. Hundred-millions place doesn't change. All digits to the right of the underlined place are changed to zero. \$18,900,000,000

To the nearest ten-billion: \$18,915,762,568

Next digit is 5 or more. Ten-billion place changes (1 + 1 = 2). Digits to the right of the underlined place are changed to zero. \$20,000,000,000

- **69.** 71,499 would round to 71,000, so the smallest whole number it could have been is 71,500.
- **70.** 72,500 would round to 73,000, so the largest whole number it could have been is 72,499.
- 71. 7500 is the smallest possible whole number that will round to 8000 using front end rounding.
- **72.** 8499 is the largest possible whole number that will round to 8000 using front end rounding.

73.	Exact:	Rounding to the nearest ten:
	3925	3930
	11,243	11,240
	15,974	15,970
	17,916	17,920
	534,883	534,880
	2,788,000	2,788,000

74.	Exact:	Front end rounded:
	3925	4000
	11,243	10,000
	15,974	20,000
	17,916	20,000
	534,883	500,000
	2,788,000	3,000,000

- **75. (a)** When using front end rounding, all digits are 0 except the first digit. These numbers are easier to work with when estimating answers.
 - **(b)** Sometimes when using front end rounding, the estimated answer can vary greatly from the exact answer.

1.8 Exponents, Roots, and Order of Operations

1.8 Margin Exercises

1. (a) 4^2 : exponent is 2; base is 4.

$$4^2 = 4 \times 4 = 16$$

(b) 5^3 : exponent is 3; base is 5.

$$5^3 = 5 \times 5 \times 5 = 125$$

(c) 3^4 : exponent is 4; base is 3.

$$3^4 = 3 \times 3 \times 3 \times 3 = 81$$

(d) 2^6 : exponent is 6; base is 2.

$$2^6 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 = 64$$

- **2.** (a) Because $2^2 = 4$, $\sqrt{4} = 2$.
 - **(b)** Because $5^2 = 25$, $\sqrt{25} = 5$.
 - (c) Because $6^2 = 36$, $\sqrt{36} = 6$.
 - (d) Because $15^2 = 225$, $\sqrt{225} = 15$.
 - (e) Because $1^2 = 1$, $\sqrt{1} = 1$.
- 3. (a) $4+5+2^2$ Evaluate exponent $4+5+2\cdot 2$ Multiply 4+5+4 Add from left to right 9+4=13
 - **(b)** $3^2 + 2^3$ Evaluate exponent $3 \cdot 3 + 2 \cdot 2 \cdot 2$ Multiply from left to right 9 + 8 = 17 Add

- (c) $4 \cdot 6 \div 12 2$ Multiply $24 \div 12 2$ Divide 2 2 = 0 Subtract
- (d) $60 \div \sqrt{36} \div 2$ Square root $60 \div 6 \div 2$ Divide $10 \div 2 = 5$ Divide
- (e) $8 + 6(14 \div 2)$ Work inside parentheses 8 + 6(7) Multiply 8 + 42 = 50 Add
- **4.** (a) $12-6+4^2$ Evaluate exponent 12-6+16 Subtract 6+16=22 Add
 - (b) $2^3 + 3^2 (5 \cdot 3)$ Work inside parentheses $2^3 + 3^2 15$ Evaluate exponents 8 + 9 15 Add 17 15 = 2 Subtract
 - (c) $2 \cdot \sqrt{64} 5 \cdot 3$ Square root $2 \cdot 8 - 5 \cdot 3$ Multiply 16 - 15 = 1 Subtract
 - (d) $20 \div 2 + (7 5)$ Parentheses $20 \div 2 + 2$ Divide 10 + 2 = 12 Add
 - (e) $15 \cdot \sqrt{9} 8 \cdot \sqrt{4}$ Square roots $15 \cdot 3 8 \cdot 2$ Multiply 45 16 = 29 Subtract

1.8 Section Exercises

1. 3^2 : exponent is 2, base is 3.

$$3^2 = 3 \cdot 3 = 9$$

2. Exponent is 3, base is 2.

$$2^3 = 2 \cdot 2 \cdot 2 = 4 \cdot 2 = 8$$

3. 5^2 : exponent is 2, base is 5.

$$5^2 = 5 \cdot 5 = 25$$

4. Exponent is 2, base is 4.

$$4^2 = 4 \cdot 4 = 16$$

5. 8^2 : exponent is 2, base is 8.

$$8^2 = 8 \cdot 8 = 64$$

6. Exponent is 3, base is 10.

$$10^3 = 10 \cdot 10 \cdot 10 = 100 \cdot 10 = 1000$$

7. 15^2 : exponent is 2, base is 15.

$$15^2 = 15 \cdot 15 = 225$$

8. Exponent is 3, base is 11.

$$11^3 = 11 \cdot 11 \cdot 11 = 121 \cdot 11 = 1331$$

- **9.** From the table, $4^2 = 16$, so $\sqrt{16} = 4$.
- **10.** From the table, $5^2 = 25$, so $\sqrt{25} = 5$.
- 11. From the table, $8^2 = 64$, so $\sqrt{64} = 8$.
- 12. From the table, $6^2 = 36$, so $\sqrt{36} = 6$.
- 13. From the table, $10^2 = 100$, so $\sqrt{100} = 10$.
- **14.** From the table, $7^2 = 49$, so $\sqrt{49} = 7$.
- **15.** From the table, $12^2 = 144$, so $\sqrt{144} = 12$.
- **16.** From the table, $15^2 = 225$, so $\sqrt{225} = 15$.
- 17. $6^2 = 36$, so $\sqrt{36} = 6$.
- 18. $9^2 = 81$, so $\sqrt{81} = 9$.
- 19. $20^2 = 400$, so $\sqrt{400} = 20$.
- **20.** $30^2 = 900$, so $\sqrt{900} = 30$.
- **21.** $35^2 = 1225$, so $\sqrt{1225} = 35$.
- **22.** $38^2 = 1444$, so $\sqrt{1444} = 38$.
- 23. $25^2 = 625$, so $\sqrt{625} = 25$.
- **24.** $50^2 = 2500$, so $\sqrt{2500} = 50$.
- **25.** $100^2 = \underline{10,000}$, so $\sqrt{10,000} = 100$.
- **26.** $60^2 = 3600$, so $\sqrt{3600} = 60$.
- 27. A perfect square is the square of a whole number. The number 25 is the square of 5 because $5 \cdot 5 = 25$.

The number 50 is not a perfect square. There is no whole number that can be squared to get 50.

- **28.** (1) Do all operations inside parentheses or other grouping symbols.
 - (2) Simplify any expressions with exponents and find any square roots.
 - (3) Multiply or divide, proceeding from left to right.
 - (4) Add or subtract, proceeding from left to right.
- **29.** $3^2 + 8 5$ Exponent 9 + 8 5 Add 17 5 = 12 Subtract
- **30.** $5^2 + 5 6$ Exponent 25 + 5 6 Add
 - 30 6 = 24 Subtract

- **31.** $3 \cdot 7 6$ *Multiply* 21 6 = 15 *Subtract*
- 32. $5 \cdot 7 7$ *Multiply* 35 7 = 28 *Subtract*
- **33.** $8 \cdot 5 \div 10$ *Multiply* $40 \div 10 = 4$ *Divide*
- 34. $6 \cdot 8 \div 8$ Multiply $48 \div 8 = 6$ Divide
- **35.** $25 \div 5(8-4)$ Parentheses $25 \div 5(4)$ Divide 5(4) = 20 Multiply
- 36. $36 \div 18(7-3)$ Parentheses $36 \div 18 \cdot 4$ Divide $2 \cdot 4 = 8$ Multiply
- 37. $5 \cdot 3^2 + \frac{0}{8}$ Exponent $5 \cdot 9 + \frac{0}{8}$ Multiply $45 + \frac{0}{8}$ Divide 45 + 0 = 45 Add
- 38. $8 \cdot 3^2 \frac{10}{2}$ Exponent $8 \cdot 9 \frac{10}{2}$ Multiply $72 \frac{10}{2}$ Divide 72 5 = 67 Subtract
- **39.** $4 \cdot 1 + 8(9 2) + 3$ Parentheses $4 \cdot 1 + 8 \cdot 7 + 3$ Multiply 4 + 56 + 3 Add 60 + 3 = 63 Add
- **40.** $3 \cdot 2 + 7(3+1) + 5$ Parentheses $3 \cdot 2 + 7 \cdot 4 + 5$ Multiply 6 + 28 + 5 Add 34 + 5 = 39 Add
- **41.** $2^2 \cdot 3^3 + (20 15) \cdot 2$ Parentheses $2^2 \cdot 3^3 + 5 \cdot 2$ Exponents $4 \cdot 27 + 5 \cdot 2$ Multiply 108 + 10 = 118 Add
- **42.** $4^2 \cdot 5^2 + (20 9) \cdot 3$ Parentheses $4^2 \cdot 5^2 + 11 \cdot 3$ Exponents $16 \cdot 25 + 11 \cdot 3$ Multiply 400 + 33 = 433 Add
- **43.** $5 \cdot \sqrt{36} 2(4)$ Square root $5 \cdot 6 2(4)$ Multiply 30 8 = 22 Subtract

- **44.** $2 \cdot \sqrt{100} 3(4)$ Square root $2 \cdot 10 3(4)$ Multiply 20 12 = 8 Subtract
- **45.** $8(2) + 3 \cdot 7 7$ *Multiply* 16 + 21 7 *Add* 37 7 = 30 *Subtract*
- **46.** $10(3) + 6 \cdot 5 20$ Multiply 30 + 30 20 Add 60 20 = 40 Subtract
- **47.** $2^3 \cdot 3^2 + 3(14 4)$ Parentheses $2^3 \cdot 3^2 + 3(10)$ Exponents $8 \cdot 9 + 3(10)$ Multiply 72 + 30 = 102 Add
- **48.** $3^2 \cdot 4^2 + 2(15 6)$ Parentheses $3^2 \cdot 4^2 + 2(9)$ Exponents $9 \cdot 16 + 2(9)$ Multiply 144 + 18 = 162 Add
- **49.** $7 + 8 \div 4 + \frac{0}{7}$ Divide $7 + 2 + \frac{0}{7}$ Divide 7 + 2 + 0 Add 9 + 0 = 9 Add
- **50.** $6+8 \div 2 + \frac{0}{8}$ Divide $6+4+\frac{0}{8}$ Divide 6+4+0 Add 10+0=10 Add
- **51.** $3^2 + 6^2 + (30 21) \cdot 2$ Parentheses $3^2 + 6^2 + 9 \cdot 2$ Exponents $9 + 36 + 9 \cdot 2$ Multiply 9 + 36 + 18 Add 45 + 18 = 63 Add
- **52.** $4^2 + 5^2 + (25 9) \cdot 3$ Parentheses $4^2 + 5^2 + 16 \cdot 3$ Exponents $16 + 25 + 16 \cdot 3$ Multiply 16 + 25 + 48 Add 41 + 48 = 89 Add
- 53. $7 \cdot \sqrt{81} 5 \cdot 6$ Square root $7 \cdot 9 5 \cdot 6$ Multiply 63 30 = 33 Subtract
- **54.** $6 \cdot \sqrt{64} 6 \cdot 5$ Square root $6 \cdot 8 6 \cdot 5$ Multiply 48 30 = 18 Subtract

- **55.** $8 \cdot 2 + 5(3 \cdot 4) 6$ Parentheses $8 \cdot 2 + 5(12) 6$ Multiply 16 + 60 6 Add 76 6 = 70 Subtract
- **56.** $5 \cdot 2 + 3(5+3) 6$ Parentheses $5 \cdot 2 + 3(8) 6$ Multiply 10 + 24 6 Add 34 6 = 28 Subtract
- **57.** $4 \cdot \sqrt{49} 7(5 2)$ Parentheses $4 \cdot \sqrt{49} 7 \cdot 3$ Square root $4 \cdot 7 7 \cdot 3$ Multiply 28 21 = 7 Subtract
- **58.** $3 \cdot \sqrt{25} 6(3 1)$ Parentheses $3 \cdot \sqrt{25} 6 \cdot 2$ Square root $3 \cdot 5 6 \cdot 2$ Multiply 15 12 = 3 Subtract
- **59.** $7(4-2) + \sqrt{9}$ Parentheses $7(2) + \sqrt{9}$ Square root 7(2) + 3 Multiply 14 + 3 = 17 Add
- **60.** $5(4-3) + \sqrt{9}$ Parentheses $5(1) + \sqrt{9}$ Square root 5(1) + 3 Multiply 5+3=8 Add
- 61. $7^2 + 3^2 8 + 5$ Exponents 49 + 9 - 8 + 5 Add 58 - 8 + 5 Subtract 50 + 5 = 55 Add
- 62. $3^2 2^2 + 3 2$ Exponents 9 4 + 3 2 Subtract 5 + 3 2 Add 8 2 = 6 Subtract
- 63. $5^2 \cdot 2^2 + (8-4) \cdot 2$ Parentheses $5^2 \cdot 2^2 + 4 \cdot 2$ Exponents $25 \cdot 4 + 4 \cdot 2$ Multiply 100 + 8 = 108 Add
- **64.** $5^2 \cdot 3^2 + (30 20) \cdot 2$ Parentheses $5^2 \cdot 3^2 + 10 \cdot 2$ Exponents $25 \cdot 9 + 10 \cdot 2$ Multiply 225 + 20 = 245 Add
- **65.** $5+9 \div 3+6 \cdot 3$ Divide $5+3+6 \cdot 3$ Multiply 5+3+18 Add 8+18=26 Add

- **66.** $8+3 \div 3+6 \cdot 3$ Divide $8+1+6 \cdot 3$ Multiply 8+1+18 Add 9+18=27 Add
- **67.** $8 \cdot \sqrt{49} 6(9 4)$ Parentheses $8 \cdot \sqrt{49} 6(5)$ Square root $8 \cdot 7 6(5)$ Multiply 56 30 = 26 Subtract
- **68.** $8 \cdot \sqrt{49} 6(5+3)$ Parentheses $8 \cdot \sqrt{49} 6(8)$ Square root $8 \cdot 7 6(8)$ Multiply 56 48 = 8 Subtract
- 69. $5^2 4^2 + 3 \cdot 6$ Exponent $25 - 16 + 3 \cdot 6$ Multiply 25 - 16 + 18 Subtract 9 + 18 = 27 Add
- **70.** $3^2 + 6^2 5 \cdot 8$ Exponent $9 + 36 5 \cdot 8$ Multiply 9 + 36 40 Add 45 40 = 5 Subtract
- **71.** $8+8 \div 8+6+\frac{5}{5}$ Divide 8+1+6+1 Add 9+6+1 Add 15+1=16 Add
- 72. $3+14 \div 2+7+\frac{8}{8}$ Divide 3+7+7+1 Add 10+7+1 Add 17+1=18 Add
- 73. $6 \cdot \sqrt{25} 7(2)$ Square root $6 \cdot 5 7 \cdot 2$ Multiply 30 14 = 16 Subtract
- 74. $8 \cdot \sqrt{36} 4(6)$ Square root $8 \cdot 6 4(6)$ Multiply 48 24 = 24 Subtract
- 75. $9 \cdot \sqrt{16} 3 \cdot \sqrt{25}$ Square roots $9 \cdot 4 3 \cdot 5$ Multiply 36 15 = 21 Subtract
- 76. $6 \cdot \sqrt{81} 3 \cdot \sqrt{49}$ Square roots $6 \cdot 9 3 \cdot 7$ Multiply 54 21 = 33 Subtract

77.
$$7 \div 1 \cdot 8 \cdot 2 \div (21 - 5)$$
 Parentheses $7 \div 1 \cdot 8 \cdot 2 \div 16$ Divide $7 \cdot 8 \cdot 2 \div 16$ Multiply $56 \cdot 2 \div 16$ Multiply $112 \div 16 = 7$ Divide

78.
$$12 \div 4 \cdot 5 \cdot 4 \div (15 - 13)$$
 Parentheses $12 \div 4 \cdot 5 \cdot 4 \div 2$ Divide $3 \cdot 5 \cdot 4 \div 2$ Multiply $15 \cdot 4 \div 2$ Multiply $60 \div 2 = 30$ Divide

79.
$$15 \div 3 \cdot 2 \cdot 6 \div (14 - 11)$$
 Parentheses $15 \div 3 \cdot 2 \cdot 6 \div 3$ Divide $5 \cdot 2 \cdot 6 \div 3$ Multiply $10 \cdot 6 \div 3$ Multiply $60 \div 3 = 20$ Divide

80.
$$9 \div 1 \cdot 4 \cdot 2 \div (11 - 5)$$
 Parentheses $9 \div 1 \cdot 4 \cdot 2 \div 6$ Divide $9 \cdot 4 \cdot 2 \div 6$ Multiply $36 \cdot 2 \div 6$ Multiply $72 \div 6 = 12$ Divide

81.
$$6 \cdot \sqrt{25} - 4 \cdot \sqrt{16}$$
 Square roots $6 \cdot 5 - 4 \cdot 4$ Multiply $30 - 16 = 14$ Subtract

82.
$$10 \cdot \sqrt{49} - 4 \cdot \sqrt{64}$$
 Square roots $10 \cdot 7 - 4 \cdot 8$ Multiply $70 - 32 = 38$ Subtract

83.
$$5 \div 1 \cdot 10 \cdot 4 \div (17 - 9)$$
 Parentheses $5 \div 1 \cdot 10 \cdot 4 \div 8$ Divide $5 \cdot 10 \cdot 4 \div 8$ Multiply $50 \cdot 4 \div 8$ Multiply $200 \div 8 = 25$ Divide

84.
$$15 \div 3 \cdot 8 \cdot 9 \div (12 - 8)$$
 Parentheses $15 \div 3 \cdot 8 \cdot 9 \div 4$ Divide $5 \cdot 8 \cdot 9 \div 4$ Multiply $40 \cdot 9 \div 4$ Multiply $360 \div 4 = 90$ Divide

85.
$$8 \cdot 9 \div \sqrt{36} - 4 \div 2 + (14 - 8)$$
 Parentheses $8 \cdot 9 \div \sqrt{36} - 4 \div 2 + 6$ Square root $8 \cdot 9 \div 6 - 4 \div 2 + 6$ Multiply $72 \div 6 - 4 \div 2 + 6$ Divide $12 - 2 + 6$ Subtract $10 + 6 = 16$ Add

86.
$$3-2+5\cdot 4\cdot \sqrt{144} \div \sqrt{36}$$
 Square roots $3-2+5\cdot 4\cdot 12\div 6$ Multiply $3-2+20\cdot 12\div 6$ Multiply $3-2+240\div 6$ Divide $3-2+40$ Subtract $1+40=41$ Add

87.
$$2+1-2\cdot\sqrt{1}+4\cdot\sqrt{81}-7\cdot2$$
 Square roots $2+1-2\cdot1+4\cdot9-7\cdot2$ Multiply $2+1-2+36-14$ Add $3-2+36-14$ Subtract $1+36-14$ Add $37-14=23$ Subtract

88.
$$6-4+2\cdot 9-3\cdot \sqrt{225} \div \sqrt{25}$$
 Square roots $6-4+2\cdot 9-3\cdot 15\div 5$ Multiply $6-4+18-45\div 5$ Divide $6-4+18-9$ Subtract $2+18-9$ Add $20-9=11$ Subtract

89.
$$5 \cdot \sqrt{36} \cdot \sqrt{100} \div 4 \cdot \sqrt{9} + 8$$
 Square roots $5 \cdot 6 \cdot 10 \div 4 \cdot 3 + 8$ Multiply $30 \cdot 10 \div 4 \cdot 3 + 8$ Multiply $300 \div 4 \cdot 3 + 8$ Divide $75 \cdot 3 + 8$ Multiply $225 + 8 = 233$ Add

90.
$$9 \cdot \sqrt{36} \cdot \sqrt{81} \div 2 + 6 - 3 - 5$$
 Square roots $9 \cdot 6 \cdot 9 \div 2 + 6 - 3 - 5$ Multiply $54 \cdot 9 \div 2 + 6 - 3 - 5$ Multiply $486 \div 2 + 6 - 3 - 5$ Divide $243 + 6 - 3 - 5$ Add $249 - 3 - 5$ Subtract $246 - 5 = 241$ Subtract

1.9 Reading Pictographs, Bar Graphs, and Line Graphs

1.9 Margin Exercises

- 1. (a) The Rock and Roll/Rhythm and Blues stamp had the second greatest number of sales since that row has the second most stamp symbols.
 - **(b)** There is about one more stamp in the Rock and Roll/Rhythm and Blues row than in the Art of Disney Romance row. Since one stamp represents 20 million stamps, there were about 20,000,000 more Rock and Roll/Rhythm and Blues stamps sold.
- **2. (a)** College football: 10 out of 100

(b) Pro baseball: 17 out of 100

(c) Pro basketball: 13 out of 100

(d) College basketball: 6 out of 100

(e) Golf: 6 out of 100

- **3. (a)** For the year 2050, the dot is very close to the horizontal line marked 4, so the predicted population is about 400,000,000 people in 2050.
 - **(b)** About 475,000,000 people in 2075
 - (c) About 575,000,000 people in 2100

1.9 Section Exercises

- 1. There are 9 symbols, so the number of retail stores for Family Dollar is about $9 \cdot 500 = 4500$ stores.
- 2. There are $10\frac{1}{2}$ symbols, so the number of retail stores for 7-Eleven is about

$$10 \cdot 500 + \frac{1}{2} \cdot 500 = 5000 + 250 = 5250.$$

- **3.** From the pictograph, Dollar General has the greatest number of retail stores.
 - There are $11\frac{1}{2}$ symbols, so the number of retail stores for Dollar General is about

$$11 \cdot 500 + \frac{1}{2} \cdot 500 = 5500 + 250 = 5750.$$

- **4.** According to the pictograph, the two companies that have the least number of retail stores are Rite-Aid and Wal-Mart.
 - There are 7 symbols, so the number of retail stores for Rite-Aid and Wal-Mart is about $7 \cdot 500 = 3500$.
- **5.** Using the results from Exercises 1 and 3, we see that Family Dollar has about

$$5750 - 4500 = 1250$$
 fewer stores

than does Dollar General.

- **6.** Walgreens has one more symbol than Wal-Mart, so Walgreens has 500 more stores than Wal-Mart.
- 7. From the bar graph, 9 people out of 100 found their career as a result of training for a job.
- **8.** From the bar graph, 18 people out of 100 found their careers because they studied for the career in school.
- **9. (a)** According to the bar graph, the greatest number of people found their job by seeing an ad.
 - **(b)** From the bar graph, 25 people out of 100 found their career as a result of seeing an ad.
- **10.** (a) From the bar graph, the least number of people found their career by being promoted from within.
 - **(b)** From the bar graph, 6 people out of 100 found their career as a result of being promoted from within.

- 11. According to the bar graph, 18 9 = 9 more people out of 100 found their career as a result of "Studied in school" than "Luck or chance."
- 12. From the bar graph, 18 + 9 = 27 people out of 100 found their career as a result of either "Studied in school" or "Trained for a job."
- **13.** According to the line graph, the year with the greatest number of trees planted is 2011, with 7000 trees.
- **14.** From the line graph, 2006 and 2010 were the two years with the least number of trees planted. There were 2500 trees planted in each of these years.
- 15. According to the line graph the increase in the number of trees planted from 2010 to 2011 is 7000 2500 = 4500.
- 16. 4000 trees planted in 2009 -2500 trees planted in 2010 1500 decrease in trees planted

The decrease in the number of trees planted from 2009 to 2010 is 1500.

- 17. Possible answers are
 - 1. shortage of trees to plant
 - 2. lack of qualified workers
 - 3. poor economy
 - 4. less demand for planting.
- **18.** Possible answers are
 - 1. greater demand
 - 2. more trees available
 - 3. many qualified workers
 - 4. availability of money for reforestation projects.
- 19. We want to insert parentheses in $7 2 \cdot 3 6$ so that it simplifies to 9. There isn't a method to use, so just use trial and error.

$$(7-2) \cdot 3 - 6 = 5 \cdot 3 - 6 = 15 - 6 = 9$$

- **20.** $(4+2) \cdot (5+1) = 6 \cdot 6 = 36$
- **21.** $36 \div (3 \cdot 3) \cdot 4 = 36 \div 9 \cdot 4 = 4 \cdot 4 = 16$
- **22.** $56 \div (2 \cdot 2 \cdot 2) + \frac{0}{6} = 56 \div 8 + 0 = 7 + 0 = 7$
- 23. (a) Start with the top and work counterclockwise:

$$7920 + 1320 + 2640 + (5280 - 1320 - 1320) + 2640 + 1320 + 7920 + 5280$$

(b) (5280 - 1320 - 1320) = 2640, so we can add as follows:

So 31,680 feet are needed for one strand and thus, $3 \times 31,680 = 95,040$ feet are needed for a three-strand barbed wire fence.

(c) Divide the answer from part (b) by 5280.

$$\begin{array}{r}
1 \ 8 \\
5280 \ 9 \ 5, \ 0 \ 4 \ 0 \\
5 \ 2 \ 8 \ 0 \\
\hline
4 \ 2 \ 2 \ 4 \ 0 \\
4 \ 2 \ 2 \ 4 \ 0 \\
\hline
0
\end{array}$$

18 miles of barbed wire are needed for the fence.

1.10 Solving Application Problems

1.10 Margin Exercises

- **1. (a)** A grocery clerk's hourly wage: \$1.40; \$140
 - **(b)** The total length of five sports-utility vehicles: 8 feet; 18 feet; 80 feet; 800 feet
 - (c) The cost of heart bypass surgery: \$1000; \$100,000; \$10,000,000
- **2.** (a) Step 1

The total number of fossils is given, and the number each person receives must be found.

Step 2

"Divided equally" indicates division should be used.

Step 3

80 fossils divided equally among 4 people gives an estimate of 20 fossils per person.

Step 5

Each person receives 21 fossils.

Step 6

21 amount received by each person × 4 number of people

84 total fossils; matches

(b) Step 1

The total number of children and the number of children assigned to each counselor is given. The number of counselors needed must be found.

Step 2

"12 children are assigned to *each* camp counselor" indicates division should be used.

Step 3

If we replace 408 and 12 with 400 and 10, our estimate is $400 \div 10 = 40$.

 $\begin{array}{r}
 3 4 \\
 12 \hline
 4 0 8 \\
 \underline{3 6} \\
 \underline{4 8} \\
 \underline{4 8} \\
 0
 \end{array}$

Step 5

There are 34 counselors needed.

 $\begin{array}{ccc} \textit{Step 6} & & \\ & 34 & \textit{counselors} \\ & \times 12 & \textit{children per counselor} \\ \hline & 408 & \textit{total children; matches} \end{array}$

3. (a) Step 1

The number of points on examinations and quizzes is given. The total number of points must be found.

Step 2

"Her total points" indicates addition should be used.

Step 3

Rounding each score to the nearest ten gives 90, 80, 80, 100, 20, 10, 20, and 10. The sum of these scores gives an estimate of 410 points.

Step 5

Her total is 410 points.

Step 6

The answer is the same as the estimate, so it is reasonable. Add the numbers again to check.

(b) Step 1

The customer contacts for each day are given. The total number of contacts for the week must be found.

Step 2

Adding the daily numbers to find the weekly total seems reasonable.

Step 3

Rounding each day's contacts to the nearest ten gives 80, 60, 120, 100, and 200. The sum gives an estimate of 560 customer contacts.

$$\begin{array}{r}
 \text{Step 4} \\
 & 22 \\
 & 78 \\
 & 64 \\
 & 118 \\
 & 102 \\
 & + 196 \\
 & 558 \\
 \end{array}$$

Step 5

Stephanie had 558 customer contacts for the week.

Step 6

The answer is reasonable. A check shows that the answer is correct.

4. (a) Step 1

The number of square feet for the home and the apartment is given. The difference must be found.

Step 2

"Difference" indicates subtraction should be used.

Step 3

Rounding each number of square feet to the nearest hundred gives 1500 - 1000 = 500 square feet.

Step 5

The difference in the number of square feet is 470 square feet.

Step 6

The answer is reasonable.

Check:
$$980$$

$$+470$$

$$\hline 1450 \quad matches$$

(b) Step 1

We know the beginning balance and the check amount, and need to find the new balance.

Step 2

Subtracting the numbers seems reasonable.

Step 3

Using the values \$14,900 and \$1200 in place of \$14,863 and \$1180 gives us \$14,900 - \$1200 = \$13,700 as an estimate.

Step 5

The amount remaining in the club account is \$13,683.

Step 6

The answer is reasonable.

5. (a) Step 1

The amount per job, number of jobs, and expenses are given. The amount made is to be found.

Step 2

Use multiplication to find the amount received for all jobs, and then use subtraction to find the amount made.

Step 3

An estimate would be

$$6 \cdot \$700 - \$300 = \$4200 - \$300 = \$3900.$$

$$\begin{array}{ccc}
Step & 4 & & \\
53 & & 54110 \\
\times & 6 & & -320 \\
\hline
$4110 & & $3790
\end{array}$$

Step 5

Brenda will make \$3790 after deducting her expenses.

Step 6

The answer is close to the estimate, so it is reasonable. Check by adding the expenses to the amount made and then dividing by 6.

$$$3790 + $320 = $4110$$

$$\begin{array}{r}
 685 \\
 \hline
 64110 \\
 \hline
 36 \\
 \hline
 51 \\
 \underline{48} \\
 \hline
 30
\end{array}$$

\$685 matches the amount per job given in the problem.

(b) *Step 1*

The number of books sold and the number of those returned is given. The profit for each book sold is also given. The total profit on the books sold and not returned must be found.

Step 2

"Remaining" indicates subtraction. The number of books returned should be subtracted from the number sold and that number multiplied by the profit per book.

Step 3

Estimate that 13,000 books are sold, and 1000 of those are returned. A reasonable estimate is 13,000 - 1000 = 12,000. Each book has a profit of \$6, so $12,000 \times $6 = $72,000$.

$$\begin{array}{ccc} \textit{Step 4} & & \\ 12,628 & & 11,765 \\ -863 & \times & 6 \\ \hline 11,765 & & \$70,590 \end{array}$$

Step 5

The total profit for the books remaining after the returns is \$70,590.

Step 6

The answer is reasonable since it is close to the estimate.

1.10 Section Exercises

1. *Step 1*

Given the number of five types of sandwiches sold, find the total number of sandwiches sold.

Step 2

Addition seems reasonable since we want a total.

Step 3

The total number of sandwiches should be about 600 + 900 + 1000 + 800 + 2000 = 5300 sandwiches.

Step 5

The total number of sandwiches sold is 5208.

Step 6

The answer is reasonably close to the estimate. Check by adding the values again.

2. Step 1

Given the number of five types of units manufactured, find the total.

Step 2

Addition seems reasonable to use.

$$\begin{array}{c} Step \ 4 \\ 23 \ 1 \ 2 \\ 32,8 \ 15 \\ 4 \ 875 \\ 1 \ 975 \\ 15,308 \\ \underline{+ \ 9 \ 815} \\ 64,788 \end{array}$$

Step 5

The total number of units manufactured is 64,788.

Step 6

The answer is reasonably close to the estimate. Check by adding the values again.

3. *Step 1*

Given the number of meat recalls in two years, find the difference.

Step 2

"How many more" indicates subtraction could be used.

Step 3

An estimate is 70 - 60 = 10.

Step 5

There were 13 more recalls in 2003 than in 2007.

Step 6

The answer is reasonably close to the estimate. **Check:** 13 + 55 = 68

1 Step 1

Given the number of meat recalls in two years, find the difference.

Step 2

"How many fewer" indicates subtraction could be used.

Step 3

An estimate is 60 - 40 = 20.

Step 4

57

 $\frac{-37}{20}$

Step 5

There were 20 fewer recalls in 2006 than in 2008.

Step 6

The answer is reasonably close to the estimate.

Check: 20 + 37 = 57

5. Step 1

The number of kits packaged in one hour is given and the total number of kits packaged in 24 hours must be found.

Step 2

Multiply the number of kits packaged in 1 hour by 24.

Step 3

A reasonable answer would be $200 \times 20 = 4000$.

Step 4

236

 $\frac{\times 24}{944}$

 $\frac{472}{5664}$

Step 5

5664 kits are packaged in 24 hours.

Step 6

The answer is reasonably close to the estimate, which is clearly low.

Check:

5664

6. Sten

Find the number of tickets sold in a 12-day period.

Step 2

The number of tickets sold in one day is given. To find "how many in a 12-day period," multiply.

Step 3

10 times 500 gives an estimate of 5000 tickets.

Step 4

450

 $\frac{\times 12}{900}$

450

5400

Step 5

In a 12-day period, 5400 tickets are sold.

Step 6

Check:

 $\begin{array}{r} 450 \\ 12 \overline{5400} \end{array}$

7. Step 1

Find the number of toys each child will receive.

Step 2

"Same number of toys to each" indicates division should be used.

Step 3

3000 divided by 700 gives an estimate of about 4 toys.

Step 4

 $\begin{array}{r}
 4 \\
657 \overline{\smash)2\ 6\ 2\ 8} \\
 \underline{2\ 6\ 2\ 8} \\
 0
\end{array}$

Step 5

Each child will receive 4 toys.

Step 6

 $4 \times 657 = 2628$

8. *Step 1*

Find the amount each employee will receive.

Step 2

"Divide evenly" indicates division.

Step 3

 $$700,000 \div 1000$ gives an estimate of \$700.

Step 4

Step 5

Each employee will receive \$680.

Step 6

Check: $680 \times 1000 = 680,000$

9. Step 1

The number of people at the lake on Friday is higher than that on Wednesday. The number on Friday and the number higher is given. The number of people on Wednesday must be found.

Step 2

Subtract the number higher from the number on Friday.

Step 3

A reasonable answer would be 8000 - 4000 = 4000 people.

Step 4

8392

 $\frac{-4218}{4174}$

Step 5

4174 people were at the lake on Wednesday.

Step 6

The answer is reasonably close to the estimate.

Check:

$$\begin{array}{r}
4218 \\
+4174 \\
\hline
8392
\end{array}$$
matches

10. Step 1

Find the amount of money that needs to be collected.

Step 2

Since the amount collected is less than the amount needed, subtract.

Step 3

\$80,000 - \$50,000 gives an estimate of \$30,000.

Step 4

\$75,650

 $\frac{-52,882}{\$22,768}$

Step 5

The community needs to raise \$22,768.

Step 6

52,882

+22,768

75,650 *matches*

11. *Step 1*

Find the amount saved for five months.

Step 2

Use multiplication to find the amount.

Step 3

The amount saved is about \$30 per month, making the total $$30 \times 5 = 150 .

Step 4

\$34

 $\frac{\times 5}{\$170}$

Step 5

The amount saved in 5 months is \$170.

Step 6

The answer is reasonably close to the estimate.

Check: 3 4

5 1 7 0

12. Step 1

The cost of tuition for 1 quarter is given. Find the amount needed for 5 quarters.

Step 2

Multiply to find the total amount.

Step 3

An estimate is $\$800 \times 5 = \4000 .

Step 4

\$785

 $\frac{\times 5}{\$3925}$

Step 5

\$3925 is needed for 5 quarters.

Step 6

The answer is reasonably close to the estimate.

 $\$3925 \div 5 = \785

13. *Step 1*

Find how much more a dental hygienist earns than a flight attendant.

Step 2

"How much more" indicates subtraction.

Step 3

An estimate is \$50,000 - \$40,000 = \$10,000.

Step 4

\$54,700 dental hygienist

-40,600 flight attendant

\$14,100 difference

Step 5

A dental hygienist earns \$14,100 more than a flight attendant.

Step 6

The answer is reasonably close to the estimate.

Check: \$14,100 + \$40,600 = \$54,700

14. *Step 1*

Find how much more an air traffic controller earns than a court reporter.

Step 2

"How much more" indicates subtraction.

Step 3

An estimate is \$90,000 - \$40,000 = \$50,000.

Step 4

\$87,930 air traffic controller

- 40,410 court reporter

\$47,520 difference

Step 5

An air traffic controller earns \$47,520 more than a court reporter.

Step 6

The answer is reasonably close to the estimate.

Check:
$$$47,520 + $40,410 = $87,930$$

15. Step 1

Find which couple has higher earnings and the difference in their earnings.

Step 2

Add the salaries of each couple to find the total for each. Then subtract to find the "difference."

Step 3

Estimate:

$$$50,000 + $40,000 = $90,000$$
 White
 $$40,000 + $50,000 = $90,000$ Easterly
 $$90,000$ White
 $-90,000$ Easterly
 $$0$ difference

Step 4

Step 5

- (a) Mr. and Mrs. Easterly have higher earnings.
- **(b)** The difference between the couples' earnings is \$6420.

Step 6

The answers are reasonably close to the estimates. Check the couples' earnings by adding again. Check the difference by adding \$6420 to \$86,950 to get \$93,370.

16. Step 1

Find which couple has higher earnings and the difference in their earnings.

Step 2

Add the salaries of each couple to find the total for each. Then subtract to find the "difference."

Step 3

Estimate:

$$$40,000 + $40,000 = $80,000$$
 Means $$40,000 + $50,000 = $90,000$ Strong

Step 4

Step 5

- (a) Mr. and Mrs. Strong have higher earnings.
- **(b)** The difference between the couples' earnings is \$5600.

Step 6

The answers are reasonably close to the estimates. Check the couples' earnings by adding again. Check the difference by adding \$5600 to \$82,780 to get \$88,380.

17. *Step 1*

Find her monthly savings.

Step 2

Her monthly take home pay and expenses are given. "Remainder" indicates subtraction may be used.

Step 3

Estimate:

Step 4

$$\begin{array}{r}
\$695 \\
340 \\
435 \\
240 \\
+ 180 \\
\hline
1890
\end{array}$$

$$\begin{array}{r}
\$2240 \\
- 1890 \\
\$350 \\
\hline$$

Step 5

Her monthly savings are \$350.

Step 6

The answer seems reasonable for the given estimate.

Check: \$350 + \$1890 = \$2240. Re-add the expenses to check the sum of \$1890.

18. *Step 1*

Find the amount remaining in the checking account.

Step 2

Add to find the total amount of the checks written. Subtract that total from the balance in the account.

Step 3

About \$300 + \$600 + \$800 = \$1700 was spent. His balance is about \$3000 - \$1700 = \$1300.

Step 4 \$308 \$2874 580 - 1666 + 778 \$1208

Step 5

\$1666

\$1208 remains in the account.

Step 6

The answer is reasonably close to the estimate.

Check: \$1208 + \$1666 = \$2874. Re-add the check amounts to check the sum of \$1666.

19. *Step 1*

The square feet in one acre is given and the square feet in the given number of acres must be found.

Step 2

Multiply the square feet in one acre by the total acres.

Step 3

An estimate is $40,000 \times 100 = 4,000,000 \text{ ft}^2$.

Step 5

There are 6,011,280 square feet in 138 acres. The answer is reasonable considering the rounding.

Check:
$$\frac{43,560}{138 \, | 6,011,280}$$

20. Step 1

Find the number of gallons polluted in a year.

Step 2

Multiply by 365 to find the amount polluted in a year.

Sten 3

 $200,000 \times 400$ gives an estimate of 80,000,000 gallons.

Step 4

209,670

$$\times$$
 365

 $1\,048\,3\,5\,0$

 $12\ 580\ 20$

 $62\ 901\ 0$

76,529,550

Step 5

Each year 76,529,550 gallons are polluted.

Sten 6

The answer is reasonably close to the estimate.

Check: $76,529,550 \div 209,670 = 365$

21. Step 1

Find the total cost of all Safety and Security Items.

Step 2

Add the costs of the options to find the total cost.

Step 3

Estimate:

$$\$400 + \$1000 + \$200 + \$400 + \$200 + \$200$$

= $\$2400$

Step 5

\$2680

The total cost is \$2680.

Sten 6

The answer is reasonably close to the estimate. Check by re-adding the costs.

22. Step 1

The total cost of all Convenience and Comfort Options must be found.

Step 2

Add the costs of the options to find the total cost.

Step 3

Estimate:

$$$400 + $400 + $300 + $300 + $200 + $400$$

= \$2000

Step 4 \$21 \$400
395
250
315
150
+350
\$1860

Step 5

The total cost is \$1860.

Step 6

The answer is reasonably close to the estimate. Check by re-adding the costs.

23. Step 1

An option package is offered. We must find how much can be saved if the customer buys the option package instead of paying for each option separately.

Step 2

First, add the costs of the options. Then subtract the cost of the option package from this total.

Step 3
Estimate:

$$$400 + $200 + $200 + $400 = $1200$$

 $$1200 - $1000 = 200

Step 4

Add. \$\frac{1}{400}\$ Child seats

170 Security alarm

150 Keyless entry

+ 400 Power sliding door

\$1120 Total cost

Subtract. \$1120 Total cost -980 Option package $\hline 140 Amount saved

Step 5

Jill can save \$140 by buying the option package.

Step 6

The answer is reasonably close to the estimate.

Check: \$980 + 140 \$1120

24. Step 1

An option package is offered. We must find how much can be saved if the customer buys the option package instead of paying for each option separately.

Step 2

First, add the costs of the options. Then subtract the cost of the option package from this total.

Step 3

Estimate:

$$$400 + $200 + $200 + $300 + $400 + $300$$

= \$1800

1800 - 1600 = 200

Step 4

\$1690 Total cost

Subtract.
$$$1690$$
 Total cost -1550 Option package $\hline 140 Amount saved

Step 5

Samuel can save \$140 by buying the option package.

Step 6

The answer is reasonably close to the estimate.

Check: \$1550 + 140 \$1600

25. *Step 1*

The number and cost of wheelchairs and recorderplayers are given and the total cost of all items must be found.

Step 2

Find the cost of all wheelchairs and the cost of all recorder-players. Then add these costs to get the total cost.

Step 3

The cost of the wheelchairs is about $$1000 \times 6 = 6000 .

The cost of the recorder-players is about $$900 \times 20 = $18,000$.

Estimate: \$6000 + \$18,000 = \$24,000

Sten 4

cost of wheelchairs: \$1256

 $\frac{\times \ 6}{\$7536}$

cost of recorder-players: \$895 $\times 15$ $\hline 4475$ 895 $\hline 895 $\hline $13,425$

Step 5

The total cost is \$13,425 + \$7536 = \$20,961.

Step 6

The answer is reasonably close to the estimate. Check by repeating Step 4.

26. Step 1

Find the total cost.

Step 2

To find the cost of the computers use multiplication. The cost of the printers must also be found using multiplication. Finally, the two totals must be added.

Step 3

Estimate: $(\$500 \times 20) + (\$500 \times 10)$ = \$10,000 + \$5000 = \$15,000

Step 5

The total cost is \$14,868.

Step 6

The answer is reasonably close to the estimate. Check by repeating Step 4.

27. Possible answers are

Addition: more; total; gain of

Subtraction: less; loss of; decreased by Multiplication: twice; of; product Division: divided by; goes into; per

Equals: is; are

- **28.** (1) Read the problem carefully.
 - (2) Work out a plan.
 - (3) Estimate a reasonable answer.
 - (4) Solve the problem.
 - (5) State the answer.
 - (6) Check your work.

- 29. Estimating the answer can help you avoid careless mistakes like decimal or calculation errors. Examples of reasonable answers in daily life might be a \$35 bag of groceries, \$50 to fill the gas tank, or \$45 for a phone bill.
- **30.** Estimate: 7000 + 6000 + 2000 = 15,000Exact: 7438 + 6493 + 2380 = 16,311

Yes, the answers vary by more than 1000 as a result of the rounding. Yes, they usually do, however, in this example the estimated answer and the exact answer are close enough to give some assurance that the answer is reasonable.

31. *Step 1*

The daily sales figures are given and the weekly total must be found.

Step 2

Add the daily sales figures to get the weekly total.

Step 3

Estimate: \$2000 + \$3000 + \$3000 + \$2000 + \$4000 + \$3000 + \$3000 = \$20,000

Step 4

Add. \$\frac{3}{2}\frac{3}{3}\frac{4}{5}\text{Monday}\$
\$3056 Tuesday\$
\$2515 Wednesday\$
\$1875 Thursday\$
\$3978 Friday\$
\$3219 Saturday\$
\$43008 Sunday\$
\$20,009 Total cost

Step 5

The weekly total is \$20,009.

Step 6

The answer is reasonably close to the estimate. Check by repeating Step 4.

32. Step 1

The daily number of visitors is given and the weekly total must be found. Assume the numbers correspond to Monday through Sunday.

Sten 2

Add the daily figures to get the weekly total.

Step 3

Estimate: 5000 + 3000 + 5000 + 2000 + 4000 + 2000 + 7000 = 28,000

Step 4		
Add.	$\begin{smallmatrix} 4 & 44 \\ 5 & 318 \end{smallmatrix}$	Monday
	2865	Tuesday
	4786	Wednesday
	1998	Thursday
	3899	Friday
	2343	Saturday
	+7221	Sunday
	28,430	Total cost

Step 5

The weekly total is 28,430 visitors.

Step 6

The answer is reasonably close to the estimate. Check by repeating Step 4.

33. *Step 1*

Find the final weight of the car.

Step 2

The second engine weighs more than the first engine. Find the difference and add it to the weight of the car.

Step 3

582 and 634 both round to 600, so the difference is 0 and an estimate of the car is just its original weight, 2425 pounds.

Step 4

Step 5

The car will weigh 2477 pounds.

Step 6

The answer is reasonable since it's just slightly more than the original weight.

 Check:
 2425 1843

 -582 +634

 1843 2477

34. *Step 1*

Find the balance in the preschool operating account.

Step 2

Subtract the expenses and add the amount raised by the parents to the account balance.

Step 3

Estimate:
$$$2300 - $700 + $600 = $2200$$

 Step 5

The balance in the account is \$2158.

Step 6

The answer is reasonably close to the estimate. The expenses were \$734 - \$568 = \$166 more than the amount raised, so the balance is lowered. \$2324 - \$166 = \$2158.

35. *Step 1*

The costs of two hotels are given. Find the amount saved by staying at the less expensive hotel for seven nights.

Step 2

First subtract the cost of the least expensive hotel and then multiply this savings by seven.

Step 3

Estimate:
$$$100 - $50 = $50$$

 $$50 \times 7 = 350

Step 4

Multiply. \$54 $\times 7$ \$378

Step 5

The savings for 7 nights is \$378.

Step 6

The answer is reasonably close to the estimate.

Check: Lake Tahoe cost: $7 \times \$99 = \693

Reno cost: $7 \times \$45 = \315 Difference: \$693 - \$315 = \$378

36. Step 1

The costs of two hotels are given. Find the amount saved by staying at the less expensive hotel for four nights.

Sten 2

First subtract the cost of the least expensive hotel and then multiply this savings by four.

Step 3

Estimate:
$$\$600 - \$100 = \$500$$

 $\$500 \times 4 = \2000

Step 4

Subtract.
$$\$645$$
 Ritz-Carlton -74 Motel 6 $\$571$

Multiply.
$$$571$$
 $\times 4$
 $\$2284$

Step 5

The savings for 4 nights is \$2284.

Step 6

The answer is reasonably close to the estimate.

Check: Ritz-Carlton cost: $4 \times $645 = 2580

Motel 6 cost: $4 \times \$74 = \296 Difference: \$2580 - \$296 = \$2284

37. *Step 1*

Find out how much money each team received given the amount of money raised, the expenses, and the number of teams.

Step 2

Subtract the expenses from the amount raised, then divide the result by the number of teams.

Step 3

Estimate: \$8000 - \$800 = \$7200

 $\$7200 \div 20 = \360

Step 4

Subtract. \$7588

 $\frac{-838}{\$6750}$

Divide.

Step 5

Each team will receive \$375.

Step 6

The answer is reasonably close to the estimate.

Check: $18 \times \$375 = \6750 \$6750 + \$838 = \$7588

38. *Step 1*

Find the total number of flats needed.

Step 2

Add the eggs collected in the morning to the eggs collected in the afternoon and divide the total by the number of eggs in each flat.

Step 3

Estimate: 4000 + 3000 = 7000 $7000 \div 30 \approx 230$ Step 4

Step 5

204 flats are needed for packing.

Step 6

The answer is reasonably close to the estimate.

Check: $30 \times 204 = 6120$ 6120 - 2575 = 3545

39. *Step 1*

The total seating is given along with the information to find the number of seats on the main floor. The number of rows of seats in the balcony is given and the number of seats in each row of the balcony must be found.

Step 2

First, the number of seats on the main floor must be found. Next, the number of seats on the main floor must be subtracted from the total number of seats to find the number of seats in the balcony. Finally, the number of seats in the balcony must be divided by the number of rows of seats in the balcony.

Step 3

Seats on main floor: $30 \times 25 = 750$

Seats in balcony: 1250 - 750 = 500

Seats in each row in balcony: $500 \div 25 = 20$ Since we didn't round, our estimate matches our

exact answer.

Step 4

See the calculations in Step 3.

Step 5

The number of seats in each row of the balcony is 20.

Step 6

The answer matches the estimate, as expected.

Check: Seats in balcony: $20 \times 25 = 500$

Seats on main floor: $30 \times 25 = 750$ Total seats: 500 + 750 = 1250

40. Step 1

Find the number of boxes each store will receive.

Step 2

Use multiplication to find the total number of grapevine wreaths made per year. Use division to find the number of boxes per year and the number of boxes each store receives.

Step 3

Estimate:

- $24 \times 40 = 960$ wreaths per year
- $960 \div 6 = 160$ boxes per year
- $160 \div 5 = 32$ boxes per store

Since we didn't round, our estimate matches our exact answer.

Step 4

See the calculations in Step 3.

Step 5

Each store will receive 32 boxes.

Step 6

The answer matches the estimate, as expected.

Check:

Total number of boxes: $5 \times 32 = 160$ Boxed wreaths: $6 \times 160 = 960$ Wreaths made: $24 \times 40 = 960$

Chapter 1 Review Exercises

- 1. <u>6,573</u>; thousands: 6; ones: 573
- **2.** <u>36,215</u>; thousands: 36; ones: 215
- **3.** <u>105,724</u>; thousands: 105; ones: 724
- **4.** <u>1,768,710,618</u>; billions: 1; millions: 768; thousands: 710; ones: 618
- 5. 728 is seven hundred twenty-eight.
- **6.** 15,310 is fifteen thousand, three hundred ten.
- 7. 319,215 is three hundred nineteen thousand, two hundred fifteen.
- **8.** 62,500,005 is sixty-two million, five hundred thousand, five.
- **9.** Ten-thousand, eight is 10,008.
- **10.** Two hundred million, four hundred fifty-five is 200,000,455.

11.
$$\begin{array}{r} \frac{1}{72} \\ +38 \\ \hline 110 \end{array}$$

12.
$$\begin{array}{r} 1\\ 54\\ +67\\ \hline 121 \end{array}$$

14.
$$82\overset{1}{15}$$
9
+ 7 433
15,657

15.
$$2 \stackrel{11}{130}$$
453
8 107
+ 296
10,986

16.
$$\begin{array}{r}
221 \\
5684 \\
218 \\
2960 \\
+ 983 \\
\hline
9845
\end{array}$$

17.
$$\begin{array}{r}
11, & 33 \\
5732 \\
11,069 \\
37 \\
1595 \\
+22,169 \\
\hline
40,602
\end{array}$$

18.
$$\begin{array}{r}
131\\
3451\\
12,286\\
43\\
1291\\
+32,784\\
\hline
49.855
\end{array}$$

24.
$$\begin{array}{c} 4111010 \\ 5210 \\ -883 \\ \hline 4327 \end{array}$$
 Check: $\begin{array}{c} 111 \\ 4327 \\ +883 \\ \hline 5210 \end{array}$

26.
$$99, 704 \atop 99, 704 \atop 25,866 \atop -73,838 \atop 25,866 \atop 25,866$$
 Check: $25,866 \atop +73,838 \atop 99,704$

29.
$$8(4) = 32$$

30.
$$8(8) = 64$$

31.
$$(5)(9) = 45$$

32.
$$(6)(7) = 42$$

33.
$$7 \cdot 8 = 56$$

34.
$$9 \cdot 9 = 81$$

35.
$$5 \times 4 \times 2$$

 $(5 \times 4) \times 2$
 $20 \times 2 = 40$

36.
$$9 \times 1 \times 5$$

 $(9 \times 1) \times 5$
 $9 \times 5 = 45$

37.
$$4 \times 4 \times 3$$

 $(4 \times 4) \times 3$
 $16 \times 3 = 48$

38.
$$2 \times 2 \times 2$$

 $(2 \times 2) \times 2$
 $4 \times 2 = 8$

39.
$$(6)(0)(8) = 0$$
 Any number times 0 equals 0.

40.
$$(7)(1)(6)$$
 $(7 \cdot 1) \cdot 6$ $7 \cdot 6 = 42$

42.
$$7 \cdot 7 \cdot 0 = 0$$
 Any number times 0 equals 0.

43.
$$\begin{array}{c} 28 \\ \times 3 \\ \hline 84 \end{array}$$

45.
$$\begin{array}{r} 758 \\ \times 9 \\ \hline 522 \end{array}$$

47.
$$\begin{array}{r} 24 \\ 625 \\ \times 8 \\ \hline 5000 \end{array}$$

48.
$$\begin{array}{r} 53 \\ 374 \\ \times 8 \\ \hline 2992 \\ \end{array}$$

49.
$$\begin{array}{r}
113\\1349\\
\times 4\\
\hline
5396
\end{array}$$

50.
$$9\overset{3}{1}\overset{1}{6}\overset{3}{3}$$

$$\times \overset{5}{45.815}$$

51.
$$7\overset{1}{4}\overset{1}{5}\overset{1}{6}$$
 $\times 2$
 14.912

52.
$$\begin{array}{c} 65 \\ 2880 \\ \times 7 \\ \hline 20,160 \end{array}$$

53.
$$\begin{array}{r}
1 \\
9 \\
3 \\
1 \\
0 \\
5
\end{array}$$

$$\begin{array}{r}
5 \\
465 \\
525
\end{array}$$

54.
$$\begin{array}{r}
16.52\\
21.873\\
\times 8\\
\hline
174,984
\end{array}$$

55.
$$35$$
 $\times 25$
 $175 \leftarrow 5 \times 35$
 $70 \leftarrow 2 \times 35$

58.
$$\begin{array}{r} 68 \\ \times 75 \\ \hline 340 \\ \leftarrow 5 \times 68 \\ \hline 476 \\ \hline 5100 \\ \end{array}$$

59.
$$472$$

$$\times 33$$

$$1416 \leftarrow 3 \times 472$$

$$1416$$

$$15,576$$

60.
$$392$$

$$\times 77$$

$$\hline
2744 \leftarrow 7 \times 392$$

$$\underline{2744}$$

$$30,184$$

64.
$$$14$ cost of subscription $\times 76$ subscribers
 84 98 $$1064 total cost$$$

73.
$$20 \div 4 = 5$$

74.
$$35 \div 5 = 7$$

75.
$$42 \div 7 = 6$$

76.
$$18 \div 9 = 2$$

77.
$$\frac{54}{9} = 6$$

78.
$$\frac{36}{9} = 4$$

79.
$$\frac{49}{7} = 7$$

61

80.
$$\frac{0}{6} = 0$$

81.
$$\frac{148}{0}$$
 is undefined.

82.
$$\frac{0}{23} = 0$$

83.
$$\frac{64}{8} = 8$$

84.
$$\frac{81}{9} = 9$$

85.
$$4\overline{\smash{\big|}\,328}$$
 Check: 82 $\underline{\times 4}$ 328

89.
$$2704 \div 18$$

$$\begin{array}{r}
150 \\
18 \overline{\smash)2704} \\
\underline{18} \\
90 \\
\underline{90} \\
04 \\
\underline{00} \\
4
\end{array}$$

Check:
$$150$$
 $\times 18$
 1200
 150
 2700
 $+ 4$
 2704

90.
$$15,525 \div 125$$

$$\begin{array}{r}
1 & 2 & 4 \\
125 & 1 & 5 & 2 & 5 \\
\hline
1 & 2 & 5 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
2 & 5 & 0 & 0 \\
\hline
3 & 0 & 0 & 0 \\
\hline
2 & 0 & 0 & 0 \\
\hline
2 & 0 & 0 & 0 \\
\hline
2 & 0 & 0 & 0 \\
\hline
2 & 0 & 0 & 0 \\
\hline
2 & 0 & 0 & 0 \\
\hline
2 & 0 & 0 & 0 \\
\hline
2 & 0 & 0 & 0 \\
\hline
2 & 0 & 0 & 0 \\
\hline
2 & 0 & 0 & 0 \\
\hline
2 & 0 & 0 & 0 \\
\hline
2 & 0 & 0 & 0 \\
\hline
2 & 0 & 0 & 0 \\
\hline
2 & 0 & 0 & 0 \\
\hline
2 & 0 & 0 & 0 \\
\hline
2 & 0 & 0 & 0 \\
\hline
2 & 0 & 0 & 0 \\
\hline
2 & 0 & 0 & 0 \\
\hline
2 & 0 & 0 & 0 \\
\hline
2 & 0 & 0 & 0 \\
\hline
2 & 0 & 0 & 0 \\
\hline
2 & 0 & 0 & 0 \\
\hline
2 & 0 & 0 & 0 \\
\hline
2 & 0 & 0 & 0 \\
\hline
2 & 0 & 0 & 0 \\
\hline
2 & 0 & 0 & 0 \\
\hline
2 & 0 & 0 & 0 \\
\hline
2 & 0 & 0 & 0 \\
\hline
2 & 0 & 0 & 0 \\
\hline
2 & 0 & 0 & 0 \\
\hline
2 & 0 & 0 & 0 \\
\hline
2 & 0 & 0 & 0 \\
\hline
3 & 0 & 0 & 0 \\
\hline
2 & 0 & 0 & 0 \\
\hline
2 & 0 & 0 & 0 \\
\hline
2 & 0 & 0 & 0 \\
\hline
2 & 0 & 0 & 0 \\
\hline
2 & 0 & 0 & 0 \\
\hline
2 & 0 & 0 & 0 \\
\hline
2 &$$

Check:
$$124$$
 $\times 125$
 620
 248
 124
 $15,500$
 $+ 25$
 $15,525$

91. 817 rounded to the nearest ten: 820

 $8\underline{1}7$ Next digit is 5 or more. Tens place changes (1+1=2). The digit to the right of the underlined place changes to zero.

92. 15,208 rounded to the nearest hundred: 15,200

15,<u>2</u>08 Next digit is 4 or less. Hundreds place does not change. All digits to the right of the underlined place change to zero.

93. 20,643 rounded to the nearest thousand: 21,000

20,643 Next digit is 5 or more. Thousands place changes (0 + 1 = 1). All digits to the right of the underlined place change to zero.

94. 67,485 rounded to the nearest ten-thousand: 70,000

 $\underline{67}$,485 Next digit is 5 or more. Ten-thousands place changes (6+1=7). All digits to the right of the underlined place change to zero.

95. To the nearest ten: $34\underline{8}7$

Next digit is 5 or more. Tens place changes (8+1=9). The digit to the right of the underlined place changes to zero. **3490**

To the nearest hundred: 3487

Next digit is 5 or more. Hundreds place changes (4+1=5). All digits to the right of the underlined place are changed to zero. **3500**

To the nearest thousand: 3487

Next digit is 4 or less. Thousands place does not change. All digits to the right of the underlined place are changed to zero. **3000**

96. To the nearest ten: 20,065

Next digit is 5 or more. Tens place changes (6+1=7). The digit to the right of the underlined place changes to zero. **20,070**

To the nearest hundred: 20,065

Next digit is 5 or more. Hundreds place changes (0+1=1). All digits to the right of the underlined place are changed to zero. **20,100**

To the nearest thousand: 20,065

Next digit is 4 or less. Thousands place does not change. All digits to the right of the underlined place are changed to zero. **20,000**

97. To the nearest ten: 98,201

Next digit is 4 or less. Tens place does not change. The digit to the right of the underlined place changes to zero. **98,200**

To the nearest hundred: $98,\underline{2}01$

Next digit is 4 or less. Hundreds place does not change. All digits to the right of the underlined place are changed to zero. **98,200**

To the nearest thousand: 98,201

Next digit is 4 or less. Thousands place does not change. All digits to the right of the underlined place are changed to zero. **98,000**

98. To the nearest ten: 352,118

Next digit is 5 or more. Tens place changes (1+1=2). The digit to the right of the underlined place changes to zero. **352,120**

To the nearest hundred: 352,118

Next digit is 4 or less. Hundreds place does not change. All digits to the right of the underlined place are changed to zero. **352,100**

To the nearest thousand: 352,118

Next digit is 4 or less. Thousands place does not change. All digits to the right of the underlined place are changed to zero. **352,000**

99. From the table,
$$4^2 = 16$$
, so $\sqrt{16} = 4$.

100. From the table,
$$7^2 = 49$$
, so $\sqrt{49} = 7$.

101. From the table,
$$12^2 = 144$$
, so $\sqrt{144} = 12$.

102. From the table,
$$14^2 = 196$$
, so $\sqrt{196} = 14$.

103.
$$7^3$$
: exponent is 3; base is 7. $7^3 = 7 \cdot 7 \cdot 7 = 343$

104.
$$3^6$$
: exponent is 6; base is 3. $3^6 = 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 = 729$

105.
$$5^3$$
: exponent is 3; base is 5. $5^3 = 5 \cdot 5 \cdot 5 = 125$

106.
$$4^5$$
: exponent is 5; base is 4. $4^5 = 4 \cdot 4 \cdot 4 \cdot 4 = 1024$

107.
$$7^2 - 15$$
 Exponent $49 - 15 = 34$ Subtract

108.
$$6^2 - 10$$
 Exponent $36 - 10 = 26$ Subtract

109.
$$2 \cdot 3^2 \div 2$$
 Exponent $2 \cdot 9 \div 2$ Multiply $18 \div 2 = 9$ Divide

110.

$$9 \div 1 \cdot 2 \cdot 2 \div (11 - 2)$$
 Parentheses

 $9 \div 1 \cdot 2 \cdot 2 \div 9$
 Divide

 $9 \cdot 2 \cdot 2 \div 9$
 Multiply

 $18 \cdot 2 \div 9$
 Multiply

 $36 \div 9 = 4$
 Divide

111.
$$\sqrt{9} + 2(3)$$
 Square root
 $3 + 2 \cdot 3$ Multiply
 $3 + 6 = 9$ Add

112.
$$6 \cdot \sqrt{16} - 6 \cdot \sqrt{9}$$
 Square root $6 \cdot 4 - 6 \cdot 3$ Multiply $24 - 18 = 6$ Subtract

113. From the bar graph, 8 parents out of 100 nagged their children about washing hands after using the bathroom.

114. From the bar graph, 5 parents out of 100 nagged their children about taking shoes off when coming inside.

115. From the bar graph, the greatest number of parents, 25, nagged their children about keeping bedroom clean.

116. From the bar graph, the least number of parents, 3, nagged their children about hanging up wet bath towels.

117. Estimate: 40 million
$$\times$$
 365 \times 400 \times 40 \times 40

 $40 \text{ million} \times 400 = 16,000 \text{ million or}$ 16,000,000,000 checks (*Attach* $000\,000.$)

Exact: 40 million
$$\times$$
 365 \times 40 \times 40

 $40 \text{ million} \times 365 = 14,600 \text{ million or}$ 14,600,000,000 checks (*Attach* 000 000.)

The bank processes 14,600 million checks in a year

118. Step 1

Find the total revolutions.

Step 2

We know the revolutions per minute and the number of minutes.

Number of revolutions \times minutes = total revolutions.

Step 3

An estimate is $1000 \times 60 = 60,000$ revolutions.

Step 4

 $1400 \times 60 = 84,000$ revolutions

Step 5

There were 84,000 revolutions.

Step 6

The answer is reasonably close to the estimate considering the rounding.

Check:
$$84,000 \div 60 = 1400$$

119. Estimate: Exact:

$$\begin{array}{c|cccc}
100 & 144 & forks per box \\
\times 20 & \times 15 & boxes \\
\hline
2000 & forks & 2160 & forks
\end{array}$$

There are 2160 plastic forks in 15 boxes.

120. Estimate and Exact:

$$\begin{array}{ccc} 6000 & brackets \ per \ drum \\ \times \ 30 & drums \\ \hline 180.000 & brackets \end{array}$$

There are 180,000 brackets in 30 drums.

121. Estimate: Exact:

$$\begin{array}{c|cccc} 2000 & 2000 & hours per home \\ \times 10 & \times 12 & homes \\ \hline 20,000 & hours & 24,000 & hours \end{array}$$

24,000 hours of work are needed to build 12 homes.

122. Estimate and Exact:

The train travels 400 miles in 5 hours.

123. Step 1

Find the total cost to buy the ovens.

Step 2

Multiply the number of baking ovens times the cost of each baking oven and the number of warming ovens times the cost of each warming oven. Add to find the total cost.

Step 3

Estimate:

Baking ovens: $30 \times \$2000 = \$60,000$ Warming ovens: $30 \times \$900 = \$27,000$ Total: \$60,000 + \$27,000 = \$87,000

Step 4 Exact:

Baking ovens: $32 \times $1538 = $49,216$ Warming ovens: $28 \times $887 = $24,836$ Total: \$49,216 + \$24,836 = \$74,052

Step 5

The total cost is \$74,052.

Step 6

The answer is reasonably close to the estimate. Check by repeating Step 4.

124. Step 1

Find the total monthly collections.

Step 2

We know the number of daily customers and the daily rate. We know the number of weekend-only customers and the rate. Number of customers × daily rate + number of customers × weekend rate = total collections.

Step 3

Estimate:

$$(60 \times \$20) + (20 \times \$7) = \$1200 + \$140 = \$1340$$

$$(62 \times \$16) + (21 \times \$7) = \$992 + \$147 = \$1139$$

Step 5

The total monthly collections are \$1139.

Step 6

The answer is reasonably close to the estimate. Check by repeating Step 4.

125. *Step 1*

Find the difference in the amount spent on others and the amount spent on themselves.

Step 2

Difference indicates subtraction.

Step 3

An estimate is \$600 - \$100 = \$500.

Step 4

Step 5

The difference in amount spent is \$513.

Step (

The answer is reasonably close to the estimate.

Check:
$$$513 + $107 = $620$$

126. Step 1

Find how many hours it takes to produce all the plates.

Step 2

We know the total number of plates and we know how many are produced each hour.

$$\frac{\textit{total number}}{\textit{number per hour}} = \textit{total hours}$$

Step 3

An estimate: $30,000 \div 1000 = 30$ hours

Step 4

$$\frac{32,538}{986} = 33 \text{ hours}$$

Step 5

It will take 33 hours.

Step 6

The answer is reasonably close to the estimate.

Check: $33 \cdot 986 = 32,538$

127. Step 1

Find out how many pounds of pork are needed.

Step 2

We know the total number of cans and we must divide that total by 175 since each group of 175 cans requires 1 pound of pork. The number of groups \times 1 pound = total pounds.

Step 3

Estimate: $9000 \div 200 = 45$ pounds

Step 4

$$\frac{8750}{175} = 50 \text{ pounds}$$

Step 5

50 pounds of pork are needed.

Step 6

The answer is reasonably close to the estimate.

Check:

 $(175 \text{ cans per pound}) \cdot (50 \text{ pounds}) = 8750 \text{ cans}$

128. Step 1

Find the new account balance.

Step 2

We know the amount of the checks and the old balance.

Old balance - check amounts = new balance.

Step 3

Estimate: \$2000 - \$500 - \$400 = \$1100

Step 4

1924 - 520 - 385 = 1019

Step 5

She has \$1019 in her account.

Step 6

The answer is reasonably close to the estimate.

Check: \$1019 + \$520 + \$385 = \$1924

129. Step 1

Find the total acres fertilized.

Step 2

We know the total amount of fertilizer and how much each acre needs. Total pounds ÷ pounds needed per acre = total acres.

Step 3

Estimate: $30,000 \div 600 = 50$

Step 4

$$\frac{32,500}{625} = 52 \text{ acres}$$

Step 5

52 acres can be spread with 32,500 pounds of nitrogen sulfate.

Step 6

The answer is reasonably close to the estimate.

Check: $52 \times 625 = 32{,}500$

130. Step 1

Find the number of homes that can be fenced.

Step 2

Divide the number of feet of fencing available by the number of feet needed for each home.

Step 3

Estimate: $6000 \div 200 = 30$ homes

Step 4

$$\frac{5760}{180} = 32 \text{ homes}$$

Step 5

32 homes can be fenced.

Step 6

The answer is reasonably close to the estimate.

Check: $(180 \text{ feet per home}) \cdot (32 \text{ homes}) = 5760 \text{ feet}$

131. [1.4] 4(83) 83 ×4 332

133. [1.3]
$$\begin{array}{c} 210 \\ 309 \\ -56 \\ \hline 253 \end{array}$$

134. [1.3]
$$\begin{array}{r}
7 & 2 & 15 \\
8 & 3 & 5 \\
-2 & 4 & 7 \\
\hline
5 & 8 & 8
\end{array}$$

135. [1.2]
$$\begin{array}{r}
1 & 1 \\
6 & 6 \\
2 \\
+ 379 \\
\hline
1041
\end{array}$$

136. [1.2]
$$\begin{array}{r} 11\\789\\+872\\\hline 1661\end{array}$$

138. [1.3]
$$\begin{array}{r}
 8 & 114 & 16 \\
 29, 15 & 6 \\
 \hline
 -4209 \\
 \hline
 24, 947
\end{array}$$
 Check: $\begin{array}{r}
 1 & 1 \\
 24, 947 \\
 \hline
 -4209 \\
 \hline
 29, 156
\end{array}$

139. [1.5]
$$21 \div 7 = 3$$

140. [1.5]
$$\frac{42}{6} = 7$$
 $(7 \cdot 6 = 42)$

143. [1.5]
$$\frac{9}{0}$$
 is undefined.

144. [1.5]
$$\frac{7}{1} = 7 \quad (7 \cdot 1 = 7)$$

145. [1.5]
$$27,600 \div 4 = 6900$$

$$\frac{6 \ 9}{4 \ 27^{3} 6} \ Attach \ 00.$$

146. [1.5]
$$18,480 \div 8$$

$$\begin{array}{r} 2 \ 3 \ 10 \\ 8 \overline{18.480} \end{array}$$

147. [1.4]
$$\begin{array}{r} 8\ 430 \\ \times 128 \\ \hline 67\ 440 \leftarrow 8 \times 8430 \\ 168\ 60 \leftarrow 2 \times 8430 \\ \hline 843\ 0 \\ \hline 1.079.040 \end{array}$$

148. [1.4]
$$\begin{array}{c} 14 & 1 \\ 21,702 \\ \times & 6 \\ \hline 130.212 \end{array}$$

149. [1.6] Use a calculator to show that $34 \overline{)3672} = 108.$

150. [1.6] Use a calculator to show that
$$68 \overline{14,076} = 207.$$

- **151.** [1.1] 376,853 is three hundred seventy-six thousand, eight hundred fifty-three in words.
- **152.** [1.1] 408,610 is four hundred eight thousand, six hundred ten in words.
- 153. [1.7] 8749 rounded to the nearest hundred: 8749 Next digit is 4 or less. Hundreds place doesn't change. All digits to the right of the underlined place are changed to zero. 8700
- **154.** [1.7] 400,503 rounded to the nearest thousand: 400,503 Next digit is 5 or more. Thousands place changes (0+1=1). All digits to the right of the underlined place are changed to zero. **401,000**

155. [1.8] From the table,
$$8^2 = 64$$
, so $\sqrt{64} = 8$.

156. [1.8] From the table,
$$9^2 = 81$$
, so $\sqrt{81} = 9$.

160. [1.4]
$$607 \ boxes \ of \ avocados$$

 $\times \ \$26 \ cost \ per \ box$
 $\hline 3642$
 $\hline 1214$
 $\hline \$15,782 \ total \ cost$

There are 468 cards in nine decks.

162. [1.4]
$$180 \text{ cartons}$$

 $\times 20 \text{ books per carton}$
 $\overline{3600 \text{ textbooks}}$

There are 3600 textbooks in 180 cartons.

A "push-type" mower costs \$280.

\$114,635 more needs to be raised.

165. [1.10] Multiply the number of rentals times the sum of the rental fee and the launch fee.

$$\begin{array}{lll} \text{4-person} & 6 \times (\$28 + \$2) = 6(\$30) & \$180 \\ \text{6-person} & 15 \times (\$38 + \$2) = 15(\$40) & 600 \\ 10\text{-person} & 10 \times (\$70 + \$2) = 10(\$72) & 720 \\ 12\text{-person} & 3 \times (\$75 + \$2) = 3(\$77) & 231 \\ 16\text{-person} & 2 \times (\$85 + \$2) = 2(\$87) & + 174 \\ \hline \$1905 & \$1905 & \$180 & \$$$

Total receipts were \$1905.

166. [1.10] Multiply the number of rentals times the sum of the rental fee and the launch fee.

$$\begin{array}{llll} \textbf{4-person} & 38 \times (\$28 + \$2) = 38(\$30) & \$1\,140 \\ \textbf{6-person} & 73 \times (\$38 + \$2) = 73(\$40) & 2\,920 \\ \textbf{10-person} & 58 \times (\$70 + \$2) = 58(\$72) & 4\,176 \\ \textbf{12-person} & 34 \times (\$75 + \$2) = 34(\$77) & 2\,618 \\ \textbf{16-person} & 18 \times (\$85 + \$2) = 18(\$87) & +1\,566 \\ \hline \$12,420 & & & & & & & & & & \\ \hline \end{array}$$

Total receipts were \$12,420.

167. [1.9]
$$\begin{array}{c}
19910 \\
2000 \\
\hline
\end{array}$$
 Chicago Spire $\begin{array}{c}
-1131 \\
\hline
869
\end{array}$ difference

The Chicago Spire will be 869 feet taller than the Trump Tower in Chicago.

The Freedom Tower in New York is 162 feet taller than the planned San Francisco Towers.

169. [1.9] (a)
$$\begin{array}{r}
11000 & Chicago Spire \\
1450 & Sears Tower in Chicago \\
1362 & Freedom Tower in New York \\
1250 & Empire State Building \\
1200 & San Francisco Towers \\
+ 1131 & Trump Towers in Chicago \\
\hline
8393 & combined height in feet
\end{array}$$

(b)
$$83\,93$$
 combined height $-52\,8\,0$ feet in one mile $\overline{3\,11\,3}$ difference

The combined height of the six buildings is 3113 feet more than a mile.

170. [1.9] One yard is the same as three feet, so 100 yards is the same as 300 feet. The San Francisco Towers is 1200 feet tall, so divide 1200 by 300.

$$\begin{array}{r}
 4 \\
 300 \overline{\smash{\big|}\ 1 \ 2 \ 0 \ 0} \\
 \underline{1 \ 2 \ 0 \ 0} \\
 \hline
 0
\end{array}$$

The height of the San Francisco Towers will be equivalent to the length of 4 football fields.

Chapter 1 Test

- 1. 9205 is nine thousand, two hundred five.
- 2. 25,065 is twenty-five thousand, sixty-five.
- **3.** Four hundred twenty-six thousand, five is 426,005.

4.
$$\begin{array}{r}
122 \\
853 \\
66 \\
4022 \\
+3589 \\
\hline
8530
\end{array}$$

5.
$$\begin{array}{r}
11,12\\
17,063\\
7\\
12\\
1505\\
93,710\\
+333\\
\hline
112,630
\end{array}$$

7.
$$\begin{array}{r}
810615 \\
9075 \\
-2869 \\
\hline
6206
\end{array}$$

8.
$$7 \times 6 \times 4 = (7 \times 6) \times 4 = 42 \times 4 = 168$$

 $57 \cdot 3000 = 171,000$ Attach 000.

13.
$$\frac{835}{0}$$
 is undefined

15.
$$\begin{array}{r}
1 & 6 & 0 \\
280 \overline{\smash)44,800} \\
\underline{280} \\
1 & 6 & 8 \\
\underline{1680} \\
0 & 0
\end{array}$$

16. 6347 rounded to the nearest ten: $63\underline{47}$

Next digit is 5 or more. Tens place changes (4+1=5). The digit to the right of the underlined place changes to zero. **6350**

17. 76,502 rounded to the nearest thousand: 76,502

Next digit is 5 or more. Thousands place changes (6+1=7). Digits to the right of the underlined place change to zero. **77,000**

18.
$$5^2 + 8(2)$$
 Exponent
 $25 + 8(2)$ Multiply
 $25 + 16 = 41$ Add

19.
$$7 \cdot \sqrt{64} - 14 \cdot 2$$
 Square root
 $7 \cdot 8 - 14 \cdot 2$ Multiply
 $56 - 28 = 28$ Subtract

20. Estimate:

$$$500 + $500 + $500 + $400 - $800 = $1100$$

Exact: Add the rent collected.

$$$485$$
 500
 515
 $+425$
 $\hline 1925

Subtract expenses.

21. Estimate: $90,000 \div 400 = 225$ acres

Exact: Divide the total number of gallons by the number of gallons produced from one acre.

It would take 231 acres.

- **22.** Estimate: \$2000 \$500 \$200 \$200 = \$1100Exact: \$1906 - \$528 - \$195 - \$235 = \$948
- 23. If we multiply the number of identifications each minute, 48, by the number of minutes in an hour, 60, and then multiply that number by the number of hours, 4, we'll get the total number of identifications in 4 hours.

Estimate:
$$(50 \times 60 \times 4) + (40 \times 60 \times 3)$$

= $(3000 \times 4) + (2400 \times 3)$
= $12,000 + 7200 = 19,200$ chicks
Exact: $(48 \times 60 \times 4) + (36 \times 60 \times 3)$
= $(2880 \times 4) + (2160 \times 3)$
= $11,520 + 6480 = 18,000$ chicks

The total number of baby chicks identified is 18,000.

- **24.** (1) Locate the place to which you are rounding and underline it.
 - (2) Look only at the next digit to the right. If this digit is a 4 or less, do not change the underlined digit. If the digit is a 5 or more, increase the underlined digit by 1.
 - (3) Change all digits to the right of the underlined place to zeros.

Each person's example will vary, but the following two examples illustrate the two general cases.

- (A) 1<u>2</u>4,999 rounds to 120,000
- (B) 125,000 rounds to 130,000
- **25.** (1) Read the problem carefully.
 - (2) Work out a plan.
 - (3) Estimate a reasonable answer.
 - (4) Solve the problem.
 - (5) State the answer.
 - (6) Check your work.