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Chapter 1. Introduction

Section 1.1. Introduction to Differential Equations

1.

Let y(¢) be the number of bacteria at time ¢. The rate
of change of the number of bacteria is y’(z). Since
this rate of change is given to be proportional to y(¢),
the resulting differential equation is y'(t) = ky(z).
Note that k is a positive constant since y’() must be
positive (i.e. the number of bacteria is growing).

Let y(¢) be the number of field mice at time ¢. The
rate of change of the number of mice is y'(¢). Since
this rate of change is given to be inversely propor-
tional to the square root of y(z), the resulting differ-
ential equation is y'(t) = k/+/y(¢). Note that k is
a positive constant since y’(¢) must be positive (i.e.
the number of mice is growing).

Let y(t) be the number of ferrets at time ¢. The rate
of change of the number of ferrets is y'(). Since this
rate of change is given to be proportional to the prod-
uct of y(¢) and the difference between the maximum
population and y(z) (i.e. 100 — y(¢)), the resulting
differential equation is y'(t) = ky(t)(100 — y(¢)).
Note that k is a positive constant since y’(t) must
be positive (i.e. the number of ferrets is growing
provided y(z) < 100).

Let y(¢) be the quantity of radioactive substance at
time ¢. The rate of change of the material is y'(¢).
Since this rate of change (decay) is given to be pro-
portional to y(¢), the resulting differential equation
is y'(t) = —ky(#). Note that k is a positive con-
stant since y’(¢#) must be negative (i.e. the quantity
of radioactive material is decreasing).

Let y(¢) be the quantity of material at time ¢. The
rate of change of the material is y'(¢). Since this
rate of change (decay) is given to be inversely pro-
portional to y(z), the resulting differential equation
is y'(t) = —k/y(t). Note that k is a positive con-
stant since y’(#) must be negative (i.e. the quantity
of material is decreasing).

6. Let y(t) be the temperature of the potato at time ?.

The rate of change of the temperature is y'(¢). Since
this rate of change is given to be proportional to the
difference between the potato’s temperature and that
of the surrounding room (i.e. y(t) — 65), the result-
ing differential equation is y'(t) = —k(y(z) — 65).
Note that k is a positive constant since y’(f) must
be negative (i.e. the potato is cooling) and since
y(t) — 65 > 0 (i.e. the potato is hotter than the
surrounding room).

Let y(¢) be the temperature of the thermometer at
time ¢. The rate of change of the temperature is
y'(t). Since this rate of change is given to be pro-
portional to the difference between the thermome-
ter’s temperature and that of the surrounding room
(i.e. 77 — y(1)), the resulting differential equation is
y'(t) = k(77 — y(t)). Note that k is a positive con-
stant since y’(#) must be positive (i.e. the thermome-
ter is warming) and since 77 — y(¢) > 0 (i.e. the
thermometer is cooler than the surrounding room).

Let x(¢) be the position (displacement) of the parti-
cle at time ¢. The force on the particle is given to
be proportional to this displacement. Therefore, the
force, F, is equal to —kx(t) where k is a positive
constant. The negative sign is present since the di-
rection of F is opposite to that of x(#). Newton’s law
states F = ma where m is the mass of the object and
a = x"(t) is its acceleration. Therefore, F = ma
becomes —kx(t) = mx"(t), which is the differential
equation governing the motion of this particle.

Let x(¢) be the position (displacement) of the parti-
cle at time ¢. The force on the particle is given to be
proportional to the square of the particle’s velocity,
ie. (x'(1))%. As a first guess, one might surmise
that the force is given by F = —k(x'(¢))?, where
k is a positive constant. However, closer inspec-
tion reveals that this will have the force pointing t?
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the left, regardless of whether the velocity is pos-
itive or negative, We can work around this diffi-
culty by letting the force equal F = —kx'(¢)|x'(#)|.
The reader will recognize that the force is positive
when x'(t) < 0, while the force is negative when
x'(¢) > 0, thus insuring that the force is always op-
posite the particle’s motion. Newton’s law states
F = ma where m is the mass of the object and
a = x"(¢) is its acceleration. Therefore, F = ma
becomes —k(x'(¢))|x'(t)] = mx"(t), which is the
differential equation governing the motion of this
particle.

that we have written x (¢)|x (¢)| instead of x (£)? since
—k/[x(t)|x(r)|]is negative when x (¢) is positive and
—k/[x(®)|x(?)]] is positive when x(¢) is negative.
This agrees with the desired direction of F. New-
ton’s law states F = ma where m is the mass of the
object and a = x”(¢) is its acceleration. Therefore,
F = ma becomes

=mx"(t)

—k
x(@®)x (@)
which is the differential equation governing the mo-
tion of this particle.

Let x(t) be the position (displacement) of the par- 11. Let V (¢) be the voltage drop across the inductor and
ticle at time ¢. The force on the particle is given I(¢) be the current at time ¢. The rate of change of
to be inversely proportional to the square of this the current is I'(¢). Since the voltage drop is pro-
displacement. The direction of F is opposite to portional to the rate of change of I, we obtain the
that of x(r). Therefore, the force, F, is equal to differential equation V() = kI'(t), where k is a
—k /[x(¢)|x(t)|] where k is a positive constant. Note constant.
Section 1.2. The Derivative
D.(3x —5) =3D,x — D,5 7. DiIn|5x| = & D,(5x)
=3(1)—0 _ i
=3
1
D, (5x% — 4x — 8) = 5D,x? — 4D,x — D,8 8. Dyln(cos2x) = g5y Dy cOs 2x
=502x%) —4(1) -0 = —5-(—sin2x) D, (2x)
=10x2 -4 = —2tan2x
D, (3sin 5x) = 3D, sin 5x 9. Dyxlnx = (Dyx)Inx +xD,Inx
= 3(cos 5x) Dy (5x) =D Inx+x (L)
= 15cos5x =1+Inx
D, (cos2mx) = (—sin 2w x) D, (27 x)
= —27sin 27w x 10. D.e*sinmx = (Dye*)sinmx + e* D, sinmx
i - = e*sinmx + e*(— cosmwx) D, (7T x)
Dy(e™) = e Dx(3x) = e*(sinwx — 7w CoS7TX)
— 363x
2 23 In x—x2
Dx(Sexz) - SDxexz 11. . (ﬁ}) — (Dxx )lg:x]z Dylnx
= 5@"2 Dx(xz) 2x lnx—xz(%)
) i
= 5e”' (2) _ el
= 10x¢e* [nxJ?
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xInx\ __ Dx(xInx)cosx—xInxDy cosx
12. Dx (cosx) -

2
— (+4Inx) cosf\.fo—sx ﬁlx(— sin x)

COS* X ,
_ (+Inx)cosx+xsinxInx
- cos? x

13. If L(x) = f(x0) + f'(x0)(x — xp), then

R(x) = f(x) — L(x)
= f(x) — f(xo0) — f'(x0)(x — xo).

Thus,
lim R&) _ lim [.f(x) — f(x0) f'(xo)]
X-Xg X — Xg XX X — X

= f'(x0) — f'(x0)
=0.

14. Given that f(x) = €, the derivative is f'(x) = €*.
At xo =0, f'(0) = 1. Thus, the linearization is

Lx) = fO0) + f/O)(x —0)=1+x.

The graph of f, together with its linear approxima-
tion at xo = 0, is shown in the following figure.

2.5

> 1.5

0.5

-1 -0.5 0 0.5 1

15. Given that f(x) = cosx, the derivative is f'(x) =
—sinx. Atxy = /4, f'(n/4) = —~/2/2. Thus,
the linearization is

L(x) = f(/4 + f' (/B — 7 /4)
Ay

2 2

4

The graph of f, together with its linear approxima-
tion at xo = 7r/4, is shown in the following figure.

1.2 The Derivative 3

1.5

0.5

16. Given that f(x) = 4/x, the derivative is f'(x) =
1/2/%). Atxg = 1, f'(1) = 1/2. Thus, the lin-
earization is

1
L) =fO+fDEx-D=1+ F & =D.

The graph of f, together with its linear approxima-
tion at xo = 1, is shown in the following figure.

1.5

0.5

17. Given that f(x) = In(l + x), the derivative is
flx) =1/(1+x). Atxo =0, f/(0) = 1. Thus,
the linearization is

L(x) = f(0) + f'(0)(x = 0) = x.

The graph of f, together with its linear approxima-
tion at xo = 0, is shown in the following figure.
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0.5

0.5 1
X

18. Given that f(x) = x/2, the derivative is f'(x) =

19.

(3/2)x'*. Atxy = 1, f'(1) = 3/2. Thus, the
linearization is

3
Lx)=f(H+fDx-1)=1+ E(x - 1).
The graph of y = x — 1, together with the graph of
the remainder R(x) = f(x) — L(x), is shown in the

following figure.

1

y=x-1
0.5
R
> 0
-0.5
-1
0 0.5 1 1.5 2

Note that both graphs approach zero as x — 1, but
the graph of R approaches zero at a more rapid rate.

Given that f(x) = sin 2x, the derivative is f'(x) =
2cos2x. Atxy = /8, f'(/8) = ~/2. Thus, the
linearization is

L(x) = f(z/8) + f'(m/8)(x — 7/8)
V2 n

The graph of y = x — 7z/8, together with the graph
of the remainder R(x) = f(x) — L(x), is shown in
the following figure.

20.

21.

0.4

y=Xx-7/8
0.2
> 0
-0.2
R
-0.4
0.2 0.4 0.6 0.8

X

Note that both graphs approach zero as x — /8,
but the graph of R approaches zero at a more rapid
rate.

Giventhat f(x) = +/x + 1, thederivativeis f'(x) =
1/Q2/x +1). Atxy =0, f'(0) = 1/2. Thus, the
linearization is

Lx)=fO)+ fOx—-0=1+ -;—x.

The graph of y = x, together with the graph of the
remainder R(x) = f(x) — L(x), is shown in the
following figure.

1 y=X
0.5
> 0(///,———- R
-0.5
-1
-1 -0.5 0 0.5 1
X

Note that both graphs approach zero as x — 0, but
the graph of R approaches zero at a more rapid rate.

Given that f(x) = xe*~!, the derivative is f'(x) =
(x + De L. Atxo = 1, f/(1) = 2. Thus, the
linearization is
Lx)=f(+fMDx-D=1+2(x-1).
The graph of y = x — 1, together with the graph of

the remainder R(x) = f(x) — L(x), is shown in the
following figure.
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1.3 Integration 9

3 Note that both graphs approach zero as x — 1, but
R the graph of R approaches zero at a more rapid rate.

2

> 1

y=x-1
0
-1
0 0.5 1 1.5 2
X
X

Section 1.3. Integration

1.y =2t + 3. Integrate to obtain y = ¢? + 3t + C. P +12+3t+C.
10/ 10/

7
TN L—0 1 2 3 3 /éég;// 0 1 2 3
5 5

2. ¥y = 3t + 2t + 3. Integrate to obtain y = 3. y = sin2t + 2cos3¢. Integrate to obtain y =
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6 Chapter1 Introduction

(—1/2)cos2t + (2/3) sin 3¢ + C.

/-\_/—\
5 ) 1 0 T 3 3
-5
-10+
4. y' = 2sin3¢t — cos5r. Integrate to obtain y =

(—2/3)cos3t — (1/5)sin 5t + C.

)
Al

-1

<

5.y =t/(1+1?). Useu = 1+ 12 du = 2tdt
and get dy = (1/2)du/u. Integrate to obtain

y=(1/2)Inu + C = (1/2) In(1 + t?) + C.

i
N

vy =3t/(1 +2t?). Letu = 14 2¢%, du = 4tdt
and get dy = (3/4)du/u. Integrate to obtain
y=@3/4)Inu+C=3/4)In(1+2:>+C.

A

/
\

Integrate by parts with u = 2 and
dv = € to obtain

t2€3r eStzt
= — dt
=73 / 3

Integrate by parts once more and obtain

t263t 22‘63’ 2e3t
A R

+C
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E)

s
[S%

=

8 tcos3¢. Integrate by parts with u
dv = cos 3¢ and obtain

cos 3t
9

t sin 3¢
_ tsin c

-

(S,
4
&&&

AN

<

NYDY
(
(

K
(
(
a_

9. ¥y = e ?sinw. Integrate by parts with u = e™2%

and dv = sin w to obtain

/ e sinwdw = —e 2 cos w—2/ cos we 2 dew.

Integrate by parts again with u = ¢~2* and dv
cos w, to obtain

[ e sinwdo = —e 2 cos w — 2 sin we™

- 4[ sin we ™ dw

1.3 lIntegration 7

Then add the integral on the right to the integral on
the left, which then becomes 5 | sin we™* dw; di-
vide by the 5 and obtain the answer:

y= (—e”z"’ cos @ — 2 sin we‘z“’) /54+C

5
wd

10. y' = xsin3x. Integrate by parts with 4 = x
and dv = sin3x to obtain y = (—x/3)cos3x +
(1/9)sin3x + C.

2

11. x’ = s%e~*. Integrate by parts with u = s and

dv = e~ and obtain
x = —s2e™* + 2/e“xs ds.

Integrate by parts again withu = s and dv = e¢™* to
obtain the answer:

x=—s%"" —2se” =2 +C.
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8 Chapter1 Introduction

RN

12.
/e‘“ cosudu = e “sinu + / sinue ™ du.

Integrate by parts again, with U = e ™ and dV =
sin u and obtain

~

Add the integral on the right to the left side; then
divide by 2 and obtain the answer:

y=(e"sinu—e“cosu)/2+C.

s
I

po

W
0

13. Use partial fractions to write

e “cosudu =e " sinu—e " cos u—/ cosue “du.

Then integrate to obtain

r=hu—hﬂ—w)=h( 2 ).

1—u

4
2
-2
-4
0 02 04 06 08 1
t

Use partial fractions to write

’—-§ l+ 1
YE| T a=x ]

Then integrate to obtain

X
o

< O\
y=(3/4)(nx —In(4 — x)) =ln( ) .
4—x

y' = 4t — 6. Integrate y’ to obtain y = 22 — 61 +C;
the initial condition y(0) = 1 gives 1 = C; so
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y(t) =2t — 6t + 1.

16. y' == x>+ 4. Integrate to obtain y = x3/3+4x+C;
the initial condition y(0) = —2 gives —2 = C; so
y(t) = x3/3+4x — 2.

y10

-20

17. xX'(t) = te". Integrate to obtain x(f) =
(-1 /2)e‘r2 + C; the initial condition x(0) = 1
gives 1 = (=1/2) + C; s0 C = 3/2 and x(¢) =

1.3 Integration 9

(=1/2)e™" + (3/2).
0.5
3 2 1 0 1 2 3

8. r'(t) = t/(1 + t*). Integrate to obtain r(t) =

(1/2) In(1 + £?) + C; the initial condition, r(0) = 1
gives 1 = (1/2)Inl +Cor C = 1; sor(t) =
(1/2)In(1 +#2) + 1.

0.5

19. s'(r) = r?cos2r. Integrate by parts twice with dv

being the trig - term (cos 2r and then sin 2r to obtain

- rZsin 2r + rcos2r  sin2r +c
s(r) = - )
2 2 4

The initial condition, s(0) = 1 gives 1 = C so

S(r) = r2sin 2r + rcos2r  sin2r 1
T2 2 4
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10 Chapter1 Introduction

C =19/3. So x(t) = (=2/3)(4 — 1)*? + 19/3.

__——\ / ys
3 2 -1 0 T, \? 3
\/ &
4 2 0 % 4

20. P'(t) = e’ cos4t. Integrate by parts twice as done 22, '(x) = 1/(x — 5). Integrate to obtain u(x) =
in the solution to Exercise 12 above to obtain In|x — 5] + C. The initial condition, u(0) = —1
gives =1 = In5S5+ Cor C = —1 —1n5; so

4 —lnlx—5/—1—In5.
P() = == (¢ sindt — (1/4)e™ cosdt) + C u@) =Inlx =5/ =1-In5

The initial condition, P(0) = 1 gives 1 = —1/17 + 3
CorC =18/17;s0 .
y
4 _ 18 )
P(t) = 7 (e7"sindt — (1/4)e™ cos4t) + Tl
4 2 0 ) 3

S -2.\
4 3l
3
1 . . .
Y, 23. y(t) = ;(’ffﬁj. Partial fractions gives
- 1/4  3/4
/\J v =4 20
3 \2/ 1 0

x Integrating, we obtain

-1

(@) = (1/H It + /4 Il + 4]+ C
The initial condition, y(—1) = 0 gives

0=(1/4)In1+(3/49)In3+C = (3/49In3+C

-2

21. x'(t) = +/4—1t. Integrate to obtain x(t) = = —33/M)1
(—=2/3)(4—1)*24C. The initial condition, x(0) = 1 or € =—(@3/4)In3. So
gives 1 = (—2/3)@¥2 + C = —16/3 + C or y(6) = (1/4)In|¢| + (3/4) In |t + 4| — (3/4)In3
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L1

L2

24. '(r) = iz By long division, we obtain

r+1°

1
’
v (r ) r
Inte:grating, we obtain

r2

v(r):—z——r+1n|r+1|+C

The initial condition, v(0) = 0 gives
O0=Inl14+C=C;s0

2
v(r)=?—r+ln[r+1|

2l

25.

26.

27.

28.

1.3 integration 11

Let s(¢) be the height of the ball at time ¢ seconds. If
g = —9.8 is the gravitational constant, then s”(¢) =
g. Integrating we obtain, s’ = gt + v, where vg is
a constant. The initial condition s'(0) = 50 gives
vo = 50; so s'(t) = gt + 50. The velocity att = 3
seconds is s'(3) = 3¢ + 50 = 20.6 meters/second.
Integrating ', gives s(t) = gt?/2 + 50t + s.
The initial condition, s(0) = 3 gives 59 = 3, so
s(t) = gt?/2+50t +3. The height at r = 3 seconds
is §(3) = (9/2)g + 153 = 108.9 meters.

Let s(¢) be the height of the ball at time ¢ seconds. If
g = —9.8 is the gravitational constant, then s”(¢) =
g. Integrating we obtain, s’ = gt 4 vy, where
vg is a constant. The initial condition s'(0) = 0
(dropped from rest) gives vy = 0; so s'() = gt.
The velocity at ¢t = 3 is s'(3) = 3g = —29.4 me-
ters/sec. Integrating s/, gives s(t) = gt*/2 + so.
The initial condition s(0) = 200 gives sp = 200, so
s(t) = gt?/2 + 200; the height at 1 = 3 seconds is
5(3) = (9/2)g + 200 = 155.9 meters.

Let s(r) be the height of the ball at time ¢ seconds. If
g = —9.8 is the gravitational constant, then s”(¢) =
g. Integrating we obtain, s’ = gt + vy, where vy is
a constant. The initial condition s'(0) = 120 gives
vo = 120, so s'(t) = gr + 120. The maximum
height occurs when the velocity reaches zero, i.e.
when gt + 120 = 0, or t = —120/g = 12.24 sec-
onds. Integrating s’ gives s(t) = gt%/2 + 120t + so.
The initial condition s(0) = 6 gives sp = 6, so
s(t) = gt?/2 + 120t + 6. When t = 12.24, the
maximum height is 5(12.24) = 740.69 meters.

Let s(¢) be the height of the ball at time ¢ seconds. If
g = —9.8 is the gravitational constant, then s”(¢) =
g. Integrating we obtain, s’ = gt + vy, where vy
is a constant. The initial condition s'(0) = —25
gives vg = —25, so s'(t) = gt — 25. Integrating
again gives s(t) = gt*/2 — 25t + sp. The initial
condition s(0) = 1000 gives sp = 1000 and so
s(t) = gt?/2 — 25t +1000 = —4.9t% — 25¢ + 1000.
The ball hits the ground when s(¢#) = 0 which occurs
at approximately t = 11.96 seconds.
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