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INTRODUCTION TO
DIFFERENTIAL EQUATIONS

1.1 | Definitions and Terminology

10.

11.

12.

13.

14.

. Second order; linear
. Third order; nonlinear because of (dy/dx)*

. Fourth order; linear

Second order; nonlinear because of cos(r + u)

. Second order; nonlinear because of (dy/dx)? or \/1 + (dy/dx)?
. Second order; nonlinear because of R?

. Third order; linear

. Second order; nonlinear because of 42

. Writing the boundary-value problem in the form z(dy/dx) + y? = 1, we see that it is nonlinear

in y because of y2. However, writing it in the form (y? — 1)(dz/dy) + = = 0, we see that it is

linear in .

Writing the differential equation in the form u(dv/du) + (1 + u)v = ue™ we see that it is linear
in v. However, writing it in the form (v + uv — ue*)(du/dv) +u = 0, we see that it is nonlinear

in u.
From y = e~ */2 we obtain y’ = —%e_$/2. Then 2y +y = —e %/2 4 e=%/2 = .

From y = g - ge_QOt we obtain dy/dt = 24e=2% so that

dy —20t 6 6 oy
— + 20y =24 20 = — = = 24.
at + 20y e + 5 56

3

From y = €3% cos 2z we obtain ' = 3e3? cos 2z — 2e3% sin 2z and v = 5e3® cos 2z — 12€37 sin 2z,

so that ¢y’ — 6y’ + 13y = 0.

From y = — cos z In(sec  + tan z) we obtain y' = —1 + sin z In(sec x + tan ) and

y" =tanz + coszIn(secx + tanx). Then 3" + y = tanx.
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CHAPTER 1  INTRODUCTION TO DIFFERENTIAL EQUATIONS

15. The domain of the function, found by solving x+2 > 0, is [~2, 00). From ' = 14 2(z +2)~1/2

we have

(y—2)y = (y —2)1+ (2(x+2)7"/7
a2y )+ 2)
—y—az+2z+4x+2)Y2 —z)(x+2)7?
—y—z+8x+2) (e +2)" V2 =y —z+8

An interval of definition for the solution of the differential equation is (—2,00) because y' is
not defined at x = —2.

16. Since tanzx is not defined for z = 7/2 + nm, n an integer, the domain of y = 5tanbz is
{z | br #m/2+nn} or {z ’ x # 7/10 + n7/5}. From y' = 25sec? 5z we have

y = 25(1 + tan® 5x) = 25 4 25 tan® 5z = 25 + 2.

An interval of definition for the solution of the differential equation is (—m/10,7/10). Another
interval is (7/10,37/10), and so on.

17. The domain of the function is {z | 4—2% # 0} or {z | # # —2 or z # 2}. From y/ = 2z/(4—2?)?

we have
1 )\? )
I _
y—2x(4_x2> = 2zy°.

An interval of definition for the solution of the differential equation is (—2,2). Other intervals

are (—oo, —2) and (2, 00).

18. The function is y = 1/4/1 — sinz, whose domain is obtained from 1 —sinz # 0 or sinz # 1.

Thus, the domain is {z | z # 7/2 + 2n7}. From y/ = —3(1 — sinz)~3/2(— cos z) we have

-3/2 —1/2]3

2y = (1 —sinx) cosz = [(1 —sinx) cosz = y° cos .

An interval of definition for the solution of the differential equation is (7w/2,57/2). Another

interval is (57 /2,97 /2) and so on.
19. Writing In(2X — 1) — In(X — 1) = ¢ and differentiating implicitly we obtain

2 X _ 1 dX _
2X -1 dt X -—1dt

2 Loydx
2X -1 X —1/) dt

2X —2-2X+1dX
22X -1)(X—-1) dt

% — X —1)(X—1) = (X — (1 —2X).
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1.1 Definitions and Terminology

Exponentiating both sides of the implicit solution we obtain Yx
41
2X —1
— ¢t 3t
X -1 5l
2X —1=Xet — ¢ 1l
el —1=(e' —2)X —=T== >
- 3 2 -1 vl 2 3 =
— -1}
X = ¢ . 1
et —2 21

Solving e/ — 2 = 0 we get t = In2. Thus, the solution is defined on (—o0,In2) or on (In2,00).
The graph of the solution defined on (—oo, In 2) is dashed, and the graph of the solution defined
on (In2,00) is solid.

20. Implicitly differentiating the solution, we obtain YA

dy dy

—222 -2 —4 2y = =0
v dx Ty + ydw

—2%dy — 2zydx +ydy =0

2zy dx + (z° — y)dy = 0. No

Using the quadratic formula to solve y? — 222y — 1 = 0 for v,

we get y = (22?2 £ V42 +4)/2 = 2 £ Vz* + 1. Thus,
two explicit solutions are y; = 22 + Vot +1 and gy = 22 — Vvt + 1. Both solutions are
defined on (—o0, 00). The graph of y;(z) is solid and the graph of yo is dashed.

21. Differentiating P = cje'/ (1 + clet) we obtain

dP _ (1 + C1et) cre! — ciet - crel _ cret [(1 + C1€t) - Clet]
dt (14 cret)? 1+ et 1+ cret
t t
= A - 9° 1 _pa-p).
1+ cret 1+ cret

x
22. Differentiating y = e_xz/ e’ dt + cre™™ we obtain
0

x x
y = e~ — 21’6362/ e dt — 261:116712 =1- 2336902/ et dt — 2011}67%2.
0 0
Substituting into the differential equation, we have
/ —x? ’ 2 —x2 —x? ‘ 2 —x?
y +2xy =1—2zxe e’ dt —2cixe™™ + 2xe e" dt + 2cixe =1
0 0

2

2z

d
we obtain =2 — (2¢1 + (32)@2;r + 2cowe®® and 4der + 462)623: +

23. From y = c1€%* + coze
dx

Yy _
dz? (
4egze®®, so that

d%y

d
— 4—y + 4y = (4eg + 4deg — 8¢y — 4eg + 461)62’” + (4cg — 8cy + 462)x62x =0.
dxz? dx
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CHAPTER 1  INTRODUCTION TO DIFFERENTIAL EQUATIONS

24. From y = ciz~! + cox + ez Inx + 422 we obtain

d
d—y = —ciz 2+ o+ c3+czlna + 8,
T

d2
dT:g = 21273 + 0330_1 + 8,

and
d3
d—x‘z = —6cz 7t — 631‘_2,

so that

a3 d? d
xgd—;é—l—Q:ch—ag —m%—i—y: (—6c1 +4c1 + 1 —|—cl)x*1+ (—c3+2c3 —cog —c3+c2)x

+ (—c3 + c3)zlnz + (16 — 8 + 4)2?
= 122°.

2
) <0 . —2 5 <0
25. From y = { e we obtain ' = { oo so that xy’ — 2y = 0.

z2, x>0 2z, x>0
26. The function y(z) is not continuous at x = 0 since lim y(z) =5 and lim y(z) = —5. Thus,
z—0~ z—0t+

y'(x) does not exist at x = 0.
27. From y = ¢™* we obtain ¢y’ = me™®. Then 3’ + 2y = 0 implies
me™ + 2e™* = (m + 2)e™* = 0.

22 s a solution.

Since e™* > 0 for all x, m = —2. Thus y = e~
28. From y = ™" we obtain ' = me™*. Then 5y’ = 2y implies

max — Qemx

2
5 - .
me or m 5

2z/5 5 () is a solution.

Thusy =e
29. From y = €™ we obtain ' = me™ and 3y = m?e™*. Then 3’ — 5y’ + 6y = 0 implies
m2e™® — 5me™ + 6™ = (m — 2)(m — 3)e™* = 0.
Since €™® > 0 for all z, m = 2 and m = 3. Thus y = €?* and y = €3* are solutions.
30. From y = ¢™® we obtain 3y = me™® and y" = m?e™*. Then 2y” 4+ 7y’ — 4y = 0 implies
2m2e™® 4 Tme™® — 4e™® = (2m — 1)(m + 4)e™ = 0.
1

Since €™* > 0 for all z, m = 5 and m = —4. Thus y = e?/2andy=e

—4% are solutions.
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1.1 Definitions and Terminology

31. From y = 2™ we obtain ¢’ = ma™ ! and y” = m(m — 1)2™~2. Then xy” + 2y’ = 0 implies

= (m?® +m)z™!

zm(m — 1)z™ 2 4+ 2ma™ 1 = [m(m — 1) 4+ 2m]z™"
=m(m+1)z™ 1 = 0.

1

Since ™! > 0 for £ >0, m =0 and m = —1. Thus y = 1 and y = 2~ ! are solutions.

32. From y = 2™ we obtain 3y’ = mz™ ! and ¢ = m(m — 1)z™"2. Then x%y" — Tzy’ + 15y = 0

implies

*m(m — 1)z™ % — Tema™ ! + 152™ = [m(m — 1) — Tm + 15]z™
= (m? — 8m + 15)z™ = (m — 3)(m — 5)z™ = 0.

5 are solutions.

Since 2™ >0 for . >0, m =3 and m =5. Thus y = 2% and y =
In Problems 33-36 we substitute y = c into the differential equations and use y' =0 and y" = 0.
33. Solving 5¢ = 10 we see that y = 2 is a constant solution.
34. Solving ¢ +2¢c — 3 = (c+3)(c — 1) = 0 we see that y = —3 and y = 1 are constant solutions.

35. Since 1/(c — 1) = 0 has no solutions, the differential equation has no constant solutions.

36. Solving 6¢ = 10 we see that y = 5/3 is a constant solution.

37. From z = e 2" + 3¢5 and y = —e 2! + 5¢% we obtain
d d
dif = —2e72 +18¢%  and dié — 2¢7% 4 30e%.
Then
d
x4 3y = (€72 4+ 3e%) + 3(—e ™ 4+ 5e%) = 27 1 18¢% = d—f
and
d
5z + 3y = 5(e 2 + 3e5) + 3(—e 2 4 5e) = 2e7 % 4 305 = dit/ .
38. From x = cos 2t + sin 2t + %et and y = —cos 2t —sin 2t — %et we obtain
d 1 d 1
d—f:—2sin2t+2cos2t+get or d—i:2sin2t—2cos2t—get
and
d? 1 d? 1
£:—4cos2t—4sin2t+get or $:40082t—|—4sin2t—5et.
Then
1 1 d?
4y 4 €' = 4(— cos 2t — sin 2t — 56t) + e = —4cos2t — 4sin 2t + 5et = ?f
and
t : Ly t . 14 d*y
4x — ' = 4(cos 2t + sin 2t + =€ ) — e =4cos2t + 4sin 2t — ¢ = o

© 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license distributed
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CHAPTER 1  INTRODUCTION TO DIFFERENTIAL EQUATIONS

Discussion Problems

39.

40.

41.

42.

43.

44.

45.

46.

(v')? + 1 = 0 has no real solutions because (y')? + 1 is positive for all functions y = ¢(z).
The only solution of (y')2 +y? = 01is y = 0, since, if y # 0, y? > 0 and (/)% +y*> > % > 0.

The first derivative of f(z) = e” is e*. The first derivative of f(x) = e is f/(z) = kek*. The

differential equations are v’ = y and 3’ = ky, respectively.

Any function of the form y = ce” or y = ce™ is its own second derivative. The corresponding
differential equation is " —y = 0. Functions of the form y = ¢sinx or y = ccos x have second

derivatives that are the negatives of themselves. The differential equation is 3" + y = 0.

We first note that /1 —y2 = v/1 —sin?x = Vcos2z = |cosz|. This prompts us to consider

values of x for which cosx < 0, such as = 7. In this case

dy = —(sinx)
dzx _dws v

:cosx‘ __=cosm=—1,
=T

T=T T=T

but

V1—12 =V1-sin’r=v1=1.
=7

Thus, y = sin x will only be a solution of ' = /1 — y2 when cosx > 0. An interval of definition
is then (—7/2,7/2). Other intervals are (37/2,57/2), (77/2,97/2), and so on.

T

Since the first and second derivatives of sint¢ and cost involve sint and cost, it is plausible that
a linear combination of these functions, Asint + B cost, could be a solution of the differential
equation. Using 3y’ = Acost — Bsint and y” = —Asint — Bcost and substituting into the

differential equation we get

y" +2y +4y = —Asint — Beost +2Acost — 2Bsint + 4Asint + 4B cost
= (34 —2B)sint + (2A + 3B) cost = 5sint.

Thus 3A — 2B = 5 and 24 + 3B = 0. Solving these simultaneous equations we find A = %

and B = _% . A particular solution is y = % sint — % cost.

One solution is given by the upper portion of the graph with domain approximately (0,2.6).
The other solution is given by the lower portion of the graph, also with domain approximately
(0,2.6).

One solution, with domain approximately (—oo, 1.6) is the portion of the graph in the second
quadrant together with the lower part of the graph in the first quadrant. A second solution,
with domain approximately (0, 1.6) is the upper part of the graph in the first quadrant. The
third solution, with domain (0, c0), is the part of the graph in the fourth quadrant.
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1.1 Definitions and Terminology

47. Differentiating (23 + y®)/zy = 3¢ we obtain

zy(3z? + 3y%y) — (@ + ) (@ +y)

222 =0

3333?/ + 3xy3y/ _ I4y/ . JISy . IySyl o y4 =0
(3zy® — 2zt — 29®)y = =323y + 23y + ¢
, oyt =22% oy - 22%)

C2ryd — a2t w(2y3 —a3)

48. A tangent line will be vertical where 3 is undefined, or in this case, where z(2y3 — z3) = 0.

This gives = 0 and 2y% = 3. Substituting y> = 23/2 into 2 + y> = 3xy we get

1 1
3 3
z° + —x° =3z <21/3 .’B)

2

3 3 3 2
2% = 51"
23— 92/3,2

2z —22/%) = 0.

Thus, there are vertical tangent lines at z = 0 and 2 = 2%/3, or at (0, 0) and (22/3, 21/3). Since

22/3 ~~ 1.59, the estimates of the domains in Problem 46 were close.

49. The derivatives of the functions are ¢} (z) = —z/v25 — 22 and ¢, (x) = x/v/25 — x?, neither
of which is defined at z = +5.

50. To determine if a solution curve passes through (0,3) we let £ = 0 and P = 3 in the equation
P =cie'/(1+ cie’). This gives 3 =c1/(1+¢;1) or ¢; = —3. Thus, the solution curve

(—=3/2)e" -3¢

P = =
1—-(3/2)et 2 —3et

passes through the point (0,3). Similarly, letting ¢ = 0 and P = 1 in the equation for the
one-parameter family of solutions gives 1 = ¢1/(1+¢1) or ¢; = 1+ ¢1. Since this equation has

no solution, no solution curve passes through (0, 1).

51. For the first-order differential equation integrate f(x). For the second-order differential equa-

tion integrate twice. In the latter case we get y = [([ f(z)dz)dx + 1z + co.

52. Solving for 3 using the quadratic formula we obtain the two differential equations

1 1
y':f(2+2\/m) and y’:—(2—2m),
T X

so the differential equation cannot be put in the form dy/dx = f(z,y).

53. The differential equation yy’ — zy = 0 has normal form dy/dz = x. These are not equivalent
because y = 0 is a solution of the first differential equation but not a solution of the second.
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CHAPTER 1  INTRODUCTION TO DIFFERENTIAL EQUATIONS

2

54. Differentiating y = 12 + coz® we get y' = ¢1 + 2coz and y” = 2co. Then ¢; = 13" and

/ /!
=y —ay’, so

1 1
y = 6137—1—621’2 — (y/ _ a:y")x—i— 5y//xz — xy/ _ 51:2y//.
The differential equation is § 2%y — zy’ +y = 0 or 2%y” — 22y’ + 2y = 0.

55. (a) Since e~ is positive for all values of z, dy/dz > 0 for all z, and a solution, y(z), of the

differential equation must be increasing on any interval.

2

d d d
(b) lim U~ lim e =0and lim -2 = lim e * = 0. Since d—y approaches 0 as z
x

T—r—00 d:,E T——00 T—00 d:,U T—00

approaches —oo and oo, the solution curve has horizontal asymptotes to the left and to
the right.

(c) To test concavity we consider the second derivative

Py _d (dy\ _ d () = ~20c
dz?  dx \dr) dx N '

Since the second derivative is positive for z < 0 and negative for x > 0, the solution curve

is concave up on (—o0,0) and concave down on (0,00). x

() r

56. (a) The derivative of a constant solution y = ¢ is 0, so solving 5 — ¢ = 0 we see that ¢ = 5 and

so y = 5 is a constant solution.

(b) A solution is increasing where dy/dz =5—y > 0 or y < 5. A solution is decreasing where
dy/dx =5—y <0ory>b5.

57. (a) The derivative of a constant solution is 0, so solving y(a — by) = 0 we see that y = 0 and

y = a/b are constant solutions.

(b) A solution is increasing where dy/dz = y(a — by) = by(a/b—y) >0o0r 0 <y < a/b. A
solution is decreasing where dy/dx = by(a/b—y) <0 ory <0 or y > a/b.

(c) Using implicit differentiation we compute
&y
dz?

Solving d?y/dz? = 0 we obtain y = a/2b. Since d?y/dz?> > 0 for 0 < y < a/2b and
d%y/dx® < 0 for a/2b < y < a/b, the graph of y = ¢(z) has a point of inflection at
y = a/2b.

=y(=by') +¢'(a — by) =y (a — 2by).
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1.1 Definitions and Terminology

58. (a) If y = c is a constant solution then 3’ = 0, but ¢? + 4 is never 0 for any real value of c.

(b) Since 3 = y? +4 > 0 for all z where a solution y = ¢(x) is defined, any solution must
be increasing on any interval on which it is defined. Thus it cannot have any relative

extrema.

(c) Using implicit differentiation we compute d?y/dx? = 2yy’ = 2y(y*+4). Setting d?y/dx? =
0 we see that y = 0 corresponds to the only possible point of inflection. Since d?y/dz? < 0
for y < 0 and d?y/dz? > 0 for y > 0, there is a point of inflection where y = 0.

(d) !

Computer Lab Assignments

59. In Mathematica use

Clear[y]
y[x_]:= x Exp[5x] Cos[2x]

y[x]
y''""[x]-20y’"" [x] + 158y’ [x] - 580y’ [x] + 841 y[x] // Simplify

5

The output will show y(z) = e*z cos 2z, which verifies that the correct function was entered,

and 0, which verifies that this function is a solution of the differential equation.
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10 CHAPTER 1  INTRODUCTION TO DIFFERENTIAL EQUATIONS

60. In Mathematica use

Clear][y]
y[x_]:= 20 Cos[5 Log[x]]/x - 3 Sin[5 Log[x]]/x

y[x]

x"3y'"[x] +2x"2y" [x] + 20x y'[x] - 78y[x] // Simplify

20 51 3sin(51
The output will show y(x) = cos(blnz) _ 3sin( nac)’ which verifies that the correct
x x

function was entered, and 0, which verifies that this function is a solution of the differential

equation.

1.2 | Inifial-Value Problems

1. Solving —1/3 =1/(1+¢1) we get ¢; = —4. The solution is y = 1/(1 —4e™ ).
2. Solving 2 = 1/(1 + c1e) we get ¢; = —(1/2)e~ L. The solution is y = 2/(2 — e~ @+1).

3. Letting x = 2 and solving 1/3 = 1/(4 + ¢) we get ¢ = —1. The solution is y = 1/(z% — 1). This

solution is defined on the interval (1, 00).

4. Letting z = —2 and solving 1/2 = 1/(4 + ¢) we get ¢ = —2. The solution is y = 1/(z% — 2).
This solution is defined on the interval (—oo, —v/2).

5. Letting # = 0 and solving 1 = 1/c we get ¢ = 1. The solution is y = 1/(z? + 1). This solution

is defined on the interval (—oo, 00).

6. Letting # = 1/2 and solving —4 = 1/(1/4 + ¢) we get ¢ = —1/2. The solution is y =
1/(x® —1/2) = 2/(22? — 1). This solution is defined on the interval (—1/v/2,1/v/2).

In Problems 7-10 we use x = ¢y cost+cosint and ' = —cysint + ¢y cost to obtain a system of two
equations in the two unknowns c1 and cs.

7. From the initial conditions we obtain the system

c1 = -1
Cy = 8.
The solution of the initial-value problem is x = — cost + 8sint.
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1.2 Initial-Value Problems

8. From the initial conditions we obtain the system

Cy = 0
—C1 = 1.
The solution of the initial-value problem is x = — cost.
9. From the initial conditions we obtain
V3 1 1
o atye=;
1
_Z Y2 =0
5 ¢+ 5 &)

Solving, we find ¢; = V3 /4 and c2 = 1/4. The solution of the initial-value problem is
x = (V/3/4) cost + (1/4)sint.

10. From the initial conditions we obtain

2
_701*‘702:2\@-

2
Solving, we find ¢; = —1 and co = 3. The solution of the initial-value problem is
xr = —cost+ 3sint.

T

In Problems 11-14 we use y = cie* + coe™® and y' = c1e¥ — cae™® to obtain a system of two

equations in the two unknowns c1 and cs.

11. From the initial conditions we obtain

c1+e=1
c1—cy = 2.
Solving, we find ¢; = % and cg = —% . The solution of the initial-value problem is
3, 1 _,
y=ge —3e

12. From the initial conditions we obtain

ec1 + 67102 =0

ecy — 6_162 =e.

Solving, we find ¢; = % and ¢y = —%62. The solution of the initial-value problem is
y:161—162672—16w— 162736
2 2 2 2
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13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

CHAPTER 1  INTRODUCTION TO DIFFERENTIAL EQUATIONS

From the initial conditions we obtain

e_lcl +eco =95

eflcl —ecy = —Db.
Solving, we find ¢; = 0 and ¢3 = 5e~!. The solution of the initial-value problem is

y="5e le™® =5e 177,

From the initial conditions we obtain

c1+eco=0

61—0220.

Solving, we find ¢; = ¢ = 0. The solution of the initial-value problem is y = 0.

Two solutions are y = 0 and y = 23.

Two solutions are y = 0 and y = 22. A Iso, any constant multiple of 2?2 is a solution.

For f(z,y) = y%/3 we have Thus, the differential equation will have a unique solution in any

rectangular region of the plane where y # 0.

For f(x,y) = /2y we have 0f /0y = %\/ x/y . Thus, the differential equation will have a unique

solution in any region where x > 0 and y > 0 or where x < 0 and y < 0.

0 1
For f(z,y) = J we have —f = — . Thus, the differential equation will have a unique solution
x y T
in any region where x > 0 or where x < 0.
of : : o . .
For f(x,y) = x4y we have 30 = 1. Thus, the differential equation will have a unique solution
Y

in the entire plane.

For f(x,y) = 22/(4 — y?) we have 0f /0y = 22%y/(4 — y*)2. Thus the differential equation will

have a unique solution in any region where y < —2, =2 <y < 2, or y > 2.

2 9 3222
Lg we have —f = % Thus, the differential equation will have a
l+y oy (1+413)

unique solution in any region where y # —1.

For f(z,y) =

2 o 92 2
% we have —f - Y Thus, the differential equation will have a
T Yy

For f(xay) = ay - ($2+y2)2 :

unique solution in any region not containing (0, 0).

For f(z,y) = (y+ x)/(y — x) we have 0f /0y = —2x/(y — z)?. Thus the differential equation

will have a unique solution in any region where y < x or where y > x.
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1.2 Initial-Value Problems

In Problems 25-28 we identify f(x,y) = /y> —9 and 0f/0y = y/\/y?> —9. We see that f and
Of /0y are both continuous in the regions of the plane determined by y < —3 and y > 3 with no

restrictions on x.

25.

26.

27.

28.

29.

30.

31.

Since 4 > 3, (1,4) is in the region defined by y > 3 and the differential equation has a unique
solution through (1,4).

Since (5, 3) is not in either of the regions defined by y < —3 or y > 3, there is no guarantee of

a unique solution through (5, 3).

Since (2, —3) is not in either of the regions defined by y < —3 or y > 3, there is no guarantee

of a unique solution through (2, —3).

Since (—1,1) is not in either of the regions defined by y < —3 or y > 3, there is no guarantee

of a unique solution through (—1,1).

(a) A one-parameter family of solutions is y = cx. Since y' = ¢, zy’ = z¢ = y and y(0) =
c-0=0.

(b) Writing the equation in the form ¢y’ = y/z, we see that R cannot contain any point on the
y-axis. Thus, any rectangular region disjoint from the y-axis and containing (xg,yo) will
determine an interval around zp and a unique solution through (z, o). Since xg = 0 in

part (a), we are not guaranteed a unique solution through (0,0).

(c) The piecewise-defined function which satisfies y(0) = 0 is not a solution since it is not
differentiable at x = 0.

d
(a) Since o tan(z + ¢) = sec?(x + ¢) = 1 + tan?(z + ¢), we see that y = tan(x + ¢) satisfies
x

the differential equation.

(b) Solving y(0) = tanc = 0 we obtain ¢ = 0 and y = tanz. Since tanz is discontinuous at

x = £7m/2, the solution is not defined on (—2,2) because it contains £7/2.

(c) The largest interval on which the solution can exist is (—m/2,7/2).

d 1 1 1
(a) Since — (— ) = = y2, we see that y = — is a solution of the differential
dz\ z+c¢ (x+c)? x+ec
equation.

(b) Solving y(0) = —1/c¢ =1 we obtain ¢ = —1 and y = 1/(1 — ). Solving y(0) = —1/c = —1
we obtain ¢ = 1 and y = —1/(1 4+ z). Being sure to include x = 0, we see that the interval
of existence of y = 1/(1 — z) is (—o0, 1), while the interval of existence of y = —1/(1 4 x)

is (—1, 00).

(c) By inspection we see that y = 0 is a solution on (—o0, 00).
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14 CHAPTER 1  INTRODUCTION TO DIFFERENTIAL EQUATIONS

32. (a) Applying y(1) =1toy = —1/(x + ¢) gives

Thus ¢ = —2 and

(b) Applying y(3) = -1 to y = —1/(z + ¢) gives

1
—1l=——— or 34c=1 4L./
3+c¢
20 @
Thus ¢ = —2 and

1 1

y:— = .
r—2 2-z

yzgiz’ (2700)

(c) No, they are not the same solution. The interval I of definition for the solution in part (a)
is (—o0,2); whereas the interval I of definition for the solution in part (b) is (2,00). See

the figure.

33. (a) Differentiating 322 — y? = ¢ we get 6z — 2yy’ = 0 or yy’ = 3z.
olving 3z° — y° = 3 for y we get
(b) Solving 322 — y? = 3 for y we g

y = di(z) = V3«2 - 1), 1< < oo,
Yy (z) = —/3(22 - 1), 1<z < oo,
?/:¢3(I):m, —co<x < —1,
Y ():—\/m, —oo <z < -1

(c) Only y = ¢3(x) satisfies y(—2) = 3.

T

I
<= o
N =

I
-

74\ T

34. (a) Setting x = 2 and y = —4 in 322 — 3?> = ¢ we get

12 — 16 = —4 = ¢, so the explicit solution is

y=—V3r2+4, —oo<z<o0.

(b) Setting ¢ = 0 we have y = v/3z and y = —/3z, both
defined on (—o0,00) and both passing through the

origin.

In Problems 35-38 we consider the points on the graphs with x-coordinates xo = —1, g = 0, and
xo = 1. The slopes of the tangent lines at these points are compared with the slopes given by y'(xo)
in (a) through (f).

35. The graph satisfies the conditions in (b) and (f).
36. The graph satisfies the conditions in (e).
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1.2 |Initial-Value Problems 15

37. The graph satisfies the conditions in (c¢) and (d).
38. The graph satisfies the conditions in (a).

In Problems 39-44 y = c1 cos2x + cosin 2z is a two parameter family of solutions of the second-

order differential equation vy" + 4y = 0. In some of the problems we will use the fact that

Yy = —2c1 sin 2z + 2¢9 cos 2.

39. From the boundary conditions y(0) = 0 and y (%) = 3 we obtain
y(0) =c1 =0
7r T . (T
Y (Z) = (] COS (5) + cosin (§> =cy = 3.
Thus, ¢; = 0, c2 = 3, and the solution of the boundary-value problem is y = 3sin 2z.

40. From the boundary conditions y(0) = 0 and y(7) = 0 we obtain

y(0) =c1 =0

y(m) =c1 = 0.

Thus, ¢; = 0, ¢o is unrestricted, and the solution of the boundary-value problem is y = ¢o sin 2z,

where cg is any real number.

41. From the boundary conditions ¢'(0) = 0 and ¢/ (%) = (0 we obtain

y'(0) =2c2 =0
y' (%) = —2cp sin (g) = V3¢ =0.

Thus, co = 0, ¢; = 0, and the solution of the boundary-value problem is y = 0.
42. From the boundary conditions y(0) = 1 and y/(7) = 5 we obtain
y(0)=c1 =1
y'(m) = 2¢9 = 5.
Thus, ¢c; =1, cag = g, and the solution of the boundary-value problem is y = cos 2z + g sin 2x.
43. From the boundary conditions y(0) = 0 and y(7) = 2 we obtain
y(0)=c1 =0
y(m) =c1 = 2.
Since 0 # 2, this is not possible and there is no solution.

44. From the boundary conditions y' = (g) =1 and y'(7) = 0 we obtain

Since 0 # —1, this is not possible and there is no solution.
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Discussion Problems

45.

46.

47.

48.

49.

50.

51.

Integrating 3’ = 8e%* 4 6z we obtain
Y= /(86296 + 6x)dx = 4** 4 322 + c.
Setting = 0 and y = 9 we have 9 =4 + ¢ so ¢ = 5 and y = 4e*® 4 322 + 5.
Integrating ¢y’ = 12z — 2 we obtain
y = /(123: — 2)dx = 62° — 2z + c1.
Then, integrating v’ we obtain
Yy = /(6.%'2 — 2z + ¢)dx = 22° — 2% + ez + co.

At x = 1 the y-coordinate of the point of tangency is y = —1 + 5 = 4. This gives the initial
condition y(1) = 4. The slope of the tangent line at = 1 is y/(1) = —1. From the initial

conditions we obtain

2—14+c1+cp=4 or ci+c=3
and 6—24+c =-1 or c] = —b.
Thus, ¢; = —5 and ¢ = 8, so y = 223 — 22 — 5z + 8.

Whenx:Oandy:%
slope at (0, 3 ), or the red curve.

, 4’ = —1, so the only plausible solution curve is the one with negative

If the solution is tangent to the x-axis at (x0,0), then ' = 0 when z = z9 and y = 0.
Substituting these values into 3y’ + 2y = 3z — 6 we get 0+ 0 = 3x9 — 6 or xg = 2.

The theorem guarantees a unique (meaning single) solution through any point. Thus, there
cannot be two distinct solutions through any point.

When y = %6334, y =123 =2(32?) = zy'/?, and y(2) = 1—16(16) = 1. When
40, z <0
Y %Gx‘l, z>0

/ O, -’r<0 O, x<0 1/2
¥Y=931.3 =TY1.2 =Ty
7%, >0 7%, >0

we have

and y(2) = 7-(16) = 1. The two different solutions are the same on the interval (0, c0), which
is all that is required by Theorem 1.2.1.

At t =0, dP/dt = 0.15P(0) + 20 = 0.15(100) + 20 = 35. Thus, the population is increasing at
a rate of 3,500 individuals per year. If the population is 500 at time ¢t = T" then

dP

— | =015P(T) +20 = 0.15(500) + 20 = 95.

t=T
Thus, at this time, the population is increasing at a rate of 9,500 individuals per year.
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1.3 Differential Equations as Mathematical Models 17

1.3 | Differential Equations as Mathematical Models

Population Dynamics

dP dP
1.E—k¢P+T, ﬁ—kp—r
2. Let b be the rate of births and d the rate of deaths. Then b = k1P and d = koP. Since

dP/dt = b — d, the differential equation is dP/dt = k1 P — ko P.

3. Let b be the rate of births and d the rate of deaths. Then b = k; P and d = koP?. Since
dP/dt = b — d, the differential equation is dP/dt = ki P — ko P2.

P
4. %:klp—/@]ﬂ—h, h>0

Newton’s Law of cooling/Warming
5. From the graph in the text we estimate Ty = 180° and T;, = 75°. We observe that when
T =85, dT'/dt ~ —1. From the differential equation we then have
dT/dt -1
k= /dt _

= = =—0.1.
T-T, 8 -7

6. By inspecting the graph in the text we take T}, to be T,,(t) = 80 — 30cos7t/12. Then the
temperature of the body at time ¢ is determined by the differential equation

dr 0
=k [T— (SO—SOCOSEIS)] . t>0.
Spread of a Disease/Technology
7. The number of students with the flu is # and the number not infected is 1000 — z, so dx/dt =
kx(1000 — z).

8. By analogy, with the differential equation modeling the spread of a disease, we assume that the
rate at which the technological innovation is adopted is proportional to the number of people
who have adopted the innovation and also to the number of people, y(t), who have not yet
adopted it. Then x4y = n, and assuming that initially one person has adopted the innovation,

we have d
d—f =kx(n—2x), z(0)=1.
Mixtures
9. The rate at which salt is leaving the tank is

A A

Thus dA/dt = —A/100 (where the minus sign is used since the amount of salt is decreasing).
The initial amount is A(0) = 50.
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18 CHAPTER 1  INTRODUCTION TO DIFFERENTIAL EQUATIONS

10. The rate at which salt is entering the tank is
R = (3 gal/min) - (2 1b/gal) = 6 Ib/min.

Since the solution is pumped out at a slower rate, it is accumulating at the rate of
(3 — 2)gal/min = 1 gal/min. After ¢ minutes there are 300 + ¢ gallons of brine in the tank.

The rate at which salt is leaving is

24
300+ ¢

Rout = (2 gal/min) - ( lb/gal> 1b/min.

300 +1¢

The differential equation is

dA 24
dt 300+t

11. The rate at which salt is entering the tank is
Rin = (3 gal/min)(2 Ib/gal) = 6 1b/min.

Since the tank loses liquid at the net rate of
3 gal/min — 3.5 gal/min = —0.5 gal/min,

after ¢ minutes the number of gallons of brine in the tank is 300 — %t gallons. Thus the rate at

which salt is leaving is

A 3.5A TA
out = | 5= 1b/gal | (3. l/min) = ———— 1b/min = ——— Ib/min.
Rout <300—t/2 /ga>(35ga/m1n) 300 — 12 /min 500 —1 /min
The differential equation is
dA TA dA 7
@ ST so—¢ " @ Teoo—¢" 0

12. The rate at which salt is entering the tank is
Rin = (cin Ib/gal) (14, gal/min) = ¢;7, 1b/min.

Now let A(t) denote the number of pounds of salt and N(t) the number of gallons of brine
in the tank at time ¢. The concentration of salt in the tank as well as in the outflow is
c(t) = z(t)/N(t). But the number of gallons of brine in the tank remains steady, is increased,
or is decreased depending on whether r;, = rout, Tin > Tout, O Tin < Tout- In any case, the
number of gallons of brine in the tank at time ¢ is N(t) = No + (74 — rout)t. The output rate
of salt is then
A

Bour = (No + (Tin — Tout)t

The differential equation for the amount of salt, dA/dt = R;, — Rout, is

dA A dA Tout

—_— = CinTin — T or P
dt niin T Tout N+ (Tin — Tout)t dt - No+ (rin = Tout)t

A
No + (rin - 7nout)t

b/ gal) (Four gal/min) = 7oyt 1b/min.

A = CinTin-
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1.3 Differential Equations as Mathematical Models

Draining a Tank

13. The volume of water in the tank at time ¢ is V = A,h. The differential equation is then

dh 1 dV 1 A
@ = (Cemn/2en) = T /agh.

9\ 2
Using Ap, =7 <12> = % , Ay = 10?2 = 100, and g = 32, this becomes

dh cm /36 cm
—_— =— V64h = ———Vh.
dt 100 450

14. The volume of water in the tank at time ¢ is V = émﬁh where r is the radius of the tank
at height h. From the figure in the text we see that r/h = 8/20 so that r = 2k and V =
im (%h)2 h = Z£mh3. Differentiating with respect to ¢ we have dV/dt = semh?dh/dt or

dh_ 25 _dv
dt — 4rwh? dt

From Problem 13 we have dV/dt = —cAp\/2gh where ¢ = 0.6, A, = (%)2, and g = 32. Thus
dV/dt = —2m+v/h/15 and

dh 25 [ 2xvh\ 5
dt — 4rh? 15 ) 6h3/2°
Series Circuits
15. Since i = dg/dt and Ld*q/dt* + Rdq/dt = E(t), we obtain Ldi/dt + Ri = E(t).

d 1
16. By Kirchhoft’s second law we obtain Rd—z + ci= E(t).

Falling Bodies and Air Resistance

d
17. From Newton’s second law we obtain md—;} = —kv? +mg.

Newton’s Second Law and Archimedes’ Principle

18. Since the barrel in Figure 1.3.17(b) in the text is submerged an additional y feet below its
equilibrium position the number of cubic feet in the additional submerged portion is the volume
of the circular cylinder: x (radius)?xheight or 7(s/2)%y. Then we have from Archimedes’

principle

upward force of water on barrel = weight of water displaced
= (62.4) x (volume of water displaced)
= (62.4)7(s/2)%y = 15.67ms%y.
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20 CHAPTER 1  INTRODUCTION TO DIFFERENTIAL EQUATIONS

It then follows from Newton’s second law that

% ng = —15.67r52y or (Zg 156u7?929 y =0,
where g = 32 and w is the weight of the barrel in pounds.
Newton’s Second Law and Hooke’s Law
19. The net force acting on the mass is
F:ma:m(j;tf = —k(s+z)+mg = —kx +mg — ks.

Since the condition of equilibrium is mg = ks, the differential equation is

d?x

20. From Problem 19, without a damping force, the differential equation is m d?z/dt? = —kx.
With a damping force proportional to velocity, the differential equation becomes

e
dt?

Az

dx dx

Newton’s Second Law and Rocket Motion

21. Since the positive direction is taken to be upward, and the acceleration due to gravity g is

positive, (14) in Section 1.3 becomes

m%:fmgfkv+R.

This equation, however, only applies if m is constant. Since in this case m includes the variable

amount of fuel we must use (17) in Exercises 1.3:

d d d
F:%(mv):mfv—i-vfm-

Thus, replacing mdv/dt with mdv/dt +vdm/dt, we have

d d d d
md—zqtvd—zl:fmgfkquR or md—:qud—Tquv:fmquR.
22. Here we are given that the variable mass of the rocket is m(t) = my + m, + m¢(t), where
myp and m,, are the constant masses of the payload and vehicle, respectively, and m¢(t) is the

variable mass of the fuel.

(a) Since
d d d
M) = (mp +my +my(t)) = 2 (),

the rates at which the mass of the rocket and the mass of the fuel change are the same.
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1.3 Differential Equations as Mathematical Models

(b) If the rocket loses fuel at a constant rate A then we take dm/dt = —\. We use —\ instead
of A because the fuel is decreasing over time. We next divide the resulting differential

equation in Problem 21 by m, obtaining

Wov gk R v kAR
dt  m ™ dt m m’

Integrating dm/dt = —\ with respect to ¢t we have m(t) = —A + C. Since m(0) = my,

C = mgy and m(t) = —At + mg. The differential equation then may be written as
dv N k—x n R
dt T — . T e =N
(c) We integrate dmy/dt = —\ to obtain my(t) = —At + C. Since ms(0) = C we have

myg(t — At +my(0). At burnout mys(ty) = =My +mys(0) = 0, so t, = my(0)/A.

Newton’s Second Law and the Law of Universal Gravitation

23. From g = k/R? we find k = gR?. Using a = d?r/dt? and the fact that the positive direction is

upward we get
d?r k gR? d*>r  gR? 0
—_— =g =—— = - or — 4+ = =0.
dt? r2 72 dt? r2

24. The gravitational force on m is F = —kM,m/r?. Since M, = 4wdr3/3 and M = 475R3/3 we
have M, = r3M/R3 and

M,m r3Mm/R3 mM
F=—k 3 =—k 3 =—k 73

T.

Now from F = ma = d?r/dt*> we have

T mM kM
2 R3 a2 R3

Additional Mathematical Models

dA
25. The differential equation is i k(M — A) where k > 0.

A (M= A) — kA,

26. The differential equation is 7

27. The differential equation is /(t) = r — ka(t) where k > 0.

Y
2_y2'

28. By the Pythagorean Theorem the slope of the tangent line is ¢’ =
s
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29.

CHAPTER 1  INTRODUCTION TO DIFFERENTIAL EQUATIONS

We see from the figure that 20 + o = w. Thus

2tan 6
—%; = tana = tan(r — 20) = —tan 260 = _%’

Since the slope of the tangent line is 1y = tanf we have

y/z = 2y'/[1 — (y)?] or y — y(y')? = 2xy’, which is the (xnll o
quadratic equation y(y')? 4+ 2zy’ —y = 0 in ¢/. Using the

e

quadratic formula, we get b

N
]
=Y

) = —2x & \/4x? +4y?  —xd 2?42
2y Yy

Since dy/dx > 0, the differential equation is

d - 2492 d
e i o yL @t +z=0.
dx Y dx

Discussion Problems

30.

31.

32.

33.

34.

The differential equation is dP/dt = kP, so from Problem 41 in Exercises 1.1, P = eft. and a

one-parameter family of solutions is P = ce*t.

The differential equation in (3) is d1'/dt = k(T — T;5,). When the body is cooling, T' > T, so
T —T,, > 0. Since T is decreasing, dT'/dt < 0 and k < 0. When the body is warming, T' < T,,,
so T —T,, <0. Since T is increasing, dT'/dt > 0 and k < 0.

The differential equation in (8) is dA/dt = 6 — A/100. If A(t) attains a maximum, then
dA/dt = 0 at this time and A = 600. If A(¢) continues to increase without reaching a maximum,
then A’(t) > 0 for t > 0 and A cannot exceed 600. In this case, if A’(t) approaches 0 as ¢

increases to infinity, we see that A(t) approaches 600 as t increases to infinity.
This differential equation could describe a population that undergoes periodic fluctuations.

(a) As shown in Figure 1.3.24(b) in the text, the resultant of the reaction force of magnitude

F' and the weight of magnitude mg of the particle is the centripetal force of magnitude

mw?z. The centripetal force points to the center of the circle of radius & on which the

particle rotates about the y-axis. Comparing parts of similar triangles gives

Fcosf =mg and Fsinf = mw’z.

(b) Using the equations in part (a) we find

Fsing mw?z Wz o dy Wz
= = T —_— = —
Fcos6 mg g dx g

tand =
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35.

36.

37.

1.3 Differential Equations as Mathematical Models

From Problem 23, d?r/dt? = —gR?/r?. Since R is a constant, if r = R + s, then d?r/dt? =
d%s/dt? and, using a Taylor series, we get

d?s R?

— =g 2gs
a2~ I (R+s)?

:79R2(R+5)_2%79R2[R_2728R_3+"'] =—g+ 73 4o

Thus, for R much larger than s, the differential equation is approximated by d%s/dt? = —g.

(a) If p is the mass density of the raindrop, then m = pV and
dm  dV  d14 31 odrN L dr
Tl = e ) = s
If dr/dt is a constant, then dm/dt = kS where pdr/dt = k or dr/dt = k/p. Since the

radius is decreasing, k < 0. Solving dr/dt = k/p we get r = (k/p)t + co. Since r(0) = o,
co =19 and r = kt/p + ro.

d
(b) From Newton’s second law, — [muv] = mg, where v is the velocity of the raindrop. Then

dt
4 4
m % + v Z—T =mg or p<§7rr3) % + v(kdmr?) = p(§7TT3)g.
Dividing by 4p7nr3/3 we get
dv 3k dv 3k/p
L= — 4+ —""wv=g, k<O.
dt+prv g o dt+kt/,0—|—7“ov g <

We assume that the plow clears snow at a constant rate of k cubic miles per hour. Let ¢ be the
time in hours after noon, z(t) the depth in miles of the snow at time ¢, and y(¢) the distance
the plow has moved in ¢ hours. Then dy/dt is the velocity of the plow and the assumption
gives

dy

Yok
’lU.fL'dt s

where w is the width of the plow. Each side of this equation simply represents the volume
of snow plowed in one hour. Now let ¢y be the number of hours before noon when it started
snowing and let s be the constant rate in miles per hour at which x increases. Then for ¢ > —tg,

x = s(t + t9). The differential equation then becomes

ay _ k1
dt  wst+ty

Integrating, we obtain

k
=—[In(t+¢
y= - [In(t+t0) +c],

where ¢ is a constant. Now when t =0, y = 0 so ¢ = —Inty and

k
yzln(l—i—t).
WS to
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Finally, from the fact that when t = 1, y = 2 and when t = 2, y = 3, we obtain

2\? 1)°
(1+2) =(1+4) -
to to
Expanding and simplifying gives tg +t9— 1 = 0. Since ty > 0, we find g ~ 0.618 hours ~ 37

minutes. Thus it started snowing at about 11:23 in the morning.

dP dA

38. (1): o = kP is linear (2): i kA is linear
ar d
(3): i k(T —T,,) is linear (5): d:;: = kx(n+1—z) is nonlinear
(6): % =k(a—X)(B—X) is nonlinear (8): % =6— 1610 is linear
dh d? d 1
(10): i \/QQh is nonlinear (11): ng + Rd—z + cl= E(t) is linear
' d?%s o ' dv
(12): =g s linear (14): m—y =mg — kv is linear
d? d
(15): md—tj + kd—j =myg is linear
dy W
(16): T linearity or nonlinearity is determined by the manner in which W and T} involve z.
1
1.R | Chapter 1 in Review
d d
1. e = 10cie ' ﬁ — 10y
d —2x\ _ —2x __ —2x . dy _ dy —
2. %(5-}-616 )= —2c1e” % = =2(5+ cqe 5); = 2(y—5) or e 2y +10
3. @(cl cos kx + cosinkx) = —key sinkx + keg cos kx;
d2
pr) (c1coskx + cosinkzx) = k201 coskx — k:202 sinkz = —kQ(cl cos kx + co sin kx);
d*y 2 d’y 2
d . :
4. d—(cl cosh kx + cg sinh kx) = key sinh kz + ke cosh ka;
x

2

W(Cl cosh kx + cg sinh kx) = k?cq cosh kx + k%cq sinh kz = k(1 cosh kx + ¢ sinh kx);
T

d2y 2 inU 2

@ =k Yy or @ -k Yy = 0
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13.

14.

15.

16.

17.

18.

19.

1.R Chapter 1in Review

.y = c1e® + coxe”; Yy = c1e® + coxe® + coe”; Yy = c1e® + coze® + 2c9e”;

Yy 4y =2(c1€” + cowe®) + 2c9e” = 2(c1€” + coze” + coe®) = 2y; y' =2y +y=0

Yy = —cie¥sinx + c1e® cos T + coe® cos T + coe” sinx;

Yy’ = —c1e® cosx—cie® sin z—cye® sin w+c1e® cos x—coe” sin r+coe® cos x+coe” cos r+coe sinx
= —2c1e”sinx + 2cqe” cos x;

y' — 2y = —2c1e® cosx — 2c9e” sinx = —2y; y' =2y +2y =0

a, d (8.) ¢ (9.) b (10.) a, c (11.) b (12.) a, b, d

A few solutions are y = 0, y = ¢, and y = e*. In general, y = ¢1 + coe” is a solution for any
constants ¢; and co.

When v is a constant, then 3y = 0. Thus, easy solutions to see are y = 0 and y = 3.
The slope of the tangent line at (x,%) is ¥/, so the differential equation is 3’ = 2% + 3.

The rate at which the slope changes is dy’/dx = 3", so the differential equation is y” = —y’ or
y// + y/ — O

(a) The domain is all real numbers.

(b) Since 3’ = 2/3z'/3, the solution y = /3 is undefined at z = 0. This function is a solution
of the differential equation on (—o0,0) and also on (0, c0).

(a) Differentiating y? — 2y = 22 — 2 + ¢ we obtain 2yy’ — 2y’ = 2z — 1 or (2y — 2)y’ =22 — 1.

(b) Setting x = 0 and y = 1 in the solution we have 1 =2 =0— 0+ c or ¢ = —1. Thus, a

2

solution of the initial-value problem is 4% — 2y = 2% — z — 1.

(c) Solving y? — 2y — (2 — z — 1) = 0 by the quadratic formula we get

244+ 422 -z 1)
B 2

y =ltva2—-z=1+xz(x-1).

Since x(x — 1) > 0 for z < 0 or x > 1, we see that neither y = 1 4+ y/z(z — 1) nor
y=1—+/z(x — 1) is differentiable at x = 0. Thus, both functions are solutions of the

differential equation, but neither is a solution of the initial-value problem.
Setting x = xp and y = 1 in y = —2/x + z, we get
2
l=——+4ux or x2 — 29— 2= (x0 —2)(20+ 1) = 0.
Zo

Thus, g =2 or 29 = —1. Since z # 0 in y = —2/x + x, we see that y = —2/x + z is a solution
of the initial-value problem zy’ +y = 2z, y(—1) = 1 on the interval (—o00,0) (=1 < 0), and
y = —2/x + x is a solution of the initial-value problem zy’ + y = 2z, y(2) = 1, on the interval
(0,00) (2 > 0).
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20. From the differential equation, y'(1) = 12+ [y(1)]> = 1+ (—1)? = 2 > 0, so y(z) is increasing in

21.

22,

23.

CHAPTER 1  INTRODUCTION TO DIFFERENTIAL EQUATIONS

some neighborhood of z = 1. From 3" = 2z + 2yy’ we have 3" (1) = 2(1) +2(-1)(2) = -2 < 0,

so y(z) is concave down in some neighborhood of = = 1.

(a) v »

v A

4L

y=2ax2+c y=—22+co
(b) When y = 22+¢1, 3 = 22 and (y)? = 42%. When y = —22+co, v = —27 and (¢')? = 422

(c) Pasting together 22, z > 0, and —22, z < 0, we get

—.’Ez x
f(w)={ S

x, x> 0.

The slope of the tangent line is 3/ ‘(_1 5= 6v4+5(—1)3=7.
Differentiating y = xsinx 4 x cos ¢ we get

Yy =xcosx+sinr —xrsinx + coszx

! . . .
and Y = —xsinx +CoOSx + COST — T COST — SINT — SInx

= —xsinx —xrcosx + 2cosx — 2sinx.
Thus
" . . . .
Yy +y=—xrsinx —xcosx+ 2cosx —2sinx +xsinx + rcosx = 2cosx — 2sin x.

An interval of definition for the solution is (—o0, c0).

24. Differentiating y = zsinz + (cos z) In(cos x) we get

—sinx

/ .
Y :mcos:z—i-smx—i-cosx(

) — (sinz) In(cos z)

=xcosz +sinz —sinz — (sinx) In(cos )

COS T

=z cosz — (sinz)In(cos x)
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1.R Chapter 1 in Review 27

" . ) —sinx
and, y' = —xsinz + cosx —sinx

COS T

> — (cosz) In(cos z)

sin?

= —zsinz + cosz + — (cos z) In(cos x)

1—cos®x

= —zsinx + cosx + ———— — (cos z) In(cos x)
cos

= —xsinz + cosx + secx — cosx — (cos ) In(cos z)

= —xsinz + secx — (cosz) In(cos z).
Thus
y" +y = —zsinz +secx — (cos ) In(cosx) + zsinz + (cosz) In(cos z) = sec .

To obtain an interval of definition we note that the domain of Inz is (0, 00), so we must have
cosx > 0. Thus, an interval of definition is (—n/2,7/2).

25. Differentiating y = sin(Inz) we obtain y' = cos(Inz)/z and y” = —[sin(lnz) + cos(Ilnz)]/z>.
Then
in(l 1 1
Py 4wy = 2 (_sm( nx) J;cos( nx)) N xCOS( nx) + sin(ln) = 0.
x x

An interval of definition for the solution is (0, 00).

26. Differentiating y = cos(Inz) In(cos(Inx)) + (Inz) sin(ln x) we obtain

L (30 s

cos(Inx) x

in(l | in(l
y' = cos(Inx) _Sm<nfv>> 008 ) | sin(n)
X

T x

_ In(cos(Inz)) sin(In z) n (Inz) cos(lnx)

and
y'=—x [ln(cos(ln x))cos(xhlx) + sin(ln z) cos(in:z;) (Sin(;nx))] %
+ In(cos(In z)) sin(In m)% +x [(ln x) (_sin(;n :z:)) + COS(;H Jj)] % — (Inz) cos(In x)%
sin?(In
= % {— In(cos(Inz)) cos(Inz) + cos((llnx)) + In(cos(Inz)) sin(In z)
— (Inz)sin(lnz) 4+ cos(lnz) — (Inzx) cos(lnx) |.
Then

9 sin?(In )

2°y" + zy’ +y = —In(cos(Inx)) cos(lnz) + + In(cos(Inz)) sin(In z)

cos(Inx)
— (Inz)sin(lnz) 4+ cos(Inz) — (Inx) cos(Inz) — In(cos(Inz)) sin(ln z)
+ (Inz) cos(Inz) + cos(lnz) In(cos(Inz)) + (Inz) sin(ln x)
sin?(In ) sin?(In x) + cos?(Inz) 1

cos(In z) + cos(inz) cos(In x) cos(In x) sec(lnz)
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To obtain an interval of definition, we note that the domain of Inz is (0, c0), so we must have
cos(lnx) > 0. Since cosx > 0 when —7/2 < x < 7/2, we require —7/2 < Inz < 7/2. Since €*
is an increasing function, this is equivalent to e~ ™? < x < ™2, Thus, an interval of definition
is (e‘“/ 2 e/ 2). Much of this problem is more easily done using a computer algebra system

such as Mathematica or Maple.
27. Using implicit differentiation on 23y = 23 4+ 1 we have
32392y + 32%y® = 322
ayty +yP =1
1

2y +y= 3
Y

28. Using implicit differentiation on (z — 5)? + y? = 1 we have

2(z—5)+2yy =0

r—5+yy =0
y,:_ac—5
y
o (x—=5)? 1—¢> 1
W=t oL
y y y
2 1
(?//)Jrl:?‘

29. Using implicit differentiation on 3> + 3y = 1 — 32 we have

3%y + 3y = -3
vy +y =1

Again, using implicit differentiation, we have

n_ —2yy’ — ) 1 2_2 o 1 2_2 /(_ /)2_2(/)3
y—m—yym—yy m—yy y) =2y\y ).

30. Using implicit differentiation on y = ¢*¥ we have
y =" (zy +y)
(1 —zey)y = ye™.
Since y = e*¥ we have

(I-—zy)y =y-y or (1—ay)y =y
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In Problems 31-34 we have 3y’ = 3c163% — coe® — 2.

31.

32.

33.

34.

35.

36.

37.

38.

The initial conditions imply

c1+c=0
3c1 —cp—2=0,
SO ¢1 = % and 02:—%. Thus y = %63$—%6_x—21‘.

The initial conditions imply

c1+ec=1

361—02—2:—3,
soci =0and cog =1. Thus y =e % — 2zx.
The initial conditions imply

6163 + 026_1 —2=4

30163 — cze_l —2=-=2,
So ] = 36*3 and ¢g = %e. Thus y = %egm*g’ + %e*xﬂ — 2.
The initial conditions imply

616_3 +ce+2=0

3cie ™ —cpe—2=1,
soc; = €3 and o = —Je~!. Thus y = €373 — Je7271 — 2z,
From the graph we see that estimates for yg and y; are yg = —3 and y; = 0.

Figure 1.3.3 in the text can be used for reference in this problem. The differential equation is

dh CAO
— = ———1/2gh.
at ~ A, VY
Using Ay = 7(1/24)? = 7/576, A, = 7(2)? = 47, and g = 32, this becomes

dh cm /576 c
L V64h = = /h.
dt 4 64n 288 vh

Let P(t) be the number of owls present at time ¢. Then dP/dt = k(P — 200 + 10¢).
Setting A’(t) = —0.002 and solving A’(t) = —0.0004332A(t) for A(t), we obtain

Alt) = Aty  —0.002
~—0.0004332  —0.0004332

=~ 4.6 grams.
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is blue. The pictures are obtain using Mathematica, as mentioned before Problem 1.
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

15. (a) The isoclines have the form y = —x + ¢, which are

straight lines with slope —1.

(b) The isoclines have the form x? + y? = ¢, which are

circles centered at the origin.

Discussion Problems

16. (a) When x = 0 or y = 4, dy/dx = —2 so the lineal elements have slope —2. When y = 3 or
y =5, dy/dr = x — 2, so the lineal elements at (z, 3) and (z, 5) have slopes x — 2.

(b) At (0, yo) the solution curve is headed down. If y — oo as = increases, the graph must
eventually turn around and head up, but while heading up it can never cross y = 4 where
a tangent line to a solution curve must have slope —2. Thus, y cannot approach oo as x

approaches oo.

y
17. When y < %xQ, y = x? — 2y is positive and the portions of ATV
e SRR
solution curves “outside” the nullcline parabola are increas- LRI g
. . . . [ WA 4
ing. When y > %13, y' = 2% — 2y is negative and the portions Y% NN /
1 1017 2N N\N\ /
of the solution curves “inside” the nullcline parabola are de- NN !
. O—+——+ -+ X
CreaSIHg. [N (] d VNN
e /7 70
=1; 1|11 !/ A
e R |
e I
=2t 11 L
| [ [ A A |
[ e
-3 [N Lfrrr
-3 -2 o 1 2 3

18. (a) Any horizontal lineal element should be at a point on a nullcline. In Problem 1 the

nullclines are 22

— 92 =0 or y = £z. In Problem 3 the nullclines are 1 — zy = 0 or
y = 1/x. In Problem 4 the nullclines are (sinz)cosy = 0 or x = nm and y = 7/2 + nm,
where n is an integer. The graphs on the next page show the nullclines for the differential

equations in Problems 1, 3, and 4 superimposed on the corresponding direction field.
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(b) An autonomous first-order differential equation has the form y’ = f(y). Nullclines have
the form y = ¢ where f(¢) = 0. These are the equilibrium solutions of the differential

equation.

2.1.2 AUTONOMOVUS FIRST-ORDER DEs

19. Writing the differential equation in the form dy/dz = y(1 — y)(1 + y) we see that
critical points are located at y = —1, y = 0, and y = 1. The phase portrait is shown
at the right.

(a) (b) v °

517 -1

ok

(c) y (d)

20. Writing the differential equation in the form dy/dx = y?(1 — y)(1 + y) we see that
critical points are located at y = —1, y = 0, and y = 1. The phase portrait is shown 1

at the right, and the graphs of the typical solutions are shown on the next page.
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In Problems 21-28 graphs of typical solutions are shown. However, in some of the solutions, even
though the upper and lower graphs either actually bend up or down, they display as straight line
segments. This is a peculiarity of the Mathematica graphing routine and may be due to the fact that
the NDSolve function was used rather than DSolve. NDSolve uses a numerical routine (see
Section 2.6 in the text), and involves sampling x-coordinates where the corresponding y-coordinates
are approrimated. It may be that the routine involved breaks down as the graph becomes nearly
vertical, forcing the x-coordinates on the graph to becomes closer and closer together.

21. Solving y? — 3y = y(y — 3) = 0 we obtain the critical points 0 and 3. From the
phase portrait we see that 0 is asymptotically stable (attractor) and 3 is unstable
(repeller). y

6l

4 2 4 ¥
)

22. Solving y*> —y> = y*(1 —y) = 0 we obtain the critical points 0 and 1. From the phase

portrait we see that 1 is asymptotically stable (attractor) and 0 is semi-stable.

y

X

N
-4 -2 F?—'T
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23. Solving (y — 2)* = 0 we obtain the critical point 2. From the phase portrait we see

that 2 is semi-stable.

24. Solving 10 + 3y — y* = (5 — y)(2 + y) = 0 we obtain the critical points —2 and 5.
From the phase portrait we see that 5 is asymptotically stable (attractor) and —2
is unstable (repeller). y

o\

41

25. Solving y*(4 — 3?) = %(2 — y)(2 + y) = 0 we obtain the critical points —2, 0, and
2. From the phase portrait we see that 2 is asymptotically stable (attractor), 0 is

semi-stable, and —2 is unstable (repeller).

Y

r3 ”y ) f’T T e
/

4L

26. Solving y(2 —y)(4—y) = 0 we obtain the critical points 0, 2, and 4. From the phase
portrait we see that 2 is asymptotically stable (attractor) and 0 and 4 are unstable
(repellers). y

6l

o}

/
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27. Solving yIn(y + 2) = 0 we obtain the critical points —1 and 0. From the phase por-

trait we see that —1 is asymptotically stable (attractor) and 0 is unstable (repeller).

Y

.

4 = 2 4

—

28. Solving ye¥ — 9y = y(e¥ —9) = 0 (since €Y is always positive) we obtain the critical
points 0 and In9. From the phase portrait we see that 0 is asymptotically stable

(attractor) and In9 is unstable (repeller). In 9

29. The critical points are 0 and ¢ because the
graph of f(y) is 0 at these points. Since
f(y) > 0 for y < 0 and y > ¢, the graph J
of the solution is increasing on (—oo, 0) and
(¢, 00). Since f(y) < 0 for 0 < y < ¢, the

graph of the solution is decreasing on (0, ¢). 0 ﬁ x
30. The critical points are approximately at —2, \Zy
2, 0.5, and 1.7. Since f(y) > 0 for y < —2.2 1.7

and 0.5 < y < 1.7, the graph of the solution

is increasing on (—oo, —2.2) and (0.5, 1.7). R 5 X

Since f(y) < 0 for —2.2 < y < 0.5 and _lk

y > 1.7, the graph is decreasing on
(—2.2,0.5) and (1.7, c0).
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