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PROBABILITY AND
STOCHASTIC
PROCESSES

The theory of probability and stochastic processes is an essential mathematical
tool in the design of digital communication systems. This subject is important
in the statistical modeling of sources that generate the information, in the
digitization of the source output, in the characterization of the channel through
which the digital information is transmitted, in the design of the receiver that
processes the information-bearing signal from the channel, and in the
evaluation of the performance of the communication system. Our coverage of
this rich and interesting subject is brief and limited in scope. We present a
number of definitions and basic concepts in the theory of probability and
stochastic processes and we derive several results that are important in the
design of efficient digital communication systems and in the evaluation of their
performance.

We anticipate that most readers have had some prior exposure to the theory
of probability and stochastic processes, so that our treatment serves primarily
as a review. Some readers, however, who have had no previous exposure may
find the presentation in this chapter extremely brief. These readers will benefit
from additional reading of engineering-level treatments of the subject found in
the texts by Davenport and Root (1958), Davenport (1970), Papoulis (1984),
Helstrom (1991), and Leon-Garcia (1994).

2-1 PROBABILITY

Let us consider an experiment, such as the rolling of a die, with a number of
possible outcomes. The sample space § of the experiment consists of the set of
alt possible outcomes. In the case of the die,

§={1,2,34,5,6)} (2-1-1}
17



18 DIGITAL COMMUNICATIONS

where the integers 1, ..., 6 represent the number of dots on the six faces of the
die. These six possible outcomes are the sample points of the experiment. An
event is a subset of §, and may consist of any number of sample points. For
example, the event A defined as

A={2,4)} (2-1-2)

consists of the outcomes 2 and 4. The complement of the event A, denoted by

A, consists of all the sample points in S that are not in A and, hence,
A={1,35 6} {2-1-3)

Two events are said to be mutally exclusive if they have no sample points in
common—that is, if the occurrence of one event excludes the occurrence of the
other. . or €xample, if A is defined as in (2-1-2) and the event B is defined as

B=1{1,3, 6} (2-1-4)

then A and B are mutually exclusive events. Similarly, A and A are mutually
exclusive events.

The union (sum) of two events is an event that consists of all the sample
points in the two events. For example, if B is the event defined in (2-1-4) and C
is the event defined as '

Cc=1{1,23} (2-1-5)
then, the union of B and C, denoted by B U C, is the event

D=BUC
={1, 2,3, 6} (2-1-6)

Similarly, AU A =S, where § is the entire sample space or the certain event.
On the other hand, the intersection of two events is an event that consists of
the points that are common to the two events. Thus, if E=BNC represents
the intersection of the events B and C, defined by (2-1-4) and (2-1-5),
respectively, then

E={1, 3}

When the events are mutually exclusive, the intersection is the null event,
denoted as {J. For example, ANB =@, and ANA=. The definitions of
union and intersection are extended to more than two events in a straightfor-
ward manner.

Asscciated with each event A contained in § is its probability P(A). In the
assignment of probabilities to events, we adopt an axiomatic viewpoini. That
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is, we postulate that the probability of the event A satisfies the condition
P(A) = 0. We also postulate that the probability of the sample space (certain
event) is P(S) = 1. The third postulate deals with the probability of mutually
exclusive events, Suppose that A, i =1,2,..., are a (possibly infinite) number
of events in the sample space S such that :

ANA=0 i#j=12,...

Then the probability of the union of these mutually exclusive events satisfies
the condition

P(g A,-) = 2 P(A) (2-1-7)

For example, in a roll of a fair die, each possible outcome is assigned the
probability ;. The event A defined by (2-1-2) consists of two mutually exclusive
subevents or outcomes, and, hence, P(A4) = Z = 1. Also, the probability of the
event AUB, where A and B are the mutually exclusive events defined by
(2-1-2) and (2-1-4), respectively, is P(A) + P(B)=3+4 =%

Joint Events and Joint Probabilities Instead of dealing with a single
experiment, let us perform two experiments and consider their outcomes. For
example, the two experiments may be two separate tosses of a single die or a
single toss of two dice. In either case, the sample space § consists of the 36
two-tuples (i, j) where i,j=1,2,...,6. If the dice are fair, each point in the
sampie space is assigned the probability 45. We may now consider joint events,
such as {i is even, j =3}, and determine the associated probabilities of such
events from knowledge of the probabilities of the sample points.

In general, if one experiment has the possible outcomes A, i=1,2, ..., n,
and the second experiment has the possible outcomes B, j=1,2,...,m, then
the combined experiment has the possible joint outcomes (A, B), i=
1,2,...,n,j=1,2,..., m Associated with each joint outcome (A,, B;) is the
joint probability P(A;, B,) which satisfies the condition

0<P(4, B)<1

Assuming that the outcomes B;, j=1,2,...,m, are mutually exclusive, it
follows that

i P(A;, B)) = P(A;) (2-1-8)
i=t

Similarly, if the outcomes A,, i =1,2, ... , h, are mutually exclusive then

ﬁ: P(A;, B;) =P(B)) (2-19)
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Furthermore, if all the outcomes of the two experiments are mutually exclusive
then

5: i P(A, B)=1 (2-1-10)
=1 =1

The generalization of the above treatment to more than two experiments is
straightforward.

Conditional Probabilities Consider a combined experiment in which a
joint event occurs with probability P(A, B). Suppose that the event B has
occurred and we wish to determine the probability of occurrence of the event
A. This is calied the conditional probability of the event A given the occurrence
of the event B and is defined as

P(A, B)

P | B) =T

(2-1-11)

provided P(B)>0. In a similar manner, the probability of the event B
conditioned on the occurrence of the event A is defined as

P(A, B)

PB|A)=" s

(2-1-12)

provided P(A)>0. The relations in (2-1-11) and (2-1-12) may also be
expressed as

P(A, B)=P(A| B)P(B) = P(B | A)P(A) (2-1-13)

The relations in (2-1-11), (2-1-12), and (2-1-13) also apply to a single
experiment in which A and B are any two events defined on the sample space S
and P(A, B) is interpreted as the probability of the 4 N B. That is, P(A, B)
denotes the simultaneous occurrence of A and B. For example, consider the
events B and C given by (2-1-4) and (2-1-5), respectively, for the single toss of
a die. The joint event consists of the sample points {1,3}. The conditional
probability of the event C given that B occurred is

2

3

P(C|B)=

XM
it

In a single experiment, we observe that when two events A and B are
mutually exclusive, AN B = and, hence, P(A | B) =0. Also, if A is a subset
of B then AN B = A and, hence,

PL4)

PA|B) =g
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On the other hand, if B is a subset of A, we have AN B = B and, hencoy

P(B
P(A|B)=P—EB—;=1

An extremely useful relationship for conditional probabilities is Bayes'
theorem, which states that if A, i =1, 2, ..., n, are mutually exclusive events
such that

U A=S

i=1
and B is an arbitrary event with nonzero probability then

P(Air B)
P(B)

P(B | A)P(A)

P(a, | B)=

=~ (2-1-14)
2 P(B|A)P(4,)
j=1

We use this formula in Chapter 5 to derive the structure of the optimum
receiver for a digital communication system in which the events A, ;=
1,2,...,n, represent the possible transmitted messages in a given time
interval, P(A,) represent their a priori probabilities, B represents the received
signal, which consists of the transmitted message (one of the A;) corrupted by
noise, and P(A, | B) is the a posteriori probability of A; conditioned on having
observed the received signal B.

Statistical Independence The statistical independence of two or more
events is another important concept in probability theory. It usually arises
when we consider two or more experiments or repeated trials of a single
experiment. To explain this concept, we consider two events A and B and their
conditional probability P(A | B), which is the probability of occurrence of A
given that B has occurred. Suppose that the occurrence of A does not depend
on the occurrence of B. That is,

P(A|B) = P(A) (2-1-15)
Substitution of (2-1-15) into (2-1-13) yields the result
P(A, B) = P{(A)P(B) (2-1-16)

That 1s, the joint probability of the events A and B factors into the product of
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the elementary or marginal probabilities P(A) and P(B). When the events A
and B satisfy the rvelation in (2-1-16), they are said to be statistically
independent.

For example, consider two successive experiments in tossing a die. Let A
represent the even-numbered sample points {2,4,6} in the first toss and B
represent the even-numbered possible outcomes {2, 4, 6} in the second toss. In
a fair die, we assign the probabilities P(4) =4 and P(B)=}. Now, the joint
probability of the joint event “‘even-numbered outcome on the first toss and
even-numbered outcome on the second toss™ is just the probability of the nine
pairs of outcomes (i.f), i =2,4,6,j=2,4,6, which is }. Also,

P(A.B)=P(AP(B)=}

Thus, the events A and B are statistically independent. Similarly, we may say
that the outcomes of the two experiments are statistically independent.

The definmition of statistical independence can be extended to three or more
events. Three statistically independent events A,. A,, and A, must satisfy the
following conditions:

P(A . A)) = P(A))P{A-)

P{A|, Az) = P(A))P(A,)

(2-1-17)
P(A; Ay) = P(A;)P(A,)
P(A,, Ay Ay) = P(A)P(A)P(A;)
In the general case, the events A;,, i=1,2,...,n, are statistically independent

provided that the probabilities of the joint events taken 2,3,4,...,and n at a
time factor into the product of the probabilities of the individual events.

2-1-1 Random Variables, Probability Distributions, and
Probability Densities

Given an experiment having a sample space S and elements s & S, we define a
function X (s) whose domain is § and whose range is a set of numbers on the
real line. The function X(s) is called a random variable. For example, if we flip
a coin the possible outcomes are head (H) and tail (T), so S eontains two
points labeled H and T. Suppose we define a function X (s) such that

1 {(s=H)

X(S):{—l (s=T)

(2-1-18)

Thus we have mapped the two possible outcomes of the coin-flipping
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experiment into the two points (+1) on the real line. Another experiment is
the toss of a die with possible outcomes § = {1,2, 3, 4, 5, 6}. A random variable
defined on this sample space may be X(s) =s, in which case the outcomes of
the experiment are mapped into the integers 1,..., 6, or, perhaps, X (s) = s’,
in which case the possible outcomes are mapped into the integers
{1,4,9, 16, 25,36}, These are examples of discrete random variables.

Although we have used as examples experiments that have a finite set of
possible outcomes, there are many physical systems (experiments) that
generate continuous outputs (outcomes). For example, the noise voltage
generated by an electronic amplifier has a continuous amplitude. Conse-
quently, the sample space S of voltage amplitudes v € § is continuous and so is
the mapping X (v) = v. In such a case, the random variablet X is said to be a
continuous random variable.

Given a random variable X, let us consider the event {X < x} where x is any
real number in the interval (~=, *). We write the probability of this event as
P(X =x) and denote it simply by F(x), i.e.,

Flx)=P(X<x) (—o<x<x) (2-1-19)

The function F(x) is called the probability distribution function of the random
vaniable X. It is also called the cumudative distribution function (cdf). Since
F(x) is a probability, its range is limited to the interval 0 < F(x)=1. In fact,
F(—x)=0and F(x) = 1. For example, the discrete random variable generated
by flipping a fair coin and defined by (2-1-18) has the cdf shown in Fig.
2-1-1{(a). There are two discontinuities or jumps in F{x), one at x = -1 and
one at x = 1. Similarly, the random variable X (s) =s generated by tossing a
fair die has the cdf shown in Fig. 2-1-1(b). In this case F(x) has six jumps, one
at each of the pointsx =1,..., 6.

Exampies of the cumulative distribution functions of two discrete random variables.

Fix)

|
.

‘I‘JI—- —
P

+ The random variable X (s) will be written simply as X,
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Fix}y

An example of the cumulative distribution function of a
continuous random variable.

The cdf of a continuous random variable typicaily appears as shown in Fig,
2-1-2. This i1s a smooth, nondecreasing function of x. In some practical
problems, we may also encounter a random variable of a mixed type. The cdf
of such a random variable is a smooth, nondecreasing function in certain parts
of the real line and contains jumps at a number of discrete values of x. An
example of such a cdf is illustrated in Fig. 2-1-3.

The derivative of the cdf F(x), denoted as p(x), is called the probability
density function (pdf) of the random variable X. Thus, we have

Fix)

px)=—= (-*<x<x} (2-1-20)

or, equivalently
F(x)zj’ plu)du (= <x <o) (2-1-21)

Since F(x) is a nondecreasing function, it follows that p(x)=0. When the
random variable is discrete or of a mixed type, the pdf contains impulses at the

points of discontinuity of F(x). In such cases, the discrete part of p(x) may be
expressed as

p(x)= 3, PX =x) 6(x —x) (21:22)

where x;, i=1,2,...,n, are the possible discrete values of the random

An example of the cumulative distribution
function of a random variable of a mixed type.
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variable; P(X =x.), i =1,2,..., n, are the probabilities, and é(x) denotes an
impulse at x =0.

Often we are faced with the problem of determining the probability that a
random variable X falls in an interval (x,, x,), where x, > x,. To determine the
probability of this event, let us begin with the event {X = x,}. The event can
alwavs be expressed as the union of two mutually exclusive events {X < x,} and
{x, < X < x,}. Hence the probability of the event {X =< x,} can be expressed as
the sum of the probabilities of the mutually exclusive events. Thus we have

P(X \'C-XZ) :P(szl) + P(xl <X 512)
F(xy)=F(x))+ P(x, < X =1x3)
or, equivalentiy,

P(.rl <X sz) :F(Xz)_F(xl)
- f pix) dx (2-1-23)

In other words, the probability of the event {x, < X =ux,} is simply the area
under the pdf in the range x;, < X <x,.

Multiple Random Variables, Joint Probability Distributions, and Joint
Probability Densities In dealing with combined experiments or repeated
trials of a single experiment, we encounter multiple random variables and their
cdfs and pdis. Multiple random variables are basically multidimensional
functions defined on a sample space of a combined experiment. Let us begin
with two random variables X, and X, each of which may be continuous,
discrete, or mixed. The joint cumulative distribution function (joint cdf) for the
two random variables is defined as

F(xl,xz)ﬁp(xlsxl,XZsz)
=j f puy, uz) du, du, (2-1-24)

where p(x,, x;) is the joint probability density function (joint pdf). The latter
may also be expressed in the form

2

plx, x)= F(x,, x5) (2-1-25)

axl sz

When the joint pdf p(x,, x;) is integrated over one of the variables, we
obtain the pdf of the other variable. That is,

| pter, 22y de,=pixs
- (2-1-26)

[ poixdea=pixy)
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The pdfs p(x,) and p(x,) obtained from integrating over one of the variables
are called marginal pdfs. Furthermore, if p(x,, x,) i3 integrated over both
variables, we obtain

f" fx plxy, xz) dx, dxy = F(ox, ®) = 1 (2-1-27)

—xJ

We also note that F(—x, —®) = F(~%, x;) = F(x,, —=)=0.

The generalization of the above expressions to multidimensional random
variables is straightforward. Suppose that X, i=1,2,...,n, are random
variables with a joint cdf defined as

i

F(x\, %3, .., x)=PX | =sx,X>5x,,...,X,<x,)

f

J j "'J’"p(u,,uz,...,u,,)du,duz"-du,,
(2-1-28)

where p(x,, x;,..., x,) is the joint pdf. By taking the partial derivatives of
F(xy, x3, ..., x,) given by (2-1-28), we obtain

a"l

=————F(x,, %3, ..., X, 2-1-
ax, ons - ox (x1, x5 x,) (2-1-29)

p(.x]s-x2|'~- vxn)

Any number of variables in p(x,, x5, ..., x,) can be eliminated by integrating
over these variables. For example, integration over x, and x; yields

J J plxy, x2, x5, ..., x,) dxy dxy =p(xq, x4, ..., X,) (2-1-30)

It also follows that F(x,, =, o, x,, ..., x,}=F(x,, x4, x5, ..., x,,) and

F(xl: —®, O, Xy, rxn)=0'

Conditional Probability Distribution Functions Let us consider two ran-
dom variables X, and X, with joint pdf p(x,, x;). Suppose that we wish to
determine the probability that the random variable X, < x, conditioned on

XZ‘AX2<X2$XZ

where Ax, is some positive increment. That is, we wish to determine the
probability of the event (X, <x,|x,—Ax,<X,<x,). Using the relations
established earlier for the conditional probability of an event, the probability
of the event (X, =x, |x2 — Ax, <X, <=x;) can be expressed as the probability
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of the joint event (X, =x,, x, — Ax,<X,=<x,) divided by the probability of
the event (x, — Ax, <X, =<1x,). Thus

U SS  ps, ) duy duy

= - < = = P
PX,<x,|x;- A, < X;<x35) %o, Pltt2) duy

F(xy, x3) — F(x,, X, — Ax;)

" F(x) - Foa - Ax) @130

Assuming that the pdfs p(x,, x,) and p(x,) are continuous functions over the
interval (x, — Ax,, x;), we may divide both numerator and denominator in
(2-1-31) by Ax, and take the limit as Ax; — 0. Thus we obtain

aF(x,, x,)/ox,
aF(Xz)/axz

- [ % 2 pluy, uz) duydu;)/3x,
A2 p(uz) dus)/ox,

_ T2 puy, x;) du,
plxz)

which is the conditional cdf of the random variable X, given the random
variable X,. We observe that F(-«|x,)=0 and F(=|x,)=1. By
differentiating (2-1-32) with respect to x,, we obtain the corresponding pdf
p(x, | x5} in the form

P(X1$x1|X2=x2)EF(x1|x2)=

(2-1-32)

p(xl! xZ)
plx | xp) =—"— (2-1-33)
=
Alternatively, we may express the joint pdf p(x,,x;) in terms of the
conditional pdfs, p(x, | x;) or p(x, | x,), as
plx, x3) =p(x, |x2)p(x2)
=P(xz|x1)P(11) (2-1-34)

The extension of the relations given above to multidimensional random
variables is also easily accomplished. Beginning with the joint pdf of the

random variables X, i =1,2, ..., n, we may write
p(x,,xz, ey x") =p(x1,x2, R |xk+1, ey x,,)p(xk“, e ,x,,) (2*1'35)
where & is any integer in the range 1<k <n The joint conditional cdf
corresponding to the pdf p(x,, x5, . .., xe X401, ..., x,) S
F(xhxll"' )xklxk+lv' .. ’xn)
_ J""_It e f?:p(u,, Uy, ..., Wy, Xy, ... ,x,,)du, duz b 'duk

2-1-36
.16 USRI 3 | ( )
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This conditional cdf satisfies the properties previously established for these
functions, such as

F(w,xz,...,xk}xk”,...,x,,):F(x:,x_;,...,.r,‘lx“[,...,x,,)

F(~w1'x2;--'1xk}xk+11---rxrz)=0

Statistically Independent Random Variables. We have already defined
statistical independence of two or more events of a sample space S. The
concept of statistical independence can be extended to random variables
defined on a sample space generated by a2 combined experiment or by repeated
trials of a single experiment. If the experiments result in mutually exclusive
outcomes, the probability of an outcome in one experiment is independent of
an outcome in any other experiment. That is, the joint probability of the
outcomes factors into a product of the probabilities corresponding to each
outcome. Consequently, the random variables corresponding to the outcomes
in these experiments are independent in the sense that their joint pdf factors
into a product of marginal pdfs. Hence the multidimensional random variables
are statistically independent if and only if

Fxy, xa, ..., x,) = F(x))F(xz) - - - F(x,) (2-1-37)
or, alternatively,
pxy, Xy, oy X0) = plxy)pliz) -+ - plxa) (2-1-38)

2-1-2 Functions of Random Variables

A problem that arises frequently in practical applications of probability is the
following. Given a random variable X, which is characterized by its pdf p(x),
determine the pdf of the random variable Y = g(X), where g(X) is some given
function of X. When the mapping g from X to Y is one-to-one. the
determination of p(y) is relatively straightforward. However, when the
mapping is not one-to-one, as is the case, for example, when Y = X2, we must
be very careful in our derivation of p(y).

Example 2-1-1
Consider the random variable Y defined as

Y=aX+b (2-1-39)
where a and b are constants, We assume that a > 0. If a <0, the approach is
similar (see Problem 2-3). We note that this mapping, illustrated in Fig.
2-1-4(a) is linear and monotonic. Let Fx(x) and F,(y) denote the cdfs for X
and Y, respectively.t Then

Fy{y)=P(Y5y)=P(aX+bSy)=P(X$y;b)

= f:mh)m px(x}dr = FX(%E) (2-1-40)

¥ To avoid confusion in changing variables, subscripts are used in the respective pdfs and cdfs.
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i Py (x)
Y=aX+b,a>0 1
/ - X ™ X
o7 -l o |
/ )
(a}
Py}

(e}

FIGURE 2-1-4 A linear transformation of a random variable X and an example of the corresponding pdfs of X
and Y.

By differentiating (2-1-40) with respect to y, we obtain the relationship
between the respective pdfs. It is

pr(») =2 px(=2) (@141)

Thus (2-1-40) and {2-1-41) specify the cdf and pdf of the random variable Y
in terms of the cdf and pdf of the random variable X for the linear
transformation in (2-1-39). To illustrate this mapping for a specific pdf
Px(x), consider the one shown in Fig. 2-1-4(b). The pdf py(y) that results
from the mapping in (2-1-39) is shown in Fig. 2-1-4(c).

Example 2-1-2
Consider the random variable Y defined as

Y=aX’+bh, a>0 (2-1-42)
As in Example 2-1-1, the mapping between X and Y is one-to-one. Hence

F(y)=P(Y<)y)=PaX’+b=<y)

Ar Y] e
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Y=aXl+b

Differentiation of (2-1-43) with respect to y yields the desired relationship
between the two pdfs as
_b 1/3
4 ) ] (2-1-44)

P =316 —Ib)/a]m””[( a

Example 2-1-3
The random variable Y is defined as
Y=aX*+b, a>0 (2-1-45)

In contrast to Examples 2-1-1 and 2-1-2, the mapping between X and VY,
illustrated 1n Fig. 2-1-5, is not one-to-one. To determine the cdf of Y, we
observe that

F(y)=P(Y<y)=PlaX*+b=y)
- <. [yt
- sf= B

Hence

Fy(y)=Fx( X—;'_I_))"'Fx(_ y~b) (2-1-46)

a

Differentiating (2-1-46) with respect to y, we obtain the pdf of Y in terms of
the pdf of X in the form

() _Px[V(y — b)fa] | px[-V(y -~ b)/a]
2aV[(y - b)a]l 2aV[(y -b)/a]

In Example 2-1-3, we observe that the equation g(x) =ax®+ & = y has two

(2-1-47)

real solutions,
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and that p,(y) consists of two terms corresponding to these two solutions.
That is,

()= 2xl5 = VO = BVa] _ prlxs = ~Viy = B)/a]
PR e, = iy - byla))  ig'lra= —Viy - b)la]

where g’(x) denotes the first derivative of g(x).

In the general case, suppose that x, x;,...,x, are the real roots of the
equation g(x)=y. Then the pdf of the random variable ¥ =g(X) may be
expressed as

(2-1-48)

o~ Px{x;)
|§l lg" (e

where the roots x;, i =1, 2,.. ., n, are functions of y.

Now let us consider functions of multidimensional random variables.
Suppose that X, i=1,2,... n, are random variables with joint pdf
Prlx;,x2,...,x,) and let ¥, i=1,2,...,n, be another set of n random
variables related to the X, by the functions :

pr(y)= (2-149)

Yi=gi(Xi’X2""'Xﬂ)' i=112;---;n (2'1'50)

We assume that the g(X:, X,,...,X,), i=12,..., n, are single-valued
functions with continuous partial derivatives and invertible. By “invertible” we
mean that the X;, i=1,2,...,n, can be expressed as functions of Y,
i=1,2,...,n, in the form

Xl;-:g:](yll Yzl"'l":r)r i=])2)---,n (2‘1'5])

where the inverse functions are also assumed to be single-valued with
continuous partial derivatives. The problem is to determine the joint pdf of Y,
i=1,2,...,n, denoted by py(y,ys...,¥) given the joint pdf
.pX(-le X2y -00y xn)‘

To determine the desired relation, let Ry be the region in the n-dimensional
space of the random variables X, i=1,2,...,n, and let R, be the
(one-to-one) mapping of Ry defined by the functions Y, = g,(X,, X2, ..., X,.).
Clearly,

jf" .ij(yl!yZ!“'ryn)dyl dYZ "dyn
Ry

=IJ‘-’-J-px(xlix;‘r---!xn)dxldeI"d—rn (2'1'52)
Ry

By making a change in variables in the multiple integral on the right-hand side
of (2-1-52) with the substitution

xf:gi_‘(.vl!yZ“"'yn)EgiW]J i=1123-"|n
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we obtain

= jJ ] J‘P-\'(Ii = 81 l. R R L Y, = 8n ]) U! d_"l dy} cr d_\’n
(2-1-53)

where J denotes the jacobian of the transformation. defined by the determinant

agil dga’ 0ga
J=] : : : (2-1-534)
ag,'  og 38,
E
Consequently, the desired relation for the joint pdf of the ¥, i =1,2,..., n, is

Py(_\’;.)’z. LRI v,vnu)sz(xi =gl lrxl =g3 I~ v .l',, zgu l)iji [2'1"55)

Example 2-1-4

An important functional relation between two sets of n-dimensional random
variables that frequently arises in practice is the linear transformation

=2 a,X, i=12....n (2-1-56)

where the {a,} are constants. It is convenient to employ the matrix form for
the transformation, which is

Y =AX (2-1-57)

where X and Y are n-dimensional vectors and A is an n X n matrix. We
assume that A is nonsingular. Then A is invertible and, hence,

X=A"Y (2-1-58)
Equivalently, we have

X=2b,Y, i=12..,n (2-1-59)
j=1
where {b,} are the elements of the inverse matrix A '. The jacobian of this
transformation is J = 1/det A. Hence

PY(}’U)’z,- .. -.Vn)

n n n 1
= = b,‘, = b",---; n = b"A )
Px(xl ;—Zl y¥jr X2 ,g; 2¥j x g, 24 [det A|

(2-1-60)
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2-1-3 Statistical Averages of Random Variables

Averages play an important role in the characterization of the outcomes of
experiments and the random variables defined on the sample space of the
expeniments. Of particular interest are the first and second moments of a single
random variable and the joint moments, such as the correlation and covari-
ance. between any pair of random variables in a multidimensional set of
random variables. Also of great importance are the characteristic function for a
single random variable and the joint characteristic function for a multidimen-
sional set of random variables. This section is devoted to the definition of these
important statistical averages.

First we consider a single random variable X characterized by its pdf p(x).
The mean or expected value of X is defined as

E(X)=m, =fx xp(x)dx (2-1-61)

where E( ) denotes expectation (statistical averaging). This is the first moment
of the random variable X. In general, the nth moment is defined as

x

E(X") = j x"p(x) dx (2-1-62)

Now, suppose that we define a random variable Y = g(X'), where g(X} is
some arbitrary function of the random variable X. The expected value of Y is

E(Y)= Eg()]= | g(p(r)dx (21:63)
In particular, if ¥ = (X —m,)" where m_ is the mean value of X, then
E(Y)= E[X ~m))= | (x-m.yp(x)dx (2-1-64)

This expected value is called the nth central moment of the random variable X,
because it is a moment taken relative to the mean. When n =2, the central

moment is called the variance of the random variable and denoted as o
That is,

gi= f‘ (x =m,)’p(x)dx (2-1-65)

This parameter provides a measure of the dispersion of the random variable X.
By expanding the term (x — m, )’ in the integral of (2-1-65) and noting that the
expected value of a constant is equal to the constant, we obtain the expression
that relates the variance to the first and second moments, namely,

or=E(X) - [E(X)]
= E(X?) — m? (2-1-66)
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In the case of two random variables, X, and X, with joint pdf p(x,, x,), we
define the joint moment as

E(XEX]) = j f x¥x3p(x,, x,) dx, dx, (2-1-67)

and the joint central moment as

E[(Xl - ml)k(Xz — mz)"]
= fx Jm (x) — ml)*(JCz —my)"p(x,, x:) dx, dx; (2-1-68)

where m; = E(X;). Of particular importance to us are the joint moment and
joint central moment corresponding to k =n =1. These joint moments are
called the cofrelation and the covariance of the random variables X, and X,
respectively.

In considering multidimensional random variables, we can define joint
moments of any order. However, the moments that are most useful in practical
applications are the correlations and covariances between pairs of random
variables. To elaborate, suppose that X, i=1,2, ..., n, are random variables
with joint pdf p(x,, xz, ..., x,). Let p{x, x;) be the joint pdf of the random
variables X; and X,. Then the correlation between X; and X; is given by the
joint moment

E(X.X)) =j f xx;p(x;, x;) dx; dx; (2-1-69)

and the covariance of X; and X is

g = E[(X: — mi)(X; ~ m))]

= fi f; (x: — m)(x; —m;)pix,, x;) dx; dx;

=J' f xi%;p (x;, x;) dx; dx; — m;m;

= E(X.Xj) — mm, (2-1-70)

The n X n matrix with elements yu; is called the covariance matrix of the
random variables X, i =1, 2,..., n. We shall encounter the covariance matrix
in our discussion of jointly gaussian random variables in Section 2-1-4.

Two random variables are said to be wuncorrelated if E (X.X)) =
E(X)E(X;) = mym,. In that case, the covariance u; =0. We note that when X,
and X; are statistically independent, they are also uncorrelated. However, if X,
and X; are uncorrelated, they are not necessarily statistically independent.
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Two random variables are said to be orthogonal if E(X;X;)=0. We note
that this condition holds when X; and X; are uncorrelated and either one or
both of the random variables have zero mean.

Characteristic Functions The characteristic function of a random variable
X is defined as the statistical average

@9 =u()= [ ep(r)dx (21-7)

where the variaBle vis real and j = V—1. We note that ¢(jv) may be described
as the Fourier transformt of the pdf p(x). Hence the inverse Fourier trans-
form is

plx)= 51; L Z B(fjv)e ™ dy (2-1-72)

One useful property of the characteristic function is its relation to the
moments of the random variable. We note that the first derivative of (2-1-71)
with respect to v yields

di(jv) _

j f xe’™p(x) dx
dv —x

By evaluating the derivative at v =0, we obtain the first moment (mean)

dy(jv)

EX)y=m,= —]T (2-1-73)

v=0

The differentiation process can be repeated, so that the nth derivative of Y ju)
evaluated at v =0 yields the nth moment

d"gi(jv)

EX™) = (2 21:74)

v=0

Thus the moments of a random variable can be determined from the
characteristic function. On the other hand, suppose that the characteristic
function can be expanded in a Taylor series about the point v = Q, That is,

W [d)] v .
W(]v)d,gu[ duv” ]‘,=0n! (2-1-75)

Using the relation in (2-1-74) to eliminate the derivative in (2-1-75), we obtain

t Usually the Fourier transform of a function g(u} is defined as G(v) = [~., 2(u}e ™" du, which
differs from (2-1-71) by the negative sign in the exponential. This is a trivial difference, however, so
we call the integral in (2-1-71) a Fourier transform.
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an expression for the characteristic function in terms of its moments in the
form
x 'v ”
iy = 3 Exny L (21.76)

nt

n=0

The characteristic function provides a simple method for determining the
pdf of a sum of statistically independent random variables. To illustrate this
point, let X,, i=1,2,...,n, be a set of n statistically independent random
variables and let

Y=> X, (2-1-77)
it

The problem is to determine the pdf of Y. We shall determine the pdf of Y by
first finding its characteristic function and then computing the inverse Fourier
transform. Thus ‘

Yr(ju) = E(e"7)

= E[exp (jv D X,)]

~£{[Te)]

= f e J ( e"’"")p(xl. Xa, oo, Xa)dx dxy - - dx,  (2-1-78)
—x —-x M=

Since the random variables are statistically independent, p(x,, x,,...,x,) =
p(x)p(xz) - - - p(x,). and, hence, the nth-order integral in (2-1-78) reduces 10 a
product of n single integrals, each corresponding to the characteristic function
of one of the X,. Hence,

Py (jv) = FI Wx(jv) (2-1-79)

If, in addition to their statistical independence, the X, are identically
distributed then all the v (jv) are identical. Consequently,

dy(jv} =[x (o))" (2-1-80)
Finally, the pdf of Y is determined from the inverse Fourier transform of
Uy(jv), given by (2-1-72). )

Since the characteristic function of the sum of n statistically independent
random variables is equal to the product of the characteristic functions of the
individual random variables X,, i =1, 2, ..., i, it follows that, in the transform
domain, the pdf of Y is the n-fold convolution of the pdfs of the X,. Usually
the n-fold convolution is more difficult to perform than the characteristic
function method described above in determining the pdf of Y.

When working with n-dimensional random variabies, it is appropriate to
define and n-dimensional Fourier transform of the joint pdf. In particular, if
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X, i=1,2,...,n, are random variables with pdf p(x,, xa,...,x,), the
n-dimensional characteristic function is defined as

W(jvr, juz, - .- s )

= E[exp (JZ ”"X')]

1
=j .- J exp (j > v,-x,-)p(xl,xg, oo X)dxydxy - o - dx,  (2-1-81)
—x —= V=t
Of special interest is the two-dimensional characteristic function
'b(jvlsjUZ):f f ej(""'+“’x”p(x1,x2)dx1 de (2-1‘82)

We observe that the partial derivatives of ¢(jv,, ju;) with respect to v, and v,
can be used to generate the joint moments. For example, it is easy to show that

. azw(jvl!jUZ)

E(X X3)= av, 9u,
1

(2-1-83)

IJ|=I12=0

Higher-order moments are generated in a straightforward manner.

2-1-4 Some Useful Probability Distributions

FIGURE 2-1-6

In subsequent chapters, we shall encounter several different types of random
variables. In this section we list these frequently encountered random
variables, their pdfs, their cdfs, and their moments. We begin with the binomial
distribution, which is the distribution of a discrete random variable, and then
we present the distributions of several continuous random variables.

Binomial Distribution Let X be a discrete random variable that has two

possible values, say X =1 or X =0, with probabilities p and 1-p,
respectively. The pdf of X is shown in Fig. 2-1-6. Now, suppose that

Y=> X,
=1

where the X, i=1,2,...,n, are statistically independent and identically

The probability distribution function of X. 0 1
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distributed random variables with the pdf shown in Fig. 2-1-6. What is the
probability distribution function of Y?

To answer this question, we observe that the range of Y is the set of
integers from 0 to n. The probability that ¥ = 0 is simply the probability that
all the X; = 0. Since the X, are statistically independent,

P(Y =0)=(1—p)"
The probability that ¥ =1 is simply the probability that one X, =1 and the rest
of the X, = 0. Since this event can occur in n different ways,
P(Y=1)=np(1-p)y"’

To generalize, the probability that ¥ = k is the probability that k& of the X, are
equal to one and n — k are equal to zero. Since there are

(Z) E;(:(*Tn'_@_r (2-1-84)

different combinations that result in the event {Y = k}, it follows that
n
Py =k)= (7)ot (1= py (2:1-85)

where (Z) 1s the binomial coefficient. Consequently, the pdf of ¥ may be

expressed as

k

-3

&

P)= 2 P(Y=k) 8y —k)
>, ()Pt —py *50y -k) (2:1-86)

The cdf of ¥ is
F(y)=P(Y<y)
{»} n
=3 (3)pra-pr (21-87)

k=0 \Kk
where [y] denotes the largest integer m such that m <y. The cdf in (2-1-87)
characterizes a binomially distributed random variable.

The first two moments of Y are

E(Y)=np |
E(Y*)=np(1~p)+n’p? (2-1-88)
o?=np(l - p)

and the characteristic function is

g(jv)=(1—-p+pe*)y (2-1-89)
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Fx)

1k
b — ) g

a O h ' a 0 b
(a) {b)

The pdf and cdf of a uniformly distributed random variable.

Uniform Distribution The pdf and cdf of a uniformly distributed random
vanable X are shown in Fig. 2-1-7. The first two moments of X are

E(X)=\a +b)
E(X?) = Y(a® + b2 +ab) (2-1-90)
o?=(a—b)?

and the characteristic function is

(2-1-91)

Gaussian (Normal) Distribution The pdf of a gaussian or normally
distributed random variable is

1 s
P(x) = V’Z_n- Ue*(x —am W20t (2_1_92)

where m, is the mean and ¢ is the variance of the random variable. The cdf is

F = [ pluwdu
_ 1

Viro

1 2 (x mNV2er

— -~ PN
1R e " dt

X

. 2152
[ e (e —m )y 2er du
—-%

x—m,
=§+%erf( ) (2-1-93)
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Fix)

(a) h)

The pdf and cdf of a gaussian-distributed random variabie.

where erf (x) denotes the error function, defined as

2 M _.,
erf (x =-—f e " dt 2-1-94
= (2-194)

The pdf and cdf are illustrated in Fig. 2-1-8.
The cdf F(x) may also be expressed in terms of the complementary error
function. That is,

F(x)=1—4erfc (x\/—im_r)

where
erfc (x) = —Z—J'xe“':dt
Vi),

=1—erf(x) (2-1-95)

We note that erf (—x) = ~erf (x), erfc(—x) =2 - erfc (x), erf (0) = erfc (=) =

0, and erf(x) = erfc (0) = 1. For x >m,, the complementary error function is
proportional to the area under the tail of the gaussian pdf. For large values of
x, the complementary error function erfc(x) may be approximated by the
asymptotic series

e ™ 1 1:3 1-3-5
effC(x)=x\/J—r(1—2?+22x4——2?:'x"r+"') (2-1-96)
where the approximation error is less than the last term used.

The function that is frequently used for the area under the tail of the
gaussian pdf is denoted by Q(x) and defined as

i =
Q)= W_—j e ?dy, x=20 (2-1-97)
Ty

By comparing (2-1-95) with (2-1-97), we find

O(x) = berfe ( \/ii) (2-1-98)
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The characteristic function of a gaussian random variable with mean m, and
variance o is

- 1 LIS e
l’lI .U = e;m[ e—(l—m‘)vhu]dx
=] s
zejwn\ (bi2yetar” (2.1-99)

The central moments of a gai.sian random variable are

1-3---(k—D)o* (evenk)

0 (odd k) (2-1-100)

E[(X —m )=y, =1

and the ordinary moments may be expressed in terms of the central moments
as

E(X*)=3, (’:)mim-; (2-1-101)

=0

The sum of n statistically independent gaussian random variables is also a
gaussian random variable. To demonstrate this point, let

Y= X (2-1-102)
=]
where the X, i=1,2,...,n are statistically independent gaussian random

variables with means m, and variances o’. Using the result in (2-1-79), we find
that the characteristic function of ¥ is

gy (o) = ﬂ U ()

n r
— l—l ejum, —viel/2
t=1

- e_,‘um\*v"rft’fz (2“1-103)
where

"
m_v = z m,
=1

(2-1-104)

~ha

o, (23

-t
I
=

it

t

Therefore, Y is gaussian-distributed with mean m, and variance o2,

Chi-Square Distribution A chi-square-distributed random variable is re-
lated to a gaussian-distributed random variable in the sense that the former can
be viewed as a transformation of the latter. To be specific, let Y = X2, where X
is a gaussian random variable. Then Y has a chi-square distribution. We
distinguish between two types of chi-square distributions. The first is called a
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central chi-square distribution and is obtained when X has zero mean. The
second is called a non-central chi-square distribution, and is obtained when X
has a nonzero mean.

First we consider the central chi-square distribution. Let X be gaussian-
distributed with zero mean and variance 2. Since Y = X2, the result given in
(2-1-47) applies directly with 2 =1 dnd b = 0. Thus we obtain the pdf of Y in
the form

i at
py(y)=\/2_ﬂ_yae 2y (2-1-105)

The cdf of Y is
F{v) :f py(1) du
0

1 A -
= P 7&8 w20 Ay (2-1-106)
V o

which cannot be expressed in closed form. The characteristic function,
however, can be determined in closed form. It is

1

v)=—"T"""77"> 2-1-107
"p(]v) (1 _jzv‘:r;.}lf.. ( )
Now, suppose that the random variable Y is defined as
Y=> Xx? (2-1-108)
i=1
where the X, i=1,2,...,n, are statistically independent and identically

distributed gaussian random variables with zero mean and variance ¢ As a
consequence of the statistical independence of the X, the characteristic
function of Y is

gy(jv) = (TW (2-1-109)
The inverse transform of this characteristic function yields the pdf
- 1 w2~ - yi2e?
Pvly) sergmy? e ., ¥y=0 (2-1-110)
where I'(p) is the gamma function, defired as
T(p)‘=f PleTdn p>0
0
(2-1-111)

L(p)y=(p—1)!. p anidteger,p >0
FG)=Vz, T¢)=ivr

This pdf, which is a generalization of'(2-1-105). is called a chi-square {or
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The pdf of a chi-square-distributed random
variable for several degrees of freedom.

gamma) pdf with n degrees of freedom. It is illustrated in Fig. 2-1-9. The case
n = 2 yields the exponential distribution.
The first two moments of Y are

E(Y)=no?
E(Y?) = 2no* + n¢* (2-1-112)
al=2naot

The cdf of Y is

F(y)= f u’ e Ry, y =0 (2-1-113)

nznﬂr(ln)
This integral can be easily manipulated into the form of the incomplete gamma
function, which is tabulated by Pearson (1965). When n is even, the integral in
(2-1-113) can be expressed in closed form. Specifically, let m = in, where m is
an integer. Then, by repeated integration by parts, we obtain

Fiy)=1-eet S LI YN 2-1-114
v(y) e i\5g7 y= ( )
k=0

Let us now consider a noncentral chi-square distribution, which results from
squaring a gaussian random variable having a nonzero mean. If X is gaussian
with mean m, and variance ¢, the random variable Y = X? has the pdf

v
y;'") y=0  (2-1-115)

- 2
e iy +mi)2e COSh (
o

1
Pr(.v)=ﬁ

which is obtained by applying the result in (2-1-47) to the gaussian pdf given by
(2-1-92). The characteristic function corresponding to this pdf is

. 1 o
Uy (jv) = T jhaz).,ze’”'f”’“ j2ve’y (2-1-116)
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To generalize these results, let Y be the sum of squares of gaussian random
variables as defined by (2-1-108). The X, i =1,2,..., n, are assumed to be
statistically independent with means m,, i =1, 2,..., n, and identical variances
equal to . Then the characteristic function of Y, obtained from (2-1-116) by
applying the relation in (2-1-79), is

v T m}
i=]

Yy(jv) = (2-1-117)

1
(1 _ jsz_Z)nll exp

This characteristic function can be inverse-Fourier-transformed to yield the pdf

1 - j2va?

1 y (n—2y4 ey s
P =3(5) e (Vi) ye0 @lus)
where, by definition,
st=> m? (2-1-119)
i=1

and [, (x) is the ath-order modified Bessel function of the first kind, which may
be represented by the infinite series

L= 3 R

k=0k!1—‘(a’ +k+ 1),
The pdf given by (2-1-118) is called the noncentral chi-square pdf with n

degrees of freedom. The parameter s° is called the noncentrality parameter of
the distribution.

The cdf of the noncentral chi square with n degrees of freedom is

x=0 (2-1-120)

Y 1 i -2pe sruyel s )
Fy(y)=f0 5;(5—2) e In,z_l(\/a?;) du (2-1-121)

There is no closed-form expression. for this integral. However, when m = in is

an integer, the cdf can be expressed in terms of the generalized Marcum’s Q
function, which is defined as

E m—1
Qm(a] b) =L x(z) e—(x1+a2)alm_l(ax)dx

s s m=1 b k
=Q\(a, b) +e 2y (;) I.(ab) (2-1-122)
k=1

where
x X
Qi(a, by =g @2 ¥ (g) L(ab), b>a>0 (2-1-123)
k=0

If we change the variable of integration in (2-1-121) from u to x, where

xi=ulg?
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and let a® = 5s%/¢?, then it is easily shown that

v—
FO)=1-0a(%, %) (2-1-124)

Finally, we state that the first two moments of a noncentral chi-square-
distributed random variable are

E(Y)=no? +s?
E(Y?) =2no* + 40%?% + (no? + 5%)? (2-1-125)
ol =2ng* + 40%s?

Rayleigh Distribution The Rayleigh distribution is frequently used to
model the statistics of signals transmitted through radio channels such as
cellular radio. This distribution is closely related to the central chi-square
distribution. To illustrate this point, let Y = X%+ X2 where X, and X, are
zero-mean statistically independent gaussian random variables, each having a

variance o>, From the discussion above, it follows that ¥ is chi-square-
distributed with two degrees of freedom. Hence, the pdf of Y is

| S
Pyy)=57¢7"  y=0 (2-1-126)
Now, suppose we define a new random variable

R=VXI+Xi=VY (2-1-127)

Making a simple change of variable in the pdf of (2-1-126), we obtain the pdf
of R in the form

r 29,2
pa(r)=;3e"’2", r=0 (2-1-128)

This is the pdf of a Rayleigh-distributed random variable. The corresponding
cdf is

FR(")=L£53_MIQ02 du

=l-e "  rz=0 (2-1-129)
The moments of R are

E(R*)= (2a¥)**I(1 + }k) (2-1-130)
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and the variance is
ol =2 - ino? {2-1-131)

The characteristic functior: of the Rayleigh-distributed, random variable is

£3

yr(jv) = f L g=rinaigr gy (2-1-132)
o _

0

This integral may be expressed as

x

. T g . ' Lapg? .
WR(]U):j e " cosvrdr+j | —e " sinvrdr
n o T

= FQ,% - %U202)+j\/%_ﬂ vale w2 (2-1-133)

where | Fi{1, }; —a) is the confluent hypergeometric function, which is defined
as

v = T+ r(g)x*

IF‘I(G) B,I) - gﬂr(a)r(ﬁ +k)}(, ¥

B#0,—1,-2,... (2-1-134)

Beaulieu (1990) has shown that , Fi(1, §; —a) may be expressed as

x ak

Yia)=—eTt ) e -1-13
AL S ~a) = —e EO(Zk—l)k! (2-1-135)

As a generalization of the above expression, consider the random variable

R=, /ﬁ X2 (2-1-136)

where the X, i=1,2,...,n, are statistically independent, identically distrib-
uted zero mean gaussian random variables. The random variable R has a
generalized Rayleigh distribution. Clearly, ¥ = R? is chi-square-distributed
with n degrees of freedom. lie pdf is given by (2-1-110). A simple change in
variable in (2-1-110) yields the pdf of R in the form

-1

r Y22
pR(r)=m ra p=0 (2-1-137)
As a consequence of the functional relationship between the central
chi-square and the Rayleigh distributions, the corresponding cdfs are’ similar.
Thus, for any n, the cdf of R can be put in the form of the incomplete gamma
function. In the special case when n is even, i.e.. n = 2m, the cdf of R can be
expressed in the closed form

ﬁ,z,g_gzmvl 1 r?. k
Fr(r)=1-e EOE(E?)’ r=0 (2-1-138)
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Finally, we state that the kth moment of R'is

I(3(n +k))

E(R*) = (20})? ran)

k=0 (2-1-139)

which holds for any integer n.

Rice Distribution Just as the Rayleigh distribution is related to the central
chi-square distribution, the Rice distribution is related to the noncentral
chi-square distribution. To illustrate this relation, let ¥ = X + X3, where X,
and X, are statistically independent gaussian random variables with means m;,
i=1, 2, and common variance o. From the previous discussion, we know that
Y has a noncentral chi-square distribution with noncentrality parameter
s*=m?+ m% The pdf of ¥, obtained from (2-1-118) for n =2, is

1 2
pyiy) = Ege“”*-"’z" Io(\/};s;), y=0 (2-1-140)

Now, we define a new random variable R = VY. The pdf of R, obtained
from (2-1-140) by a simple change of variable, is

PR(") = ﬁ e*(r2+;l)f2a210(;_‘§)’ r=0 (2_1,14])

This is the pdf of a Ricean-distributed random variable. As will be shown in
Chapter 5, this pdf characterizes the statistics of the envelope of a signal
corrupted by additive narrowband gaussian noise. It is also used to model the
signal statistics of signals transmitted through some radio channels. The cdf of
R is easily obtained by specializing the results in (2-1-124) to the case m =1.
This yields

s r

Fr(r)=1- Q;(;, ;), r=0 (2-1-142)

where Q,(a, b) is defined by (2-1-123).

As a generalization of the expressions given above, let R be defined as in
(2-1-136) where the X, i=1,2,...,n are statistically independent gaussian
random variables with means m,, i=1,2,. .., n, and identical variances equal
to ¢’ The random variable R*=Y has a noncentral chi-square distribution
with n degrees of freedom and noncentrality parameter 52 given by (2-1-119).
Its pdf is given by (2-1-118). Hence the pdf of R is

rm‘Z (e sty20? rs
Pr(r) = g € : I,,,Qv,(;), r=0 (2-1-143)
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and the corresponding cdf is
Falr)=P(R<r)=P(VY<r)= P(Y </) = /(")  (2-1-144)

where Fy(r’) is given by (2-1-121). In the special case where m = in is an
integer, we have

B =1-0u(2.2). r=0 (2-1-145)

which follows from (2-1-124). Finally, we state that the kth moment of R is

E(Rk) = (262).&-'28 58124,

STG(n +k)Y) (n+k r_:i) k>0
I'Gny "'\ 2 2242/ .
(2-1-146)

where Fi{a, B;x) is the confluent hypergeometric function.

Nakagami m-Distribution Both the Rayleigh distribution and the Rice
distribution are frequently used to describe the statistical fluctuations of signals
received from a multipath fading channel. These channel models are con-
sidered in Chapter 14. Ancther " distribution that is frequently used to
characterize the statistics of signals transmitted through multipath fading
channels is the Nakagami m-distribution. The pdf for this distribution is given
by Nakagami (1960) as

2 (my” .
Pr(r) = F(m)(g) rim i TR (2-1-147)

where Q is defined as
Q= E{RY) (2-1-148)

and the parameter m is defined as the ratio of moments, called the fading
figure,

Q? *
m :W, mz=1 (2-1-149)

A normalized version of (2-1-147) may be obtained by defining another
random variable X = R/VQ (see Problem 2-15). The nth moment of R is

my_Llm + i) QN2
E(R) = I'(m) (m)

By setting m =1, we observe that (2-1-147) reduces to a Rayleigh pdf. For
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FIGURE 2-1-1¢ The m-distributed pdf, shown with 0
2 =1 mis the fading figure. 0 . [
{Miyagaki et al. 1978.) R

values of m in the range ; <m <1, we obtain pdfs that have larger tails than a
Rayleigh-distributed random variable. For values of m > 1, the tail of the pdf
decays faster than that of the Rayleigh. Figure 2-1-10 illustrates the pdfs for
different values of m.

Multivariate Gaussian Distribution Of the many multivariate or multi-
dimensional distributions that can be defined, the multivariate gaussian
distribution is the most important and the one most likely to be encountered in
practice. We shall briefly introduce this distribution and state its basic

properties.
Let us assume that X, i=1,2,...,n, are gaussian random variables with
means m;, i=1,2,...,n, variances ¢, i =1,2,...,n, and covariances au,,

Lj=1,2,...,n Clearly, pu;,=o?, i=12,...,n Let M denote the n Xn
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covariance matrix with elements {x,}, let X denote the n X 1 column vector of
random variables, and let m, denote the » X 1 column vector of mean values
m;, i=12,... ,n The joint pdf of the gaussian random wvariables X,
i=1.2,....n 15 defined as

1
(27[)'“2(det M)uz exp

p(xl-xZ!'-'-xu): [‘%(x—m.t),M"l(x_m.t)‘

(2-1-150)

where M ' denotes the inverse of M and x’ denotes the transpose of x.
The characteristic function corresponding to this n-dimensional joint pdf is

$(jv) = E(e"™™)

where v is an n-dimensional vector with elements v, i=1,2,...,n
Evaluation of this n-dimensional Fourier transform yields the result

Y(jv) = exp (jm,v — iv'Mv) (2-1-151)

An important special case of (2-1-150) is the bivariate or iwo-dimensional
gaussian pdf. The mean m, and the covariance matrix M for this case are

m,=['"‘], M=[‘ﬁ “”] (2-1-152)

™, Moz 0%
where the ‘joint central moment u,, is defined as
o2 =E[(X, —m)(X, - my))

It is convenient to define a normalized covariance

py =L, inj (2-1-153)
ﬂ’,’(fi

where p; satisfies the condition 0=<|p; <1 When dealing with the two-
dimensional case, it is customary to drop the subscripts on ., and p,,. Hence
the covariance matrix is expressed as

2
M=[ ik "“‘2"2] (2-1-154)
poo > o)
Its inverse is
| o2 -po, 0
M“=---——-[ z ! 2] 2-1-155
A=)l ~pore, o (@1:159)
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and detM = gio3(l — p?). Substitution for M™' into (2-1-150) yields the
desired bivariate gaussian pdf in the form

1

XX = —F—
T

X ex [__ 0'%(—‘1 - m,)2 —2pay0y(x —m;)(x; —my) + U'f(xz - mz)z]
P 2aiei(1 - p?)
(2-1-156)

We note that when p =0, the joint pdf p(x,, x,) in (2-1-156) factors into the
product p(x,)p(x;), where p(x;), i =1, 2, are the marginal pdfs. Since p is a
measure of the correlation between X, and X,, we have shown that when the
gaussian random variables X, and X, are uncorrelated, they are also
statistically independent. This is an important property of gaussian random
variables, which does not hold in general for other distributions. It extends to
n-dimensional gaussian random variables in a straightforward manner. That is,
if p; = 0 for i # j then the random variables X,, i =1, 2, ..., n are uncorrelated
and, hence, statistically independent.

Now, let us consider a linear transformation of n gaussian random variables
X, i=1,2,...,n, with mean vector m, and covariance matrix M. Let

Y =AX (2-1-157)

where A is a nonsingular matrix. As shown previously, the jacobian of this
transformation is J =1/det A. Since X = A"'Y, we may substitute for X in
{2-1-150) and, thus, we obtain the joint pdf of Y in the form

1
(27)"*(det M)'? det A

p(y) = exp[-}A ly-m )M (A y - m,)]

i
= Gy (det @) P Iy - m)'Q Ny ~ m.)] (2-1-158)

where the vector m, and the matrix Q are defined as

m, = Am,

Q= AMA (2-1-159)
Thus we have shown that a linear transformation of a set of jointly gaussian
random variables results in another set of jointly gaussian random variables.
Suppose that we wish to perform a linear transformation that results in n
statistically independent gaussian random variables. How should the matrix A
be selected? From our previous discussion, we know that the gaussian random
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variables are statistically independent if they are pairwise-uncorrelated, i.e., if
the covariance matrix Q is diagonal. Therefore, we must have

AMA'=D (2-1-160)

where I is a diagonal matrix. The matrix M is a covariance matrix; hence, it is
positive definite. One solution is to select A to be an orthogonal matrix
(A’ = A™") consisting of columns that are the eigenvectors of the covariance
matrix M. Then D is a diagonal matrix with diagonal eiements equal to the
eigenvalues of M.

Example 2-1-5§

Consider the bivariate gaussian pdf with covariance matrix

1 3
M=, ]
!
Let us determine the transformation A that will result in uncorrelated

random variables. First, we solve for the eigenvalues of M. The characteris-
tic equation is

det (M- AI)=0
(1-A¥-Lt=0
A=34

Next we determine the two eigenvectors. If a denotes an eigenvector, we
have

M-ADa=0

With A, = } and A, = 4, we obtain the eigenvectors
a = . a, =
Vi N VY

S

Therefore,

It is easily verified that A~! = A’ and that
AMA' =D

where the diagonal elements of D are § and .
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2-1-5 Upper Bounds on the Tail Probability
In evaluating the performance of a digital communication system, it is often
necessary to determine the area under the tail of the pdf. We refer to this area
as the tail probability. In this section, we present two upper bounds on the tail
probability. The first, obtained from the Chebyshev inequality, is rather loose.
The second, called the Chernoff bound, is much tighter.

Chebyshev Inequality Suppose that X is an arbitrary random variable with
finite mean m, and finite variance o2 For any positive number §,

2
P(lX—m,|_26)s% (2-1-161)

This relation is called the Chebyshev inequality. The proof of this bound is
relatively simple. We have

h

A= G-mppwds [ c-mypeo)dx

lx -~ |8

= sz p(x)dx = 8°P(IX —m, | = 6)
Lt ST ]

Thus the validity of the inequality is established.

It is apparent that the Chebyshev inequality is simply an upper bound on
the area under the tails of the pdf p(y), where Y =X -m,, ie., the area of
p(y) in the intervals (-, —§) and (8, =). Hence, the Chebyshev inequality
may be expressed as

2

1- [FY(S)—FY(—S)H%f (2-1-162)
or, equivalently, as
2
1~ [Fx(m, + 8) - Fy(m, — 8)] < —g—;‘ (2-1-163)

There is another way to view the Chebyshev bound. Working with the zero
mean random variable Y=X - m,, for convenience, suppose we define a
function g(Y) as

g(y)={1 (Y| = 8)

0 (¥I<$) -(2-1-164)

Since g(Y) is either O or 1 with probabilities P(Y|<8) and P(Y|=8),
respectively, its mean value is

Eg(V)] = P(lY|= &) (2-1-165)
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Upper bound
i)

g

A quadratic upper bound on g(Y) used in
obtaining the tail probability {Chebyshev 3 0
bound).

Now suppose that we upper-bound g(Y) by the quadratic (Y/§)?, ie.,
Y 2
g(Y)S(*s—) (2-1-166)

The graph of g(Y) and the upper bound are shown in Fig, 2-1-11. It follows
that

Y\ E(Y) o q?
eucni<e(§)- 20

Since E[g(Y)] is the tail probability, as seen from (2-1-165), we have obtained
the Chebyshev bound.

For many practical applications, the Chebyshev bound is extremely loose.
The reason for this may be attributed to the looseness of the quadratic (Y/5)
in overbounding g(Y). There are certainly many other functions that can be
used to overbound g(V). Below, we use an exponential bound to derive an
upper bound on the taif probability that is extremely tight,

Chernoff Bound The Chebyshev bound given above involves the area
under the two tails of the pdf. In some applications we are interested only in
the area under one tail, either in the interval (8, <) or in the interval {~=, 8).
In such a case we can obtain an extremely tight upper bound by overbounding
the function g(Y) by an exponential having a parameter that can be optimized
to yield as tight an upper bound as possible. Specifically, we consider the tail
probability in the interval (5, ). The function g(¥) is overbounded as

g(Y)seV® (2-1-167)
where g(Y} is now defined as
1 (Y=8)
Y) = -1-
g(Y) {0 (¥ <85) (2-1-168)
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FIGURE 2-1-12  An exponential upper bound on g(¥) used in 3 - - ¥
obtaining the tail probability (Chernoff bound). q

and v=0 is the parameter to be optimized. The graph of g(Y¥) and the
exponential upper bound are shown in Fig,. 2-1-12.
The expected value of g(Y) is

E[g(Y)] = P(Y = 8) < E(e"¥ %) (2-1-169)

This bound is valid for any v=0. The tightest upper bound is obtained by
selecting the value of v that minimizes E(e"*~#). A necessary condition for a
minimum is

%E(eﬂy-ﬁl} =0 (2-1-170)

But the order of differentiation and expectation can be interchanged, so that
d

d
WY -8)y v(Y-35)
av = £ e )

d—ve
= E[(Y - )9
= e [E(Ye"™) - 8E(e*")}=0

Therefore the value of v that gives the tightest upper bound is the solution to
the equation

E(Ye" )~ 8E(e*') =0 (2-1-171)

Let ¢ be the solution of (2-1-171). Then, from (2-1-169), the upper bound on
the one-sided tail probability is

P(Y =8)<e "°E(e’) (2-1-172)

This is the Chernoff bound for the upper tail probability for a discrete or a
continuous random variable having a zero mean.} This bound may be used to

show that Q(x) =< e *"?, where Q(x) is the area in the tail of the gaussian pdf
(see Problem 2-18).

1 Note that E(e*Y) for real v is not the characteristic function of ¥, It is called the mormen:
© generaling function of Y.
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PLY)

An upper bound on the lower tail probability can be obtained in a similar

manner, with the result that

P(Y<8)<e E(e™) (2-1-173)

where ¥ is the solution to (2-1-171) and 6 <0.

Example 2-1-6
Consider the (Laplace) pdf

p(y)=1e™™ (2-1-174)

which is illustrated in Fig. 2-1-13. Let us evaluate the upper tail probability
from the Chernoff bound and compare it with the true tail probability,
which is

PlY =58)= j levdy=4e® (2-1-175)

-]

To solve (2-1-171) for ¥, we must determine the moments E(Ye*") and
E(e”"). For the pdf in (2-1-174), we find that

2v
E(Ye™) =
e ) = G -1
1 (2-1-176)
E vy - -
S Ty
Substituting these moments into (2-1-171), we obtain the quadratic equation
v’8+2v—-58=0
which has the solutions
-1+£V1+8°
P (2-1-177)
5
Since ¥ must be positive, one of the two solutions is discarded. Thus
-1+V1i+8°
= (2-1-178)

)
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GY)

Finally, we evaluate the upper bound in (2-1-172) by eliminating E(e
using the second relation in (2-1-176) and by substituting for ? from
(2-1-178). The result is

82 ViTH
P(Y=8)< L 2-1-179
( ) 2(—1+V1+8’)e ( )

For 8 »» 1, (2-1-179) reduces to
8
P(Y = 8) -sie“’ (2-1-180)

We note that the Chernoff bound decreases exponentially as 8 increases.
Consequently, it approximates closely the exact tail probability given by
(2-1-175). In contrast, the Chebyshev upper bound for the upper tail
probability obtained by taking one-half of the probability in the two tails (due
to symmetry in the pdf) is

P(Yaa)s#

Hence, this bound is extremely loose.
When the random variable has a nonzero mean, the Chernoff bound can be
extended as we now demonstrate, If Y=X — m,, we have.
P(Y28)=P(X-m,28)=P(X=m, + 8)=P(X =8,)

where, by definition, 8,, =m, + 8. Since §>0, it follows that 5, >m,. Let
g{X') be defined as

_[1 (X=85,)
g(X)= {0 (X <85, (2-1-181)
and upper-bounded as
gX) s eX= (2-1-182)

From this point, the derivation parallels the steps contained in (2-1-169)-
(2-1-172). The final result is

P(X =§,,)se "E(e'X) (2-1-183)
where §,, >m, and ¢ is the solution to the equation
E(Xe™) - 6,E(e"*)=0 (2-1-184)

In a similar manner, we can obtain the Chernoff bound for the lower tail
probability. For § <0, we have

PX-m,<8)=P(X<m, +8)=P(X<5,)<E(e"* ™) (2-1-185)

From our previous development, it is apparent that (2-1-185) results in the
bound

P(X <8,)se " E(e) (2-1-186)
where §,, <m, and 9 is the solution to (2-1-184).
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2-1.6 Sums of Random Variables and the Centrai

Limit Theorem

We have previously considered the problem of determining the pdf of a sum of
n statistically independent random variables. In this section, we again consider
the sum of statistically independent random variables, but our approach is
different and is independent of the particular pdf of the random vanables in
the sum. To be specific, suppose that X, i=1,2,...,n, are statistically
independent and identically distributed random variables, each having a finite
mean m, and a finite variance o2. Let Y be defined as the normalized sum.
called the sample mean:

Y =

= |-

_§": X, (2-1-187)

First we shall determine upper bounds on the tail probabilities of Y and then
we shall prove a very important theorem regarding the pdf of Y in the limit as
n-> %,

The random variable Y defined in (2-1-187) is frequently encountered in
estimating the mean of a random variable X from a number of observations X,
i=1.2,...,n In other words, the X,, i=1,2,...,n, may be considered as
independent samples drawn from a distribution Fy(x), and Y is the estimate of
the mean m,.

The mean of Y is

l n
E(Yy=m,=~3 E(X)

=1

=m

X

The variance of Y is

o= E(Y’)~ml=E(Y?) - m?

|~

22 _21 E(X,X)-m?
i=] j=

3

0

l " 1 ” n
= 2. E(X% + = E. 21 E(X)E(X;) - m?
i= i=] j=
inj

i 1
=;(o§+m§)+;§n(n—1)mi*m§

When Y is viewed as an estimate for the mean m,, we note that its expected
value is equal to m, and its variance decreases inversely with the number of
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samples n. As n approaches infinity, the variance o’ approaches zero. An

estimate of a parameter (in this case the mean m,) that satisfies the conditions
that its expected value converges to the true value of the parameter and the
variance converges to zero as n — @ is said to be a consistent estimate.

The tail probability of the random variable Y can be upper-bounded by use
of the bounds presented in Section 2-1-5. The Chebyshev inequality applied to
Yis

2
a
P(Y ~m,|>8) <2

(2-1-188)
S xem o)<
n T n#?
In the limit as n— =, (2-1-188) becomes
lim P( - N ?8)=0 {(2-1-189)

Therefore, the probability that the estimate of the mean differs from the true
mean m, by more than 8 (8 > 0) approaches zero as n approaches infinity. This
statement is a form of the law of large numbers. Since the upper bound
converges to zero relatively slowly, i.e., inversely with n, the expression in
(2-1-188) is called the weak law of large numbers.

The Chernoff bound applied to the random variable Y yields an exponential
dependence of n, and thus provides a tighter upper bound on the one-sided tail
probability. Following the procedure developed in Section 2-1-5, we can
determine that the tail probability for y is

1 n
P(Y—m,za)=P(-2 X,-—mxaa)

L
=P(Z X, = ns,,) <E[cxp[ (2 )]} (2-1-190)
i=) =1
where 8,,=m,+8 and §>0. But the X, i=1,2,...,n, are statistically

independent and identically distributed. Hence,

{exp[ (Z X, — nd,, )]} =e"’""’"E[exp (v§ Xj)]

— e—vn&,, H E(ew\’f,)
i=1

= [e™V2=E(e" )] (2-1-191)

where X denotes any one of the X, The parameter v that yields the tightest
upper bound is obtained by differentiating (2-1-191) and setting the derivative
equal to zero. This yields the equation

E(Xe**)-8,E(e™*)=0 (2-1-192)



60 DIGITAL COMMUNICATIONS

Let the soiution of (2-1-192) be denoted by ¢. Then, the bound on the upper
tail probability is

1"(l >X.= 8,,,) <[e PE(E™), 8, >m, (2-1-193)
ni;—

In a similar manner, we find that the lower tail probability is upper-bounded as
P(Y<3,)<[e *™E(E™]". 8.<m, (2-1-194)
where ? is the solution to (2-1-192).

Example 2-1-7
Let X, i=1,2,...,n, be a set of statistically independent random variables
defined as
X = [ 1  with probability p <}

““L=1  with probability 1 - p
We wish to determine a tight upper bound on the probability that the sum
of the X, is greater than zero. Since p <1, we note that the sum will have a

negative value for the mean; hence we seek the upper tail probability. With
8,, =0 in (2-1-193), we have

P(Z X, 20) = [E(E™) (2-1-195)
i=1
where ¢ is the solution to the equation
E(Xe™)=0 (2-1-196)
Now
E(Xe**)= —(1~ple " +pe*'=0
Hence
1 —_
9=1n ( —p‘g) (2-1-197)
Furthermore,

E(e™)=pe’+(1-p)e”*
Therefore the bound in (2-1-195) becomes

p(g X ;0) <[pe+(1-ple 1"

<{4p(1-p)I™ (2-1-198)
We observe that the upper bound decays exponentially with n, as expected.
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In contrast, if the Chebyshev bound were evaluated, the tail probability
would decrease inversely with n

Central Limit Theorem We conclude this section with an exiremely useful
theorem concerning the cdf of a sum of random variables in the limit as the
number of terms in the sum approaches infinity. There are several versions of
this theorem. We shall prove the theorem for the case in which the ranjom
vaniables X,, i=1,2,...,n, being summed are statistically independent and
identically distributed, each having a finite mean m, and a finite variance o,
For convenience, we define the normalized random variabie

X,_
U,-=—'—T'—‘, i=1,2,...,n

Oy

Thus U, has a zero mean and unit variance. Now, let

«

1 n
=-— 2-1-199
\/;E ( )
Since each term in the sum has a zero mean and unit variance, it follows that
the normalized {by 1/Vn) random variable ¥ has zero mean and unit variance.
We wish to determine the cdf of Y in the limit as n — =.

The characteristic function of Y is

n

IR
Wrl(jv) = E(e™) = E| exp| — =
= 'lj i'fu,(%)
- [“"‘*(%ﬂ (2-1-200)

where U denotes any of the U, which are identically distributed. Now, let us
expand the characteristic function of U in a Taylor series. The expansion yields

. v _ 2 (IU)3
l[lu(j \/_) 1+] \/_E(U) E(U) e E(U)—... (21-201)
Since E(U) =0 and E(U?) =1, (2-1-201) simplifies to
. 2 1
wu(%) =1 —2”—"+ ~R(v, n) (2-1-202)

where R(v, n)/n denotes the remainder. We note that R(v, n) approaches
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zero as n — . Substitution of (2-1-202) into (2-1-200) yields the characteristic
function of ¥ in the form

v R{v, n)]"
v)={1l——+—= 2-1-203
¢vijv) [ n n ( )
Taking the natural logarithm of (2-1-203), we obtain
v’ R(u, n)]
ju) = -+t 2-1-204
In ¢ (ju)y=nln [l n . ( )

For small values of x, In (1 + x) can be expanded in the power series
In(1+x)=x—x+4x"—. ..
This expansion applied to (2-1-204) yields

. v’ R(v,n) l( v* R(v, n)
ln(l/y(]v)-n[ 2n+ n 2 2n+ n

)2 + ] (2-1-205)

Finally, when we take the limit as n— %, (2-1-205) reduces to
lim, .- in ¢y (jv) = ~4v?, or, equivalently,

lim g (ju) =e v (2-1-206)

But, this is just the characteristic function of a gaussian random variable with
zero mean and unit variance. Thus we have the important result that the sum
of statistically independent and identically distributed random variables with
finite mean and variance approaches a gaussian cdf as n — =, This result is
known as the central limii theorem.

Although we assumed that the random variables in the sum are identically
distributed, the assumption can be relaxed provided that additional restrictions
are imposed on the properties of the random variables. There is one variation
of the theorem, for example, in which the assumption of identically distributed
random variables is abandoned in favor of a condition on the third absolute
moment of the random variables in the sum. For a discussion of this and other
variations of the central limit theorem, the reader is referred to the book by
Cramer (1946).

22 STOCHASTIC PROCESSES

Many of the random phenomena that occur in nature are functions of time.
For example, the meteorological phenomena such as the random fluctuations
in air temperature and air pressure are functions of time. The thermal noise
voltages generated in the resistors of an electronic device such as a radio
receiver are also a function of time. Similarly, the signal at the output of a
source that generates information is characterized as a random signal that
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varies with time. An audio signal that is transmitted over a telephone channel
is an example of such a signal. All these are examples of stochastic (random)
processes. In our study of digital communications, we encounter stochastic
processes in the characterization and modeling of signals generated by
information sources, in the characterization of communication channels used to
transmit the information, in the characterization of noise generated in a
receiver, and in the design of the optimum receiver for processing the received
random signal.

At any given time instant, the value of a stochastic process, whether it is the
value of the noise voltage generated by a resistor or the amplitude of the signal
generated by an audio source, is a random variable. Thus, we may view a
stochastic process as a random variable indexed by the parameter ¢. We shall
denote such a process by X(r). In general, the parameter ¢ is continuous,
whereas X may be either continuous or discrete, depending on the characteris-
tics of the source that generates the stochastic process.

The noise voltage generated by a single resistor or a single information
source represents a single realization of the stochastic process. Hence, it is
called a sample function of the stochastic process. The set of all possible sample
functions, e.g., the set of all noise voltage waveforms generated by resistors,
constitute an ensemble of sample functions or, equivalently, the stochastic
process X (r). In general, the number of sample functions in the ensemble is
assumed to be extremely large; often it is infinite.

Having defined a stochastic process X(r) as an ensemble of sample
functions, we may consider the values of the process at any set of time.instants
4H>t>t;>...>1, where n is any positive integer. In general, the random
variables X, = X(;), i = 1,2,..., n, are characterized statistically by their joint
pdf pix,, x,, ..., x, ) Furthermore, all the probabilistic relations defined in
Section 2-1 for muitidimensional random variables carry over to the random
variables X,, i=1,2,...,n

Stationary Stochastic Processes As indicated above, the random variables
X,, i=1,2,...,n, obtained from the stochastic process X(r) for any set of
time instants t, >1, >4 >...>¢, and any » are characterized statistically by
the joint pdf p(x,, x,,...,x,. ). Let us consider another set of n random
variables X, ., =X(;+1¢), i=1,2,...,n, where ¢ is an arbitrary time shift,
These random variables are characterized by the joint pdf
PX,4r, Xepars o . ., X, +,). The joint pdfs of the random variables X, and X, .,
i=1,2,...,n may or may not be identical. When they are identical, i.e..
when

p(xhl xlz’ R | xl,) =p(xl|+l'l xr2+n ey xr_,-H) (2'2'1)

for all ¢t and all n, the stochastic process is said to be stationary in the strict
sense. That is, the statistics of a stationary stochastic process are invariant to
any translation of the time axis. On the other hand, when the joint pdfs are
different, the stochastic process is nonstationary.
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2-2-1 Statistical Averages

Just as we have defined statistical averages for random variables, we may
similarly define statistical averages for a stochastic process. Such averages are
also called ensemble averages. Let X(t) denote a random process and let
X, = X(1). The nth moment of the random variable X, is defined as

Exp = [ xipen) s, (22

In general, the value of the nth moment wili depend on the time instant 1, if the
pdf of X, depends on . When the process is stationary, however, p(x, ,,) =
p(x,) for all . Hence, the pdf is independent of time, and, as a consequence,
the nth moment is independent of time.

Next we consider the two random variables X, =X(), i=1,2. The
correlation between X, and X, is measured by the joint moment

E(X,X,)= f j x, X, plx,,, x,) dx, dx,, (2-2-3)
Since this joint moment depends on the time instants ¢, and t., it is denoted by
@(t,, 1;). The function ¢(¢,,1;) is called the autocorrelation function of the
stochastic process. When the process X (r) is stationary, the joint pdf of the pair
(X.,. X,,) is identical to the joint pdf of the pair (X, ., X,,.,) for any arbitrary ¢.
This implies that the autocorrelation function of X(r) does not depend on the
specific time instants ¢, and 1,, bul, instead, it depends on the time difference
1 ~ 1. Thus, for a slationary stochastic process, the joint moment in (2-2-3) is

E(X,X.,))= ¢, )=t - 1) = &(7) (2-2-4)
where T=1t, — ¢, or, equivalently, 1, =1, — 7. If we let 1, = t, + 7, we have
H(-1) = E(X1|X.r,+r) = E(Xr;X:;—r) = ¢(7)

Therefore, ¢(7) is an even function. We also note that ¢(0) = E (X?) denotes
the average power in the process X (1).

There exist nonstationary processes with the property that the mean value
of the process is independent of time (a constant) and where the autocorrela-
tion function satisfies the condition that ¢(z,, £,) = ¢(t, — 1,). Such a process is
called wide-sense stationary. Consequently, wide-sense stationarity is a less
stringent condition than strict-sense stationarity. When reference is made to a
stationary stochastic process in any subsequent discussion in which correlation
functions are involved, the less stringent condition (wide-sense stationarity) is
implied.

Related to the autocorrelation function is the autocovariance function of a
stochastic process, which is defined as

p(n, ) = E{X, ~ m()][X,, - m(t,)}}
= ¢, 1) —m(t))m(r;) (2-2-5}
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where m(t;) and m{t;) are the means of X and X,,, respectively. When the
process is stationary, the autocovariance function simplifies 10

pt), 1) = p(t, ~ )= u(r) = ¢(r) - m? (2-2-6)

where T=1t, — ;.

Higher-order joint moments of two or more random variables derived from
a stochastic process X (r) are defined in an obvious manner. With the possible
exception of the gaussian random process, for which higher-crder moments can
be expressed in terms of first and second moments, high-order moments are
encountered very infrequently in practice.

Averages for a Gaussian Process Suppose that X (1) is 2 gaussian random

process. Hence, at time instants t =¢;, i =1, 2, .. ., n, the random variables X,,
i=1,2,...,n, are jointly gaussian with mean values m(s,), i=1,2,...,n, and
autocovariances

k(t, 4)= E{(X, —m@))(X, —-m()), ij=12,....n  (2-2-7)

If we denote the n X n covariance matrix with elements u(1;, £;) by M and the
vector of mean values by m,, then the joint pdf of the random variables X,,
i=1,2,...,nis given by (2-1-150).

1f the gaussian process is stationary then m(t;) = m for all #; and u(t;, L) =
p(t; — 1;). We observe that the gaussian random process is completely specified
by the mean and autocovariance functions. Since the joint gaussian pdf
depends only on these two moments, it follows that if the gaussian process is
wide-sense siationary, it is also strict-sense stationary. Of course, the converse
is always true for any stochastic process.

Averages for Joint Stochastic Processes Let X (r) and Y(r) denote two
stochastic processes and let X, =X(1,), i=1,2,...,n, and Y.=Y({), j=
L,2,..., m, représent the random variables at times 1, >1,>t,>...>1, and
6, >1;>...>1t,, respectively. The two processes are characterized statisti-
cally by their joint pdf

P(X.-,» x!zl ] xr,,: y:;; y:is ey yr,’,,)

for any set of time instants t,,1,,...,1,, 1, 4,...,1, and for any positive
integer values of n and m.

The cross-correlation function of X(t) and Y(¢), denoted by ¢,,(1,,1,), is
defined as the joint moment

bt ~EX Y= [ | b, ydde,dy, (229

—x F—x

and the cross-covariance is

.uxy(tl ) IZ) = ¢x,v(r17 12) - mx(tl)my(‘2) (2'2'9)
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When the processes are jointly and individually stationary, we have
b1, )= ¢ (1, — 1) and (1), 1) = 1 (f, — ). In this case, we note that
Gol—T)= E(X,Y, . )= E(X, .Y,) = d,.(7) (2-2-10)
The stochastic processes X'(r} and Y(r) are said to be sraristically indepen-
dent if and only if
POy Xy e X Vi Vi e Ye ) =P Xy 1 P (Vi YY)

for all choices of 4, and 1/ and for all positive integers n and m. The processes
are said to be uncorrelated if

¢ (. 1) = E(XJEY,)
Hence,
o (. 8)=0
A complex-valued stochastic process Z(t) is defined as
Z() = X(0) +jY (1) (2-2-11}

where X(1) and Y(r) are stochastic processes. The joint pdf of the random
variables Z, = Z (r) i=1,2,..., is given by the joint pdf of the components
(X,.Y) i= 1,2,..., n Thus, the pdf that characterizes Z,, i =1,2,.. . ,n, is

Pl Xpy o0y oo Vi Yisr o+ <5 Ye.)

The complex-valued stochastic process Z(¢) is encountered in the represen-
tation of narrowband bandpass noise in terms of its equivalent lowpass
components. An imporiant characteristic of such a process is its autocorrela-
tion function. The function is defined as

¢zz(t1’ IZ) = %E(Z:.Z:
= %E[(Xt, +jY1|)(Xrg _.’}’JZ)]
= %{¢,u(t1, r2) + éyy(tl: IZ) +}.{¢;'x(t1s 12) - ¢A\;\'(I1 f ‘2)}} (2'2'12)

where ¢, (t,, ;) and ¢,,{s,, ¢;) are the autocorrelation functions of X {t) and
Y{(t), respectively, and qSyr(ri, ;) and ¢,,(¢;, 1) are the cross-correlation
functions. The factor of } in the definition of the autocorrelation function of a
complex-valued stochastic process is an arbitrary but mathematically con-
venient normalization factor, as we will demonstrate in our treatment of such
processes in Chapter 4.

When the processes X(t) and. Y(r) are jointly and individually stationary,
the autocorrelation function of- Z(r) becomes

& {8, 12) = ¢zz(’l ) = ¢..(1)
where 1, =, ~ 7. Also, the complex conjugate of (2-2-12) is
() =YE(Z8Z, ) =3E(Z}. . Z) = b.(— 1) (2:2-13)
Hence, ¢,.(t) = ¢X(—1).
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Now, suppose that Z(r) = X(r) +jY(t) and W()=U(1) +jV(r) are two
complex-valued stochastic processes. The cross-correlation function of Z(r)
and W(1) is defined as

¢:W(tlr t2) = %E(zn W?;)
=3E[(X,, +jY. )(U,— V)]
= %{¢.ru(‘lv IZ) + ¢yu(’l! 'rZ) + j[‘byn(tlv t2) - ¢xu(lln [2)]} (2’2_14)

When X(¢), Y(r), U(r), and V(r) are pairwise-stationary, the cross-correlation
functions in (2-2-14) become functions of the time difference 7=1, —r,.
Furthermore,

21) = IEZEW, ) = 3E(Z%, W) = ¢, (— 1) (2-2-15)

2-2-2 Power Density Spectrum

The frequency content of a signal is a very basic characteristic that distin-
guishes one signal from another. In general, a signal can be classified as having
either a finite (nonzero) average power (infinite energy) or finite energy. The
frequency content of a finite energy signal is obtained as the Fourier transform
of the corresponding time function. If the signal is periodic, its energy is
infinite and, consequently, its Fourier transform does not exist. The mechanism
for dealing with periodic signals is 1o represent them in a Fourier series. With
such a representation, the Fourier coefficients determine the distribution of
power at the various discrete frequency components.

A stationary stochastic process is an infinite energy signal, and, hence, its
Fourier transform does not exist. The spectral characteristic of a stochastic
signal is obtained by computing the Fourier transform of the autocorrelation
function. That is, the distribution of power with frequency is given by the
function

O(f) = jz S(r)e " dr (2-2-16)

The inverse Fourier transform relationship is

o) = [ (e ar (22-17)
We observe that
6= [ ®)ar
= E(IX) =0 (2-2-18)

Since ¢(0) represents the average power of the stochastic signal, which is the
area under ®(f), ®(f) is the distribution of power as a function of frequency.
Therefore, ®(f) is called the power density spectrum of the stochastic process.
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If the stochastic process is real, ¢(7) is real and even, and, hence ¥(f) is
real and even. On the other hand, if the process is complex, $(7) = ¢*(—7)
and, hence

anf)= | ermeridr= [ gu-oe e

-

x

=[ 6t ar= @) (2-2-19)

Therefore, ®(f) is real.

The definition of a power density spectrum can be extended to two jointly
stationary stochastic processes X(r) and Y{7), which have a cross-correlation
function ¢,,(17). The Fourier transform of ¢,,.(7), i.e..

¢ (f)= f o, (T)e " dr (2-2-20)

is called the cross-power density spectrum. 1f we conjugate both sides of
(2-2-20), we have

be‘,(f) = J ¢:_v(1')eﬂxfr dr =J qb:y(._r)e‘j?-xrr dr

- | tumerar= a0 (2-221)

This relation holds in general. However, if X (1) and Y(r) are real stochastic
processes,

LSy = f‘ G (1) dT = b, (- f) (2-2-22)

By combining the resuit in (2-2-21) with the result in (2-2-22), we find that the
cross-power dersity spectrum of two real processes satisfies the condition

q’_u(f) = (br_v( “—f) (2'2-23)

2-2-3 Response of a Linear Time-Invariant System to a
Random Input Signal

Consider a linear time-invariant system (filter) that is characterized by its
impulse response A{!) or, equivalently, by its frequency response H(f). where
h(t) and H(f) are a Fourier transform pair. Let x(r) be the input signal to the
system and let y(¢) denote the output signal. The output of the system may be
expressed in terms of the convolution integral as

y{)= L ) h(t(t — 1) dt (2-2-24)
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Now, suppose that x(t) is a sample function of a stationary stochastic process
X(1). Then, the output y(t) is a sample function of a stochastic process ¥Y(r).
We wish to determine the mean and autocorrelation functions of the output.

Since convolution is a linear operation performed on the input signal x(¢),
the expected value of the integral is equal to the integral of the expected value.
Thus, the mean value of Y(¢) is

m, = E[Y(1)] = r R(DE[X (1 - 1)) dr
=m, r h(7) dt = m H(0) (2:2-25)

where H(0) is the frequency response of the linear system at f = 0. Hence, the
mean value of the output process is a constant.
The autocorrelation function of the output is

¢yy(t1; tl) = %E(Kl Y:

- % Jl,., J:h(B)h"(a)E[X(;, - B)X*(t; — a)}dadp

= Lm J’;h(ﬁ)h"‘(a)tfrm(t1 -t +a—B)dadB

The last step indicates that the double integral is a function of the time
difference 1, — f,. In other words, if the input process is stationary, the output is
also stationary. Hence

o= [ m@h@ouicta-prdads  @229)

By evaluating the Fourier transform of both sides of (2-2-26), we obtain the
power density spectrum of the output process in the form

,,(f)= f . by (t)e ™ dr

[ [ Wem@yutc+a - pre azda dg
= &(f) H()P (@2.27)

Thus, we have the important result that the power density spectrum of the
output signal is the product of the power density spectrum of the input
multiplied by the magnitude squared of the frequency response of the system.
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When the autocorrelation function ¢,,(7) is desired, it is usually easier to
determine the power density spectrum @, (f) and then to compute the inverse
transform. Thus, we have

dn(D= [ @, (e ar

- [ eutyEr e as (2228)

We cbserve that the average power in the output signal is

@ = [ () HOIF df (2229)

Since @,,(0) = E(Y,]%), it follows that

[ epmrar=o

Suppose we let [H(f)? =1 for any arbitrarily small interval f,<f<f, and
H({f)= 0 outside this interval. Then,

2
P..(f)df =20

A

But this is possible if and only if &, .(f) =0 for all f.

Example 2-2-1

Suppose that the lowpass filter illustrated in Fig. 2-2-1 is excited by a
stochastic process x(r) having a power density spectrum

&, (f)=4N, forall f

A stochastic process having a flat power density spectrum is called white

AAN
Yy

x(t) 4 ¥

An example of a lowpass filter. L -
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FIGURE 2-2-2  The power density spectrum of the lowpass filter output when
the input is while noise. |

noise. Let us determine the power density spectrum of the output process,
The transfer function of the lowpass filter is

R 1
R+j2rfL 1+ 2nfL/R

H(f)=

and, hence,

SRS B .
[H(f ) = [+ QrLIR)T (2-2-30)

The power density spectrum of the output process is

}

@)= 3 1 + (2RL/RYf*

(2-2-31)

This power density spectrum is illustrated in Fig, 2-2-2. Its inverse Fourier
transform vields the autocorrelation function

(r) = f Al ———— T Yf
oy 21+ (2::L/R)2f2

RN,

—_— U, RIE B
TG (2-2-32)

The autocorrelation function ¢,,() is shown in Fig. 2-2-3. We observe that
the second moment of the process Y(f) is .. (0) = RN,/4L.

FIGURE 2-2-3  The autocorrelation function of the output of the lowpass filter
for a white-noise input,
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As a final exercise, we determine the cross-correlation function between
y(1) and x(r), where x(r) denotes the input and y(r) denotes the output of the
linear system. We have

$,1(01. 1) = YE(Y, X2) =% | heELX @ - alxe ()] da

= f | h{a)bu(t, —t: — a)da =, (1 — 1)

Hence, the stochastic processes X (f) and Y(f) are jointly stationary. With
t,—t;= 1, we have

b0 = | h(@)bulr - o) da (2233

Note that the integral in (2-2-33) is a convolution integral. Hence in the
frequency domain the relation (2-2-33) becomes

G, (f) = P A IH() (2-2-34)

We observe that if the input process is white noise, the cross correfation of the
input with the output of the system yields the impulse response h(t) 1o within a
scale factor.

2-2-4 Sampling Theorem for Band-Limited
Stochastic Processes

Recall that a deterministic signal s(¢) that has a Fourier transform S(f) is
calied band-limited if $(f) =0 for |f|> W, where W is the highest frequency
contained in s(z). Such a signal is uniquely represented by samples of s(r) taken
at a rate of f, =2W samples/s. The minimum rate f, =2W samples/s Is called
the Nyquist rate, Sampling below the Nyquist rate results in frequency aliasing.

The band-limited signal sampled at the Nyquist rate can be reconstructed
from its samples by use of the interpolation formula

sty = i s(_"_) " [MW(I_Z—W)] (2-2-35)

ne e V2W n
2nW(t~ﬁ)
2W

where {s(n/2W)} are the samples of s(r) taken at t = n/2W, n =0, £1, +2, . ...
Equivalently, s(r) can be reconstructed by passing the sampled signal through
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sir) Sample of s(r)

/

...........
.-

FMIGURE 2.2-4  Signal reconstruction based on ideal
interpolation. n-nT (n-0T nT i+ 4T

an ideal low-pass filter with impulse response A(r) = (sin 2nWe)/2aWr. Figure
2-2-4 illustrates the signal reconstruction process based on ideal interpolation.
A stationary stochastic process X{¢) is said to be band-limited if its power
density spectrum O(f) =0 for |f| > W. Since &(f) is the Fourier transform of
the autocorrelation function ¢(t}, it follows that ¢(r) can be represented as

. i ¢(__'£_ sin [ZﬂW(r-m)]

e \2W n
erW(z' ZW)

(2-2-36)

where {$(n/2W)} are samples of ¢(r) taken at t=n/2W, n =0, 1, £2,.. ..
Now, if X(¢) is a band-limited stationary stochastic process then X (1} can be
represented as

n

sin [ZEW(! - —-—-)]
2 n PAd
xn= > X(ﬁ . (2-2-37)
ZRW(I - EP_V)
where {X(n/2W)} are samples of X(t) taken at t =n/2W, n =0, %1, £2,....
This is the sampling representation for a stationary stochastic process. The
samples are random variables that are described statistically by appropriate
joint probability density functions. The signal representation in (2-2-37) is
easily established by showing that (Problem 2-17)

. _ a2
Exm- 3 X(—f—) sm[27:W(r 2w)] =0 (2238)

notw \IW n
w( .._.._)
W\ 2w

Hence, equality between the sampling representation and the stochastic
process X{t) holds in the sense that the mean sguare error is zero,



2-2-5

T4 DIGITAL COMMUNICATIONS

Discrete-Time Stochastic Signals and Systems

The characterization of continuous-time stochastic signals given above can be
easily carried over to discrete-time stochastic signals. Such signals are usually
obtained by uniformly sampling a continuous-time stochastic process.

A discrete-time stochastic process X (n) consists of an ensemble of sample
sequences {x(n)}. The statistical properties of X(n) are similar to the
characterization of X(r) with the restriction that n is now an integer (time)
variable, Hence, the mth moment of X(n) is defined as

E[X)] = J XIp(X,)dX, (2-2-39)
and the aurocorrelation sequence is
b0 0= EX D= [ [ Xoktpx, X)X, X, @2-40)

Similarly, the autocovariance sequence is
win, k)= (n, k) - E(X,)E(XT) (2-2-41)
For a stationary process, we have ¢(n, k)= ¢(n — k), fu{n. k)= p(n - k), and
pln~k)=¢(n~k)-|m\¢ (2-2-42)

where m, = E{X,,) is the mean value,

As in the case of continuous-time stochastic processes, a discrete-time
stationary process has infinite energy but a finite average power, which is
given as

E(IX, 1) = ¢(0) (2-2-43)

The power densitv spectrum for the discrete-time process is obtained by
computing the Fco.rier transform of ¢{n). Since ¢(n) is a discrete-time
sequence, the Fourier transform is defined as

()= 2 dln)e (2:2-44)
and the inverse transform relationship is
172
d(n)= D(f)e!>" df (2-2-45)
-1/2

We make the observation that the power density spectrum ®(f) is periodic
with a period f, = 1. In other words, ®{(f + k) =®(f) fork = +1, +2,.... This
is a characteristic of the Fourier transform of any discrete-time sequence such
as ¢(n).

Finally, let us consider the response of a discrete-time, linear time-invariant
system to a stationary stochastic input signal. The system is characterized in
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the time domain by its unit sample response #(n) and in the frequency domain
by the frequency response H(f), where

Hf)= S h(n)e 2™ (2-2-46)

The response of the system to the stationary stochastic input signal X(n) is
given by the convolution sum

vin)= 2 hk)x(n—k) (2-2-47)
[
The mean value of the output of the system is

m = Ely(ml= S hK)E[x(n - k)]

k-~—=

. (2-2-48)
m,=m, > h(k)=mH(0)
A - x
where H(0) is the zero frequency (dc) gain of the system.
The autocorrelation sequence for the output process is
b, (k) = E[y*(n)y(n + k)]
=12 2 BMORDERn - idxtn +k - )
- ®j= x

= 2 2 W Dh(Dbulk —j+i) (2-2-49)

CE -

This is the general form for the autocorrelation sequence of the system output
in terms of the autocorrelation of the system input and the unit sample
response of the system. By taking the Fourier transform of ¢..(k) and
substituting the relation in (2-2-49), we obtain the corresponding frequency
domain relationship

S (f) =P (N IH(f)F (2-2-50)

which is identical to (2-2-27) except that in (2-2-50) the power density spectra
¢..(f) and ®, . (f) and the frequency response H(f) are periodic functions of
frequency with period f, = 1.

2-2-6 Cyclostationary Processes

In dealing with signals that carry digital information we encounter stochastic
processes that have statistical averages that are periodic. To be specific, let us
consider a stochastic process of the form

®

X@t)y= D a.g(t-nT) (2-2-51)

n=-x
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where {a,} is a (discrete-time) sequence of random variables with mean
m, = E(a,) for all n and autocorrelation sequence ¢,,(k)=1E(a}a,.,). The
signal g(t) is deterministic. The stochastic process X (t) represents the signal for
several different types of linear modulation techniques which are introduced in
Chapter 4, The sequence {a,} represents the digital information sequence (of
symbols) that is transmitted over the communication channel and /T
represents the rate of transmission of the information symbols.

Let us determine the mean and autocorrelation function of X (¢). First, the-
mean value is

x

E[X(O)]= 2 E(a,)g(t-nT)

n=-—-=

—m, S gt -nT) (2-552)

n=—%

We observe that the mean is time-varying. In fact, it is periodic with period T.
The autocorrelation function of X {f) is

Gt + T, )= 3E[X( + T)X*(1)]

=13 S E(ara,)g*(t—nT)g(t+ 1 —mT)

x

>

n=-xm

Nk

Do —n)g*(t —nT)g(t+ T—mT) (2-2-33)

Again, we observe that
b+ T+kT 1+ kT)=d (t+1,1) (2-2-54)

for k=11, +2,.... Hence, the autocorrelation function of X(r) is also
pericdic with period T.

Such a stochastic process is called cyclostationary or periodically stationary.
Since the autocorrelation function depends on both the variables ¢ and 7, its
frequency domain representation requires the use of a two-dimensional
Fourier transform. .

Since it is highly desirable to characterize such signals by their power
density spectrum, an alternative approach is to compute the time-average
autocorrelation function over a single period, defined as

T

b=z [ s.urina (2:2-55)

-T2

Thus, we eliminate the time dependence by dealing with the average
autocorrefation function. Now, the fourier transform of ¢, () yields the
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average power density spectrum of the cyclostationary stochastic process. This
approach allows us to simply characterize cyclostationary processes in the
frequency domain in terms of the power spectrum. That is, the power density
spectrum is

SN[ Bt P ar (2:2:56)

2-3 BIBLIOGRAPHICAL NOTES AND REFERENCES

PROBLEMS

In this chapter we have provided a review of basic concepts and definitions in
the theory of probability and stochastic processes. As stated in the opening
paragraph, this theory is an important mathematical tool in the statistical
modeling of information sources, communication channels, and in the design of
digital communication systems. Of particular importance in the evaluation of
communication system performance is the Chernoff bound. This bound is
frequently used in bounding the probability of error of digital communication
systems that employ coding in the transmission of information. Our coverage
also highlighted a number of probability distributions and their properties,
which are frequently encountered in the design of digital communication
systems.

The texts by Davenport and Root (1958), Davenport (1970), Papoulis
(1984) Pebbles (1987), Helstrom (1991) and Leon-Garcia (1994) provide
engineering-oriented treatments of probability and stochastic processes. A
more mathematical treatment of probability theory may be found in the text by
Lotve (1955). Finally, we cite the book by Miller (1964), which treats
multidimensional gaussian distributions.

3,4 and a
3. The joint

»

2-1 One experiment has four mutually exclusive outcomes A, i =12
second experiment has three mutually exclusive cutcomes B.j=12.
probabilities P(A,. B,) are

P(A,B)=010, P(A, B,)=0.08, P(A,. B)=013
P(A., B\) =005, P(A; B;)=0.03, P(A,, B,)=0.09
P(A,, B)) =005, P(A, B;)=012, P(A.. B,) =014
P(A,,B)=011, P(A,B,)=004, P(A,, B) =006

Determine the probabilities P(A,), i = 1, 2, 3, 4, and P(B),j=1223

2-2 The random variables X,, i=1,2,. ., n, have the joint pdf pix,, xs,... ,x,)
Prove that

ple,. Xz xq, ..., x,)

=pix, |_r,.,,, o x)plx, |x,. 2 X)) 'P(v"ﬂ'-"z.xl)P(Iz |I|)P(X|)
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2-3 The pdf of a random variable X is p(x). A random variable Y is defined as
Y=aX+b

where @ <{. Determine the pdf of Y in terms of the pdf of X.
2-4 Suppose that X is a gaussian random variable with zero mean and unit variance.
Let

Y=aX'+b, a>0

Determine and plot the pdf of Y.
2-5 3 Let X, and X, be statistically independent zero-mean gaussian random variables
with identical variance. Show that a (rotational) transformation of the form

Y +j¥, = (X, +jX)e?

results in another pair (Y,, ¥) of gaussian random variables that have the same
joint pdf as the pair (X,, X)).
Y, X
r = A r
Lv]-Alx]

b Note that
where A is a 2X2 matrix. As a generalization of the two-dimensional
transformation of the gaussian random vanables considered in (a), what
property must the linear transformation A satisfy if the pdfs for X and Y. where
Y=AX, X=(X,X,---X,)and Y= (V,Y, - -Y,), are identical?
2-6 The random variable Y is defined as

Y= X
i=1
where the X, i = 1,2,..., n, are statistically independent random vanables with

X = {1 with probability p
" 10 with probability 1 —p

a Determine the characteristic function of Y.
b From the characteristic function, determine the moments £(Y) and E(Y?).

2-7 The four random variables X,, X,, X, X, are zero-mean jointly gaussian
random variables with covariance u,=E(X,X,) and characteristic function
vy, Juo, jus, ju,). Show that

E(X\ X2X:X0) = papbna + pospton + pogjioy

2-8 From the characleristic functions for the central chi-square and noncentral
chi-square random variables given by (2-1-109) and (2-1-117), respectively,
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29

2-10

2-11

2-12

2-13
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determine the corresponding first and second moments given by (2-1-112) and
(2-1-125)

The pdf of a Cauchy distributed random variable X is
plx)= ,"/x,, —x<x<x
1 +a

8 Determine the mean and variance of X.
b Determine the gharacteristic function of X.

The random variable Y is defined as
1 "
Y=-> X
ne
where X,, i=12,..., n, are statisiically independent and identically distributed

random variables each of which has the Cauchy pdf given in Problem 2-9

a Determine the characteristic function of Y.

b Determine the pdf of Y.

¢ Consider the pdf of Y in the limit as n — x. Does the central limit hold? Explain
your answer.

Assume that random processes x(1) and v (1) are individually and jointly stationary.

a Determine the autocorrelation function of z{1) = x(f) + y{r).

b Determine the autocorrelation function of z(r) when x(r) and v(r} are
uncorrelated. ‘

¢ Determine the autocorrelation function of z(r) when x(1) and v{!) are
uncorrelated and have zero means.

The autocorrelation function of a stochastic process X{r) is

é..(1) = IN,8(1)
Such a process is called white noise. Suppose x(r) is the input to an ideal bandpass

filter having the frequency response characteristic shown in Fig. P2-12. Determinc
the total noise power at the output of the filter.

The covariance matrix of three random variables X,, X, and X L s
My ] My
0 u 0O
Mz 0
LHU 1
[— B —nf (S J——
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X C T Yin)
FIGURE P2-16

The linear transformation Y = AX is made where

{
A=10
|

I )
-0 @

Determine the covariance matrix of Y.
2-14 Let X{¢) be a stationary real normal process with zero mean. Lel a new process
Y(t) be defined by

Y(1) = X*(r)

Determine the autocorreiation function of ¥{r) in terms of the autocorrelation
function of X(t). Hini: Use the result on gaussian variables derived in Problem
2.

2-15 For the Nakagami pdf, given by {2-1-147). define the normalized random variable
X = R/VQ. Determine the pdf of X.

2-16 The input X(¢) in the circuit shown in Fig. P2-16 is a stochastic process with
E[X(0)]}=0and ¢.(7) = o?8(1), i.e., X(¢) is a white noise process.
a Determine the spectral density ®,.(f).
b Determine ¢,,(r) and E[Y¥?))

2-17 Demonstrate the validity of {2-2-38).

2-18 Use the Chernoff bound to show that Q(x)<e *™ where Q(x) is defined by
(2-1-97).

2-19 Determine the mean, the autocorrelation sequence, and the power density
spectrum of the output of a system with unit sample response

I (n=0)
~2 (n=1)
A=Y | (n=2)

0 (otherwise)

when the input x{n} is a white-naoise process with variance o’.

2-20 The autocorrelation sequence of a discrete-time stochastic process is ¢{k) = (5)*.
Determine its power density spectrum,

2-21 A discrete-time stochastic process X(n)= X (nT)} is obtained by periodic sampiing
of a continuous-time zero-mean stationary process X () where T is the sampling
interval, i.e., f, =1/T is the sampling rate.

a Determine the relationship between the autocorrelation function of X (1) and
the autocorrelation sequence of X'(n).

b Express the power density spectrum of X{n) in terms of the power density
spectrum of the process X(r).
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¢ Determine the conditions under which the power density spectrum of X(n) is
equal to the power density spectrum of X(1).
2-22 Consider a band-limited zero-mean stationary stochastic X (¢) with power density
spectrum

to(Ifi=W)
@) =]
D= wn>w
X (ri is sampled at a rate f, = 1/7 to yield a discrete-time process X (n) = X{(nT).
a Determine the expression for the autocorrelation sequence of X (n).
b Determine the minimum value of T that results in a white (specirally fat)
sequence.

¢ Repeat (b) if the power density spectrum of X(t) is

1=1fUW (ifi=sW)

*N= {0 (f1>W)

2-13 Show that the functions

sin [uw(: - 5’;‘;{)]

L) = . k=0,%1,£2, .
wa(: - —k—)
2w
are orthogonal over the intervat [—=, x], i.e.,
- (U2W (k=j)
| sogoa={™ E20

Therefore, the sampling theorem reconstruction formula may be viewed as a series

expansion of the band-iimited signal s(r), where the weights are samples of s(r)

and the {£,(1)} are the set of orthogonal functions used in the series expansion.
2-24 The noise equivalent bandwidth of a system is defined as

1 B 2
b=z | Wwar

where G =max|H(f)’ Using this definition, determine the noise equivalent
bandwidth of the ideal bandpass filter shown in Fig. P2-12 and the lowpass system
shown in Fig. P2-16.





