2

CHAPTER 1

- 1.1 Base-10: 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Octal: 20 21 22 23 24 25 26 27 30 31 32 33 34 35 36 37 40 Hex: 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 Base-13 A B C 10 11 12 13 14 15 16 17 18 19 23 24 25 26
- **1.2** (a) 32,768 (b) 67,108,864 (c) 6,871,947,674
- 1.3 $(4310)_5 = 4 * 5^3 + 3 * 5^2 + 1 * 5^1 = 580_{10}$ $(198)_{12} = 1 * 12^2 + 9 * 12^1 + 8 * 12^0 = 260_{10}$ $(735)_8 = 7 * 8^2 + 3 * 8^1 + 5 * 8^0 = 477_{10}$ $(525)_6 = 5 * 6^2 + 2 * 6^1 + 5 * 6^0 = 197_{10}$
- 1.4 14-bit binary: $11_{-1111}_{-1111}_{-1111}_{-1111}$ Decimal: $2^{14}_{-1} = 16,383_{10}$ Hexadecimal: $3FFF_{16}$
- 1.5 Let b = base
 - (a) 14/2 = (b+4)/2 = 5, so b = 6
 - **(b)** 54/4 = (5*b+4)/4 = b+3, so 5*b=52-4, and b=8
 - (c) (2*b+4)+(b+7)=4b, so b=11
- 1.6 $(x-3)(x-6) = x^2 (6+3)x + 6*3 = x^2 11x + 22$

Therefore: 6 + 3 = b + 1m so b = 8Also, $6*3 = (18)_{10} = (22)_8$

- 1.7 $68BE = 0110 \ 1000 \ 1011 \ 1110 = 110 \ 100 \ 010 \ 111 \ 110 = (64276)_8$
- **1.8** (a) Results of repeated division by 2 (quotients are followed by remainders):

$$431_{10} = 215(1);$$
 $107(1);$ $53(1);$ $26(1);$ $13(0);$ $6(1)$ $3(0)$ $1(1)$ Answer: $1111_{10} = FA_{16}$

(b) Results of repeated division by 16:

$$431_{10} = 26(15);$$
 1(10) (Faster)
Answer: FA = 1111_1010

- 1.9 (a) $10110.0101_2 = 16 + 4 + 2 + .25 + .0625 = 22.3125$
 - **(b)** $16.5_{16} = 16 + 6 + 5*(.0615) = 22.3125$
 - (c) $26.24_8 = 2 * 8 + 6 + 2/8 + 4/64 = 22.3125$

(d) FAFA.B₁₆ =
$$15*16^3 + 10*16^2 + 15*16 + 10 + 11/16 = 64,250.6875$$

(e)
$$1010.1010_2 = 8 + 2 + .5 + .125 = 10.625$$

1.10 (a)
$$1.10010_2 = 0001.1001_2 = 1.9_{16} = 1 + 9/16 = 1.563_{10}$$

(b)
$$110.010_2 = 0110.0100_2 = 6.4_{16} = 6 + 4/16 = 6.25_{10}$$

Reason: 110.010_2 is the same as 1.10010_2 shifted to the left by two places.

The quotient is carried to two decimal places, giving 1011.11 Checking: $111011_2 / 101_2 = 59_{10} / 5_{10} \cong 1011.11_2 = 58.75_{10}$

1.12 (a) 10000 and 110111

$$\begin{array}{ccc}
1011 & & & & & & \\
 & +101 & & & & & \\
\hline
10000 = 16_{10} & & & & & \\
 & & & & & \\
\hline
1011 & & & & \\
 & & & & \\
\hline
1011 & & & \\
\hline
110111 = 55_{10}
\end{array}$$

(b) 62_h and 958_h

1.13 (a) Convert 27.315 to binary:

	Integer		Remainder	Coefficient
	Quotient			
27/2 =	13	+	1/2	$a_0 = 1$
13/2	6	+	1/2	$a_1 = 1$
6/2	3	+	0	$a_2 = 0$
3/2	1	+	1/2	$a_3 = 1$
$\frac{1}{2}$	0	+	1/2	$a_4 = 1$

```
27_{10} = 11011_2
                Integer
                                     Fraction
                                                 Coefficient
                                                 a_{-1} = 0
                    0
                                     .630
.315 \times 2 =
                                                 a_{-2} = 1
.630 x 2
                                    .26
.26 x 2
                    0
                                     .52
                                                 a_{-3} = 0
.52 x 2
                                     .04
                                                 a_{-4} = 1
```

 $.315_{10} \cong .0101_2 = .25 + .0625 = .3125$

 $27.315 \cong 11011.0101_2$

(b) $2/3 \cong .66666666667$

	Integer		Fraction	Coefficient
.6666_6666_67 x 2	= 1	+	.3333_3333_34	$a_{-1} = 1$
.333333334 x 2	= 0	+	.666666668	$a_{-2} = 0$
.6666666668 x 2	= 1	+	.3333333336	$a_{-3} = 1$
.3333333336 x 2	= 0	+	.6666666672	$a_{-4} = 0$
.6666666672 x 2	= 1	+	.3333333344	$a_{-5} = 1$
.3333333344 x 2	= 0	+	.666666688	$a_{-6} = 0$
.6666666688 x 2	= 1	+	.3333333376	$a_{-7} = 1$
.3333333376 x 2	= 0	+	.6666666752	$a_{-8} = 0$

 $.666666667_{10} \cong .10101010_2 = .5 + .125 + .0313 + ..0078 = .6641_{10}$

 $.101010102 = .1010_{-}1010_{2} = .AA_{16} = 10/16 + 10/256 = .6641_{10}$ (Same as (b)).

```
1.14 (a) 1000_0000 (b) 0000_0000 (c) 1101_1010 

1s comp: 0111_1111 1s comp: 1111_1111 1s comp: 0010_0101 

2s comp: 1000_0000 2s comp: 0010_0110
```

(d) 0111_0110 (e) 1000_0101 (f) 1111_1111 1s comp: 1000_1001 1s comp: 0111_1010 1s comp: 0000_0000 2s comp: 1000_1010 2s comp: 0111_1011 2s comp: 0000_0001

1.15 (a) 52,784,630 (b) 63,325,600 9s comp: 47,215,369 9s comp: 36,674,399 10s comp: 47,215,370 10s comp: 36,674,400

> (c) 25,000,000 (d) 00,000,000 9s comp: 74,999,999 9s comp: 99,999,999 10s comp: 75,000,000 10s comp: 00,000,000

1.16 B2FA B2FA: 1011_0010_1111_1010 15s comp: 4D05 1s comp: 0100_1101_0000_0101 16s comp: 4D06 2s comp: 0100_1101_0000_0110 = 4D06

1.17 (a) $3409 \rightarrow 03409 \rightarrow 96590 \text{ (9s comp)} \rightarrow 96591 \text{ (10s comp)}$ $\mathbf{0}6428 - 03409 = 06428 + 96591 = 03019$

> (b) $1800 \rightarrow 01800 \rightarrow 98199 \text{ (9s comp)} \rightarrow 98200 \text{ (10 comp)}$ 125 - 1800 = 00125 + 98200 = 98325 (negative)Magnitude: 1675

Result: 125 - 1800 = 1675

5

```
(c) 6152 → 06152 → 93847 (9s comp) → 93848 (10s comp)

2043 - 6152 = 02043 + 93848 = 95891 (Negative)

Magnitude: 4109

Result: 2043 - 6152 = -4109
```

(d) $745 \rightarrow 00745 \rightarrow 99254$ (9s comp) $\rightarrow 99255$ (10s comp) 1631 - 745 = 01631 + 99255 = 0886 (Positive) Result: 1631 - 745 = 886

1.18 Note: Consider sign extension with 2s complement arithmetic.

```
10001
(a)
                             (b)
                                           100011
   1s comp: 01110
                                 1s comp: 1011100 with sign extension
   2s comp: 01111
                                 2s comp: 1011101
                                          0100010
             10011
   Diff:
             00010
                                                    sign bit indicates that the result is negative
                                          1111111
                                          0000001
                                                    2s complement
                                          -000001 result
(c)
              101000
                             (d)
                                             10101
   1s comp: 1010111
                                 1s comp: 1101010 with sign extension
   2s comp: 1011000
                                 2s comp: 1101011
              001001
                                           110000
   Diff:
             1100001 (negative)
                                          0011011 sign bit indicates that the result is positive
                                           Check: 48 - 21 = 27
             0011111 (2s comp)
```

- **1.19** $+9286 \rightarrow 009286; +801 \rightarrow 000801; -9286 \rightarrow 990714; -801 \rightarrow 999199$
 - (a) (+9286) + (801) = 009286 + 000801 = 010087

-011111 (diff is -31)

- **(b)** (+9286) + (-801) = 009286 + 999199 = 008485
- (c) (-9286) + (+801) = 990714 + 000801 = 991515
- (d) (-9286) + (-801) = 990714 + 999199 = 989913
- 1.20 $+49 \rightarrow 0_{110001}$ (Needs leading zero indicate + value); $+29 \rightarrow 0_{011101}$ (Leading 0 indicates + value) $-49 \rightarrow 1_{001111}$; $-29 \rightarrow 1_{00011}$
 - (a) $(+29) + (-49) = 0_011101 + 1_001111 = 1_101100$ (1 indicates negative value.) Magnitude = 0_010100 ; Result (+29) + (-49) = -20
 - (b) $(-29) + (+49) = 1_100011 + 0_110001 = 0_010100$ (0 indicates positive value) (-29) + (+49) = +20
 - (c) Must increase word size by 1 (sign extension) to accommodate overflow of values: (-29) + (-49) = 11_100011 + 11_001111 = 10_110010 (1 indicates negative result) Magnitude: 1_001110 = 78₁₀ Result: (-29) + (-49) = -78

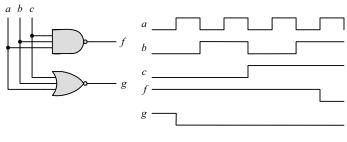
```
6
```

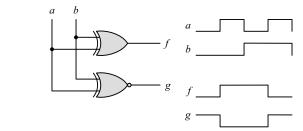
```
1.21
          +9742 \rightarrow 009742 \rightarrow 990257 \text{ (9's comp)} \rightarrow 990258 \text{ (10s) comp}
          +641 \rightarrow 000641 \rightarrow 999358 \text{ (9's comp)} \rightarrow 999359 \text{ (10s) comp}
          (a) (+9742) + (+641) \rightarrow 010383
          (b) (+9742) + (-641) \rightarrow 009742 + 999359 = 009102
              Result: (+9742) + (-641) = 9102
          (c) -9742) + (+641) = 990258 + 000641 = 990899 (negative)
              Magnitude: 009101
              Result: (-9742) + (641) = -9101
          (d) (-9742) + (-641) = 990258 + 999359 = 989617 (Negative)
              Magnitude: 10383
              Result: (-9742) + (-641) = -10383
1.22
          8,723
          BCD:
                     1000 0111 0010 0011
                     0\_011\_1000\_011\_0111\_011\_0010\_011\_0001
          ASCII:
1.23
                     1000 0100 0010 (842)
                     0101
                            0011
                                    0111 (+537)
                     1101
                                    1001
                            0111
                     0110
               0001 0011 0111 0101 (1,379)
1.24
                                            (b)
          (a)
           6 3 1 1
                      Decimal
                                               6 4 2 1
                                                           Decimal
           0 0 0 0
                                               0 0 0 0
                                                           0
                      0
           0 0 0 1
                                               0 0 0 1
                                                           1
                      1
           0 0 1 0
                      2
                                               0 0 1 0
                                                           2
           0 1 0 0
                                               0 0 1 1
                                                           3
           0 1 1 0
                      4 (or 0101)
                                               0 1 0 0
                                                           4
           0 1 1 1
                      5
                                               0 1 0 1
                                                           5
           1 0 0 0
                                               1 0 0 0
                                                           6 (or 0110)
           1 0 1 0
                      7 (or 1001)
                                               1 0 0 1
                                                           7
           1 0 1 1
                                               1 0 1 0
                                                           8
           1 1 0 0
                      9
                                               1 0 1 1
1.25
                 (a) 5,137_{10}
                               BCD:
                                          0101 0011 0111
                               Excess-3: 1000 0100 0110 1010
                 (b)
                               2421:
                                          1011 0001 0011 0111
                 (c)
                 (d)
                               6311:
                                          0111\_0001\_0100\_1001
1.26
          5,137 9s Comp:
                               4,862
                 2421 code:
                               0100 1110 1100 1000
```

1s comp:

1011 0001 0011 0111 same as (c) in 1.25

- For a deck with 52 cards, we need 6 bits (32 < 52 < 64). Let the msb's select the suit (e.g., diamonds, hearts, clubs, spades are encoded respectively as 00, 01, 10, and 11. The remaining four bits select the "number" of the card. Example: 0001 (ace) through 1011 (9), plus 101 through 1100 (jack, queen, king). This a jack of spades might be coded as 11_1010. (Note: only 52 out of 64 patterns are used.)
- **1.28** G (dot) (space) B o o l e 01000111_11101111_01101000_01101110_00100000_11000100_11101111_11100101
- 1.29 Bill Gates
- **1.30** 73 F4 E5 76 E5 4A EF 62 73


```
73:
      0 111 0011 s
F4:
      1_111_0100 t
      1 110 0101 e
E5:
76:
     0 111 0110 v
E5:
      1 110 0101 e
      0_100_1010 j
4A:
EF:
      1 110 1111 o
62:
      0_110_0010 b
      0_111_0011 s
73:
```


- 1.31 62 + 32 = 94 printing characters
- 1.32 bit 6 from the right
- **1.33** (a) 897 (b) 564 (c) 871 (d) 2,199
- **1.34** ASCII for decimal digits with odd parity:

```
(0):
      10110000
                  (1):
                        00110001
                                     (2):
                                           00110010
                                                                 10110011
(4):
      00110100
                  (5):
                        10110101
                                     (6):
                                           10110110
                                                           (7):
                                                                 00110111
(8):
      00111000
                  (9):
                        10111001
```

1.35 (a)

1.36

