Solutions Manual

DISCRETE-EVENT SYSTEM SIMULATION $Fifth\ Edition$

Jerry Banks John S. Carson II Barry L. Nelson David M. Nicol

August 10, 2009

Contents

1	Introduction to Simulation	1
2	Simulation Examples in a Spreadsheet	5
3	General Principles	20
4	Simulation Software	21
5	Statistical Models in Simulation	22
6	Queueing Models	37
7	Random-Number Generation	45
8	Random-Variate Generation	5 0
9	Input Modeling	57
10	Verification, Calibration and Validation of Simulation Models	64
11	Estimation of Absolute Performance	66
12	Estimation of Relative Performance	69
13	Simulation of Manufacturing and Material Handling Systems	74
14	Simulation of Networked Computer Systems	75

Foreword

There are over three hundred exercises for solution in the text. These exercises emphasize principles of discrete-event simulation and provide practice in utilizing concepts found in the text.

Answers provided here are selective, in that not every problem in every chapter is solved. Answers in some instances are suggestive rather than complete. These two caveats hold particularly in chapters where building of computer simulation models is required. The solutions manual will give the instructor a basis for assisting the student and judging the student's progress. Some instructors may interpret an exercise differently than we do, or utilize an alternate solution method; they are at liberty to do so. We have provided solutions that our students have found to be understandable.

When computer solutions are provided they will be found on the text web site, www.bcnn.net, rather than here. Solutions in addition to those noted below may be developed and added to the book's web site.

Jerry Banks John S. Carson II Barry L. Nelson David M. Nicol

Chapter 1

Introduction to Simulation

1.1

	SYSTEM	ENTITIES	ATTRIBUTES	ACTIVITIES	EVENTS	STATE VARIABLES
	Small appliance	Appliances	Type of appliance	Repairing	Arrival of	Number of appliances
	repair shop			the appliance	a job	waiting to be repaired
			Age of appliance			
					Completion	Status of repair person
			Nature of problem		of a job	busy or idle
a.	Cafeteria	Diners	Size of appetite	Selecting food	Arrival at	Number of diners
					service line	in waiting line
			T	D . C C 1	D .	N. 1 C
			Entree preference	Paying for food	Departures	Number of servers
					from service	working
	<u> </u>	CI	T 41 C	Cl l:	line	NT 1 C 1
b.	Grocery store	Shoppers	Length of grocery	Checking out	Arrival at	Number of shoppers in line
			list		checkout	Number of checkout
					counters	
					Departure from	lanes in operation
					checkout counter	
С.	Laundromat	Washing	Breakdown rate	Repairing	Occurrence of	Number of machines
С.	Laundromat	machine	Dicardown rate	a machine	breakdowns	running
		11100111110		a macmic	bi dana wiib	Number of machines in
					Completion	repair
					of service	Number of Machines
						waiting for repair

	SYSTEM	ENTITIES	ATTRIBUTES	ACTIVITIES	EVENTS	STATE VARIABLES
d.	Fast food	Customers	Size of order	Placing the	Arrival at	Number of customers
	restaurant		desired	order	the counter	waiting
				Paying for	Completion	Number of positions
				the order	of purchase	operating
e.	Hospital	Patients	Attention level	Providing	Arrival of	Number of patients
	emergency room		required	service	the patient	waiting
				required		
					Departure of	Number of physicians
					the patient	working
f.	Taxicab company	Fares	Origination	Traveling	Pick-up	Number of busy taxi cabs
					of fare	
			Destination			Number of fares
					Drop-off	waiting to be picked up
					of fare	
g.	Automobile	Robot	Speed	Spot welding	Breaking	Availability of
	assembly line	welders			down	machines
			Breakdown rate			

This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials.

1.3 Abbreviated solution:

Iteration	Problem Formulation	Setting of Objectives
		and Overall Project Plan
1	Cars arriving at the in-	How should the traffic light be se-
	tersection are controlled	quenced? Criterion for evaluating
	by a traffic light. The	effectiveness: average delay time of
	cars may go straight,	cars. Resources required: 2 people
	turn left, or turn right.	for 5 days for data collection, 1 per-
		son for 2 days for data analysis, 1 person for 3 days for model build-
		ing, 1 person for 2 days for running
		the model, 1 person for 3 days for
		implementation.
2	Same as 1 above plus the	How should the traffic light be se-
-	following: Right on red	quenced? Criterion for evaluating
	is allowed after full stop	effectiveness: average delay time of
	provided no pedestrians	cars. Resources required: 2 people
	are crossing and no vehi-	for 8 days for data collection, 1 per-
	cle is approaching the in-	son for 3 days for data analysis, 1
	tersection.	person for 4 days for model build-
		ing, 1 person for 2 days for running
		the model, 1 person for 3 days for
		implementation.
3	Same as 2 above plus the	How should the traffic light be
	following: Trucks arrive	sequenced? Should the road be
	at the intersection. Ve-	widened to 4 lanes? Method of eval-
	hicles break down in the	uating effectiveness: average delay
	intersection making one	time of all vehicles. Resources re-
	lane impassable. Accidents occur blocking traf-	quired: 2 people for 10 days for data collection, 1 person for 5 days for
	fic for varying amounts of	data analysis, 1 person for 5 days for
	time.	model building, 1 person for 3 days
	offic.	for running the model, 1 person for
		4 days for implementation.
		,

1.4 Data Needed

Number of guests attending

Time required for boiling water

Time required to cook pasta

Time required to dice onions, bell peppers, mushrooms

Time required to saute onions, bell peppers, mushrooms, ground beef

Time required to add necessary condiments and spices

Time required to add tomato sauce, tomatoes, tomato paste

Time required to simmer sauce

Time required to set the table

Time required to drain pasta

Time required to dish out the pasta and sauce

Events

Begin cooking

Complete pasta cooking Complete sauce cooking Simultaneous

Arrival of dinner guests

Begin eating

Activities

Boiling the water

Cooking the pasta

Cooking sauce

Serving the guests

State variables

Number of dinner guests

Status of the water (boiling or not boiling)

Status of the pasta (done or not done)

Status of the sauce (done or not done)

1.5 Event

Deposit

Withdrawal

Activities

Writing a check

Cashing a check

Making a deposit

Verifying the account balance

Reconciling the checkbook with the bank statement

1.12 (a) 1971 with 1200 attendees

- (b) 1972
- (c) From Dec. 8, 1971 to Jan. 17, 1973, 1.11 years

This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials.

- (d) DC, Southeast, West
- 1.15 The pupose of the WSC Foundation is to develop and manage a fund to help insure the continuance and high quality of the WSC.

Chapter 2

Simulation Examples in a Spreadsheet

For additional solutions check the course web site at www.bcnn.net. The numbers resulting from a student's spreadsheet simulation may differ from the results here, depending on the random numbers used.

In the spreadsheet solutions, the columns labeled "RD Assignment" are for manual solutions using the random digits in Table A. 1. You can ignore these columns when solving the problem in Excel, and instead use the methods in the textbook.

2.1

		Clock		Clock		Clock		
							Time	
					Waiting		Customer	
	Interarrival		Service	Time	Time	Time	Spends in	Idle Time
	Time	Arrival	Time	Service	in Queue	Service	System	of Server
Customer	(Minutes)	Time	(Minutes)	Begins	(Minutes)	Ends	(Minutes)	(Minutes)
1		0	25	0	0	25	25	
2	0	0	50	25	25	75	75	0
3	60	60	37	75	15	112	52	0
4	60	120	45	120	0	165	45	8
5	120	240	50	240	0	290	50	75
6	0	240	62	290	50	352	112	0
7	60	300	43	352	52	395	95	0
8	120	420	48	420	0	468	48	25
9	0	420	52	468	48	519	99	0
10	120	540	38	540	0	578	38	21
Average			45		19		112	

- (a) The average time in the queue for the 10 new jobs is 19 minutes.
- (b) The average processing time of the 10 new jobs is 45 minutes.
- (c) The maximum time in the system for the 10 new jobs is 112 minutes.
- 2.2 Profit = Revenue from retail sales Cost of bagels made + Revenue from grocery store sales Lost profit.

Let Q = number of dozens baked/day

$$S = \sum_{i} 0_{i}$$
, where $0_{i} =$ Order quantity in dozens for the *i*th customer

Q - S = grocery store sales in dozens, Q > S

S-Q= dozens of excess demand, S>Q

$$Profit = \$5.40 \min(S, Q) - \$3.80Q + \$2.70(Q - S) - \$1.60(S - Q)$$

Number of	Probability	Cumulative	RD
Customers		Probability	Assignment
8	.35	.35	01-35
10	.30	.65	36-65
12	.25	.90	66-90
14	.10	1.00	91-100

This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials.

Dozens	Probability	Cumulative	RD
Ordered		Probability	Assignment
1	.4	.4	1-4
2	.3	.7	5-7
3	.2	.9	8-9
4	.1	1.0	0

Pre-analysis

$$E(\text{Number of Customers}) = .35(8) + .30(10) + .25(12) + .10(14) \\ = 10.20$$

$$E(\text{Dozens ordered}) = .4(1) + .3(2) + .2(3) + .1(4) = 2$$

$$E(\text{Dozens sold}) = \bar{S} = (10.20)(2) = 20.4$$

$$E(\text{Profit}) = \$5.40\text{Min}(\bar{S},Q) - \$3.80Q + \$2.70(Q - \bar{S}) - \$1.60(\bar{S} - Q) \\ = \$5.40\text{Min}(20.4,Q) - \$3.80Q + \$2.70(Q - 20.4) \\ -\$0.67(20.4 - Q)$$

$$E(\text{Profit}|Q = 0) = 0 - 0 + \$1.60(20.4) = -\$32.64$$

$$E(\text{Profit}|Q = 10) = \$5.40(10) - \$3.80(10) + 0 - \$1.60(20.4 - 10) \\ = -\$0.64$$

$$E(\text{Profit}|Q = 20) = \$5.40(20) - \$3.80(20) + 0 - \$1.60(20.4 - 20) \\ = \$15.36$$

$$E(\text{Profit}|Q = 30) = \$5.40(20.4) - \$3.80(30) + \$2.70(30 - 20.4) - 0 \\ = \$22.08$$

$$E(\text{Profit}|Q = 40) = \$5.40(20.4) - \$3.80(40) + \$2.70(40 - 20.4) - 0 \\ = \$11.08$$

The pre-analysis, based on expectation only, indicates that simulation of the policies Q = 20, 30, and 40 should be sufficient to determine the policy. The simulation should begin with Q = 30, then proceed to Q = 40, then, most likely to Q = 20.

Initially, conduct a simulation for Q = 20, 30 and 40. If the profit is maximized when Q = 30, it will become the policy recommendation.

The problem requests that the simulation for each policy should run for 5 days. This is a very short run length to make a policy decision.

$$Q = 30$$