
David Liben-Nowell

Department of Computer Science

Carleton College

Discrete Mathematics
for Computer Science

Solution Manual

This version: October 19, 2017

Solution Manual (This version: October 19, 2017) 3

Section 2.2: Booleans, Numbers, and Arithmetic

2.1 112 and 201

2.2 111 and 201

2.3 18 and 39

2.4 17 and 38

2.5 Yes: there’s no fractional part in either x or y, so when
they’re summed then there’s still no fractional part.

2.6 Yes: if we can write x = a/b and y = c/d with b 6= 0 and
d 6= 0, then we can write x + y as (ad + cb)/bd (and bd 6= 0 because
neither b = 0 nor d = 0).

2.7 No: π and 1 − π are both irrational numbers, but
π + (1− π) = 1, which is a rational number.

2.8 6, because ⌊2.5⌋ = 2 and ⌈3.75⌉ = 4.

2.9 3, because ⌊3.14159⌋ = 3 and ⌈0.87853⌉ = 1.

2.10 34 = 3 · 3 · 3 · 3 = 81, because ⌊3.14159⌋ = 3 and
⌈3.14159⌉ = 4.

2.11 They differ on negative numbers. For any real
number x, we have ⌊x⌋ ≤ x—even if it’s negative. That’s
not true for truncation. For example, ⌊−3.14159⌋ = −4 but
trunc(−3.14159) = −3 .14159 = −3.

2.12 ⌊x + 0.5⌋
2.13 0.1 · ⌊10x + 0.5⌋
2.14 10−k ·

⌊
10kx + 0.5

⌋

2.15 10−k ·
⌊
10kx

⌋

2.16 If x is an integer, then ⌊x⌋+ ⌈x⌉ = 2x; if x isn’t an integer,
then ⌊x⌋ + ⌈x⌉ = 2 + 3 for any x in [2, 3]. Thus the expression is
x − x = 0 for x = 2 or 3 (yielding values 0 and 0), and x − 2.5 for
noninteger x. So the largest possible value for this expression is
0.4999999 · · · , when x = 2.9999999 · · · .
2.17 By the same logic, the smallest value is −0.5 + ε, which
occurs for x = 2 + ε, for arbitrarily small values of ε. For example,
the value is −0.4999999 when x = 2.00000001.

2.18 ⌊x⌋
2.19 ⌈x⌉
2.20 ⌈x⌉
2.21 ⌊x⌋
2.22 No: for example, |⌊−3.5⌋| = |−4| = 4, but
⌊|−3.5|⌋ = ⌊3.5⌋ = 3.

2.23 Yes: we have that x − ⌊x⌋ = (x + 1)− ⌊x + 1⌋ because
both x and x + 1 have the same fractional part; rearranging this
equality yields the claimed fact.

2.24 No: if x = y = 0.5, then ⌊x⌋ + ⌊y⌋ = ⌊0.5⌋ + ⌊0.5⌋ = 0+ 0 =
0, but ⌊x + y⌋ = ⌊0.5 + 0.5⌋ = ⌊1⌋ = 1.

2.25 ⌈x⌉ = ⌊x⌋ when x is an integer (and otherwise
⌈x⌉ = ⌊x⌋ + 1). Thus 1 + ⌊x⌋ − ⌈x⌉ is 1 when x is an integer,
and it’s 0 when x is not an integer.

2.26 Observe that ⌊ n+1
2 ⌋ = ⌈ n

2 ⌉: it’s true when n is even, and
it’s true when n is odd. Thus there are ⌈ n

2 ⌉ − 1 elements less than
the specified entry, and n− (⌈ n

2 ⌉ − 1+ 1) = n−⌈ n
2 ⌉ = ⌊ n

2 ⌋ elements
larger.

2.27 310 is bigger: 310 > 39 = (33)3 = 273 > 103.

2.28 216 = 65,536

2.29 1/216 = 1/65536 = 0.00001525878

2.30 65,536

2.31 −4 · 65,536 = −262,144

2.32 4, because 44 = 256.

2.33
4
√
8 ≈ 1.6818, because 1.68184 ≈ 8.0001.

2.34
4
√
512 ≈ 4.7568, because 4.75684 ≈ 511.9877.

2.35 Undefined (because we don’t include imaginary num-
bers in this book): there’s no real number x for which x4 = −9.

2.36 3, because 23 = 8.

2.37 −3, because 2−3 = 1/23 = 1/8.

2.38 1/3, because 81/3 = 2 (which is true because 23 = 8).

2.39 −1/3, because (1/8)−1/3 = 81/3 = 2.

2.40 log10 17 is larger than 1 (because 101 < 17), but log17 10
is smaller than 1 (because 171 > 10). So log10 17 is larger.

2.41 By definition, logb 1 is the real number y such that
by = 1. By (2.1.1), for any real number b we have b0 = 1, so
logb 1 = 0.

2.42 By definition, logb b is the real number y such that
by = b. By (2.1.2), for any real number b we have b1 = b, so
logb b = 1.

2.43 Let q := logb x. By definition of logarithms, we have
bq = x. Thus, raising both sides to the yth power, we have
(bq)y = xy . We can rewrite (bq)y = bqy using (2.1.4), so xy = bqy .
Again using the definition of logarithms, therefore logb xy = qy. By
the definition of q, this value is y · logb x.

2.44 Let q := logb x and r := logb y. By definition, then, bq = x
and br = y. Using (2.1.3), we have x · y = bq · br = bq+r . Because
xy = bq+r, we have by definition of logs that logb xy = q + r.

2.45 Let q := logc b and r := logb x, so that cq = b and br = x.
Then x = (cq)r = cqr by the definition of logs and (2.1.4), and
therefore logc x = qr = (logc b) · (logb x); rearranging yields the
claim.

2.46 We show that b[logb x] = x by showing that logb of the
two sides are equal:

logb

[

b[logb x]
]

=[logb x] · logb b by (2.2.5)

=[logb x] · 1 by (2.2.2)

= logb x.

2.47 We show that n[logb a] = a[logb n] by showing that logb of
the two sides are equal:

logb

[

n[logb a]
]

=[logb a] · logb n by (2.2.5)

=[logb n] · logb a x · y = y · x for any x, y

= logb

[

a[logb n]
]

. by (2.2.5), applied “backward”

2.48 The property logb
x
y = logb x − logb y follows directly

from the rule for the log of a product: x
y = x · y−1, so

logb
x
y = logb(x · y−1)

= logb x + logb y−1
by (2.2.3)

= logb x + (−1) · logb y. by (2.2.5)

2.49 ⌈n⌉ := 2⌈log2 n⌉

2.50 The number of columns needed to write down n in
standard decimal notation is







⌈log10(n + 1)⌉ if n > 0

1 if n = 0

⌈log10(|n| + 1)⌉ if n < 0.

2.51 0 (because 202 = 101 · 2)
2.52 1 (because 202 = 1 + (67 · 3))
2.53 2 (because 202 = 2 + (20 · 10))

4 Liben-Nowell Discrete Math for CS

2.54 8 (because −202 = 8 + (−21 · 10))
2.55 17 (because 17 = 17 + (0 · 42))
2.56 8 (because 42 = 8 + (2 · 17))
2.57 0 (because 17 = 0 + (1 · 17))
2.58 9 (because −42 = 9 + (−3 · 17))
2.59 0 (because −42 = 0 + (−1 · 42))
2.60 If k > 0, then n mod k := n − k · ⌊ n

k ⌋. If k < 0, then
n mod k := −(−n mod −k) = −n+ k · ⌊ n

k ⌋.
2.61 30

2.62 31

2.63 10

2.64 68

2.65 53

2.66 Here’s a solution in Python:

def isPrime(n):

for d in range(2,n):

if n % d == 0:

return False

return True

for n in range(2,202):

if isPrime(n):

print n

This program generates the following list of prime numbers: 2
3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97
101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179
181 191 193 197 199.

2.67 Here’s a solution in Python. The four numbers that this
program finds are 6, 28, 496, and 8128.

def perfect(n):

factorSum = 0

for d in range(1,n):

if n % d == 0:

factorSum += d

return factorSum == n

found = 0

n = 1

while found < 4:

if perfect(n):

found += 1

print n

n += 1

2.68 Here’s a solution in Python:

def threeFactors(n):

factorCount = 0

for d in range(1,n+1):

if n % d == 0:

factorCount += 1

return factorCount == 3

for n in range(1001):

if threeFactors(n):

print n

The numbers produced as output are the following: 4 9 25 49

121 169 289 361 529 841 961. Note that these output values are
22, 32, 52, 72, 112 , 132, . . . , 312—the squares of all sufficiently small
prime numbers. For a prime number p, the three factors of p2 are
1, p, and p2 (and p2 has no other factor).

2.69 6 + 6 + 6 + 6 + 6 + 6 = 36

2.70 1 + 4 + 9 + 16 + 25 + 36 = 91

2.71 4 + 16 + 64 + 256 + 1024 + 4096 = 5460

2.72 1(2) + 2(4) + 3(8) + 4(16) + 5(32) + 6(64) = 642

2.73 (1 + 2) + (2 + 4) + (3 + 8) + (4 + 16) + (5 + 32) + (6 + 64) = 147

2.74 6 · 6 · 6 · 6 · 6 · 6 = 46,656

2.75 1 · 4 · 9 · 16 · 25 · 36 = 518,400

2.76 22 · 24 · 26 · 28 · 210 · 212 = 242 = 4,398,046,511,104

2.77 1(2) · 2(4) · 3(8) · 4(16) · 5(32) · 6(64) = 1,509,949,440

2.78 (1 + 2) · (2 + 4) · (3 + 8) · (4 + 16) · (5 + 32) · (6 + 64) =
10,256,400

2.79 21 + 42 + 63 + 84 + 105 + 126 = 441

2.80 21 + 40 + 54 + 60 + 55 + 36 = 266

2.81 1 + 6 + 18 + 40 + 75 + 126 = 266

2.82 8 + 14 + 18 + 20 + 20 + 18 + 14 + 8 = 120

2.83 36 + 35 + 33 + 30 + 26 + 21 + 15 + 8 = 204

2.84 44 + 49 + 51 + 50 + 46 + 39 + 29 + 16 = 324

2.85 (11 + 21 + 31 + 41) + (12 + 22 + 32 + 42) + (13 + 23 + 33 + 43) +
(14 + 24 + 34 + 44) = (1 + 2 + 3 + 4) + (1 + 4 + 9 + 16) + (1 + 8 + 27 + 64) +
(1 + 16 + 81 + 256) = 494

Solution Manual (This version: October 19, 2017) 5

Section 2.3: Sets: Unordered Collections

2.86 Yes, 6 ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f}.
2.87 No, h /∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a,b, c, d, e, f}.
2.88 No, the only elements of H are single characters, so
a70e /∈ H.

2.89 |H| = 16

2.90 0 = 0 + 0 = 0 · 0 = 0 · 1 = 1 · 0, and 1 = 0 + 1 = 1 + 0 = 1 · 1,
and 2 = 1 + 1. So 0, 1, and 2 are elements of S, but 3 is not.

2.91 |S| = 3: although there are eight different descriptions
of elements, only three distinct values result and so there are
exactly three elements in the set.

2.92 4 is in H but not in T, because 4 mod 2 = 0 but
4 mod 3 6= 0. Other elements in H but not T are 2, 3, 5, 8, 9, a,
b, c, d, e, and f.

2.93 13 is an element of T, because 13 mod 2 = 1 = 13 mod 3.
Other elements in T but not H are 12, 18, and 19.

2.94 The elements of T not in S are: 6, 7, 12, 13, 18, and 19.

2.95 The only element of S that is not in T is 2.

2.96 |T| = 8

2.97 {0, 1, 2, 3, 4}
2.98 {}
2.99 {4, 5, 9}
2.100 {0, 1, 3, 4, 5, 7, 8, 9}
2.101 {1, 3, 7, 8}
2.102 {0}
2.103 {1, 2, 3, 6, 7, 8}
2.104 {1, 2, 3, 4, 5, 7, 8, 9}
2.105 {4, 5}
2.106 C −∼C is just C itself: {0, 3, 6, 9}.
2.107 C −∼A is {3, 9}, so ∼(C −∼A) is {0, 1, 2, 4, 5, 6, 7, 8}.
2.108 Yes, it’s possible: if E = Y, then we have
E − Y = Y − E = ∅. (But if E 6= Y, then there’s some element
x in one set but not the other—and if x ∈ E but x /∈ Y, then
x ∈ E − Y but x /∈ Y − E, so E − Y 6= Y − E. A similar situation
occurs if there’s a y ∈ Y but y /∈ E.)

2.109 D ∪ E may be a subset of D: for D1 = E1 = {1}, we
have D1 ∪ E1 = {1} ⊆ D; for D2 = ∅ and E2 = {1}, we have
D2 ∪ E2 = {1} 6⊆ D2.

2.110 D ∩ E must be a subset of D: every element of D ∩ E is
by definition an element of both D and E, which means that any
x ∈ D ∩ E must by definition satisfy x ∈ D.

2.111 D − E must be a subset of D: every element of D − E is
by definition an element of D (but not of E), which means that any
x ∈ D − E must by definition satisfy x ∈ D.

2.112 E − D contains no elements in D, so no element
x ∈ E − D satisfies x ∈ D—but if E − D is empty, then E − D is a
subset of every set! For D1 = E1 = {1}, we have E1 − D1 = {} ⊆ D;
for D2 = ∅ and E2 = {1}, we have E2 − D2 = {1} 6⊆ D2. Thus
E − D may be a subset of D.

2.113 ∼D contains no elements in D, so no element x ∈ ∼D
satisfies x ∈ D—but if ∼D is empty, then ∼D is a subset of every
set, including D! For D1 = U (where U is the universe), we have
∼D1 = {} ⊆ D1; for D2 = ∅, we have ∼D2 = U 6⊆ D2. Thus ∼D
may be a subset of D.

2.114 Not disjoint: 1 ∈ F and 1 ∈ G.

2.115 Not disjoint: 3 ∈ ∼F and 3 ∈ G.

2.116 Disjoint: F ∩ G = {1} and 1 /∈ H.

2.117 Disjoint: by definition, no element is in both a set and
the complement of that set.

2.118 S ∪ T is smallest when one set is a subset of the other.
Specifically, if S = {1, 2, . . . , n} and T = {1, 2, . . . ,m}, then
S ∪ T = {1, 2, . . . ,max(n,m)} and has cardinality max(n,m).

2.119 S ∩ T is smallest when the two sets are disjoint. Specifi-
cally, if S = {1, 2, . . . , n} and T = {−1,−2, . . . ,−m}, then S ∩ T = ∅

and has cardinality 0.

2.120 S − T is smallest when as many elements of S as
possible are also in T. Specifically, if S = {1, 2, . . . ,n} and
T = {1, 2, . . . ,m}, then S − T = {m + 1,m + 2, . . . , n} if n ≥ m + 1,
and otherwise has cardinality 0.

2.121 S ∪ T is largest when the two sets are disjoint. Specif-
ically, if S = {1, 2, . . . ,n} and T = {n + 1, n+ 2, . . . , n +m}, then
S ∪ T = {1, 2, . . . ,n +m} and has cardinality n +m.

2.122 S ∩ T is largest when one set is a subset of the other.
Specifically, if S = {1, 2, . . . , n} and T = {1, 2, . . . ,m}, then
S ∩ T = {1, 2, . . . ,min(n,m)} and has cardinality min(n,m).

2.123 S − T is largest when no element T is also in S,
so that S − T = S. Specifically, if S = {1, 2, . . . ,n} and
T = {−1,−2, . . . ,−m}, then S − T = {1, 2, . . . , n} and has car-
dinality n.

2.124 |A ∩ B| = 2, |A ∩ C| = 1, and |B ∩C| = 1.

2.125 We have |A ∩ B| = 2, |A ∩ C| = 1, and |B ∩ C| = 1; and
furthermore |A ∪ B| = 5, |A ∪ C| = 3, and |B ∪ C| = 4. Thus the
Jaccard similarity of A and B is 2/5 = 0.4; the Jaccard similarity
of A and C is 1/3 = 0.33; and the Jaccard similarity of B and C is
1/4 = 0.25.

2.126 No. If A = {1} and B = {1, 2, 3} and C = {2, 3, 4}, then
A’s closest set is B but B’s closest set is C, not A.

2.127 Still no! If A = {1} and B = {1, 2, 3} and C = {2, 3, 4},
then A’s closest set is B (1/3 for B versus 0/4 for C) but B’s closest
set is C (2/4), not A (1/3).

2.128 True. Looking at Venn diagrams for ∼A and ∼B, we
see that

A B
unioned with

A B

includes every element not in A ∩ B. Thus ∼A ∪ ∼B contains
precisely those elements not in A ∩ B, and A ∩ B = ∼(∼A ∪∼B).

2.129 True. Looking at Venn diagrams for ∼A and ∼B, we
see that

A B
intersected with

A B

includes every element not in A ∪ B. Thus ∼A ∩ ∼B contains
precisely those elements not in A ∪ B, and A ∪ B = ∼(∼A ∩∼B).

2.130 No, they’re not the same. The left-hand side includes
elements of A∩∼B ∩ C; the right-hand side doesn’t:

6 Liben-Nowell Discrete Math for CS

(A − B)∪ (B −C) (A ∪ B)− C

A B

C

A B

C

For example, suppose A = C = {1} and B = ∅. Then
(A − B) ∪ (B − C) = ({1} −∅) ∪ (∅ − {1}) = {1} −∅ = {1},
but (A ∪ B)− C = ({1} ∪∅)− {1} = {1} − {1} = ∅.

2.131 Yes, they are the same. The left-hand side contains any
element that’s in B but not A and also in C but not A—in other
words, an element in B and C but not A. That’s just the definition
of (B ∩C)− A:

A B

C

2.132 There are five ways of partitioning {1, 2, 3}:
• All separate: {{1} , {2} , {3}}.
• 1 alone; 2 and 3 together: {{1} , {2, 3}}.
• 2 alone; 1 and 3 together: {{2} , {1, 3}}.
• 3 alone; 1 and 2 together: {{3} , {1, 2}}.
• All together: {{1, 2, 3}}.
2.133 A partition that does it is

{{Alice, Bob,David} , {Charlie} , {Eve, Frank}} .

The ABD set has intracluster distances {0.0, 1.7, 0.8, 1.1}; the EF
set has intracluster distances {0.0, 1.9}; and the only intracluster
distance in the C set is 0.0. The largest of these distances is less
than 2.0.

2.134 Just put each person in his or her own subset. The only
way x ∈ Si and y ∈ Si is when x = y, so the intracluster distance is
0.0.

2.135 Again, just put all people in their own subset. The
intercluster distance is the largest entry in the table, namely 7.8.

2.136 No, it’s not a partition of S, because the sets are not
disjoint. For example, 6 ∈ W and 6 ∈ H.

2.137 {{} , {1} , {a} , {1, a}}
2.138 {{} , {1}}
2.139 {{}}
2.140 P(P(1)) = P({{} , {1}}). This set is the power set of a
2-element set, and so it contains four elements: the empty set, the
two singleton sets, and the set containing both elements:







{} ,
{{}} ,
{{1}} ,
{{} , {1}}







.

Solution Manual (This version: October 19, 2017) 7

Section 2.4: Sequences: Ordered Collections

2.141 {〈1, 1〉, 〈1, 4〉, 〈1, 16〉, 〈2, 1〉, 〈2, 4〉, 〈2, 16〉, 〈3, 1〉, 〈3, 4〉,
〈3, 16〉}
2.142 {〈1, 1〉, 〈1, 2〉, 〈1, 3〉, 〈4, 1〉, 〈4, 2〉, 〈4, 3〉, 〈16, 1〉, 〈16, 2〉,
〈16, 3〉}
2.143 {〈1, 1, 1〉}
2.144 {〈1, 2, 1〉, 〈1, 2, 4〉, 〈1, 2, 16〉, 〈1, 3, 1〉, 〈1, 3, 4〉, 〈1, 3, 16〉,
〈2, 2, 1〉, 〈2, 2, 4〉, 〈2, 2, 16〉, 〈2, 3, 1〉, 〈2, 3, 4〉, 〈2, 3, 16〉}
2.145 A = {1, 2} and B = {1}.
2.146 T = {2, 4}. Because 〈?, 2〉, 〈?, 4〉 ∈ ?× T, we know that
2 ∈ T and 4 ∈ T. And because S × {2, 4} contains 16 elements
already, there can’t be any other elements in T.

2.147 T = ∅. If there were any element t ∈ T, then
〈1, t〉 ∈ S × T—but we’re told that S × T is empty, so there
can’t be any t ∈ T.

2.148 For 〈x, x〉 to be in S × T, we need x ∈ S∩ T; for 〈x, x〉 not
to be in S × T, we need x /∈ S ∩ T. Thus 3 ∈ T, and 1, 2, 4, 5, . . . , 8 /∈
T. But T can contain any other element not in S: for example, if
T = {3, 9} then S × T = {〈1, 3〉, . . . , 〈8, 3〉, 〈1, 9〉, . . . , 〈8, 9〉} and
T × S = {〈3, 1〉, . . . , 〈3, 8〉, 〈9, 1〉, . . . , 〈9, 8〉}. The only element that
appears in both of these sets is 〈3, 3〉.
2.149 Every pair in S × T must also be in T × S, and vice
versa. This situation can happen in two ways. First, we could have
T = S = {1, 2, . . . , 8}, so that S × T = T × S = S × S. Second, we
could have T = ∅, because S ×∅ = ∅× S = ∅.

2.150 {a, h} × {1}
2.151 {c, f} × {1, 8}
2.152 {a, b, c, d, e, f ,g, h} × {2, 7}
2.153 {a, b, c, d, e, f ,g, h} × {3, 4, 5, 6}
2.154 There are 27 elements in this set: {〈0, 0, 0〉, 〈0, 0, 1〉,
〈0, 0, 2〉, 〈0, 1, 0〉, 〈0, 1, 1〉, 〈0, 1, 2〉, 〈0, 2, 0〉, 〈0, 2, 1〉, 〈0, 2, 2〉, 〈1, 0, 0〉,
〈1, 0, 1〉, 〈1, 0, 2〉, 〈1, 1, 0〉, 〈1, 1, 1〉, 〈1, 1, 2〉, 〈1, 2, 0〉, 〈1, 2, 1〉, 〈1, 2, 2〉,
〈2, 0, 0〉, 〈2, 0, 1〉, 〈2, 0, 2〉, 〈2, 1, 0〉, 〈2, 1, 1〉, 〈2, 1, 2〉, 〈2, 2, 0〉, 〈2, 2, 1〉,
〈2, 2, 2〉}
2.155 Omitting the angle brackets and commas, the set is:
{ACCE, ACDE, ADCE, ADDE, BCCE,BCDE, BDCE, BDDE}.
2.156 Omitting the angle brackets and commas, the set is:
{0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111}.
2.157 Σ8

2.158 (Σ− {A, E, I, O, U})5
2.159 Here’s one reasonably compact way of representing
the answer: in a sequence of 6 symbols, we’ll allow the ith symbol
to be any element of Σ, while the others must not be vowels. The
desired set is:

5⋃

i=0

[

(Σ− {A, E, I, O, U})i × Σ× (Σ− {A, E, I, O, U})5−i
]

.

(There are many other ways to express the answer too.)

2.160 Here’s one of many ways to express this set:

⋃

v∈{A,E,I,O,U}

[
(Σ− {A, E, I, O, U}) ∪ {v}

]6
.

2.161
√
12 + 32 =

√
1 + 9 =

√
10

2.162
√

22 + (−2)2 =
√
4 + 4 =

√
8

2.163
√
42 + 02 =

√
16 + 0 =

√
16 = 4

2.164 〈1 + 2, 3 + (−2)〉 = 〈3, 1〉
2.165 〈3 · (−3), 3 · (−1)〉 = 〈−9,−3〉

2.166 〈2 · 1 + 4− 3 · 2, 2 · 3 + 0− 3 · (−2)〉 = 〈0, 12〉
2.167 ‖a‖ + ‖c‖ =

√
10 + 4 ≈ 7.1623, while ‖a+ c‖ = ‖〈5, 3〉‖ =√

52 + 32 =
√
34 ≈ 5.8310.

2.168 ‖a‖ + ‖b‖ =
√
10 +

√
8 ≈ 5.9907, while

‖a + b‖ = ‖〈3,−1〉‖ =
√

32 + (−1)2 =
√
10 ≈ 3.1623.

2.169 3‖d‖ = 3
√

(−3)2 + (−1)2 = 3
√
10 ≈ 9.4868, and we get

the same value for ‖3d‖ = ‖〈−9,−3〉‖ =
√

(−9)2 + (−3)2 =
√
90 ≈

9.4868.

2.170 Here’s a derivation:

‖ax‖ =
√

∑
i

[(ax)i]2 definition of length

=
√

∑
i

a2x2i definition of vector times scalar

=
√

a2 ∑
i

x2i a2 is the same for every i

=
√

a2
√

∑
i

x2i (2.1.5)

= a
√

∑
i

x2i definition of square root

= a‖x‖. definition of length

2.171 We have ‖x‖ + ‖y‖ = ‖x + y‖ whenever x and y
“point in exactly the same direction”—that is, when we can
write x = ay for some scalar a ≥ 0. In this case, we have
‖x‖ + ‖y‖ = ‖x‖ + ‖ax‖ = (1 + a)‖x|, and we also have
‖x + y‖ = ‖x + ax‖ = ‖(1 + a)x‖ = (1 + a)‖x‖. When x 6= ay,
then the two sides aren’t equal.

Visually, the sum of the lengths of the dashed lines in this pic-
ture show ‖x‖ + ‖y‖ (and the dotted lines show ‖y‖ + ‖x‖), while
the solid line has length ‖x + y‖. Because the latter “cuts the cor-
ner” whenever x and y don’t point in exactly the same direction,
it’s smaller than the former.

x

y

x + y

2.172 1 · 2 + 3 · −2 = 2− 6 = −4

2.173 1 · −3 + 3 · −1 = −3− 3 = −6

2.174 4 · 4 + 0 · 0 = 16 + 0 = 16

2.175 The Manhattan distance is |1− 2| + |3−−2| = 1 + 5 = 6;

the Euclidean distance is
√

(1− 2)2 + (3−−2)2 =
√
12 + 52 =

√
26.

2.176 The Manhattan distance is 4 + 4 = 8; the Euclidean
distance is

√
42 + 42 =

√
32 = 4

√
2.

2.177 The Manhattan distance is 2 + 2 = 4; the Euclidean
distance is

√
22 + 22 =

√
8 = 2

√
2.

2.178 The largest possible Euclidean distance is 1—for exam-
ple, if x = 〈0, 0〉 and y = 〈1, 0〉.
2.179 The smallest possible Euclidean distance is 1/

√
2: if

x = 〈0, 0〉 and y = 〈0.5, 0.5〉, then the Manhattan distance is indeed

1 = 0.5 + 0.5, while the Euclidean distance is
√
0.52 + 0.52 =

√
0.5.

8 Liben-Nowell Discrete Math for CS

2.180 The smallest possible Euclidean distance is 1/
√

n—for
example, if x = 〈0, 0, . . . , 0〉 and y = 〈 1n , 1n , . . . , 1n 〉, then the Man-
hattan distance is indeed 1 = 1

n + 1
n + · · · + 1

n , while the Euclidean
distance is

√

n · (1n)2 =
√
1/n.

2.181

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

2.182

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

2.183 Under Manhattan distance, the point 〈16, 40〉 has dis-
tance 12 + 2 = 14 from g and has distance 8 + 7 = 15 from s, so it’s
closer to g.

Under Euclidean distance, the point 〈16, 40〉 has distance√
122 + 22 =

√
146 ≈ 12.08305 · · · from g and distance√

82 + 72 =
√
113 ≈ 10.6301 · · · from s, so it’s closer to s.

2.184 The Manhattan distance from the point 〈8 + δ, y〉 to
s is δ + |33− y|. The Manhattan distance from this point to g is
4 + δ + |42− y|. Because δ appears in both formulas, the point is
closer to g exactly when 4 + |42− y| < |33− y|.

If y < 33, then these distances are 4 + 42− y and 33− y; the
distance to g is always larger.

If 33 ≤ y < 42, then these distances are 4 + 42− y and y − 33;
the former is smaller when 4 + 42− y < y − 33, which, solving
for y, occurs when 2y > 79. The distance to g is smaller when
y > 39.5.

If y > 42, then these distances are 4 + y − 42 and y − 33; the
distance to g is always smaller.

Thus s is closer if y < 39.5 and g is closer if y > 39.5 (and
they’re equidistant if y = 39.5).

2.185 A point 〈4− δ, y〉 is 4 units closer to g than to s in the
horizontal direction. Thus, unless the point is 4 or more units
closer to g than to s vertically, g is closer. To be 4 units closer verti-
cally means |42− y| < 4 + |33− y|, which happens exactly when
y < 35.5.

2.186 3|x − 8| + 1.5|y − 33|
2.187 An image of the Voronoi diagram is shown below. The
three different colors represent the three regions; the dashed lines
represent the bisectors of each pair of points.

2.188 As before, the three different colors represent the three

regions; the dashed lines represent the bisectors of each pair of
points:

2.189 Here is an image of the diagram (with notation as in
the previous two solutions):

2.190 For a pair of points p and q, we will need to be able
to find the line that bisects them. The midpoint of p and q is on
that line—namely the point 〈(p1 + q1)/2, (p2 + q2)/2〉. The slope
of the bisecting line is the negative reciprocal of the slope of the
line joining p and q—that is, the slope of the bisecting line is
−(p1 + q1)/(p2 + q2).

Given the above, the algorithm is fairly straightforward: given
three points p, q, r, we find the bisector for each pair of points.
The portion of the plane closest to p is that portion that’s both on
p’s side of the p–q bisector and on p’s side of the p–r bisector. The
other regions are analogous.

Coding this in a programming language requires some addi-
tional detail in representing lines, but the idea is just as described
here. Here is a solution in Python:

Solution Manual (This version: October 19, 2017) 9

def midpoint(a,b):

’’’Finds the point halfway between a and b.’’’

return [(a[0] + b[0]) / 2.0,

(a[1] + b[1]) / 2.0]

def bisectorSlope(a,b):

’’’Finds the slope of the bisector

between a and b.’’’

return -(a[0] - b[0]) / (a[1] - b[1])

def bisectorRegion(a,b):

’’’Returns a representation of the half plane on a’s

side of bisector between a and b.’’’

Case I: the bisector of a,b is a vertical line.

if a[1] == b[1]:

if a[0] < midpoint(a,b)[0]: # a is to the left

return "x < %.2f" % midpoint(a,b)[0]

else:

return "x > %.2f" % midpoint(a,b)[0]

Case II: the bisector of a,b is a horizontal line.

slope = bisectorSlope(a,b)

if slope == 0:

if a[1] < midpoint(a,b)[1]: # a is below

return "y < %.2f" % midpoint(a,b)[1]

else:

return "y > %.2f" % midpoint(a,b)[1]

Case III: the bisector of a,b has nonzero,

noninfinite slope.

yIntercept = - slope * midpoint(a,b)[0]

+ midpoint(a,b)[1]

if a[1] < b[1]: # a is below the bisector

return "y < %.2f*x + %.2f" % (slope, yIntercept)

else:

return "y > %.2f*x + %.2f" % (slope, yIntercept)

def voronoiRegion(a,b,c):

’’’Returns a representation of the portion of the

plane closer to a than to either b or c.’’’

return bisectorRegion(a,b)

+ " and " + bisectorRegion(a,c)

2.191 6 by 3

2.192 6

2.193 〈4, 1〉, 〈5, 1〉, and 〈7, 3〉
2.194

3M =











9 27 6
0 27 24
18 6 0
21 15 15
21 6 12
3 18 21











2.195




0 8 0
9 6 0
2 3 3



 +





7 2 7
3 5 6
1 2 5



 =





7 10 7
12 11 6
3 5 8





2.196 Undefined; the dimensions of B and F don’t match.

2.197 [
3 1
0 8

]

+

[
8 4
3 2

]

=

[
11 5
3 10

]

2.198




0 8 0
9 6 0
2 3 3



 +





0 8 0
9 6 0
2 3 3



 =





0 16 0
18 12 0
4 6 6





2.199

−2 ·
[
3 1
0 8

]

=

[
−6 −2
0 −16

]

2.200

0.5 ·
[
1 2 9
5 4 0

]

=

[
0.5 1 4.5
2.5 2 0

]

2.201 



0 8 0
9 6 0
2 3 3









5 8
7 5
3 2



 =





56 40
87 102
40 37





2.202




0 8 0
9 6 0
2 3 3









7 2 7
3 5 6
1 2 5



 =





24 40 48
81 48 99
26 25 47





2.203 Undefined: A has three columns but F has only two
rows, so the dimensions don’t match up.

2.204 Undefined: B has two columns but C has three rows, so
the dimensions don’t match up.

2.205 [
3 1
0 8

] [
8 4
3 2

]

=

[
27 14
24 16

]

2.206 [
8 4
3 2

] [
3 1
0 8

]

=

[
24 40
9 19

]

2.207

0.25





1 0 0
1 0 0
1 1 0



 + 0.75





0 0 0
0 1 0
1 1 1



 =





.25 0 0

.25 .75 0
1 1 .75





2.208

0.5





1 0 0
1 0 0
1 1 0



 + 0.5





0 0 0
0 1 0
1 1 1



 =





.5 0 0

.5 .5 0
1 1 .5





2.209 Here’s one example (there are many more):

C =





0 0 0
0 0 0
1 1 0



 and D =





1 0 0
1 1 0
1 1 1





2.210 Here’s a solution in Python:

def average(imageA, imageB, lambda):

width = imageA.getWidth()

height = imageA.getHeight()

if lambda < 0 or lambda > 1

or imageB.getWidth() != width or

or imageB.getHeight() != height:

return "Error!"

newImage = Image(width, height)

for x in range(height):

for y in range(width):

avg = lambda * imageA.getPixel(x,y)

+ (1 - lambda) * imageB.getPixel(x,y)

newImage.setPixel(x, y, avg)

return newImage

10 Liben-Nowell Discrete Math for CS

2.211 Here’s a derivation:

(AI)i,j =
n

∑
k=1

Ai,kIk,j definition of matrix multiplication

=
n

∑
k=1

Ai,k ·
{

0 if k 6= j

1 if k = j
definition of I

= Ai,j · 1 simplfying

= Ai,j .

Thus for any indices i and j we have that (AI)i,j = Ai,j .

2.212
[
2 3
1 1

] [
2 3
1 1

] [
2 3
1 1

]

=

[
2 3
1 1

] [
7 9
3 4

]

=

[
23 30
10 13

]

2.213

[
2 1
1 1

]

2.214

[
2 1
1 1

]2

=

[
5 3
3 2

]

2.215

[
5 3
3 2

]2

·
[
1 1
1 0

]

=

[
34 21
21 13

]

·
[
1 1
1 0

]

= ·
[
55 34
34 21

]

2.216 We’re given that y + w = 0 and 2y + w = 1. From the
former, we know y = −w; plugging this value for y into the latter
yields −2w +w = 1, so we have w = −1 and y = 1.

From x + z = 1 and 2x + z = 0, similarly, we know z = 1− x and
thus that 2x + 1− x = 0. Therefore x = −1 and z = 2. The final
inverse is therefore [

−1 1
2 −1

]

.

And, indeed,
[
1 1
2 1

]

·
[
−1 1
2 −1

]

=

[
1 0
0 1

]

,

as desired.

2.217

[
−2 1
1.5 −0.5

]

2.218

[
0 1
1 0

]

2.219

[
1 0
0 1

]

2.220 Suppose that the matrix
[
x y
z w

]

were the inverse of [
1 1
1 1

]

.

Then we’d need x + z = 1 (to make the 〈1, 1〉st entry of the product
correct) and x + z = 0 (to make the 〈1, 2〉th entry of the product
correct). But it’s not possible for x + z to simultaneously equal 0
and 1!

2.221 [0, 0, 0, 0, 0, 0, 0]

2.222 [0, 1, 1, 0, 0, 1, 1]

2.223 [1, 0, 0, 1, 1, 0, 0]

Solution Manual (This version: October 19, 2017) 11

Section 2.5: Functions

2.224 f (3) = (32 + 3) mod 8 = 12 mod 8 = 4

2.225 f (7) = (72 + 3) mod 8 = 52 mod 8 = 4

2.226 f (x) = 3 for x ∈ {0, 4}.
2.227

x f (x)
0 3
1 4
2 7
3 4
4 3
5 4
6 7
7 4

2.228

quantize(n) := 52 ·
⌊ n

52

⌋

+ 28

2.229 The domain is {0, 1, . . . , 255} × {1, . . . , 256}. The
range is {0, 1, . . . , 255}: all output colors are possible, because
quantize(n, 256) = n.

2.230 The step size is ⌈ 256
k ⌉, so we have

quantize(n, k) :=

⌈
256

k

⌉

·






n
⌈
256
k

⌉




 +

⌈
256
k

⌉

2
.

Note that this expression will do something a little strange for
large k: for example, when k = 200, we have ⌈ 256

k ⌉ = 2—so the
first 127 quanta correspond to colors {1, 3, 5, . . . , 255}, and the
remaining 73 quanta are never used (because they’re bigger than
256).

2.231 A function quantize(n) : {0, 1, . . . , 255} →
{a1 , a2 , . . . , ak} can be c-to-1 only if k | 256. (For example, there’s
no way to quantize 256 colors into three precisely equal pieces,
because 256 is not evenly divisible by 3.) So k must be a power of
two; specifically, we have to have k ∈ {1, 2, 4, 8, 16, 32, 64, 128, 256}.
2.232 Here’s a solution in Python:

output = image.copy()

stepSize = int(math.ceil(256.0 / k))

for x in range(image.getWidth()):

for y in range(image.getHeight()):

color = stepSize / 2

+ stepSize * int(image.getPixel(x,y) / stepSize)

output.setPixel(x, y, color)

2.233 The domain is R; the range is R
≥0.

2.234 The domain is R; the range is Z.

2.235 The domain is R; the range is R
>0.

2.236 The domain is R
>0; the range is R.

2.237 The domain is Z; the range is {0, 1}.
2.238 The domain is Z

≥2; the range is {0, 1, 2}.
2.239 The domain is Z × Z

≥2; the range is Z
≥0.

2.240 The domain is Z; the range is {True, False}.
2.241 The domain is

⋃

n∈Z≥1 R
n; the range R

≥0.

2.242 The domain is R; the range is the set of all unit vectors
in R

2—that is, the set
{

x ∈ R
2 : ‖x‖ = 1

}
.

2.243 The function add can be written as add(〈h,m〉, x) :=
〈[(h +

⌊
m+x
60

⌋
− 1) mod 12] + 1,m + x mod 60〉

2.244 (f ◦ f)(x) = f (f (x)) = x mod 10

2.245 (h ◦ h)(x) = h(h(x)) = 4x

2.246 (f ◦ g)(x) = f (g(x)) = x + 3 mod 10

2.247 (g ◦ h)(x) = g(h(x)) = 2x + 3

2.248 (h ◦ g)(x) = h(g(x)) = 2(x + 3) = 2x + 6

2.249 (f ◦ h)(x) = f (h(x)) = 2x mod 10

2.250 (f ◦ g ◦ h)(x) = f (g(h(x))) = 2x + 3 mod 10

2.251 (g ◦ h)(x) = g(h(x)) = 2 · h(x), so we need h(x) = 3
2 x + 1

2 .

2.252 (h ◦ g)(x) = h(g(x)) = h(2x), so we need h(2x) = 3x + 1 for
every x. That’s true when h(x) = 3

2 x + 1.

2.253 Yes, f (x) = x is onto; every output value is hit.

2.254
f (0) = 02 mod 4 = 0 mod 4 = 0
f (1) = 12 mod 4 = 1 mod 4 = 1
f (2) = 22 mod 4 = 4 mod 4 = 0
f (3) = 32 mod 4 = 9 mod 4 = 1

There’s no x such that f (x) = 2 or f (x) = 3, so the function is not
onto.

2.255

f (0) = 02 − 0 mod 4 = 0− 0 mod 4 = 0
f (1) = 12 − 1 mod 4 = 1− 1 mod 4 = 0
f (2) = 22 − 2 mod 4 = 4− 2 mod 4 = 2
f (3) = 32 − 3 mod 4 = 9− 3 mod 4 = 2

There’s no x such that f (x) = 1 or f (x) = 3, so the function is not
onto.

2.256 Yes, this function, which we could write as f (x) = 3− x,
is onto; every output value is hit.

2.257 There’s no x such that f (x) = 0 or f (x) = 3, so the
function is not onto.

2.258
f (0) = 02 mod 8 = 0 mod 8 = 0
f (1) = 12 mod 8 = 1 mod 8 = 1
f (2) = 22 mod 8 = 4 mod 8 = 4
f (3) = 32 mod 8 = 9 mod 8 = 1

This function is not one-to-one, because f (1) = f (3).

2.259
f (0) = 03 mod 8 = 0 mod 8 = 0
f (1) = 13 mod 8 = 1 mod 8 = 1
f (2) = 23 mod 8 = 8 mod 8 = 0
f (3) = 33 mod 8 = 27 mod 8 = 7

This function is not one-to-one, because f (0) = f (2).

2.260

f (0) = 03 − 0 mod 8 = 0 mod 8 = 0
f (1) = 13 − 1 mod 8 = 0 mod 8 = 0
f (2) = 23 − 2 mod 8 = 6 mod 8 = 6
f (3) = 33 − 3 mod 8 = 24 mod 8 = 0

This function is not one-to-one, because f (0) = f (1) = f (3).

2.261

f (0) = 03 + 0 mod 8 = 0 mod 8 = 0
f (1) = 13 + 2 mod 8 = 3 mod 8 = 3
f (2) = 23 + 4 mod 8 = 12 mod 8 = 4
f (3) = 33 + 6 mod 8 = 33 mod 8 = 1

This function is one-to-one, as no output is hit more than once.

2.262 This function is not one-to-one, because f (1) = f (3).

2.263 Every element except A[1] has a parent. An element i is
a parent only if it has a left child, which occurs when 2i ≤ n. Thus
parent : {2, 3, . . . ,n} → {1, 2, . . . , ⌊ n

2 ⌋}. The domain is {2, 3, . . . ,n}
and the range is {1, 2, . . . , ⌊ n

2 ⌋}. And parent is not one-to-one: for
example, parent(2) = parent(3) = 1.

12 Liben-Nowell Discrete Math for CS

2.264 An element i has a left child when 2i ≤ n and a right
child when 2i + 1 ≤ n. Every element except A[1] is the child of
some other element; even-numbered elements are left children
and odd-numbered elements are right children.

Thus left : {1, 2, . . . , ⌊ n
2 ⌋} → {k ≥ 2 : 2 | k and k ≤ n}.

And right : {1, 2, . . . , ⌊ n−1
2 ⌋} → {k ≥ 2 : 2 6 | k and k ≤ n}.

Both left and right are one-to-one: if i 6= i′ , then 2i 6= 2i′ and
2i + 1 6= 2i′ + 1. Thus there are no two elements i and i′ that have
left(i) = right(i′) or right(i) = left(i′).
2.265 (parent ◦ left)(i) = parent(left(i)) = ⌊ 2i

2 ⌋ = ⌊i⌋ = i.
In other words, parent ◦ left is the identity function: for any i,

we have parent ◦ left(i) = i. In English, this composition asks for
the parent of the left child of a given index—but the parent of i’s
left child simply is i!

2.266 (parent ◦ right)(i) = parent(right(i)) = ⌊ 2i+1
2 ⌋ = ⌊i + 1

2 ⌋ =
i. In other words, parent ◦ right is the identity function: for any i,
we have parent ◦ right(i) = i. In English, this composition asks for
the parent of the right child of a given index—but the parent of i’s
right child simply is i!

2.267 (left ◦ parent)(i) = left(parent(i)) = 2 ⌊ i
2 ⌋ for any i ≥ 2.

In other words, this function is f (i) = i if 2 | i and f (i) = i − 1 if 2 6 |i
(and f (1) is undefined).

In English, this composition asks for the left child of a given
index’s parent. An index that’s a left child is the left child of its
parent; for an index that’s a right child, the left child of its parent
is its left-hand sibling.

2.268 (right ◦ parent)(i) = right(parent(i)) = 2 ⌊ i
2 ⌋ + 1 for any

i ≥ 2. In other words, this function is f (i) = i + 1 if 2 | i and f (i) = i
if 2 6 |i (and f (1) is undefined).

In English, this composition asks for the right child of a given
index’s parent. An index that’s a right child is the right child of its
parent; for an index that’s a left child, the right child of its parent
is its right-hand sibling.

2.269 f −1(y) = y−1
3

2.270 g−1(y) = 3
√

y

2.271 h−1(y) = log3 y

2.272 This function isn’t one-to-one (it can’t be: there are
24 different inputs and only 12 different outputs—for example,
f (7) = f (19)), so it doesn’t have an inverse.

2.273 The degree is 3.

2.274 The degree is 3.

2.275 The degree is 2; the polynomial is p(x) =
4x4 + x2 − 4x4 = x2.

2.276 The largest possible degree is still 7; the smallest is 0 (if
p and q are identical—for example, p(x) = x7 and q(x) = x7).

2.277 The largest possible degree is 14, and that’s the small-
est, too! If p(x) = ∑

7
i=0 aix

i and q(x) = ∑
7
i=0 bix

i , where a7 6= 0 and
b7 6= 0, then there’s a term a7b7x14 in the product.

2.278 The largest possible degree is 49, and that’s the small-
est, too! If p(x) = ∑

7
i=0 aix

i and q(x) = ∑
7
i=0 bix

i , where a7 6= 0 and
b7 6= 0, then

p(q(x)) = p(
7

∑
i=0

bix
i)

=
7

∑
j=0

aj

(
7

∑
i=0

bix
i

)j

= a7

(
7

∑
i=0

bix
i

)7

+ lower-degree terms

= a7

(

b77x7 + lower-degree terms
)7

+ lower-degree terms

= a7b77(x
7)7 + lower-degree terms.

2.279 p(x) = 1 + x2

2.280 p(x) = x2 (which has a single root at x = 0).

2.281 p(x) = x2 − 1 (which has roots at x = −1 and x = 1).

2.282 Here’s a simple algorithm (though there are much
faster solutions!):

findMedian(L):

Input: A list L with n ≥ 1 elements L[1], . . . , L[n].
Output: An index i ∈ {1, 2, . . . , n} such that L[i] is the

maximum value in L

1: while n ≥ 1
2: maxIndex := findMaxIndex(L)
3: minIndex := findMinIndex(L)
4: delete L[minIndex] and L[maxIndex]
5: return L[1]

Solution Manual (This version: October 19, 2017) 13

Section 3.2: An Introduction to Propositional Logic

3.1 False: 22 + 32 = 4 + 9 = 13 6= 16 = 42.

3.2 False: the binary number 11010010 has the value
2 + 16 + 64 + 128 = 210, not 202.

3.3 True: in repeated iterations, the value of x is 202, then
101, then 50, then 25, then 12, then 6, and then 3. When x is 3, then
we do one last iteration and set x to 1, and the loop terminates.

3.4 r ⇔ u ∧ v

3.5 p ⇔ (u ∧ v) ∨ (w ∧ z)

3.6 q ⇔ (u ∧ v) ∨ (u ∧ z) ∨ (v ∧w)

3.7 s ⇔ q ∧ ¬(u∧ v)

3.8 s ⇒ ¬t

3.9 p ∧ q ⇒ ¬w

3.10 She should answer “yes”: p ⇒ q is true whenever p
is false, and “you’re over 55 years old” is false for her. (That is,
False ⇒ True is true.)

3.11 To write the solution more compactly, we’ll use no-
tation for ands and ors that’s similar to ∑ and ∏ notation: we
will write

∧n
i=1pi to mean p1 ∧ p2 ∧ · · · ∧ pn, and

∨n
i=1pi to mean

p1 ∨ p2 ∨ · · · ∨ pn.
To express “at least 3 of {p1, . . . , pn} are true,” we’ll require

that pi , pj , and pk are all true, where i < j < k, and taking the “or”
over all the values of i, j, and k. Formally, the proposition is

n
∨

i=1

n
∨

j=i+1

n
∨

k=j+1

(pi ∧ pj ∧ pk)

3.12 The easiest way to write “at least n − 1 of {p1, . . . , pn}
are true” is to say that, for every two variables from {p1, . . . , pn},
at least one of the two is true. Using the same notation as in the
previous exercise, we can write this proposition as

n∧

i=1

n∧

j=i+1

(pi ∨ pj).

3.13 The identity of ∨ is False: x ∨ False ≡ False ∨ x ≡ x.

3.14 The identity of ∧ is True: x ∨ True ≡ True∨ x ≡ x.

3.15 The identity of ⇔ is True: x ⇔ True ≡ True ⇔ x ≡ x.

3.16 The identity of ⊕ is True: x ⊕ False ≡ False ∨ x ≡ x.

3.17 The zero of ∨ is True: x ∨ True ≡ True∨ x ≡ True.

3.18 The zero of ∧ is False: x ∧ False ≡ False ∧ x ≡ False.

3.19 The operator ⇔ doesn’t have a zero. Because
True ⇔ x ≡ x, the proposition True ⇔ x is true when x = True
and it’s false when x = False. Similarly, because True ⇔ x ≡ ¬x,
the proposition False ⇔ x is false when x = True and it’s true
when x = False. So neither True nor False is a zero for ⇔.

3.20 The operator ⊕ doesn’t have a zero: there’s no value z
such that z ⊕ True ≡ z ⊕ False, so no z is a zero for ⊕.

3.21 The left identity of ⇒ is True; the right identity is False:
p ⇒ False ≡ p and True ⇒ p ≡ p.

3.22 The right zero of ⇒ is True: p ⇒ True ≡ True. But
there is no left zero for implies: True ⇒ p is equivalent to p, not to
True; and False ⇒ p is equivalent to True, not to False.

3.23 x * y is equivalent to x ∧ y.

3.24 x + y is equivalent to x ∨ y.

3.25 1 - x is equivalent to ¬x.

3.26 (x * (1 - y)) + ((1 - x) * y) is equivalent to
(x ∧ ¬y) ∨ (¬x ∧ y), which is equivalent to x ⊕ y.

3.27 (p1 + p2 + p3 + ... + pn) ≥ 3

3.28 (p1 + p2 + p3 + ... + pn) ≥ n− 1

3.29 x3 ∨ x2
3.30 ¬x0 ∧ ¬x1
3.31 The value of x is a + b, where a := 4x2 + 1x0 and
b := 8x3 + 2x1. It takes a bit of work to persuade yourself of this
fact, but it turns out that x is divisible by 5 if and only if both a
and b are divisible by 5. Thus the proposition is:

(x0 ⇔ x2)
︸ ︷︷ ︸

a is divisible by 5

∧ (x1 ⇔ x3)
︸ ︷︷ ︸

b is divisible by 5

.

You can verify that this proposition is correct with a truth table.

3.32 There are several ways to express that x is an exact
power of two. Here’s one:

[(x1 ∨ x2 ∨ x3)⊕ x0] ∧ [(x0 ∨ x2 ∨ x3)⊕ x1]

∧ [(x0 ∨ x1 ∨ x3)⊕ x2] ∧ [(x0 ∨ x1 ∨ x2)⊕ x3]

This proposition expresses for each bit position i, either xi = 1 and
no other bit is 1, or xi 6= 1 and some other bit is 1. Another version
is to say that at least one bit is 1 but that no two bits are 1:

(x1 ∨ x2 ∨ x3 ∨ x4) ∧ (¬x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x3)

∧ (¬x1 ∨ ¬x4) ∧ (¬x2 ∨ ¬x3) ∧ (¬x2 ∨ ¬x4) ∧ (¬x3 ∨ ¬x4).

3.33 (x0 ⇔ y0) ∧ (x1 ⇔ y1) ∧ (x2 ⇔ y2) ∧ (x3 ⇔ y3)

3.34 Expressing x ≤ y is a bit more complicated than ex-
pressing equality. The following proposition does so by writing
out “x and y are identical before the ith position, and furthermore
xi < yi” for each possible index i:

(y3 ∧ ¬x3)

∨ [(y3 ⇔ x3) ∧ (y2 ∧ ¬x2)]

∨ [(y3 ⇔ x3) ∧ (y2 ⇔ x2) ∧ (y1 ∧ ¬x1)]

∨ [(y3 ⇔ x3) ∧ (y2 ⇔ x2) ∧ (y1 ⇔ x1) ∧ (y0 ∨ ¬x0)].

(The last disjunct also permits y0 = x0 when x1,2,3 = y1,2,3 .)

3.35

y0 = ¬x0

y1 = (¬x0 ∧ x1) ∨ (x0 ∧ ¬x1)

y2 = ((¬x0 ∨ ¬x1) ∧ x2) ∨ (x0 ∧ x1 ∧ ¬x2)

y3 = ((¬x0 ∨ ¬x1 ∨ ¬x2) ∧ x3) ∨ (x0 ∧ x1 ∧ x2 ∧ ¬x3)

3.36 Here is a solution in Python:

def variables(phi):

if type(phi) == str: # phi is an atomic proposition.

return [phi]

elif phi[0] == "not":

return variables(phi[1])

elif phi[0] in ["implies", "and", "or", "xor", "iff"]:

result = variables(phi[1])

for var in variables(phi[2]):

if var not in result:

result.append(var)

return result

3.37 Continuing in Python:

14 Liben-Nowell Discrete Math for CS

def eval(phi, rho):

if type(phi) == str:

return rho[phi]

elif phi[0] == "not":

return not eval(phi[1], rho)

elif phi[0] == "implies":

return (not eval(phi[1], rho)) or eval(phi[2], rho)

elif phi[0] == "and":

return eval(phi[1], rho) and eval(phi[2], rho)

elif phi[0] == "or":

return eval(phi[1], rho) or eval(phi[2], rho)

elif phi[0] == "xor":

return eval(phi[1], rho) != eval(phi[2], rho)

elif phi[0] == "iff":

return eval(phi[1], rho) == eval(phi[2], rho)

3.38 Continuing in Python:

def allAssignments(vars):

assignments = []

for var in vars:

newAssignmentsT = copy.deepcopy(assignments)

newAssignmentsF = copy.deepcopy(assignments)

for rho in newAssignmentsT:

rho[var] = True

for rho in newAssignmentsF:

rho[var] = False

assignments = newAssignmentsT + newAssignmentsF

return assignments

def satisfiers(phi):

goodAssignments = []

for rho in allAssignments(variables(phi)):

if eval(phi, rho):

goodAssignments.append(rho)

return goodAssignments

Solution Manual (This version: October 19, 2017) 15

Section 3.3: Propositional Logic: Some Extensions

3.39 True

3.40 False

3.41 True

3.42 Either p ⇒ (¬p ⇒ (p ⇒ q)) or (p ⇒ ¬p) ⇒ (p ⇒ q) is a
tautology.

3.43 (p ⇒ (¬p ⇒ p)) ⇒ q

3.44 The implicit parentheses make the given proposition
into ((p ⇒ ¬p) ⇒ p) ⇒ q, which is logically equivalent to p ⇒ q.

3.45 Set p = F, q = F, r = F. Then F ⇒ (F ⇒ F) ≡ F ⇒ T ≡ T,
but (F ⇒ F) ⇒ F ≡ T ⇒ F ≡ F.

3.46 Here’s the truth table:
p q p ⇒ q (p ⇒ q) ⇒ q q ⇒ q p ⇒ (q ⇒ q)
T T T T T T
T F F T T T
F T T T T T
F F T F T T

So p ⇒ (q ⇒ q) is a tautology (because its conclusion q ⇒ q is a
tautology), but (p ⇒ q) ⇒ q is false when both p and q are false.

3.47 The propositions p ⇒ (p ⇒ q) and (p ⇒ p) ⇒ q are
logically equivalent; they’re both true except when p is true and q
is false. Thus they are both logically equivalent to p ⇒ q. Neither
proposition is a tautology; both are satisfiable.

3.48 This answer is wrong: False ⊕ False is false, but when
p = q = False, then ¬(p ∧ q) ⇒ (¬p ∧ ¬q) has the value

¬(False ∧ False) ⇒ (¬False ∧ ¬False)
≡ ¬False ⇒ True

≡ True ⇒ True

≡ True.

3.49 This answer is wrong: False ⊕ False is false, but when
p = q = False, then (p ⇒ ¬q)∧ (q ⇒ ¬p) has the value

(False ⇒ ¬False) ∧ (False ⇒ ¬False)
≡ (False ⇒ True) ∧ (False ⇒ True)

≡ True∧ True

≡ True.

3.50 Write ϕ to denote (¬p ⇒ q) ∧ ¬(p ∧ q), and let’s build a
truth table:

p q ¬p ¬p ⇒ q ¬(p ∧ q) ϕ

T T F T F F
T F F T T T
F T T T T T
F F T F T F

This truth table matches the truth table for p ⊕ q, so the solution is
correct.

3.51 The given proposition is

¬
[
(p ∧ ¬q ⇒ ¬p ∧ q) ∧ (¬p ∧ q ⇒ p ∧ ¬q)

]
.

Let’s rewrite it as ¬[(ϕ ⇒ ψ) ∧ (ψ ⇒ ϕ)], where ϕ is p ∧ ¬q and ϕ
is ¬p ∧ q). Here’s a truth table:

ϕ = ψ = (ϕ⇒ ψ)
∧ (ψ ⇒ ϕ)p q p ∧ ¬q ¬p ∧ q ϕ⇒ ψ ψ ⇒ ϕ

T T F F T T T
T F T F F T F
F T F T T F F
F F F F T T T

The desired truth table for p ⊕ q is the negation of the last
column of this truth table—and the given proposition is
¬[(ϕ ⇒ ψ) ∧ (ψ ⇒ ϕ)], the negation of the last column. So
the solution is correct.

3.52 One proposition that works: (p∨ q) ⇒ (¬p∨¬q). (There
are many other choices too.)

3.53 Note that p ∨ (¬p ∧ q) is equivalent to p ∨ q, so we can
write the given code as

if (x > 20 or y < 0)

then foo(x,y)

else bar(x,y)

3.54 Note that (x − y) · y ≥ 0 if and only if

(x − y ≥ 0) ⇔ (y ≥ 0).

Thus, writing y ≥ 0 as p, and x ≥ y as q, the given expression is
p ∨ q ∨ (p ⇔ q). This proposition is a tautology! So we can rewrite
the given code as

foo(x,y)

3.55 Write p to denote 12 | x and q to denote 4 | x. Note that
if p is true, then q must be true. By unnesting the conditions, we
see that foo is called if p ∧ ¬q (which is impossible). Thus we can
rewrite the given code as

if (x % 12 == 0):

then bar(x)

else if (x == 17):

then baz(x)

else quz(x)

3.56 Let’s build a truth table for (¬p ⇒ q) ∧ (q ∧ p ⇒ ¬p),
which we’ll denote by ϕ:

p q ¬p ⇒ q (q∧ p ⇒ ¬p) ϕ

T T T F F
T F T T T
F T T T T
F F F T F

Thus ϕ is logically equivalent to p ⊕ q.

3.57 First, observe that p ⇒ p is always true, and q ⇒ True
is also always true. Thus we can immediately rewrite the given
statement as

(p ⇒ ¬p) ⇒ ((q ⇒ (p ⇒ p)) ⇒ p)

≡ (p ⇒ ¬p) ⇒ ((q ⇒ True) ⇒ p)

≡ (p ⇒ ¬p) ⇒ (True ⇒ p).

If p is true, then (p ⇒ ¬p) ⇒ (True ⇒ p) is (True ⇒ False) ⇒
(True ⇒ True), which is just False ⇒ True, or True. If p is false,
then (p ⇒ ¬p) ⇒ (True ⇒ p) is (False ⇒ True) ⇒ (True ⇒ False),
which is just True ⇒ False, or False. Thus the whole expression is
logically equivalent to p.

3.58 Both p ⇒ p and ¬p ⇒ ¬p are tautologies, so the
given proposition (p ⇒ p) ⇒ (¬p ⇒ ¬p) ∧ q is equivalent to
True ⇒ True ∧ q. That proposition is true when q is true, and false
when q is false—so the whole expression is logically equivalent to
q.

3.59 False; a proposition over a single variable p might be
logically equivalent to T or F instead of being logically equivalent

16 Liben-Nowell Discrete Math for CS

to p or ¬p. (For example, p ∧ ¬p.) However, every proposition ϕ
over p is logically equivalent to one of {p,¬p, T, F}. To prove this,
observe that there are only two truth assignments for ϕ, where p is
true and where p is false. Thus there are only four possible truth
tables for ϕ:

p

T T T F F
F T F T F

These columns are, respectively: T, p, ¬p, and F.

3.60

p q p
⇒

q

¬q (p
⇒

q)
∧
¬q

¬p (p
⇒

q)
∧
¬q

⇒
¬p

T T T F F F T
T F F T F F T
F T T F F T T
F F T T T T T

3.61

p q p ∨ q p ⇒ (p ∨ q)
T T T T
T F T T
F T T T
F F F T

3.62

p q p ∧ q (p ∧ q) ⇒ p

T T T T
T F F T
F T F T
F F F T

3.63

p q ¬p p ∨ q (p ∨ q) ∧ ¬p (p ∨ q) ∧ ¬p ⇒ q

T T F T F T
T F F T F T
F T T T T T
F F T F F T

3.64

p q ¬p p
⇒

q

¬p
⇒

q

(p
⇒

q)
∧
(¬

p
⇒

q)

[
(p

⇒
q)

∧
(¬

p
⇒

q)

]

⇒
q

T T F T T T T
T F F F T F T
F T T T T T T
F F T T F F T

3.65

p q r p
⇒

q

q
⇒

r

(p
⇒

q)
∧
(q

⇒
r)

p
⇒

r

[
(p

⇒
q)

∧
(q

⇒
r)

]

⇒
(p

⇒
r)

T T T T T T T T
T T F T F F F T
T F T F T F T T
T F F F T F F T
F T T T T T T T
F T F T F F T T
F F T T T T T T
F F F T T T T T

3.66 Writing ϕ to denote the given proposition (p ⇒
q) ∧ (p ⇒ r) ⇔ p ⇒ q∧ r, we have:

p q r q ∧ r p ⇒ q p ⇒ r p ⇒ q ∧ r ϕ

T T T T T T T T
T T F F T F F T
T F T F F T F T
T F F F F F F T
F T T T T T T T
F T F F T T T T
F F T F T T T T
F F F F T T T T

3.67 Writing ϕ to denote the given proposition (p ⇒
q) ∨ (p ⇒ r) ⇔ p ⇒ q∨ r, we have:

p q r q ∨ r p ⇒ q p ⇒ r p ⇒ q ∨ r ϕ

T T T T T T T T
T T F T T F T T
T F T T F T T T
T F F F F F F T
F T T T T T T T
F T F T T T T T
F F T T T T T T
F F F F T T T T

3.68

p q r q
∨

r

p
∧
(q
∨

r)

p
∧

q

p
∧

r

(p
∧

q)
∨
(p
∧

r)

p
∧
(q
∨

r)
⇔

(p
∧

q)
∨
(p
∧

r)

T T T T T T T T T
T T F T T T F T T
T F T T T F T T T
T F F F F F F F T
F T T T F F F F T
F T F T F F F F T
F F T T F F F F T
F F F F F F F F T

3.69

Solution Manual (This version: October 19, 2017) 17

p q r q
⇒

r

p
⇒

(q
⇒

r)

p
∧

q

p
∧

q
⇒

r

p
⇒

(q
⇒

r)
⇔

p
∧

q
⇒

r

T T T T T T T T
T T F F F T F T
T F T T T F T T
T F F T T F T T
F T T T T F T T
F T F F T F T T
F F T T T F T T
F F F T T F T T

3.70

p q p ∧ q p ∨ (p ∧ q)
T T T T
T F F T
F T F F
F F F F

Because the p column and p ∨ (p ∧ q) column match, the proposi-
tion p ∨ (p ∧ q) ⇔ p is a tautology.

3.71

p q p ∨ q p ∧ (p ∨ q)
T T T T
T F T T
F T T F
F F F F

Because the p column and p ∧ (p ∨ q) column match, the proposi-
tion p ∧ (p ∨ q) ⇔ p is a tautology.

3.72

p q p ⊕ q p ∨ q p ⊕ q ⇒ p ∨ q

T T F T T
T F T T T
F T T T T
F F F F T

3.73

p q p ∧ q ¬(p ∧ q) ¬p ¬q ¬p ∨ ¬q

T T T F F F F
T F F T F T T
F T F T T F T
F F F T T T T

3.74

p q p ∨ q ¬(p ∨ q) ¬p ¬q ¬p ∧ ¬q

T T T F F F F
T F T F F T F
F T T F T F F
F F F T T T T

3.75

p q r q ∨ r p ∨ (q∨ r) p ∨ q (p ∨ q) ∨ r

T T T T T T T
T T F T T T T
T F T T T T T
T F F F T T T
F T T T T T T
F T F T T T T
F F T T T F T
F F F F F F F

3.76

p q r q ∧ r p ∧ (q∧ r) p ∧ q (p ∧ q) ∧ r

T T T T T T T
T T F F F T F
T F T F F F F
T F F F F F F
F T T T F F F
F T F F F F F
F F T F F F F
F F F F F F F

3.77

p q r q ⊕ r p ⊕ (q ⊕ r) p ⊕ q (p ⊕ q)⊕ r

T T T F T F T
T T F T F F F
T F T T F T F
T F F F T T T
F T T F F T F
F T F T T T T
F F T T T F T
F F F F F F F

3.78

p q r q ⇔ r p ⇔ (q ⇔ r) p ⇔ q (p ⇔ q) ⇔ r

T T T T T T T
T T F F F T F
T F T F F F F
T F F T T F T
F T T T F F F
F T F F T F T
F F T F T T T
F F F T F T F

3.79

p q p ⇒ q ¬p ¬p ∨ q

T T T F T
T F F F F
F T T T T
F F T T T

3.80

p q r q ⇒ r p ⇒ (q ⇒ r) p ∧ q p ∧ q ⇒ r

T T T T T T T
T T F F F T F
T F T T T F T
T F F T T F T
F T T T T F T
F T F F T F T
F F T T T F T
F F F T T F T

3.81

p q p ⇔ q ¬p ¬q ¬p ⇔ ¬q

T T T F F T
T F F F T F
F T F T F F
F F T T T T

3.82

p q p ⇒ q ¬(p ⇒ q) ¬q p ∧ ¬q

T T T F F F
T F F T T T
F T T F F F
F F T F T F

3.83 If p stands for an expression that causes an error when it’s
evaluated, then the two blocks of code aren’t equivalent. The first
block causes a crash; the second doesn’t.

18 Liben-Nowell Discrete Math for CS

3.84 ¬p

3.85 p ∧ (q∨ r)

3.86 False, which can be expressed as p ∧ ¬p.

3.87 There are several possibilities: ¬(p ∨ q) or ¬(p ∨ r) or
¬(q ∨ r), or False (which can be expressed as p ∧ ¬p).

3.88 Here are the propositions from Figure 4.31 that can be
expressed with zero, one, or two ∧, ∨, and ¬ gates:

0 gates: p and q.
1 gate: ¬p, ¬q, p ∧ q, and p ∨ q.
2 gates: true (p ∨ ¬p); false (p ∧ ¬p); nand (¬(p ∧ q)), nor (¬(p ∨ q));

p ⇒ q (as ¬p ∨ q); q ⇒ p (as ¬q ∨ p); column #12 (p ∧ ¬q); and
column #14 (¬p ∧ q).

The only two propositions that can’t be expressed with two gates
are p ⊕ q and p ⇔ q.

3.89 Here’s a solution based on the solutions to Exer-
cises 3.37 and 3.38:

def allFormulae(numGates):

if numGates == 0:

return ["p", "q", "r"]

else:

subformulae = {}

for i in range(numGates):

subformulae[i] = allFormulae(i)

result = []

for phi in subformulae[numGates-1]:

result.append(["not", phi])

for i in range(numGates):

for phi in subformulae[i]:

for psi in subformulae[numGates-i-1]:

result.append(["and", phi, psi])

result.append(["or", phi, psi])

return result

def equivalent(phi, psi):

for rho in allAssignments(["p", "q", "r"]):

if eval(phi, rho) != eval(psi, rho):

return False

return True

def uniqueFormulae(formulae):

result = []

for phi in formulae:

unique = True

for psi in result:

if equivalent(phi, psi):

unique = False

print "rejecting", phi

break

if unique:

result.append(phi)

print "adding", phi

return result

candidates = allFormulae(0) + allFormulae(1) \

+ allFormulae(2) + allFormulae(3)

unique = uniqueFormulae(candidates)

Using this code, I get 84 different propositions.

3.90 The proposition p ⊕ q ⊕ r ⊕ s ⊕ t is true when an odd
number of the Boolean variables {p, q, r, s, t} are true—that is, when
p + q + r + s + t mod 2 = 1.

3.91 Here is the pseudocode:

1 for y = 1 ... height:

2 for x = 1 ... width:

3 if P[x,y] is more white than black:

4 error = "white" - P[x,y]

5 P[x,y] = "white"

6 else: # P[x,y] is closer to "black"

7 error = "black" - P[x,y]

8 P[x,y] = "black"

9

10 if x < width and not (y < height):

11 add 7
16 · error to P[x+1,y] (E)

12 if x > 1 and y < height:

13 add 1
16 · error to P[x-1,y+1] (SW)

14 if y < height:

15 add 5
16 · error to P[x,y+1] (S)

16 if x < width and y < height:

17 add 3
16 · error to P[x+1,y+1] (SE)

3.92 r ∨ (p ∧ q)

3.93 (q ∧ r) ∨ (¬q ∧ ¬r)∨ (¬p ∧ ¬q∧ r) ∨ (¬p ∧ q ∧ ¬r)

3.94 p ∨ q

3.95 ¬p ∧ ¬q ∧ ¬r

3.96 (p ∨ r)∧ (q ∨ r)

3.97 p ∧ (¬q∨ ¬r)

3.98 (p ∨ ¬q)∧ (¬q ∨ r)

3.99 p ∧ (q∨ r)

3.100 We can produce a one-clause 3CNF tautology: for
example, p ∨ ¬p ∨ q.

3.101 Using De Morgan’s Laws, we can interpret a clause
(a ∨ b ∨ c) as ¬(¬a ∧ ¬b ∧ ¬c). That is, the truth assign-
ment a = b = c = False does not satisfy a proposition
· · · ∧ (a ∨ b ∨ c) ∧ · · · . However, this particular clause is satis-
fied by any other truth assignment. Thus, we’ll need to use a
different clause to rule out each of the eight possible truth as-
signments. So the smallest 3CNF formula that’s not satisfiable
has three variables and eight clauses, each of which rules out one
possible satisfying truth assignment:

(p ∨ q ∨ r)∧ (p ∨ q∨ ¬r)

∧ (p ∨ ¬q ∨ r)∧ (p ∨ ¬q ∨ ¬r)

∧ (¬p ∨ q ∨ r)∧ (¬p ∨ q ∨ ¬r)

∧ (¬p ∨ ¬q ∨ r) ∧ (¬p ∨ ¬q∨ ¬r).

3.102 One way to work out this quantity is to split up the
types of legal clauses based on the number of unnegated variables
in them. We can have clauses with 0, 1, 2, or 3 unnegated clauses:

3 unnegated variables: the only such clause is p ∨ q ∨ r.
2 unnegated variables: there are three different choices of which

variable fails to appear in unnegated form (p, q, r), and there
are three different choices of which variable does appear in
negated form (again, p, q, r). Thus there are 3 · 3 = 9 total such
clauses.

1 unnegated variable: Again, there are three choices for the un-
negated variable, and three choices for the omitted negated
variable. Again there are 3 · 3 = 9 total such clauses.

0 unnegated variables: the only such clause is ¬p ∨ ¬q∨ ¬r.

So the total is 1 + 9 + 9 + 1 = 20 clauses.

3.103 Because a formula in 3CNF is a conjunction of clauses,
the entire proposition is a tautology if and only if every clause is a
tautology. The only tautological clauses are of the form a ∨ ¬a ∨ b,

Solution Manual (This version: October 19, 2017) 19

so the largest tautological 3CNF formula has six clauses:

(p ∨ ¬p ∨ q) ∧ (p ∨ ¬p ∨ r)

∧ (q ∨ ¬q∨ p) ∧ (q∨ ¬q ∨ r)

∧ (r ∨ ¬r ∨ p) ∧ (r ∨ ¬r ∨ q).

3.104 Suppose that ϕ is satisfied by the all-true truth
assignment—that is, when p = q = r = True then ϕ itself evaluates
to true. It’s fairly easy to see that if the all-true truth assignment is
the only truth assignment that satisfies ϕ then there can be more
clauses in ϕ than if there are many satisfying truth assignments.
We cannot have the clause ¬p ∨ ¬q ∨ ¬r in ϕ; otherwise, the all-
true assignment doesn’t satisfy ϕ. But any clause that contains at
least one unnegated literal can be in ϕ. Those clauses are:

1 clause with 3 unnegated variables: the only such clause is p ∨ q∨ r.
9 clauses with 2 unnegated variables: there are three choices of

which variable fails to appear in unnegated form, and there are
three different choices of which variable does appear in negated
form.

9 clauses with 1 unnegated variable: Again, there are three choices
for the unnegated variable, and three choices for the omitted
negated variable.

So the total is 1 + 9 + 9 = 19 clauses:

(p ∨ q ∨ r) ∧ (¬p ∨ q ∨ r) ∧ (p ∨ ¬q ∨ r) ∧ (p ∨ q ∨ ¬r)

∧ (¬p ∨ p ∨ q) ∧ (¬p ∨ p ∨ r)∧ (¬q ∨ q ∨ p) ∧ (¬q ∨ q∨ r)

∧ (¬r ∨ r ∨ p) ∧ (¬r ∨ r ∨ q) ∧ (¬p ∨ q ∨ r)∧ (¬p ∨ q ∨ ¬r)

∧ (¬p ∨ ¬q ∨ r) ∧ (p ∨ ¬p ∨ ¬q)∧ (p ∨ ¬p ∨ ¬r)∧ (q ∨ ¬q∨ ¬p)

∧ (q∨ ¬q∨ ¬r)∧ (r ∨ ¬r ∨ ¬p) ∧ (r ∨ ¬r ∨ ¬q)

3.105 Tautological DNF formulae correspond to satisfiable
CNF formulae. A Boolean formula ϕ is a tautology if and only
if ¬ϕ is not satisfiable, and for an m-clause ϕ in 3DNF, by an ap-
plication of De Morgan’s Laws we see that ¬ϕ is equivalent to an
m-clause 3CNF formula. Thus the smallest 3DNF formula that’s
a tautology has three variables and eight clauses, each of which
“rules in” one satisfying truth assignment.

(p ∧ q ∧ r) ∨ (p ∧ q ∧ ¬r)∨ (p ∧ ¬q∧ r)∨ (p ∧ ¬q∧ ¬r)

∨ (¬p ∧ q ∧ r) ∨ (¬p ∧ q ∧ ¬r)∨ (¬p ∧ ¬q∧ r)∨ (¬p ∧ ¬q ∧ ¬r).

3.106 We can give a one-clause non-satisfiable 3DNF formula:
p ∧ ¬p ∧ q.

20 Liben-Nowell Discrete Math for CS

Section 3.4: An Introduction to Predicate Logic

3.107 P(x) = x has strong typing and x is object-oriented.

3.108 P(x) = x has strong typing and x is not object-oriented.

3.109 P(x) = x has either scope, or x is both imperative and
has strong typing.

3.110 P(x) = x is either object-oriented or scripting.

3.111 P(x) = x does not have strong typing or x is not object-
oriented.

3.112 n ≥ 8

3.113 ∃i ∈ {1, 2, . . . , n} : isLower(xi)

3.114 ∃i ∈ {1, 2, . . . , n} : ¬isLower(xi) ∧ ¬isUpper(xi) ∧
¬isDigit(xi)

3.115 If there are no chairs at all in Bananaland, then both
“all chairs in Bananaland are green” and “no chairs in Bananaland
are green” are true.

3.116 The given predicate is logically equivalent to
[age(x) < 18] ∨ [gpa(x) ≥ 3.0]. Here’s the relevant truth table,
writing p for [age(x) < 18] and q for [gpa(x) ≥ 3.0)]:

p q ¬p∧ q p ∨ (¬p ∧ q) p ∨ q

T T F T T
F T T T T
T F F T T
F F F F F

3.117 The given predicate is logically equivalent to ¬[cs(x)].
Here’s the relevant truth table, writing p for cs(x) and q for
hawaii(x):

p q q ∧ p q
⇒

q
∧

p

¬(
q
⇒

q
∧

p)

p
⇒

¬(
q
⇒

(q
∧

p)
)

¬p

T T T T F F F
T F F T F F F
F T F F T T T
F F F T F T T

3.118 The given predicate is logically equivalent to
hasMajor(x) ∧ (¬junior(x) ∨ ¬oncampus(x)). Here’s the relevant
truth table, writing p for hasMajor(x) and q for junior(x) and r for
oncampus(x):

p q r p
∧
¬q

∧
r

p
∧
¬q

∧
¬r

p
∧

q
∧
¬r

(p
∧
¬q

∧
r)

∨
(p
∧
¬q

∧
¬r

)
∨
(p
∧

q
∧
¬r

)

p
∧
(¬

q
∨
¬r

)

T T T F F F F F
T T F F F T T T
T F T T F F T T
T F F F T F T T
F T T F F F F F
F T F F F F F F
F F T F F F F F
F F F F F F F F

3.119 The claim is false. Let’s think of this problem as a
question about a proposition involving {True, False,∧,∨,¬,⇒}
and—once each—p and q. It’s hopeless to express p ⇔ q with

this kind of proposition. Any such proposition must involve a
subproposition of the form ϕ ⋄ ψ, where ϕ uses p and ψ uses q.
Unfortunately, ϕ can only be logically equivalent to one of four
functions: True, False, p,¬p. And ψ can only be logically equiva-
lent to one of four functions: True, False, q,¬q.

But ϕ ⋄ ψ therefore can only compute the following functions:
True, False, p,¬p, q,¬q, p ∧ q,¬p ∧ q, p ∧ ¬q,¬p ∧ ¬q, p ∨ q,¬p ∨
q, p ∨ ¬q,¬p ∨ ¬q, p ⇒ q,¬p ⇒ q, p ⇒ ¬q,¬p ⇒ ¬q, p ⇐ q,¬p ⇐
q, p ⇐ ¬q,¬p ⇐ ¬q. Alas, though, each of the implications can be
expressed as a disjunction, so the unique outputs are these:

True, False, p,¬p, q,¬q, p ∧ q,¬p ∧ q, p ∧ ¬q,

¬p ∧ ¬q, p ∨ q,¬p ∨ q, p ∨ ¬q, and ¬p ∨ ¬q.

And there are only 14 entries here. That leaves two unimple-
mentable functions. They are, intuitively enough,⇔ and ⊕.

3.120 “I am ambivalent about writing my program in Java.”

3.121 “I was excited to learn about a study-abroad computer
science program on the island of Java.”

3.122 “I love to start my day with a cup o’ Java.”

3.123 We can prove that this statement is false by counterex-
ample: the number n = 2 is prime, but n

2 = 1 is in Z.

3.124 ∃x : ¬[Q(x) ⇒ P(x)], which is logically equivalent to
∃x : Q(x)∧ ¬P(x).

3.125 There exists a negative entry in the array A.

3.126 The “or” of the original statement might be inclusive
or exclusive, though the much more natural reading is the former.
Negating that version yields: There exists a decent programming
language that denotes block structure with neither parentheses nor
braces.

3.127 No odd number is evenly divisible by any other odd number.

3.128 This sentence is ambiguous: the type of quantification
expressed by “a lake” could be universal or existential. Thus there
are two reasonable readings of the original sentence: denoting by
L the set of lakes, these readings are

∃x ∈ MN : ∃ℓ ∈ L : d(x, ℓ) ≥ 10

∃x ∈ MN : ∀ℓ ∈ L : d(x, ℓ) ≥ 10.

The second reading seems more natural, so: For every point in
Minnesota, there is some lake within ten miles of that point.

3.129 This sentence is ambiguous; the order of quantification
is unclear. There are two natural readings:

∀x ∈ A : ∃y ∈ In : x(y) takes ≥ n log n steps

and ∃y ∈ In : ∀x ∈ A : x(y) takes ≥ n log n steps

where we’ve written A to denote the set of sorting algorithms
and In to denote the set of n-element arrays. (There’s also some
ambiguity in the meaning of n, which may be implicitly quantified
or may have a particular numerical value from context. We’ll leave
this ambiguity alone.)

The first reading, basically: after I see your code for sorting,
it’s possible for me to construct an array that make your particular
sorting algorithm slow. The second reading, basically: there’s a
single devilish array that makes every sorting algorithm slow.

Negating the first reading: There’s a sorting algorithm that, for
every n-element array, takes fewer than n log n steps on that array.
Negating the second reading: For every n-element array, there’s some
sorting algorithm that takes fewer than n log n steps on that array.

3.130 Assume the antecedent—that is, assume that there
exists a particular value x∗ ∈ S such that P(x∗) ∧ Q(x∗). Then

