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Chapter 2 
The Linear Regression Model

There are no exercises or applications in Chapter 2.
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Chapter 3 
Least Squares

 Exercises

1. Let 

a. The normal equations are given by (3-12),  (we drop the minus sign), hence for each 
of the columns of X, xk, we know that  This implies that and

b. Use  to conclude from the first normal equation that 

c. We know that  and  It follows then that 

because  Substitute ei to obtain 

or 

Then, 

d. The first derivative vector of ee is 2Xe. (The normal equations.) The second derivative matrix 
is 2(ee)/bb = 2XX. We need to show that this matrix is positive definite. The diagonal 
elements are 2n and which are clearly both positive. The determinant is [(2n)( )] 

(    Note that a much simpler 
proof appears after (3-6).

2. Write c as b  (c  b). Then, the sum of squared residuals based on c is 

(y  Xc)(y  Xc)  [y  X(b  (c  b))][y  X(b  (c  b))] 

 [(y  Xb)  X(c  b)][(y  Xb)  X(c  b)]

 (y  Xb)(y  Xb)  (c  b)XX(c  b)  2(c  b)X(y  Xb).

But, the third term is zero, as 2(c  b)X(y  Xb)  2(c  b)Xe  0. Therefore,

(y  Xc)(y  Xc)  ee  (c  b)XX(c  b)

or       (y  Xc)(y  Xc)  e e  (c  b) X X(c  b).

The right-hand side can be written as dd where d = X(c  b), so it is necessarily positive. This 
confirms what we knew at the outset, least squares is least squares. 
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4  Greene • Econometric Analysis, Seventh Edition

3. In the regression of y on i and X, the coefficients on X are b  (XMX)1XMy. M  I  i(ii)1i 
is the matrix which transforms observations into deviations from their column means. Since M0 is 
idempotent and symmetric we may also write the preceding as [(XM)(MX)]1(XM)(My) which 
implies that the regression of My on MX produces the least squares slopes. If only X is transformed 
to deviations, we would compute [(XM)(MX)]1(XM)y, but, of course, this is identical. However, 
if only y is transformed, the result is (XX)1XMy, which is likely to be quite different.

4. What is the result of the matrix product M1M where M1 is defined in (3-19) and M is defined in (3-14)?

There is no need to multiply out the second term. Each column of MX1 is the vector of residuals in 
the regression of the corresponding column of X1 on all of the columns in X. Since that x is one of the 
columns in X, this regression provides a perfect fit, so the residuals are zero. Thus, MX1 is a matrix 
of zeroes which implies that M1M  M. 

5. The original X matrix has n rows. We add an additional row, xs. The new y vector likewise has an 

additional element. Thus,  The new coefficient vector is

bn,s  (Xn,s Xn,s)1(Xn,syn,s). The matrix is Xn,s Xn,s  XnXn  xsxs. To invert this, use (A-66);

 The vector is

(Xn,s yn,s)  (Xn yn)  xsys. Multiply out the four terms to get

(Xn,s Xn,s)1(Xn,syn,s)  

bn    xsys xs  ys 

          bn   xsys  

bn  

bn  

bn  

6. Define the data matrix as follows:  

(The subscripts on the parts of y refer to the “observed” and “missing” rows of X.) 
We will use Frish-Waugh to obtain the first two columns of the least squares coefficient vector. 
b1  (X1M2X1)1(X1M2y). Multiplying it out, we find that M2  an identity matrix save for 
the last diagonal element that is equal to 0.

X1M2X1   This just drops the last observation. X1M2y is computed likewise. 

Thus, the coefficients on the first two columns are the same as if y0 had been linearly regressed on X1. 
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Chapter 3 Least Squares  5

The denominator of R2 is different for the two cases (drop the observation or keep it with zero fill and 
the dummy variable). For the first strategy, the mean of the n  1 observations should be different from 
the mean of the full n unless the last observation happens to equal the mean of the first n  1.

For the second strategy, replacing the missing value with the mean of the other n  1 observations, 
we can deduce the new slope vector logically. Using Frisch-Waugh, we can replace the column of 
x’s with deviations from the means, which then turns the last observation to zero. Thus, once again, 
the coefficient on the x equals what it is using the earlier strategy. The constant term will be the same 
as well.

7. For convenience, reorder the variables so that X  [i, Pd, Pn, Ps, Y]. The three dependent variables are 
Ed, En, and Es, and Y  Ed + En  Es. The coefficient vectors are

bd  (XX)1XEd,
       bn  (XX)1XEn, and

bs  (XX)1XEs.

The sum of the three vectors is

b  (XX)1X[Ed  En  Es]  (XX)1XY.

Now, Y is the last column of X, so the preceding sum is the vector of least squares coefficients in the 
regression of the last column of X on all of the columns of X, including the last. Of course, we get a 
perfect fit. In addition, X[Ed  En + Es] is the last column of XX, so the matrix product is equal to 
the last column of an identity matrix. Thus, the sum of the coefficients on all variables except income 
is 0, while that on income is 1. 

8. Let  denote the adjusted R2 in the full regression on K variables including xk, and let denote the 

adjusted R2 in the short regression on K-1 variables when xk is omitted. Let and denote their 
unadjusted counterparts. Then,

 1  ee/yM0y

            1  e1e1/yM0y

where ee is the sum of squared residuals in the full regression, e1e1 is the (larger) sum of squared 
residuals in the regression which omits xk, and yM0y = i (yi 

Then, = 1  [(n  1)/(n  K)](1  

and  1  [(n  1)/(n-(K  1))](1 

The difference is the change in the adjusted R2 when xk is added to the regression,

 [(n  1)/(n  K  1)][e1e1/yM0y]  [(n  1)/(n  K)][ee/yM0y].

The difference is positive if and only if the ratio is greater than 1. After cancelling terms, we require 
for the adjusted R2 to increase that e1e1/(n  K  1)]/[(n  K)/ee]  1. From the previous problem, we 
have that e1e1  ee  (xkM1xk), where M1 is defined above and bk is the least squares coefficient 
in the full regression of y on X1 and xk. Making the substitution, we require [(ee  (xkM1xk))
(n  K)]/[(n  K )ee  ee]  1. Since ee  (n  K )s2, this simplifies to [ee  (xkM1xk)]/
[ee  s2]  1. Since all terms are positive, the fraction is greater than one if and only (xkM1xk)  s2 
or (xkM1xk/s2)  1. The denominator is the estimated variance of bk, so the result is proved. 
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9. This R2 must be lower. The sum of squares associated with the coefficient vector which omits the 
constant term must be higher than the one which includes it. We can write the coefficient vector 
in the regression without a constant as c  (0,b*) where b*  (WW)1Wy, with W being the other 
K  1 columns of X. Then, the result of the previous exercise applies directly. 

10. We use the notations ‘Var[.]’ and ‘Cov[.]’ to indicate the sample variances and covariances. Our 
information is 

Var[N]  1, Var[D]  1, Var[Y]  1.

Since C  N  D, Var[C]  Var[N]  Var[D]  2Cov[N, D]  2(1  Cov[N, D]).
From the regressions, we have

Cov[C, Y]/Var[Y]  Cov[C, Y]  0.8.
But, Cov[C, Y]  Cov[N, Y]  Cov[D, Y].
Also, Cov[C, N]/Var[N]  Cov[C, N]  0.5,
but, Cov[C, N]  Var[N]  Cov[N, D]  1  Cov[N, D], so Cov[N, D]  0.5,
so that Var[C]  2(1 + 0.5)  1.
And, Cov[D, Y]/Var[Y]  Cov[D, Y]  0.4.
Since    Cov[C, Y]  0.8  Cov[N, Y]  Cov[D, Y], Cov[N, Y]  0.4.
Finally,  Cov[C, D]  Cov[N, D]  Var[D]  0.5  1  0.5.

Now, in the regression of C on D, the sum of squared residuals is (n  1){Var[C]  (Cov[C,D]/ 
Var[D])2Var[D]} based on the general regression result e2  (yi  y)2  b2 (xi  )2. All of the 
necessary figures were obtained above. Inserting these and n  1  20 produces a sum of squared 
residuals of 15.

11. The relevant submatrices to be used in the calculations are

   Investment  Constant  GNP  Interest
Investment    *  3.0500   3.9926  23.521
Constant           15   19.310   111.79
GNP                               25.218   148.98
Interest                                        943.86

The inverse of the lower right 3  3 block is (XX)1,

 7.5874 

 (XX)1  7.41859      7.84078
   .27313       .598953 .06254637

The coefficient vector is  b = (XX)1Xy  (.0727985, .235622, .00364866). The total sum of 
squares is yy = .63652, so we can obtain ee  yy  bXy. Xy is given in the top row of the matrix. 
Making the substitution, we obtain ee  .63652  .63291  .00361. To compute R2, we require 
i (yi  )2  .63652  15(3.05/15)2  .01635333, so R2  1  .00361/.0163533  .77925.

12. The results cannot be correct. Since log S/N  log S/Y  log Y/N by simple, exact algebra, the same 
result must apply to the least squares regression results. That means that the second equation estimated 
must equal the first one plus log Y/N. Looking at the equations, that means that all of the coefficients 
would have to be identical save for the second, which would have to equal its counterpart in the first 
equation, plus 1. Therefore, the results cannot be correct. In an exchange between Leff and Arthur 
Goldberger that appeared later in the same journal, Leff argued that the difference was a simple 
rounding error. You can see that the results in the second equation resemble those in the first, but 
not enough so that the explanation is credible. Further discussion about the data themselves appeared 
in a subsequent discussion. [See Goldberger (1973) and Leff (1973).]
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Chapter 3 Least Squares  7

Application 

?=======================================================================
? Chapter 3 Application 1
?=======================================================================
Read $
(Data appear in the text.)
Namelist ; X1 = one,educ,exp,ability$
Namelist ; X2 = mothered,fathered,sibs$
?=======================================================================
? a.
?=======================================================================
Regress  ; Lhs = wage ; Rhs = x1$
+----------------------------------------------------+
| Ordinary    least squares regression               |
| LHS=WAGE     Mean                 =   2.059333     |
|              Standard deviation   =   .2583869     |
| WTS=none     Number of observs.   =         15     |
| Model size   Parameters           =          4     |
|              Degrees of freedom   =         11     |
| Residuals    Sum of squares       =   .7633163     |
|              Standard error of e  =   .2634244     |
| Fit          R-squared            =   .1833511     |
|              Adjusted R-squared   =  -.3937136E-01 |
| Model test   F[  3,    11] (prob) =    .82 (.5080) |
+----------------------------------------------------+
+--------+--------------+----------------+--------+--------+----------+
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X|
+--------+--------------+----------------+--------+--------+----------+
 Constant|    1.66364000       .61855318     2.690   .0210
 EDUC    |     .01453897       .04902149      .297   .7723   12.8666667
 EXP     |     .07103002       .04803415     1.479   .1673   2.80000000
 ABILITY |     .02661537       .09911731      .269   .7933    .36600000
?=======================================================================
? b.
?=======================================================================
Regress  ; Lhs = wage ; Rhs = x1,x2$
+----------------------------------------------------+
| Ordinary    least squares regression               |
| LHS=WAGE     Mean                 =   2.059333     |
|              Standard deviation   =   .2583869     |
| WTS=none     Number of observs.   =         15     |
| Model size   Parameters           =          7     |
|              Degrees of freedom   =          8     |
| Residuals    Sum of squares       =   .4522662     |
|              Standard error of e  =   .2377673     |
| Fit          R-squared            =   .5161341     |
|              Adjusted R-squared   =   .1532347     |
| Model test   F[  6,     8] (prob) =   1.42 (.3140) |
+----------------------------------------------------+
+--------+--------------+----------------+--------+--------+----------+
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X|
+--------+--------------+----------------+--------+--------+----------+
 Constant|     .04899633       .94880761      .052   .9601
 EDUC    |     .02582213       .04468592      .578   .5793   12.8666667
 EXP     |     .10339125       .04734541     2.184   .0605   2.80000000
 ABILITY |     .03074355       .12120133      .254   .8062    .36600000
 MOTHERED|     .10163069       .07017502     1.448   .1856   12.0666667
 FATHERED|     .00164437       .04464910      .037   .9715   12.6666667
 SIBS    |     .05916922       .06901801      .857   .4162   2.20000000
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?=======================================================================
? c.
?=======================================================================
Regress  ; Lhs = mothered ; Rhs = x1 ; Res = meds $ 
Regress  ; Lhs = fathered ; Rhs = x1 ; Res = feds $ 
Regress  ; Lhs = sibs     ; Rhs = x1 ; Res = sibss $ 
Namelist ; X2S = meds,feds,sibss $
Matrix   ; list ; Mean(X2S) $
Matrix Result   has  3 rows and  1 columns.
               1
        +--------------
       1| -.1184238D-14
       2|  .1657933D-14
       3| -.5921189D-16
The means are (essentially) zero.  The sums must be zero, as these new variables are 
orthogonal to the columns of X1. The first column in X1 is a column of ones, so this 
means that these residuals must sum to zero.
?=======================================================================
? d. 
?=======================================================================
Namelist ; X = X1,X2 $
Matrix   ; i = init(n,1,1) $
Matrix   ; M0 = iden(n) - 1/n*i*i' $
Matrix   ; b12 = <X'X>*X'wage$
Calc     ; list ; ym0y =(N-1)*var(wage) $
Matrix   ; list ; cod = 1/ym0y * b12'*X'*M0*X*b12 $
Matrix COD      has  1 rows and  1 columns.
               1
        +--------------
       1|     .51613
Matrix   ; e = wage - X*b12 $
Calc     ; list ; cod = 1 - 1/ym0y * e'e $
+------------------------------------+
 COD     =       .516134
The R squared is the same using either method of computation.
Calc     ; list ; RsqAd = 1 - (n-1)/(n-col(x))*(1-cod)$
+------------------------------------+
 RSQAD   =       .153235
? Now drop the constant
Namelist ; X0 = educ,exp,ability,X2 $
Matrix   ; i = init(n,1,1) $
Matrix   ; M0 = iden(n) - 1/n*i*i' $
Matrix   ; b120 = <X0'X0>*X0'wage$
Matrix   ; list ; cod = 1/ym0y * b120'*X0'*M0*X0*b120 $
Matrix COD      has  1 rows and  1 columns.
               1
        +--------------
       1|     .52953
Matrix   ; e0 = wage - X0*b120 $
Calc     ; list ; cod = 1 - 1/ym0y * e0'e0 $
+------------------------------------+
| Listed Calculator Results          |
+------------------------------------+
 COD     =       .515973
The R squared now changes depending on how it is computed.  It also goes up, completely 
artificially.
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?=======================================================================
? e.
?=======================================================================
The R squared for the full regression appears immediately below.
? f.
Regress ; Lhs = wage ; Rhs = X1,X2 $
+----------------------------------------------------+
| Ordinary    least squares regression               |
| WTS=none     Number of observs.   =         15     |
| Model size   Parameters           =          7     |
|              Degrees of freedom   =          8     |
| Fit          R-squared            =   .5161341     |
+----------------------------------------------------+
+--------+--------------+----------------+--------+--------+----------+
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X|
+--------+--------------+----------------+--------+--------+----------+
 Constant|     .04899633       .94880761      .052   .9601
 EDUC    |     .02582213       .04468592      .578   .5793   12.8666667
 EXP     |     .10339125       .04734541     2.184   .0605   2.80000000
 ABILITY |     .03074355       .12120133      .254   .8062    .36600000
 MOTHERED|     .10163069       .07017502     1.448   .1856   12.0666667
 FATHERED|     .00164437       .04464910      .037   .9715   12.6666667
 SIBS    |     .05916922       .06901801      .857   .4162   2.20000000
Regress ; Lhs = wage ; Rhs = X1,X2S $
+----------------------------------------------------+
| Ordinary    least squares regression               |
| WTS=none     Number of observs.   =         15     |
| Model size   Parameters           =          7     |
|              Degrees of freedom   =          8     |
| Fit          R-squared            =   .5161341     |
|              Adjusted R-squared   =   .1532347     |
+----------------------------------------------------+
+--------+--------------+----------------+--------+--------+----------+
|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X|
+--------+--------------+----------------+--------+--------+----------+
 Constant|    1.66364000       .55830716     2.980   .0176
 EDUC    |     .01453897       .04424689      .329   .7509   12.8666667
 EXP     |     .07103002       .04335571     1.638   .1400   2.80000000
 ABILITY |     .02661537       .08946345      .297   .7737    .36600000
 MEDS    |     .10163069       .07017502     1.448   .1856 -.118424D-14
 FEDS    |     .00164437       .04464910      .037   .9715  .165793D-14
 SIBSS   |     .05916922       .06901801      .857   .4162 -.592119D-16

In the first set of results, the first coefficient vector is b1  (X1M2X1)1X1M2y and b2  (X2M1X2)1X2M1y.

In the second regression, the second set of regressors is M1X2, so b1  (X1M12 X1)1X1M12y 
where M12  I  (M1X2)[(M1X2)(M1X2)]1(M1X2).

Thus, because the “M” matrix is different, the coefficient vector is different. The second set of coefficients 
in the second regression is b2  [(M1X2)M1(M1X2)]1 (M1X2)M1y  (X2M1X2)1X2M1y because M1 is 
idempotent.
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	X1M2X1  This just drops the last observation. X1M2y is computed likewise. Thus, the coefficients on the first two columns are the same as if y0 had been linearly regressed on X1. The denominator of R2 is different for the two cases (drop the observation or keep it with zero fill and the dummy variable). For the first strategy, the mean of the n  1 observations should be different from the mean of the full n unless the last observation happens to equal the mean of the first n  1.
	For the second strategy, replacing the missing value with the mean of the other n  1 observations, we can deduce the new slope vector logically. Using Frisch-Waugh, we can replace the column of x’s with deviations from the means, which then turns the last observation to zero. Thus, once again, the coefficient on the x equals what it is using the earlier strategy. The constant term will be the same as well.
	7. For convenience, reorder the variables so that X  [i, Pd, Pn, Ps, Y]. The three dependent variables are Ed, En, and Es, and Y  Ed + En  Es. The coefficient vectors are
	The sum of the three vectors is
	Now, Y is the last column of X, so the preceding sum is the vector of least squares coefficients in the regression of the last column of X on all of the columns of X, including the last. Of course, we get a perfect fit. In addition, X[Ed  En + Es] is the last column of XX, so the matrix product is equal to the last column of an identity matrix. Thus, the sum of the coefficients on all variables except income is 0, while that on income is 1.
	8. Let denote the adjusted R2 in the full regression on K variables including xk, and letdenote the adjusted R2 in the short regression on K‑1 variables when xk is omitted. Let and denote their unadjusted counterparts. Then,
	where ee is the sum of squared residuals in the full regression, e1e1 is the (larger) sum of squared residuals in the regression which omits xk, and yM0y = i (yi 
	Then, = 1  [(n  1)/(n  K)](1 
	and  1  [(n  1)/(n‑(K  1))](1 
	The difference is the change in the adjusted R2 when xk is added to the regression,
	The difference is positive if and only if the ratio is greater than 1. After cancelling terms, we require for the adjusted R2 to increase that e1e1/(n  K  1)]/[(n  K)/ee]  1. From the previous problem, we have that e1e1  ee  (xkM1xk), where M1 is defined above and bk is the least squares coefficient in the full regression of y on X1 and xk. Making the substitution, we require [(ee  (xkM1xk)) (n  K)]/[(n  K )ee  ee]  1. Since ee  (n  K )s2, this simplifies to [ee  (xkM1xk)]/ [ee  s2]  1. Since all terms are positive, the fraction is greater than one if and only (xkM1xk)  s2 or (xkM1xk/s2)  1. The denominator is the estimated variance of bk, so the result is proved.
	9. This R2 must be lower. The sum of squares associated with the coefficient vector which omits the constant term must be higher than the one which includes it. We can write the coefficient vector in the regression without a constant as c  (0,b*) where b*  (WW)1Wy, with W being the other K  1 columns of X. Then, the result of the previous exercise applies directly.
	10. We use the notations ‘Var[.]’ and ‘Cov[.]’ to indicate the sample variances and covariances. Our information is
	Var[N]  1, Var[D]  1, Var[Y]  1.
	Since C  N  D, Var[C]  Var[N]  Var[D]  2Cov[N, D]  2(1  Cov[N, D]).
	From the regressions, we have
	Cov[C, Y]/Var[Y]  Cov[C, Y]  0.8.
	But, Cov[C, Y]  Cov[N, Y]  Cov[D, Y].
	Also, Cov[C, N]/Var[N]  Cov[C, N]  0.5,
	but, Cov[C, N]  Var[N]  Cov[N, D]  1  Cov[N, D], so Cov[N, D]  0.5,
	so that Var[C]  2(1 + 0.5)  1.
	And, Cov[D, Y]/Var[Y]  Cov[D, Y]  0.4.
	Since Cov[C, Y]  0.8  Cov[N, Y]  Cov[D, Y], Cov[N, Y]  0.4.
	Finally, Cov[C, D]  Cov[N, D]  Var[D]  0.5  1  0.5.
	Now, in the regression of C on D, the sum of squared residuals is (n  1){Var[C]  (Cov[C,D]/ Var[D])2Var[D]} based on the general regression result e2  (yi  y)2  b2 (xi )2. All of the necessary figures were obtained above. Inserting these and n  1  20 produces a sum of squared residuals of 15.
	11. The relevant submatrices to be used in the calculations are
	The inverse of the lower right 3  3 block is (XX)1,
	The coefficient vector is b = (XX)1Xy  (.0727985, .235622, .00364866). The total sum of squares is yy = .63652, so we can obtain ee  yy  bXy. Xy is given in the top row of the matrix. Making the substitution, we obtain ee  .63652  .63291  .00361. To compute R2, we require i (yi )2  .63652  15(3.05/15)2  .01635333, so R2  1  .00361/.0163533  .77925.
	12. The results cannot be correct. Since log S/N  log S/Y  log Y/N by simple, exact algebra, the same result must apply to the least squares regression results. That means that the second equation estimated must equal the first one plus log Y/N. Looking at the equations, that means that all of the coefficients would have to be identical save for the second, which would have to equal its counterpart in the first equation, plus 1. Therefore, the results cannot be correct. In an exchange between Leff and Arthur Goldberger that appeared later in the same journal, Leff argued that the difference was a simple rounding error. You can see that the results in the second equation resemble those in the first, but not enough so that the explanation is credible. Further discussion about the data themselves appeared in a subsequent discussion. [See Goldberger (1973) and Leff (1973).]
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