STUDENT SOLUTIONS MANUAL

TO ACCOMPANY

Elementary Linear Algebra with Applications

NINTH EDITION

Howard Anton Chris Rorres

Drexel University

Prepared by Christine Black Seattle University

Blaise DeSesa Kutztown University

Molly Gregas

Duke University

Elizabeth M. Grobe Charles A. Grobe, Jr. Bowdoin College

Cover Photo: ©John Marshall/Stone/Getty Images

Copyright © 2005 John Wiley & Sons, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, (201) 748-6011, fax (201) 748-6008, or online at https://www.wiley.com/go/permissions.

To order books or for customer service call 1-800-CALL-WILEY (225-5945).

ISBN-13 978- 0-471-43329-3 ISBN-10 0-471-43329-2

Printed in the United States of America

10987654321

Printed and bound by Bind-Rite Graphics, Inc.

TABLE OF CONTENTS

Chapter 1				
Exercise Set 1.1		 	 	1
Exercise Set 1.2		 	 	3
Exercise Set 1.3		 	 	13
Exercise Set 1.4		 	 	21
Exercise Set 1.5		 	 	31
Exercise Set 1.6		 	 	39
Exercise Set 1.7		 	 	47
Supplementary Exe	ercises 1	 	 	51
Chapter 2				
Exercise Set 2.1		 	 	61
Exercise Set 2.2		 	 	65
Exercise Set 2.3		 	 	73
Exercise Set 2.4		 	 	77
Supplementary Exe	ercises 2	 	 	81
Technology Exercis	es 2	 	 	87
Chapter 3				
Exercise Set 3.1		 	 	89
Exercise Set 3.2		 	 	95
Exercise Set 3.3		 	 	97
Exercise Set 3.4		 	 	101
Exercise Set 3.5		 	 	107
Chapter 4				
Exercise Set 4.1		 	 	111
Exercise Set 4.2		 	 	115
Exercise Set 4.3		 	 	119
Exercise Set 4.4		 	 	125
Chapter 5				
Exercise Set 5.1		 	 	131
Exercise Set 5.2		 	 	135
Exercise Set 5.3		 	 	141
Exercise Set 5.4		 	 	145
Exercise Set 5.5				
Exercise Set 5.6				
Supplementary Exe	ercises 5	 	 	157

Chapter 6
Exercise Set 6.1
Exercise Set 6.2
Exercise Set 6.3
Exercise Set 6.4
Exercise Set 6.5
Exercise Set 6.6
Supplementary Exercises 6
Chapter 7
Exercise Set 7.1
Exercise Set 7.2
Exercise Set 7.3
Supplementary Exercises 7
Chapter 8
Exercise Set 8.1
Exercise Set 8.2
Exercise Set 8.3
Exercise Set 8.4
Exercise Set 8.5
Exercise Set 8.6
Supplementary Exercises 8
Chapter 9
Exercise Set 9.1
Exercise Set 9.2
Exercise Set 9.3
Exercise Set 9.4
Exercise Set 9.5
Exercise Set 9.6
Exercise Set 9.7
Exercise Set 9.8
Exercise Set 9.9
Chapter 10
Exercise Set 10.1
Exercise Set 10.2
Exercise Set 10.3
Exercise Set 10.4
Exercise Set 10.5
Exercise Set 10.6
Supplementary Exercises 10

Chapter 11

Exercise Set 11.1
Exercise Set 11.2
Exercise Set 11.3
Exercise Set 11.4
Exercise Set 11.5
Exercise Set 11.6
Exercise Set 11.7
Exercise Set 11.8
Exercise Set 11.9
Exercise Set 11.10
Exercise Set 11.11
Exercise Set 11.12
Exercise Set 11.13
Exercise Set 11.14
Exercise Set 11.15
Exercise Set 11.16
Exercise Set 11.17
Exercise Set 11.18
Exercise Set 11.19
Exercise Set 11.20
Exercise Set 11.21 435

EXERCISE SET 1.1

- **1. (b)** Not linear because of the term x_1x_3 .
 - (d) Not linear because of the term x_1^{-2} .
 - (e) Not linear because of the term $x_1^{3/5}$.
- **7.** Since each of the three given points must satisfy the equation of the curve, we have the system of equations

$$ax_1^2 + bx_1 + c = y_1$$

$$ax_2^2 + bx_2 + c = y_2$$

$$ax_3^2 + bx_3 + c = y_3$$

If we consider this to be a system of equations in the three unknowns a, b, and c, the augmented matrix is clearly the one given in the exercise.

- **9.** The solutions of $x_1 + kx_2 = c$ are $x_1 = c kt$, $x_2 = t$ where t is any real number. If these satisfy $x_1 + \ell x_2 = d$, then $c kt + \ell t = d$, or $(\ell k)t = d c$ for all real numbers t. In particular, if t = 0, then d = c, and if t = 1, then $\ell = k$.
- 11. If x y = 3, then 2x 2y = 6. Therefore, the equations are consistent if and only if k = 6; that is, there are no solutions if $k \neq 6$. If k = 6, then the equations represent the same line, in which case, there are infinitely many solutions. Since this covers all of the possibilities, there is never a unique solution.

1

EXERCISE SET 1.2

- 1. (e) Not in reduced row-echelon form because Property 2 is not satisfied.
 - **(f)** Not in reduced row-echelon form because Property 3 is not satisfied.
 - (g) Not in reduced row-echelon form because Property 4 is not satisfied.
- **5. (a)** The solution is

$$x_3 = 5$$

$$x_2 = 2 - 2 x_3 = -8$$

$$x_1 = 7 - 4 x_3 + 3x_2 = -37$$

(b) Let $x_4 = t$. Then $x_3 = 2 - t$. Therefore

$$x_2 = 3 + 9t - 4x_3 = 3 + 9t - 4(2 - t) = -5 + 13t$$

 $x_1 = 6 + 5t - 8x_3 = 6 + 5t - 8(2 - t) = -10 + 13t$

7. (a) In Problem 6(a), we reduced the augmented matrix to the following row-echelon matrix:

$$\left[\begin{array}{ccccc}
1 & 1 & 2 & 8 \\
0 & 1 & -5 & -9 \\
0 & 0 & 1 & 2
\end{array}\right]$$

By Row 3, x_3 = 2. Thus by Row 2, x_2 = $5x_3$ – 9 = 1. Finally, Row 1 implies that x_1 = $-x_2$ – 2 x_3 + 8 = 3. Hence the solution is

$$x_1 = 3$$

$$x_2 = 1$$

$$x_3 = 2$$

(c) According to the solution to Problem 6(c), one row-echelon form of the augmented matrix is

$$\begin{bmatrix}
1 & -1 & 2 & -1 & -1 \\
0 & 1 & -2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

Row 2 implies that y=2z. Thus if we let z=s, we have y=2s. Row 1 implies that x=-1+y-2z+w. Thus if we let w=t, then x=-1+2s-2s+t or x=-1+t. Hence the solution is

$$x = -1 + t$$
$$y = 2s$$
$$z = s$$

9. (a) In Problem 8(a), we reduced the augmented matrix of this system to row-echelon form, obtaining the matrix

w = t

$$\begin{bmatrix}
1 & -3/2 & -1 \\
0 & 1 & 3/4 \\
0 & 0 & 1
\end{bmatrix}$$

Row 3 again yields the equation 0 = 1 and hence the system is inconsistent.

(c) In Problem 8(c), we found that one row-echelon form of the augmented matrix is

$$\begin{bmatrix}
 1 & -2 & 3 \\
 0 & 0 & 0 \\
 0 & 0 & 0
 \end{bmatrix}$$

Again if we let $x_2 = t$, then $x_1 = 3 + 2x_2 = 3 + 2t$.

11. (a) From Problem 10(a), a row-echelon form of the augmented matrix is

$$\begin{bmatrix} 1 & -2/5 & 6/5 & 0 \\ 0 & 1 & 27 & 5 \end{bmatrix}$$

If we let $x_3=t$, then Row 2 implies that $x_2=5-27t$. Row 1 then implies that $x_1=(-6/5)x_3+(2/5)x_2=2-12t$. Hence the solution is

$$x_1 = 2 - 12t$$

$$x_2 = 5 - 27t$$

$$x_3 = t$$

(c) From Problem 10(c), a row-echelon form of the augmented matrix is

$$\begin{bmatrix}
1 & 2 & 1/2 & 7/2 & 0 & 7/2 \\
0 & 0 & 1 & 2 & -1 & 4 \\
0 & 0 & 0 & 1 & -1 & 3 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

If we let y = t, then Row 3 implies that x = 3 + t. Row 2 then implies that

$$w = 4 - 2x + t = -2 - t.$$

Now let v = s. By Row 1, u = 7/2 - 2s - (1/2)w - (7/2)x = -6 - 2s - 3t. Thus we have the same solution which we obtained in Problem 10(c).

13. (b) The augmented matrix of the homogeneous system is

$$\begin{bmatrix}
3 & 1 & 1 & 1 & 0 \\
5 & -1 & 1 & -1 & 0
\end{bmatrix}$$

This matrix may be reduced to

If we let $x_3 = 4s$ and $x_4 = t$, then Row 2 implies that

$$4x_2 = -4t - 4s$$
 or $x_2 = -t - s$

Now Row 1 implies that

$$3x_1 = -x_2 - 4s - t = t + s - 4s - t = -3s$$
 or $x_1 = -s$

Therefore the solution is

$$x_1 = -s$$

$$x_2 = -(t+s)$$

$$x_3 = 4s$$

$$x_4 = t$$

15. (a) The augmented matrix of this system is

$$\begin{bmatrix} 2 & -1 & 3 & 4 & 9 \\ 1 & 0 & -2 & 7 & 11 \\ 3 & -3 & 1 & 5 & 8 \\ 2 & 1 & 4 & 4 & 10 \end{bmatrix}$$

Its reduced row-echelon form is

$$\begin{bmatrix}
1 & 0 & 0 & 0 & -1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 2
\end{bmatrix}$$

Hence the solution is

$$I_1 = -1$$

$$I_2 = 0$$

$$I_3 = 1$$

$$I_4 = 2$$

(b) The reduced row-echelon form of the augmented matrix is

$$\begin{bmatrix}
1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

If we let $Z_2 = s$ and $Z_5 = t$, then we obtain the solution

$$Z_1 = -s - t$$

$$Z_2 = s$$

$$Z_3 = -t$$

$$Z_4 = 0$$

$$Z_5 = t$$

17. The Gauss-Jordan process will reduce this system to the equations

$$x + 2y - 3z = 4$$

$$y - 2z = 10/7$$

$$(a^2 - 16)z = a - 4$$

If $\alpha = 4$, then the last equation becomes 0 = 0, and hence there will be infinitely many solutions—for instance, z=t, y=2 $t+\frac{10}{7}, x=-2$ $(2t+\frac{10}{7})+3t+4$. If a=-4, then the last equation becomes 0=-8, and so the system will have no solutions. Any other value of a will yield a unique solution for z and hence also for y and x.

19. One possibility is

$$\begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$$

Another possibility is

$$\begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 7 \\ 1 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 7/2 \\ 1 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 7/2 \\ 0 & 1 \end{bmatrix}$$

21. If we treat the given system as linear in the variables $\sin \alpha$, $\cos \beta$, and $\tan \gamma$, then the augmented matrix is

$$\begin{bmatrix}
1 & 2 & 3 & 0 \\
2 & 5 & 3 & 0 \\
-1 & -5 & 5 & 0
\end{bmatrix}$$

This reduces to

$$\begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0
 \end{bmatrix}$$

so that the solution (for α , β , γ between 0 and 2 π) is

$$\sin \alpha = 0 \Rightarrow \alpha = 0, \pi, 2\pi$$

$$\cos \beta = 0 \Rightarrow \beta = \pi/2, 3\pi/2$$

$$\tan \gamma = 0 \Rightarrow \gamma = 0, \pi, 2\pi$$

That is, there are $3 \cdot 2 \cdot 3 = 18$ possible triples α , β , γ which satisfy the system of equations.

23. If $\lambda = 2$, the system becomes

$$-x_2 = 0$$

$$2x_1 - 3x_2 + x_3 = 0$$

$$-2x_1 + 2x_2 - x_3 = 0$$

Thus x_2 = 0 and the third equation becomes –1 times the second. If we let x_1 = t, then x_3 = -2t.

25. Using the given points, we obtain the equations

$$d = 10$$

$$a + b + c + d = 7$$

$$27a + 9b + 3c + d = -11$$

$$64a + 16b + 4c + d = -14$$

If we solve this system, we find that a = 1, b = -6, c = 2, and d = 10.

27. (a) If $\alpha = 0$, then the reduction can be accomplished as follows:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \rightarrow \begin{bmatrix} 1 & \frac{b}{a} \\ c & d \end{bmatrix} \rightarrow \begin{bmatrix} 1 & \frac{b}{a} \\ 0 & \frac{ad-bc}{a} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & \frac{b}{a} \\ 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

If a = 0, then $b \neq 0$ and $c \neq 0$, so the reduction can be carried out as follows:

$$\begin{bmatrix} 0 & b \\ c & d \end{bmatrix} \rightarrow \begin{bmatrix} c & d \\ 0 & b \end{bmatrix} \rightarrow \begin{bmatrix} 1 & \frac{d}{c} \\ 0 & b \end{bmatrix} \rightarrow \begin{bmatrix} 1 & \frac{d}{c} \\ 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Where did you use the fact that $ad - bc \neq 0$? (This proof uses it twice.)

29. There are eight possibilities. They are

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}, \begin{pmatrix}
1 & 0 & p \\
0 & 1 & q \\
0 & 0 & 0
\end{pmatrix}, \begin{pmatrix}
1 & p & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{pmatrix}, \begin{pmatrix}
0 & 1 & p \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}, \begin{pmatrix}
0 & 1 & p \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}, \begin{pmatrix}
0 & 1 & p \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}, \begin{pmatrix}
0 & 1 & p \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}, \text{ where } p, q, \text{ are any real numbers,}$$
and
$$\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}$$

(b)
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 & p \\ 0 & 1 & 0 & q \\ 0 & 0 & 1 & r \\ 0 & 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 & p & 0 \\ 0 & 1 & q & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & p & q & 0 \\ 0 & 0 & 1 & r & s \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 & p & q \\ 0 & 1 & r & s \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 & p & q \\ 0 & 1 & r & s \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 & p & q \\ 0 & 0 & 1 & q & q \\ 0 & 0 & 1 & q & q \\ 0 & 0 & 0 & 0 & q \\ 0 & 0 & 0 & 0 & q \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 & p & q & q \\ 0 & 0 & 0 & 1 & q & q \\ 0 & 0 & 0 & 0 & q & q \\ 0$$

31. (a) False. The reduced row-echelon form of a matrix is unique, as stated in the remark in this section.

(b) True. The row-echelon form of a matrix is not unique, as shown in the following example:

$$\begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$

but

$$\begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 \\ 1 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 \\ 0 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$$

(c) False. If the reduced row-echelon form of the augmented matrix for a system of 3 equations in 2 unknowns is

$$\begin{bmatrix}
 1 & 0 & a \\
 0 & 1 & b \\
 0 & 0 & 0
 \end{bmatrix}$$

then the system has a unique solution. If the augmented matrix of a system of 3 equations in 3 unknowns reduces to

$$\left[
 \begin{array}{cccc}
 1 & 1 & 1 & 0 \\
 0 & 0 & 0 & 1 \\
 0 & 0 & 0 & 0
 \end{array}
 \right]$$

then the system has no solutions.

(d) False. The system can have a solution only if the 3 lines meet in at least one point which is common to all 3.

EXERCISE SET 1.3

- 1. (c) The matrix AE is 4×4 . Since B is 4×5 , AE + B is not defined.
 - (e) The matrix A + B is 4×5 . Since E is 5×4 , E(A + B) is 5×5 .
 - **(h)** Since A^T is 5×4 and E is 5×4 , their sum is also 5×4 . Thus $(A^T + E)D$ is 5×2 .
- **3.** (e) Since 2B is a 2×2 matrix and C is a 2×3 matrix, 2B C is not defined.
 - (g) We have

$$-3(D+2E) = -3\left(\begin{bmatrix} 1 & 5 & 2 \\ -1 & 0 & 1 \\ 3 & 2 & 4 \end{bmatrix} + \begin{bmatrix} 12 & 2 & 6 \\ -2 & 2 & 4 \\ 8 & 2 & 6 \end{bmatrix}\right)$$
$$= -3\begin{bmatrix} 13 & 7 & 8 \\ -3 & 2 & 5 \\ 11 & 4 & 10 \end{bmatrix} = \begin{bmatrix} -39 & -21 & -24 \\ 9 & -6 & -15 \\ -33 & -12 & -30 \end{bmatrix}$$

- (j) We have tr(D-3E) = (1-3(6)) + (0-3(1)) + (4-3(3)) = -25.
- **5. (b)** Since B is a 2×2 matrix and A is a 3×2 matrix, BA is not defined (although AB is).
 - (d) We have

$$AB = \begin{bmatrix} 12 & -3 \\ -4 & 5 \\ 4 & 1 \end{bmatrix}$$

Hence

$$(AB)C = \begin{bmatrix} 3 & 45 & 9 \\ 11 & -11 & 17 \\ 7 & 17 & 13 \end{bmatrix}$$

(e) We have

$$A(BC) = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 15 & 3 \\ 6 & 2 & 10 \end{bmatrix} = \begin{bmatrix} 3 & 45 & 9 \\ 11 & -11 & 17 \\ 7 & 17 & 13 \end{bmatrix}$$

(f) We have

$$CC^{T} = \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 4 & 1 \\ 2 & 5 \end{bmatrix} = \begin{bmatrix} 21 & 17 \\ 17 & 35 \end{bmatrix}$$

- (j) We have $tr(4E^T D) = tr(4E D) = (4(6) 1) + (4(1) 0) + (4(3) 4) = 35$.
- 7. (a) The first row of A is

$$A_1 = [3 -2 7]$$

Thus, the first row of AB is

$$A_{1}B = \begin{bmatrix} 3 & -2 & 7 \end{bmatrix} \begin{bmatrix} 6 & -2 & 4 \\ 0 & 1 & 3 \\ 7 & 7 & 5 \end{bmatrix}$$
$$= \begin{bmatrix} 67 & 41 & 41 \end{bmatrix}$$

(c) The second column of B is

$$B_2 = \begin{bmatrix} -2 \\ 1 \\ 7 \end{bmatrix}$$

Thus, the second column of AB is

$$AB_2 = \begin{bmatrix} 3 & -2 & 7 \\ 6 & 5 & 4 \\ 0 & 4 & 9 \end{bmatrix} \begin{bmatrix} -2 \\ 1 \\ 7 \end{bmatrix} = \begin{bmatrix} 41 \\ 21 \\ 67 \end{bmatrix}$$

(e) The third row of A is

$$A_3 = [0 4 9]$$

Thus, the third row of AA is

$$A_3 A = \begin{bmatrix} 0 & 4 & 9 \end{bmatrix} \begin{bmatrix} 3 & -2 & 7 \\ 6 & 5 & 4 \\ 0 & 4 & 9 \end{bmatrix}$$
$$= \begin{bmatrix} 24 & 56 & 97 \end{bmatrix}$$

9. (a) The product yA is the matrix

$$[y_1a_{11} + y_2a_{21} + \dots + y_ma_{m1} \qquad y_1a_{12} + y_2a_{22} + \dots + y_ma_{m2} \dots \\ y_1a_{1n} + y_2a_{2n} + \dots + y_ma_{mn}]$$

We can rewrite this matrix in the form

$$y_{1}\left[a_{11}\,a_{12}\,\cdots\,a_{1n}\right]+y_{2}\left[a_{21}\,a_{22}\,\cdots\,a_{2n}\right]+\cdots+y_{m}\left[a_{m1}\,a_{m2}\,\cdots\,a_{mn}\right]$$

which is, indeed, a linear combination of the row matrices of A with the scalar coefficients of \mathbf{y} .

(b) Let $y = [y_1, y_2, \dots, y_m]$

and
$$A = \begin{bmatrix} A_1 \\ A_2 \\ \vdots \\ A_m \end{bmatrix}$$
 be the m rows of A .

by 9a,
$$yA = \begin{bmatrix} y_1 & A_1 \\ y_2 & A_2 \\ \vdots & y_m & A_m \end{bmatrix}$$

Taking transposes of both sides, we have

$$(yA)^T = A^T y^T = (A_1 \mid A_2 \mid \cdots \mid A_m) \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}$$

$$= \begin{bmatrix} y_1 & A_1 \\ y_2 & A_2 \\ \vdots & & \\ y_m & A_m \end{bmatrix}^T = (y_1 A_1 | y_2 A_2 | \dots | y_m A_m)$$

11. Let f_{ij} denote the entry in the i^{th} row and j^{th} column of C(DE). We are asked to find f_{23} . In order to compute f_{23} , we must calculate the elements in the second row of C and the third column of DE. According to Equation (3), we can find the elements in the third column of DE by computing DE_3 where E_3 is the third column of E. That is,

$$f_{23} = \begin{bmatrix} 3 & 1 & 5 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 1 & 5 & 2 \\ -1 & 0 & 1 \\ 3 & 2 & 4 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ 3 \end{bmatrix}$$
$$= \begin{bmatrix} 3 & 1 & 5 \end{bmatrix} \begin{bmatrix} 19 \\ 0 \\ 25 \end{bmatrix} = 182$$

15. (a) By block multiplication,

$$AB = \begin{bmatrix} \begin{bmatrix} -1 & 2 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -3 & 5 \end{bmatrix} + \begin{bmatrix} 1 & 5 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} 7 & -1 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \end{bmatrix} + \begin{bmatrix} 1 & 5 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} 5 \\ -3 \end{bmatrix} \\ \begin{bmatrix} 1 & 5 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -3 & 5 \end{bmatrix} + \begin{bmatrix} 6 & 1 \end{bmatrix} \begin{bmatrix} 7 & -1 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 5 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \end{bmatrix} + \begin{bmatrix} 6 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ -3 \end{bmatrix} \end{bmatrix}$$

$$= \begin{bmatrix} \begin{bmatrix} -8 & 9 \\ 9 & -15 \end{bmatrix} + \begin{bmatrix} 7 & 14 \\ 28 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ -6 \end{bmatrix} + \begin{bmatrix} -10 \\ 14 \end{bmatrix} \\ \begin{bmatrix} -13 & 26 \end{bmatrix} + \begin{bmatrix} 42 & -3 \end{bmatrix} \begin{bmatrix} 14 \end{bmatrix} + \begin{bmatrix} 27 \end{bmatrix} \end{bmatrix}$$

$$= \begin{bmatrix} -1 & 23 & | -10 \\ 37 & -13 & 8 \\ 29 & 23 & 41 \end{bmatrix}$$

17. (a) The partitioning of A and B makes them each effectively 2×2 matrices, so block multiplication might be possible. However, if

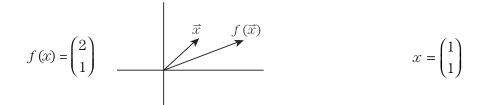
$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \text{ and } B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

then the products $A_{11}B_{11}$, $A_{12}B_{21}$, $A_{11}B_{12}$, $A_{12}B_{22}$, $A_{21}B_{11}$, $A_{22}B_{21}$, $A_{21}B_{12}$, and $A_{22}B_{22}$ are all undefined. If even *one* of these is undefined, block multiplication is impossible.

- **21. (b)** If i > j, then the entry a_{ij} has row number larger than column number; that is, it lies below the matrix diagonal. Thus $[a_{ij}]$ has all zero elements below the diagonal.
 - (d) If |i-j| > 1, then either i-j > 1 or i-j < -1; that is, either i > j+1 or j > i+1. The first of these inequalities says that the entry a_{ij} lies below the diagonal and also below the "subdiagonal" consisting of all entries immediately below the diagonal ones. The second inequality says that the entry a_{ij} lies above the diagonal and also above the entries immediately above the diagonal ones. Thus we have

$$[a_{ij}] = \begin{bmatrix} a_{11} & a_{12} & 0 & 0 & 0 & 0 \\ a_{21} & a_{22} & a_{23} & 0 & 0 & 0 \\ 0 & a_{32} & a_{33} & a_{34} & 0 & 0 \\ 0 & 0 & a_{43} & a_{44} & a_{45} & 0 \\ 0 & 0 & 0 & a_{54} & a_{55} & a_{56} \\ 0 & 0 & 0 & 0 & a_{65} & a_{66} \end{bmatrix}$$

23.



$$f(x) = \begin{pmatrix} 7 \\ 4 \end{pmatrix} \qquad x = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$
(a)

$$f(x) = \begin{pmatrix} 0 \\ -2 \end{pmatrix}$$

$$f(x) = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 \\ x_2 \end{pmatrix}$$

$$(b)$$

$$x = \begin{pmatrix} 2 \\ -2 \end{pmatrix}$$

(c)

27. The only solution to this system of equations is, by inspection,

(d)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

29. (a) Let
$$B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. Then $B^2 = A$ implies that

$$a^{2} + bc = 2$$

$$ac + cd = 2$$

$$ab + bd = 2$$

$$bc + d^{2} = 2$$

One might note that a=b=c=d=1 and a=b=c=d=-1 satisfy (*). Solving the first and last of the above equations simultaneously yields $a^2=d^2$. Thus $a=\pm d$. Solving the remaining 2 equations yields c(a+d)=b(a+d)=2. Therefore $a\neq -d$ and a and d cannot both be zero. Hence we have $a=d\neq 0$, so that ac=ab=1, or b=c=1/a. The first equation in (*) then becomes $a^2+1/a^2=2$ or $a^4-2a^2+1=0$. Thus $a=\pm 1$. That is,

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} -1 & -1 \\ -1 & -1 \end{bmatrix}$$

are the only square roots of A.

(b) Using the reasoning and the notation of Part (a), show that either a = -d or b = c = 0. If a = -d, then $a^2 + bc = 5$ and $bc + a^2 = 9$. This is impossible, so we have b = c = 0. This implies that $a^2 = 5$ and $d^2 = 9$. Thus

$$\begin{bmatrix} \sqrt{5} & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} -\sqrt{5} & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} \sqrt{5} & 0 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} -\sqrt{5} & 0 \\ 0 & -3 \end{bmatrix}$$

are the 4 square roots of A.

Note that if A were $\begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}$, say, then $B = \begin{bmatrix} 1 & r \\ 4/r & -1 \end{bmatrix}$ would be a square root of A for

every nonzero real number r and there would be infinitely many other square roots as well.

(c) By an argument similar to the above, show that if, for instance,

$$A = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

where BB = A, then either a = -d or b = c = 0. Each of these alternatives leads to a contradiction. Why?

- **31.** (a) True. If A is an $m \times n$ matrix, then A^T is $n \times m$. Thus AA^T is $m \times m$ and A^TA is $n \times n$. Since the trace is defined for every square matrix, the result follows.
 - **(b)** True. Partition A into its row matrices, so that

$$A = \begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_m \end{bmatrix} \text{ and } A^T = \begin{bmatrix} r_1^T & r_2^T & \cdots & r_m^T \end{bmatrix}$$

Then

$$AA^{T} = \begin{bmatrix} r_{1}r_{1}^{T} & r_{1}r_{2}^{T} & \cdots & r_{1}r_{m}^{T} \\ r_{2}r_{1}^{T} & r_{2}r_{2}^{T} & \cdots & r_{2}r_{m}^{T} \\ \vdots & \vdots & & \vdots \\ r_{m}r_{1}^{T} & r_{m}r_{2}^{T} & \cdots & r_{m}r_{m}^{T} \end{bmatrix}$$

Since each of the rows r_i is a $1\times n$ matrix, each r_i^T is an $n\times 1$ matrix, and therefore each matrix r_i r_j^T is a 1×1 matrix. Hence

$$\operatorname{tr}(AA^T) = r_1 \; r_1^T + r_2 \; r_2^T + \cdots + r_m \; r_m^T$$

Note that since $r_i r_i^T$ is just the sum of the squares of the entries in the i^{th} row of A, r_1 $r_1^T + r_2 r_2^T + \cdots + r_m r_m^T$ is the sum of the squares of all of the entries of A.

A similar argument works for A^TA , and since the sum of the squares of the entries of A^T is the same as the sum of the squares of the entries of A, the result follows.

- **31.** (c) False. For instance, let $A = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.
 - (d) True. Every entry in the first row of AB is the matrix product of the first row of A with a column of B. If the first row of A has all zeros, then this product is zero.

EXERCISE SET 1.4

1. (a) We have

$$A + B = \begin{bmatrix} 10 & -4 & -2 \\ 0 & 5 & 7 \\ 2 & -6 & 10 \end{bmatrix}$$

Hence,

$$(A+B)+C = \begin{bmatrix} 10 & -4 & -2 \\ 0 & 5 & 7 \\ 2 & -6 & 10 \end{bmatrix} + \begin{bmatrix} 0 & -2 & 3 \\ 1 & 7 & 4 \\ 3 & 5 & 9 \end{bmatrix}$$
$$= \begin{bmatrix} 10 & -6 & 1 \\ 1 & 12 & 11 \\ 5 & -1 & 19 \end{bmatrix}$$

On the other hand,

$$B + C = \begin{bmatrix} 8 & -5 & -2 \\ 1 & 8 & 6 \\ 7 & -2 & 15 \end{bmatrix}$$

Hence,

$$A + (B+C) = \begin{bmatrix} 2 & -1 & 3 \\ 0 & 4 & 5 \\ -2 & 1 & 4 \end{bmatrix} + \begin{bmatrix} 8 & -5 & -2 \\ 1 & 8 & 6 \\ 7 & -2 & 15 \end{bmatrix} = \begin{bmatrix} 10 & -6 & 1 \\ 1 & 12 & 11 \\ 5 & -1 & 19 \end{bmatrix}$$

1. (c) Since a + b = -3, we have

$$(a+b)C = (-3)\begin{bmatrix} 0 & -2 & 3 \\ 1 & 7 & 4 \\ 3 & 5 & 9 \end{bmatrix} = \begin{bmatrix} 0 & 6 & -9 \\ -3 & -21 & -12 \\ -9 & -15 & -27 \end{bmatrix}$$

Also

$$aC + bC = \begin{bmatrix} 0 & -8 & 12 \\ 4 & 28 & 16 \\ 12 & 20 & 36 \end{bmatrix} + \begin{bmatrix} 0 & 14 & -21 \\ -7 & -49 & -28 \\ -21 & -35 & -63 \end{bmatrix} = \begin{bmatrix} 0 & 6 & -9 \\ -3 & -21 & -12 \\ -9 & -15 & -27 \end{bmatrix}$$

3. (b) Since

$$(A+B)^T = \begin{bmatrix} 10 & -4 & -2 \\ 0 & 5 & 7 \\ 2 & -6 & 10 \end{bmatrix}^T = \begin{bmatrix} 10 & 0 & 2 \\ -4 & 5 & -6 \\ -2 & 7 & 10 \end{bmatrix}$$

and

$$A^{T} + B^{T} = \begin{bmatrix} 2 & 0 & -2 \\ -1 & 4 & 1 \\ 3 & 5 & -4 \end{bmatrix} + \begin{bmatrix} 8 & 0 & 4 \\ -3 & 1 & -7 \\ -5 & 2 & 6 \end{bmatrix} = \begin{bmatrix} 10 & 0 & 2 \\ -4 & 5 & -6 \\ -2 & 7 & 10 \end{bmatrix}$$

the two matrices are equal.

3. (d) Since

$$(AB)^T = \begin{bmatrix} 28 & -28 & 6 \\ 20 & -31 & 38 \\ 0 & -21 & 36 \end{bmatrix}^T = \begin{bmatrix} 28 & 20 & 0 \\ -28 & -31 & -21 \\ 6 & 38 & 36 \end{bmatrix}$$

and

$$B^{T}A^{T} = \begin{bmatrix} 8 & 0 & 4 \\ -3 & 1 & -7 \\ -5 & 2 & 6 \end{bmatrix} \begin{bmatrix} 2 & 0 & -2 \\ -1 & 4 & 1 \\ 3 & 5 & 4 \end{bmatrix} = \begin{bmatrix} 28 & 20 & 0 \\ -28 & -31 & -21 \\ 6 & 38 & 36 \end{bmatrix}$$

the two matrices are equal.

5. (b)

$$(B^T)^{-1} = \begin{bmatrix} 2 & 4 \\ -3 & 4 \end{bmatrix}^{-1} = \frac{1}{20} \begin{bmatrix} 4 & -4 \\ 3 & 2 \end{bmatrix}$$

$$(B^{-1})^T = \begin{bmatrix} \frac{1}{20} \begin{bmatrix} 4 & 3 \\ -4 & 2 \end{bmatrix} \end{bmatrix}^T = \frac{1}{20} \begin{bmatrix} 4 & 3 \\ -4 & 2 \end{bmatrix}^T = \frac{1}{20} \begin{bmatrix} 4 & -4 \\ 3 & 2 \end{bmatrix}$$

7. **(b)** We are given that $(7A)^{-1} = \begin{bmatrix} -3 & 7 \\ 1 & -2 \end{bmatrix}$. Therefore

$$7A = ((7A)^{-1})^{-1} = \begin{bmatrix} -3 & 7 \\ 1 & -2 \end{bmatrix}^{-1} = \begin{bmatrix} 2 & 7 \\ 1 & 3 \end{bmatrix}$$

Thus,

$$A = \begin{bmatrix} 2/7 & 1\\ 1/7 & 3/7 \end{bmatrix}$$

7. **(d)** If
$$(I + 2A)^{-1} = \begin{bmatrix} -1 & 2 \\ 4 & 5 \end{bmatrix}$$
, then $I + 2A = \begin{bmatrix} -1 & 2 \\ 4 & 5 \end{bmatrix}^{-1} = \begin{bmatrix} -\frac{5}{13} & \frac{2}{13} \\ \frac{4}{13} & \frac{1}{13} \end{bmatrix}$. Hence

$$2A = \begin{bmatrix} -\frac{5}{13} & \frac{2}{13} \\ \frac{4}{13} & \frac{1}{13} \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -\frac{18}{13} & \frac{2}{13} \\ \frac{4}{13} & -\frac{12}{13} \end{bmatrix}, \text{ so that } A = \begin{bmatrix} -\frac{9}{13} & \frac{1}{13} \\ \frac{2}{13} & -\frac{6}{13} \end{bmatrix}.$$

9. (b) We have

$$p(A) = 2 \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}^{2} - \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix} + 1 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$= 2 \begin{bmatrix} 11 & 4 \\ 8 & 3 \end{bmatrix} - \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 22 & 8 \\ 16 & 6 \end{bmatrix} - \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 20 & 7 \\ 14 & 6 \end{bmatrix}$$

11. Call the matrix A. By Theorem 1.4.5,

$$A^{-1} = \frac{1}{\cos^2 \theta + \sin^2 \theta} \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
$$= \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

since $\cos^2 \theta + \sin^2 \theta = 1$.