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1 Introduction

1.1 Energy of a Mosquito

The mass of a mosquito is approximately m = 2.5 x 107% kg and it flies at approximately
v = 0.1 m/s, or so. Therefore, its kinetic energy is

1
K = §mv2 =125x107%J. (1)

One electron volt is about 1.6 x 107 J, so the energy in eV of a flying mosquito is

1.25x 1078

= m eV ~ 7.8 x 1010 eV. (2)

The energy per nucleon of the flying mosquito can be found by dividing the total energy
found above by the number of protons and neutrons in the mosquito. With a total mass of
2.5 x 107% kg and the mass of the proton/neutron is approximately m, = 1.67 x 107% kg,
the total number of nucleons in the mosquito are

2.5 x 1076

Ny~ =22
" T 167 x 1077

~ 1.5 x 10°". (3)

Therefore the kinetic energy per nucleon of the mosquito is about

K 7.8 % 101
- = ﬁ eV ~52x 10" eV. (4)

This is about 23 orders of magnitude smaller than the energy of protons at the LHC!

1.2 Yukawa’s Theory

The radius of an atomic nucleus is on the order of a femtometer, 107 m. To turn this into
a mass or energy, we divide the product hc by this distance. This is

_he  (1.05x 107%%) - (3 x 10%)
r 1015

E J~3x 1071 T, (5)

To convert to eV, we divide by the ratio eV/J~ 1.6 x 107 so that

3x 1071

_ ~ 8 _

That is, the pion has a mass of about 200 MeV.



1.3 Mass of the Photon

If Maxwell’s equations describe the magnetic field of the Milky Way galaxy, this sets an
upper bound on the mass of the photon. The diameter of the Milky Way is about 100,000
light-years, which in meters is approximately

100,000 l-y = 10° - (3 x 10%) - (7 x 107) ~ 10*' m. (7)

In this expression, we used the fact that, to better than 1% accuracy, the number of seconds
in a year is 7 x 107. If electromagnetism as we understand it describes the galactic magnetic
field at this distance, the photon must be able to have a wavelength that is at least this size.
The corresponding upper bound on the minimum photon energy is

_he (105X 1073 - (3 % 10%)

E o J~3x107"7J. (8)
x
In electron volts, this corresponds to
3 x 10747
E<W6V22x1072ge\/. (9)

So, the mass of the photon must be less than about 1072® eV. Converting this to kg, we
divide the energy in Joules by ¢

3 % 1017
< (3><—108)2 ~ 3% 107 kg . (10)
X

The mass of the electron is about 1/2 MeV, so this is about 34 orders of magnitude smaller.

While this limit is extremely impressive, the assumptions necessary to describe the galac-
tic magnetic field and connect it to Maxwell’s equations in particular are a bit tenuous, so
this result is not used by the PDG to set a limit on the photon mass.

1.4 Planck Units
1.4 (a)

The Planck time, tp, can be expressed as a product of Newton’s constant G, h, and the
speed of light ¢ raised to some powers:

tp = GSR e, (11)

where «, §, and v are some numerical powers. We can find the powers by matching units
on both sides of the expression. c is a velocity and so

[e] = LT, (12)
where L is a length and 7' is a time unit. A has units of energy times time or that

[A] = ML*T*, (13)
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where M is a mass unit. Finally, the units of Gy can be determined by Newton’s law of
gravitation and Newton’s second law:

— GlemQ ~ dz’I?
Fg:—TT:mlw, (14)
from which it follows that
[Gn] = M~'LPT72. (15)

Plugging these into the expression for the Planck time tp we have
(tp] =T = [GN][R)°[c] = M~ LT > *MP 2P TP LT~ (16)
Demanding that there is no mass unit requires that
—a+3=0, (17)

or that a = 8. Demanding that there be no length unit requires

3a+28+y=0=ba+~v=0, (18)
or that v = —5a. Finally, demanding that there be one unit of time requires that
—2a0—pf—v=1=2a«, (19)

or that v = 1/2. It then follows that the Planck time is

[Gxh
tp = C]Z . (20)

The value of Newton’s constant in SI units is Gy = 6.67 x 107! kg™'m3s~2. It then
follows that the Planck time is

6.67 x 10-11) - (1.05 x 10-34
tp = 867X 1071 - i ) 54 %104 s, (21)
(3 x 108)

which is pretty small!

1.4 (b)

Now, we're asked to find the Planck mass, mp. Because we already have the Planck time,
tp, we can find the Planck mass pretty easily. Note that the quantity

Ep= (22)
lp

is an energy. Then, the Planck mass is found by dividing by ¢

h he 8
= —— =4/ kg
mp =" ”GN 2 x107° kg (23)

8



Expressed in eV, the Planck mass is
mp02

m ~1.2x 1028 eV. (24)

The proton mass is about a GeV, or 10 eV, so the Planck mass is about 19 orders of
magnitude larger!

1.4 (c)

For two particles of mass m; and my and electric charges ¢; and ¢s, the ratio of the electric
force F'p to the gravitational force F, between them is

|l _ 1 111 g2]
|ﬁg‘ 47T€()GN 1Mo ’

(25)

where ¢, is the permittivity of free space. The proton and electron both have an electric
charge magnitude of the fundamental unit of charge e = 1.6 x 107'?, so plugging in numbers,
the ratio of forces is

| Fg| 1 (1.6 x 10719

AN ~22x%x10%. (26
|F,| — 47 (8.85 x 10712) (6.67 x 10~11) (1.67 x 10-27) (9.11 x 10~31) % (26)

1.5 FExpansion of the Universe
1.5 (a)

The CMB has a temperature of 2.7 K. With Boltzmann’s constant kg, we can turn this into
a corresponding energy. We find

Eoup = kT =2.7x 138 x 107% J ~3.7x 1072 J. (27)

To determine the energy in eV, we divide by 1.6 x 1071%:

3.7 x 10723

16 % 10-1 eV~23x10"%eV. (28)

Ecvp >~

1.5 (b)

The ground state energy of hydrogen is £, = —13.6 eV. So, when the temperature of the
universe was less than the energy of 13.6 eV, electrons and protons could become bound and
form hydrogen. To determine this temperature, we work backward from the steps of the first
part of this problem, multiplying by the factor 1.6 x 10~*? and then dividing by kz. We find

E
Trecomb. = 1.6 x 10_19’1{_;’ K~16x10° K. (29)



1.5 (c)

We want to calculate the ratio of the wavelength of CMB photons observed today, Aioday, by
the wavelength at recombination, Aecomp.. This ratio is

)\today o frecombA o Erecomb. o ﬂecomb.

(30)

/\recomb. ftoday Etoday ,—Ttoday

In this chain of equalities, we used the fact that wavelength A is inversely proportional to
frequency f and the frequency of light is proportional to its energy. From what was developed
in the previous parts, the energy of the photons is proportional to its temperature. So, the
redshift factor is just the ratio of the temperature at recombination to the temperature
today:
Moday | _ Treomb, , LOXIQ 50 4 (31)
Arecomb. 7ﬁtoday 2.7

As mentioned in the problem, this is a factor of about 30 larger than the true result when
thermodynamics are properly taken into account.

1.6 Decay Width of the Z boson
1.6 (a)

From the plot of Fig. 1.5, the maximum value of the peak of the distribution is about 32
nb. Therefore, half of this is 16 nb. The lower point of the distribution at which it takes
a value of 16 nb is at approximately 90 GeV, while the higher point is at about 92.5 GeV.
Therefore, the width, or full-width at half-maximum is the difference of these two values, or
2.5 GeV.

1.6 (b)

To determine the lifetime in seconds of the Z boson from its width, we need to relate the
width to a time through the energy-time uncertainty relation:

h

(32)
To convert the width from natural units to SI, we need to multiply by the factor of 1.6 x 1071
so that the lifetime in seconds is

h 1.05 x 1034
At ~ ~ ~26x10%s. 33
AE = (25 x 109 - (1.6 x 10-19) 8 i (33)

We also needed to include a factor of 10° to account for the fact that the width is 2.5 GeV =
2.5 x 107 eV.
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1.6 (c)

Through the energy-time uncertainty principle, lifetime and decay width are inversely pro-
portional. Therefore, if the width approaches 0, then the lifetime diverges: the particle lives
forever. Correspondingly, if the width gets very large, then the lifetime approaches 0: the
particle decays instantly.

1.7  Decay of Strange Hadrons

The Q= hadron travels about 3 cm = 0.03 m before decaying which corresponds to a lifetime

by multiplication by its velocity. While its velocity is not known, it will be an appreciable

fraction of the speed of light ¢, so we can just assume that it is ¢. Dividing by ¢, the lifetime
T is 0.03

~—— s~ 10""s. 34

ST i (34)

To convert to the decay width AF, we use the energy-time uncertainty relationship, and the
factor 1.6 x 107 to convert to eV. We then find

h 1.05 x 10734

AE = — ~
7 10710 (1.6 x 10-19)

eV~ 6.6 x107° eV. (35)

1.8 PDG Review
1.8 (a)

From the PDG, the lower bound on the lifetime of the proton is 2.1 x 10? years. To have
a reasonable probability to observe one proton decay in a year, you would need at least
2.1 x 10%” protons, if the lifetime were exactly at the lower bound. Water, H,O, consists of
10 protons (and 8 neutrons), so we would need to observe 2.1 x 10%® water molecules for a
year. The volume of this amount of water can be found by first identifying the number of

moles of water:
2.1 x 1028

6.02 x 1023
Because water consists of 18 total protons and neutrons, this amount of water has a mass of

mol ~ 3.5 x 10* mol . (36)

(3.5 x 10*) - 18 g ~ 630 kg. (37)
Water has a density of 1000 kg/m?, so the total volume of water needed is about

630

3 _ 3
000 ™ 0.63 m”. (38)

This is roughly the volume of a large bathtub.
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1.8 (b)

From the “Particle Listings” section of the PDG, the masses of the W, Z, and Higgs bosons
and the top quark are:

my = 80.379 GeV (39)
my = 91.1876 GeV (40)
my = 125.18 GeV (41)
my = 173.0 GeV . (42)

The mass of the proton or neutron is approximately 1 GeV (actually slightly less), and so the
value of the mass in GeV can be approximately used to identify the atomic mass of elements
with about the same mass. For example, Krypton has an atomic mass of about 83, which is
close to the mass of the W boson. Zirconium has an atomic mass of about 91, close to the
mass of the Z boson. Tellurium has an atomic mass of about 127, close to the mass of the
Higgs boson. Finally, Ytterbium has an atomic mass of about 174, close to the mass of the
top quark.

Students may find a slightly different selection of elements from a more precise accounting
of the proton and neutron masses or identification of different isotopes.

1.8 (c)

We want to identify the masses of the particles involved in the bubble chamber trace of
Fig. 1.6. Again, we use the “Particle Listings” section of the PDG, and we have to do a bit
of sleuthing to identify all the particles by their symbols. Their masses are:

4

w0

My = 493.677 MeV | (
mo- = 1672.43 MeV , (4
myo = 497.611 MeV , (4
my- = 139.57061 MeV , (4
(
(
(
(

=

S Ot
~— — — S — ~— —

m=o = 1314.82 MeV , 4
mp+ = 493.677 MeV | 4
mpo = 1115.683 MeV , 4

m, = 938.2720813 MeV . 5

oS © oo 3

The width, or lifetime, from the PDG of the 2~ baryon is 0.821 x 1071° s, which is very
close to our very simple estimate!

1.9 InSpire and arXiv
1.9 (a)

At InSpire, we can search for Noether’s papers and find her most highly-cited paper. In
fact, InSpire only has one of her papers listed (all others are pure mathematics), which is

12



“Invariant Variation Problems.”

1.9 (b)

We can also search by date. To find all papers from 1967, we use the command “find date =
1967”. Then, we can sort by decreasing order in citation count. The two most highly-cited
papers are:

S. Weinberg, “A Model of Leptons,” Phys. Rev. Lett. 19, 1264 (1967).

A. D. Sakharov, “Violation of CP Invariance, C asymmetry, and baryon asym-
metry of the universe,” Pisma Zh. Eksp. Teor. Fiz. 5, 32 (1967) [JETP Lett. 5,
24 (1967)] [Sov. Phys. Usp. 34, no. 5, 392 (1991)] [Usp. Fiz. Nauk 161, no. 5,
61 (1991)].

2 Special Relativity

2.1  Properties of Lorentz Transformations

We're asked to verify that the matrix

v 00 9f
, 0 1.0 O
A= 0 01 0 (51)
B 0 0~y
leaves the metric invariant:
ATpA =n. (52)
First, note that the matrix A is symmetric: AT = A. So, multiplying from the left, we have
v 0 0 4B 1 0 0 O v 0 0 =6
0 10 O 0 -1 0 0 0 -1 0 0
T p— pr—
At 0 01 0 0 0 —1 0 o 0 -1 o |- ©I
v6 0 0 ~ 0 0 0 -1 8 0 0 —v
Continuing, multiplying by A on the right produces
vy 0 0 —p v 0 0 8
0 -1 0 0 0 1.0 0
T —
AmA=1"9 0o 1 o0 0 01 0 (54)
o0 0 =y v 0 0 ~v
P(1-5) 0 0 0
B 0 -1 0 0 B
- 0 0 —1 0 -
0 0 0 —*(1-p%

Recall that 1 — 3% = y~2, from which the result follows.
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2.2 Rapidity

The rapidity y is defined to be

E+p.
We can perform a Lorentz boost along the Z axis by a velocity # by multiplication of the
momentum four-vector by a Lorentz matrix:

1
y = log (55)

v 00 98 E V(E + Bp-)
S &
¥ 0 0« p: v(p: + BE)
Therefore, under a Lorentz transformation, the rapidity transforms as
g Log 1B Bp) £+ BE) L (4 Q)(B4p) L 145
2" "B+ Bp.) —v(p:+BE) 2 7 (1= B)(E—p.) 2 71-0
That is, under a Lorentz boost along the Z axis, the rapidity transforms additively.
2.3 Lorentz-Invariant Measure
Under a Lorentz transformation, the coordinate four-vector z* transforms to
't = A v (58)
Then, under a Lorentz transformation, the coordinate measure d*x transforms as
d*a’ = |J|d'z, (59)
where J is the Jacobian formed from the determinant of the derivative matrix:
/
J = det gi M . (60)

From the Lorentz transformation above in terms of the matrix A, this partial derivative is

ox'*
= A" . 61
=, (61)
Therefore, the Jacobian is just the determinant of the Lorentz-transformation matrix:
J =detA. (62)
By the definition of A, it satisfies

ATpA =1, (63)
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which enables us to calculate the determinant of A. First, note that transposition doesn’t

change the determinant:
det A = det AT. (64)

Also, the determinant of the metric 7 is just the product of its non-zero elements:
detn =—1. (65)
Then, taking the determinant of the Lorentz transformation equation, we have
det(ATpA) = — (det A)* = —1. (66)

Therefore, |det A| = 1 = J, and so after Lorentz transformation the measure d*z is un-
changed.

2.4  Properties of Klein-Gordon Equation

The solution of the Klein-Gordon equation is an exponential phase function,

-

<Z5(CC) — efip-:p — efi(Etfp-x) ) (67)

We can find the frequency by adding the period T to the time ¢ and demanding that the
field ¢(z) is unchanged:

—i(BAT)~p7) _ ,~i(Bt-pa)

e , (68)

or that exp[—iET| = 1. Then, the period T = 27/FE and so the frequency f = E/(27). A
similar procedure can be used to determine the wavelength of the solution. The wavelength

A is then 5
T
A= —. (69)
1]

It then follows that the phase velocity is the just the product of the frequency and wavelength:

E
U_)\f_ﬁ' (70)

2.5  Mazwell’s Equations

Gauss’s law has already been identified as the 0" component of the equations of motion of
O F" = Jv. (71)

Now, let’s take v = i, a spatial coordinate. Then, J; is the i** component of the current
vector and the left side of this equation is

oE;

(9#F‘”' = —00lbi + 0iFyi + 0; Fji + Op bl = — ot * <

aBk_a@>

9 ok (72)
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