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1 1.1 PROBLEMS

1.1.1. (a) Let X = pebble diameter. Then Z = logX has a N (µ, σ2) distribution. Since
X = eZ , the transformation theorem (Theorem B.2.2) with k = 1 tells us that X has density

f(x, θ) = (x/σ)ϕ

(
log x− µ

σ

)
, x > 0, θ = (µ, σ)

where ϕ is the N (0, 1) density. Let X1, . . . , Xn denote the n pebble diameters. We assume
that they are independent. Then the probability law of the “data” X1, . . . , Xn is p(x, θ) =
Πn

i=1f(xi, θ) with f(x, θ) as given above.
Since there is no knowledge about the magnitude of µ, σ2, the parameter space is

Θ = {(µ, σ2) : −∞ < µ < ∞, σ2 > 0}.

The model is parametric.

(b) Let X1, . . . , Xn denote the n measurements. The distribution of X = (X1, . . . , Xn) has
density

p(x, θ) =
n∏

i=1

1

σ
ϕ

(
xi − µ− 0.1

σ

)

where ϕ is the N (0, 1) density, σ is known, θ = µ, and the parameter space is Θ = {µ :
−∞ < µ < ∞}. The model is parametric.

(c) Let β > 0 stand for the unknown bias. Then

p(x, θ) =
n∏

i=1

1

σ
ϕ

(
xi − µ− β

σ

)

where θ = (µ, β) and Θ = {(µ, β) : −∞ < µ < ∞, β > 0}. In this model, since β is
unknown, we cannot correct for the bias and we cannot determine µ even if σ = 0. The
model is parametric.

(d) Let Y denote the number of eggs laid and X the number of eggs hatching. Then, from
A.6.3, the conditional frequency function of X given Y = y is binomial, B(y, p), i.e.,

p(x|y) =
(y
x

)
px(1− p)y−x, x = 0, 1, . . . , y.

Since Y is Poisson, P(λ), we find using (B.1.3) and (A.13.9) that the joint frequency function
of X and Y is

f(x, y, θ) =
(y
x

)
px(1− p)y−x e

−λλy

y!
, x = 0, 1, . . . , y

where y is a nonnegative integer and θ = (λ, p). For n insects, the observations are
(X1, Y1), . . . , (Xn, Yn) with probability law given by (assuming independence)

p(x,y, θ) =
n∏

i=1

f(xi, yi, θ)

2
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where f(x, y, θ) is as given above. The parameter space is Θ = {(λ, p) : λ > 0, 0 ≤ p ≤ 1}.
The model is parametric.

1.1.2. (a) Unidentifiable: In the notation of 1.1.1 (c), above, let θ1 = (1, 1) and θ2 = (0, 2).
Then p(x, θ1) = p(x, θ2) and two different values of θ yield the same probability law.

(b) Identifiable: We must show, in the notation of 1.1.1 (d) above, that p(x,y, θ1) =
p(x,y, θ2), all x,y implies θ1 = θ2. Write θ1 = (λ1, p1) and θ2 = (λ2, p2). When the x’s
and y’s are all zero, p(x,y, θ1) = p(x,y, θ2) reduces to e−λ1 = e−λ2 so λ1 = λ2. When
x1 = y1 = 1 and all the remaining x’s and y’s are zero, p(x,y, θ1) = p(x,y, θ2) reduces to
p1 = p2.

(c) Unidentifiable: See 1.1.1 (d) above. By A.8.11, X has frequency function

f(x, θ) =
∞∑
y=x

f(x, y, θ) =
∞∑
y=x

(y
x

)
px(1− p)y−x e

−λλy

y!
.

In this expression, we set
(
y
x

)
= y!

x!(y−x)!
, factor out the terms not depending on y, change

variable from y to k where k = y − x, and use the fact that

∞∑
k=0

(λ− λp)k

k!
= e(λ−λp)

to obtain

f(x, θ) =
e−λp(λp)x

x!
, x = 0, 1, . . . .

The X has a Poisson, P(λp), distribution and X = (X1, . . . , Xn) has frequency function

p(x, θ) =
n∏

i=1

f(xi, θ).

Now if θ1 = (λ1, p1), θ2 = (λ2, p2), θ1 �= θ2, but λ1p1 = λ2p2, then p(x, θ1) = p(x, θ2), and
the model is not identifiable.

1.1.3. (a) Unidentifiable: Set θ1 = (1, . . . , 1, 2, σ2) and θ2 = (0, . . . , 0, 3, σ2), then p(x, θ1) =
p(x, θ2) where

p(x, θ) =
n∏

i=1

1

σ
ϕ

(
xi − (αi + ν)

σ

)

and ϕ is the N (0, 1) density.

(b) Identifiable: We must show that if θ′ = (α′
1, α

′
p, ν

′, (σ′)2), then p(x, θ) = p(x, θ′) implies
θ = θ′, where p(x, θ) is given in 1.1.3(a) above. If the joint distributions are the same under
θ and θ′, so are the marginal distributions of each Xi (See A.8.12). Thus the variances and
means must be equal, i.e., (σ′

1)
2 = σ2 and α′

i + ν ′ = αi + ν for each i. But this implies
Σ(α′

1 + ν ′) = Σ(αi + ν), which in turn implies ν ′ = ν since Σα′
i = Σαi = 0. Finally, the

3
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