1.1 If the current in an electric conductor is 2.4 A, how many coulombs of charge pass any point in a 30-second interval?

$$I = 2.4 A$$
, $\Delta t = 30s$
 $Q = 3 \Delta t$
 $Q = 2,4(30)$
 $Q = 72 C$

0 1 7 1

1.2 In charging a storage battery it is found that energy of 1watt-hr is expended in 15 minutes in sending 150 coulombs through the battery. What is the voltage between the battery terminals? What is the magnitude of the average charging current?

$$I = \frac{Q}{t}$$

= 150C/15 x 60s
= 1/6A
P = VI
1Whr/15min = V x 1/6
V = 24V

.

1.3 A lightning bolt carrying 30,000 A lasts for 50 micro-seconds. If the lightning strikes an airplane flying at 20,000 feet, what is the charge deposited on the plane?

$$I = 30,000 A$$
, $\Delta t = 50 \mu s$
 $Q = I \Delta t$
 $Q = 30,000 (50 \mu)$
 $Q = 1.5 C$

1.4 If a 12-V battery delivers 100 J in 5 s, find (a) the amount of charge delivered and (b) the current produced.

$$V = 12V$$
, $\Delta W = 100J \text{ s}$ 5s
a) $\Delta Q = \frac{\Delta W}{V} = \frac{100}{12}$
 $\Delta Q = 8.33 \text{ c}$
b) $I = \Delta Q = \frac{8.33}{5}$

b)
$$I = \triangle 0 = 8.33$$
 $\Delta t = 5$

1.5 The charge entering the positive terminal is given by $q(t) = -10e^{-t}$ mC. The power delivered to the element is $p(t) = 2e^{-2t}$ mW. Calculate the current in the element, voltage across the element and the energy delivered to the element in the interval 0 < t < 100 ms.

$$\begin{split} I &= \frac{dq}{dt} \\ &= 10 \mathrm{e^{-t}mA} \\ \text{Now, P = VI} \\ \text{Thus V = } 0.2 \mathrm{e^{-t}V} \text{ is the voltage across the element.} \\ \mathrm{E} &= \int_0^{0.2} 2 e^{-\mathrm{t}} \mathrm{dt} \\ &= 0.362 \text{ mJ} \end{split}$$

1.6 The current at a given point in a certain circuit may be written as i(t) = -3 + t A. Find the total charge passing the point between t = 99 and t = 102 s.

The charge passing through the circuit is q
$$= \int_{99}^{102} i(t) dt$$

$$= \int_{99}^{102} (-3 + t) dt$$

$$= \left(-3 \times 102 + \frac{102^2}{2}\right) - \left(-3 \times 99 + \frac{99^2}{2}\right)$$

$$= 292.5 \text{C}$$

1.7 Five coulombs of charge pass through the element in Fig. P1.7 from point A to point B. If the energy absorbed by the element is 150 J, determine the voltage across the element.

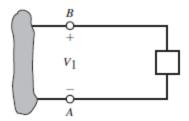
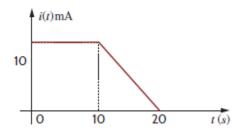


Figure P1.7

$$Q = 5 C$$


$$V_1$$

$$W = 150 T$$

$$A T$$

For passive sign convention:
$$W = -V_1 Q$$

 $V_1 = -\frac{W}{Q}$ $V_1 = -3.0 V$

1.8 The current that enters an element is shown in Fig. P1.8. Find the charge that enters the element in the time interval 0 < t < 20 s.</p>

Figure P1.8

$$i(t) = m_1 + b$$

$$m_1 = \frac{10-10}{10-20} = -1$$

$$i(t) = -t + b$$

$$10 = -10+b$$

$$b = 20$$

$$i(t) = -t + 20 \text{ mA}$$

$$q(t) = \int_0^{20} i(t) dt$$

$$q(t) = \int_0^{10} 10 \times 10^{-3} dt + \int_{10}^{20} \frac{20-t}{1000} dt$$

$$q(t) = 10 \times 10^{-3} t \int_0^{10} + \frac{1}{1000} \left[20t - \frac{t^2}{2} \right]_{10}^{20}$$

$$q(t) = 0.1 + \frac{1}{1000} \left[20(20) - \frac{(20)^2}{2} \cdot 20(10) + \frac{(10)^2}{2} \right]$$

$$q(t) = 0.1 + \frac{1}{1000} \left[200 - 200 + 50 \right]$$

$$q(t) = 0.1 + \frac{1}{1000} \left[200 - 200 + 50 \right]$$

1.9 The charge entering the positive terminal of an element is $q(t) = -30e^{-4t}$ mC. If the voltage across the element is $120e^{-2t}$ V, determine the energy delivered to the element in the time interval 0 < t < 50 ms.

$$q(t) = 30e^{-tt} mC$$

$$v(t) = 120e^{-2t}V$$

$$W = \int_{t1}^{t2} P dt = \int_{t1}^{t2} Vi dt$$

$$i(t) = \frac{dq(t)}{olt} = -4(-30)e^{-tt}mA$$

$$i(t) = 120e^{-4t} mA$$

$$W = \int_{t1}^{t2} (120e^{-2t}) (120e^{-4t}m) dt$$

$$W = 14.4 \int_{0}^{50m} e^{-6t} dt$$

$$W = 14.4 \left[\frac{e^{-6t}}{-6} \right]^{50m}$$

$$W = 14.4 \left[\frac{e^{-6t}}{-6} \right]^{50m}$$

$$W = 622.04 mJ$$

1.10 The charge entering the positive terminal of an element is given by the expression $q(t) = -12e^{-2t}$ mC. The power delivered to the element is $p(t) = 2.4e^{-3t}$ W. Compute the current in the element, the voltage across the element, and the energy delivered to the element in the time interval 0 < t < 100 ms.

$$\begin{aligned} q(t) &= -12 e^{-2t} & \text{mC.} \\ p(t) &= 2.4 e^{-3t} & \text{MI} \\ i(t) &= \frac{dq(t)}{dt} \\ i(t) &= 2(-12)e^{-2t} & \text{m} \\ i(t) &= 24 e^{-2t} & \text{mA} \\ W &= \int_{t1}^{t2} p(t) dt - \int_{0}^{100m} 2.4 e^{-3t} dt \\ W &= \frac{2.4}{-3} \begin{bmatrix} e^{-3t} \end{bmatrix} \begin{bmatrix} 100m \\ 0 \end{bmatrix} \\ W &= \frac{2.4}{-3} \begin{bmatrix} e^{-3(100m)} - e^{-3(0)} \end{bmatrix} \\ W &= 207.35 \text{ mJ} \\ V(t) &= \frac{P(t)}{i(t)} \\ V(t) &= \frac{2.4 e^{-3t}}{24 e^{-2t} m} \\ V(t) &= 100 e^{-t} V \end{aligned}$$

1.11 The charge entering the positive terminal of an element is $q(t) = -10e^{-2t}$ mC. If the voltage across the element is

 $120e^{-2t}$ V. Determine the energy delivered to the element in the time interval 0 < t < 20 ms.

$$I = \frac{dq}{dt}$$

$$I = 20e^{-2t}mA$$
Now E = $\int VIdt$

$$= \int_0^{20} 2.4e^{-4t}dt$$
= 0.011 J

1.12 The power absorbed by the BOX in Fig. P1.12 is 2e^{-2t} W. Calculate the amount of charge that enters the BOX between 0.1 and 0.4 seconds.

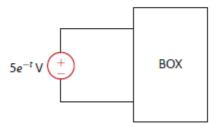
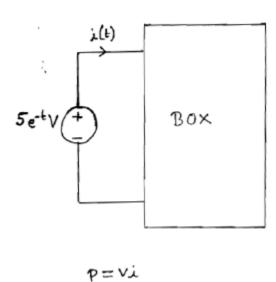



Figure P1.12

$$2e^{-2t} = 5e^{-t}$$

$$\lambda = \frac{2e^{-2t}}{5e^{-t}} = 0.4e^{-t}$$

$$\Delta q(t) = \int_{0.1}^{0.4} \lambda(t) dt$$

$$= \int_{0.1}^{0.4} 0.4 e^{-t} dt$$

$$= -0.4 e^{-t} \Big|_{0.1}^{0.4} = -0.4 \Big[e^{-0.4} - e^{-0.1} \Big]$$

$$= 0.0938 C$$

1.13 The charge flowing through a point in a circuit is given as a function of time as $q(t) = -t^3 + 6t^2 - 10t$, find i(t) at t = 5s.

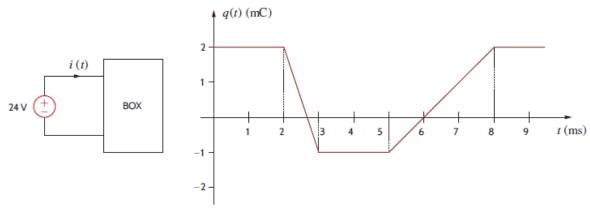
i(t)
$$= \frac{dq}{dt}$$

$$= -3t^2 + 12t - 10$$

$$= -3 \times 5^2 + 12 \times 5 - 10$$

$$= -25A$$

- 1.14 The current in a circuit i(t) is given as e^{4t} A for t < 0 and e^{-4t} A for t > 0. Find:
 - (a) i(0.25)
 - **(b)** Average value of current over the interval -0.25 < t < 0.25
 - (c) The total charge that has passed during this interval


SOLUTION:

a.
$$i(0.25) = e-4x0.25 = 0.368A$$

b. Average value of current
$$= \int_{-0.25}^{0.25} i(t) dt$$

$$= 0.632 A$$

c. Charge passed = Average current x Time = 0.318A

1.15 The charge that enters the BOX is shown in Fig. P1.15. Calculate and sketch the current flowing into and the power absorbed by the BOX between 0 and 9 milliseconds. Also calculate the energy absorbed by the BOX between 0 and 9 milliseconds.

Figure P1.15

$$i(t) = \frac{dq(t)}{dt}$$

$$q(t) = 2, \quad 0 \le t \le 2ms$$

$$m = -\frac{1-2}{3-2} = -\frac{3}{1} = -3$$

$$q(t) = m(t) + b$$

$$q(t) = -3t + b$$

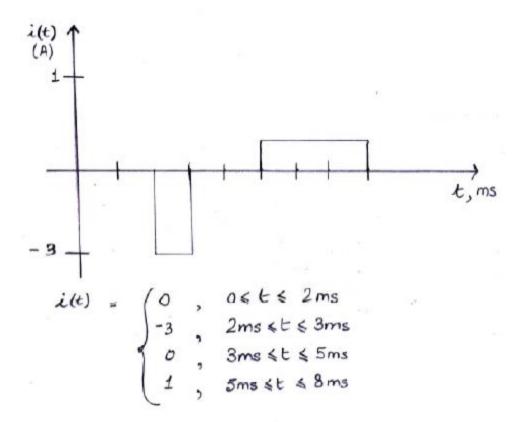
$$2 = -3(2) + b$$

$$b = 8$$

$$q(t) = -3t + 8, \quad 2ms \le t \le 3ms$$

$$q(t) = -1, \quad 3ms \le t \cdot 5ms$$

$$q(t) = mt + b$$

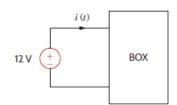

$$m = \frac{2+1}{8-5} = 1$$

$$q(t) = t + b$$

$$2 = 8 + b$$

$$b = -6$$

$$Q(t) = t-6$$
, $5ms \le t \le 8ms$
 $Q(t) = 2$, $8ms \le t \le 9ms$


$$p(t) = V(t) i(t)$$

$$P(t) = \begin{cases} 0 \text{ W}, & 0 \le t \le 2ms \\ -72 \text{ W}, & 2ms \le t \le 3ms \\ 0 \text{ W}, & 3ms \le t \le 5ms \\ 24 \text{ W}, & 5ms \le t \le 8ms \end{cases}$$

$$W(t) = \begin{cases} 9 \text{ P(t)} & dt \\ 1 \text{ Otherwise} \end{cases}$$

$$= 0 + (-72) \times 1 + 0 + 24 \times 3 = 0 \text{ T}$$

1.16 The energy absorbed by the BOX in Fig. P1.16 is given below. Calculate and sketch the current flowing into the BOX. Also calculate the charge which enters the BOX between 0 and 12 seconds.

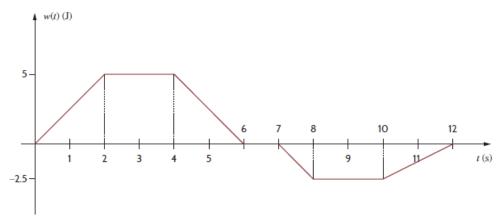


Figure P1.16

$$P = \frac{dW}{dt}$$
 (slope of the curve)

$$P = V\lambda \Rightarrow \lambda = \frac{P}{V} = \frac{P}{12}$$

$$P = \frac{5-0}{2-0} = 2.5 W$$
, $\lambda = \frac{2.5}{12} = 0.21 A$

$$P = \frac{5-5}{4-2} = 0$$
, $i = 0$

$$P = \frac{0-5}{6-4} = -2.5 \text{ W}, \quad \lambda = \frac{-2.5}{12} = -0.21 \text{ A}$$

$$P = \frac{0-0}{7-6} = 0$$
, i= 0

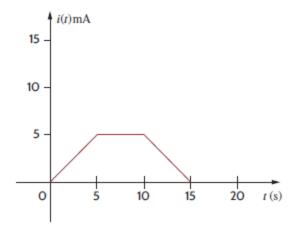
$$P = \frac{-2.5 - 0}{8 - 7} = -2.5 \text{ W}, \quad \lambda = \frac{-2.5}{12} = -0.21 \text{ A}$$

$$P = \frac{-2.5 - (-2.5)}{10 - 8} = 0$$
, $i = 0$

= -0.002 C

$$P = \frac{0 - (-2.5)}{12 - 10} = 1.25 \text{ W}, \quad \lambda = \frac{1.25}{12} = 0.104 \text{ A}$$

$$\frac{1}{12} > 125 :$$


$$P = 0 \quad , \quad \lambda = 0$$

$$0.21 \quad 0.104 \quad 10 \quad 12 \quad 10 \quad 12$$

$$q = \int \lambda \, dt$$

$$= (0.2)(2) + (-0.21)(2) + (-0.21)(1) + (0.104)(2)$$

1.17 The plot of current entering an element is shown in the figure. Find the charge that enters the element from 5 to 15 seconds.

SOLUTION:

The charge through the element can be found by finding the area under the curve from 5 to 15 seconds.

Thus charge flown = $5 \times (10-5) + \frac{1}{2} \times 5 \times (15-10)$ = 37.5mC 1.18 Determine the amount of power absorbed or supplied by the element in Fig. P1.18 if

(a)
$$V_1 = 5 \text{ V} \text{ and } I = 6 \text{ A}$$

(b)
$$V_1 = 5 \text{ V} \text{ and } I = -7 \text{A}$$

(c)
$$V_1 = -14 \text{ V} \text{ and } I = 6 \text{A}$$

(d)
$$V_1 = -14 \text{ V} \text{ and } I = -7 \text{A}$$

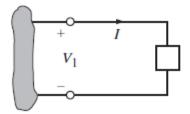
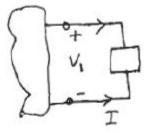



Figure P1.18

SOLUTION:

For passive sign convention,

c)
$$V_1 = -14V$$
, $I = 6A$
 $P = -84W$

d)
$$V_1 = -14V$$
, $I = -7A$
 $P = 98W$ absorbed

1.19 Find the power absorbed by the circuit element at t = 0 if voltage across it is given by $v(t) = 23\cos 120\pi t$ V and current through it is $i(t) = 2.5\cos(120\pi t - 2\pi/3)$ A.

P=VI
=
$$57.5\cos(-2\pi/3)$$

= -28.75 W

1.20 Determine the power supplied by the ideal sources shown in figures given.

SOLUTION:

Power supplied by 10V battery = $10V \times -8A = -80W$ Power supplied by 6A current source = $6A \times 5V = 30V$ 1.21 Element A in the diagram in Fig. P1.21 absorbs 30 W of power. Calculate V_x .

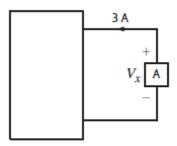
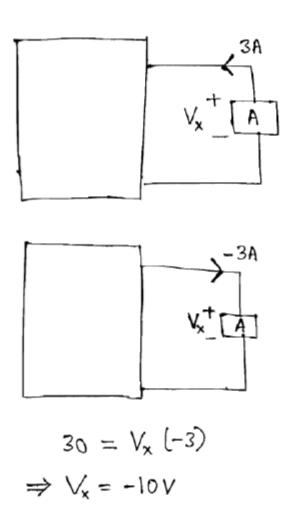



Figure P1.21

1.22 Element B in the diagram in Fig. P1.22 supplies 60 W of power. Calculate I_x .

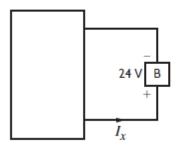


Figure P1.22

- 1.23 Let $V(t) = 10\cos 250t$ be variable voltage across a circuit. Find.
 - (a) V(1 ms)
 - **(b)** V(8 ms)
 - (c) The energy required to move 4C charge across the circuit at 4 ms

```
a. V(1ms) = 9.69V
b. V(8ms) = -4.16V
c. Work done = q \times V = 4C \times V(4ms)
= -21.6J
```

1.24 The voltage across a element varies with time as $5(t-2)^2$ V. A current of 2 A enters the +ve terminal and leaves the -ve terminal of the element. Find the power delivered to the element at 0.8 s.

SOLUTION:

Power delivered $= V \times I$

 $= 5 \times (0.8-2)^2 V \times -5A$

= -34.68W

- 1.25 (a) In Fig. P1.25 (a), P₁ = 42 W. How much power is element 2 absorbing?
 - **(b)** In Fig. P1.25 (b), $P_2 = -72$ W. How much power is element 1 absorbing?

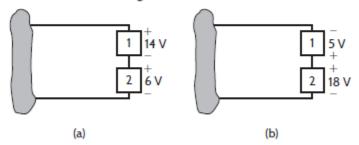
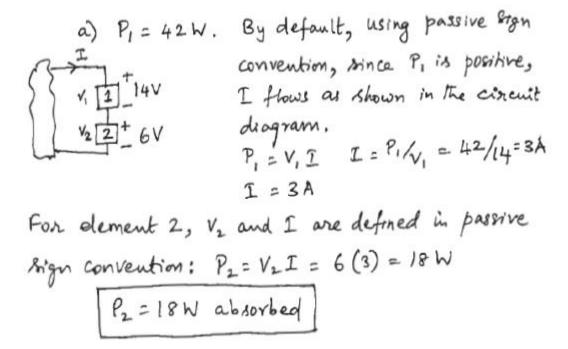
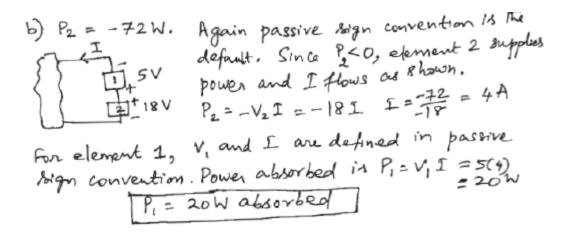




Figure P1.25

1.26 Two elements are connected in series, as shown in Fig. P1.26. Element 1 supplies 24 W of power. Is element 2 absorbing or supplying power, and how much?

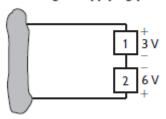


Figure P1.26

$$P_1 = 24 M$$
 $I = \frac{P_1}{V_1} = \frac{24}{3}$

$$I = 8A$$

 $P_2 = V_2 I = 6(8)$
 $P_2 = 48$ absorbed

1.27 Element 2 in Fig. P1.27 absorbed 32 W. Find the power absorbed or supplied by elements 1 and 3.

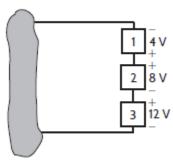


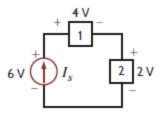
Figure P1.27

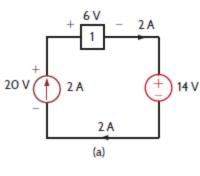
$$P_2 = 32 \text{ w} \quad \text{on } I_V = 4A$$

$$P_1 = (-4)(4) = 16 \text{ w supplied}$$

$$P_3 = (4)(12) = 48 \text{ w} \quad \text{ABSORBED}$$

1.28 Choose I_s such that the power absorbed by element 2 in Fig. P1.28 is 7 W.




Figure P1.28

$$P_2 = 7M$$
 absorbed
$$P_2 = V_2 I_S$$

$$I_S = \frac{P_2}{V_2} = \frac{7}{2}$$

$$I_S = 3.5A$$

1.29 Find the power that is absorbed or supplied by the circuit elements in Fig. P1.29.

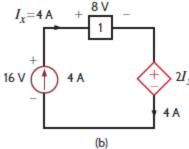
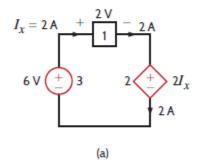


Figure P1.29


a)
$$P_{2A} = -20(2)$$
 $P_{2A} = -40M$
 $P_{2A} = 40 M \text{ supplied}$
 $P_{1} = 6(2) = 12M \text{ absorbed}$

b)
$$P_{4A} = 16(-4) = -64 \text{ M}$$
 $P_{4A} = 64 \text{ M}$ supplied

 $P_1 = 8(4) = 32 \text{ M}$ absorbed

 $P_{2I_X} = (2I_X)(4) = 2(4)(4)$
 $P_{2I_X} = 32 \text{ M}$ absorbed

- 1.30 Find the power that is absorbed or supplied by the network elements in Fig. P1.30.
 - (a) Power of element 1 at figure (a).
 - (b) Power of element 2 at figure (a).
 - (c) Power of element 3 at figure (a).
 - (d) Power of element 1 at figure (b).
 - (e) Power of element 2 at figure (b).
 - (f) Power of element 3 at figure (b).
 - (g) Power of element 4 at figure (b).

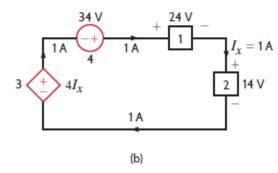


Figure P1.30

SOLUTION:

(See Next page)

a) Voltage and current for element 1 in fig. (a) are defined in the passive high convention.

Power supplied by element 1 in Fig. (a) is $P_1 = -V_1 I_X = -2(2) = -4W$

P1 = -4W supplied.

b) Voltage and current for element 2 in fig. (a) are defined in the passive sign convention.

Power supplied by element 2 in fig. (a) is $P_2 = -(2I_X) = -4(2) = -8W$

() for element 3 in fig. (a) V and I are defined in active Myn convention.

Power supplied by element 8 in Fig. (a) is $P_3 = 6 I_X = 6 (2) = 12 M$

d) V and I are defined in the passive Agn Convention for element 1 in Fig. (b). Power supplied by element 1 in Fig. (b) is $P_1 = -V_1 I_X = -24 (1) = -24 N$

e) V and I are defined in the passive right convention for element 2 in Fig. (b). Power supplied by element 2 in Fig. (b) is $P_2 = -V_2 I_X = -14 (1) = -14W$

f) Vand I are defined in the active sign convention for element 3 in fig. (b). Power supplied by element 3 in fig. (b) is $P_3 = (4 I_X) I_X = 4 W$

9) Vand I are defined in the active sign convention for element 4 in Fig. (6).

Power supplied by element 4 in Fig. (6) is

P4 = 34 (Ix) = 34 W supplied

P4 = 34 W supplied

1.31 Compute the power that is absorbed or supplied by the elements in the network in Fig. P1.31.

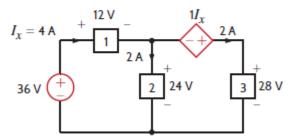


Figure P1.31

$$P_{36V} = -36(4) = -144 \text{ M}$$
 $P_{36V} = 144 \text{ M}$ supplied
 $P_1 = 12(4) = 48 \text{ M}$ absorbed
 $P_2 = 24(2) = 48 \text{ M}$ absorbed
 $P_{1I_X} = (-I_X)(2) = -4(2) = -8 \text{ M}$
 $P_{1I_X} = 8 \text{ M}$ supplied
 $P_3 = 28(2) = 56 \text{ M}$ absorbed

1.32 Find the power that is absorbed or supplied by element 2 in Fig. P1.32.

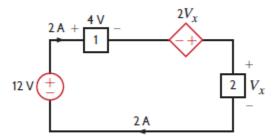


Figure P1.32

$$P_1 = 8W$$
 $P_{2V_x} = -4V_x W$
 $P_2 = 2V_x W$
 $24 + 4V_x = 8 + 2V_x$
 $2V_x = -16$
 $V_x = -8V$
 $P_2 = -16W \text{ Supplied}$

1.33 Find I_x in the network in Fig. P1.33.

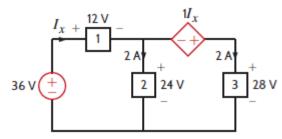


Figure P1.33

$$\begin{aligned} P_{36V} &= -36T_{X} \, \omega \\ P_{1} &= 12T_{X} \, \omega \\ P_{2} &= 48 \, \omega \\ P_{1TX} &= -2T_{X} \omega \\ P_{3} &= 56 \, \omega \\ P_{36V} + P_{1TX} &= P_{1} + P_{2} + P_{3} \\ T_{X} &= 4A \end{aligned}$$

1.34 Determine the power absorbed by element 1 in Fig. P1.34.

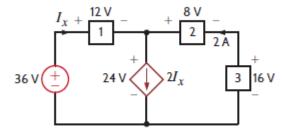


Figure P1.34

$$P_{36V} = -36I_XW$$
 $P_{1} = 12I_XW$
 $P_{2IX} = 48I_XW$
 $P_{2} = -16W$
 $P_{3} = -32W$
 $P_{3} = -32W$
 $P_{48} = 24I_X$
 $P_{5} = 24X_X$
 $P_{7} = 24X_X$
 $P_{8} = 24X_X$
 $P_{9} = 24X_X$
 $P_{1} = 24X_X$
 $P_{1} = 24X_X$

1.35 Find the power absorbed or supplied by element 3 in Fig. P1.35.

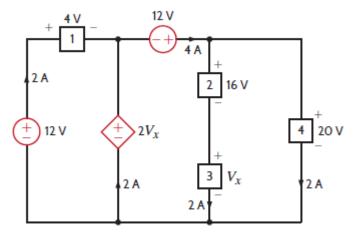


Figure P1.35

$$P_{12V} = -24$$
 $P_{12V} = -48$ $P_{4} = 40$
 $P_{1} = 8$ $P_{2} = 32$
 $P_{2V_{x}} = -4V_{y}$ $P_{3} = 2V_{y}$
 $P_{4} = 40$
 $P_{5} = 8$
 $P_{5} = 8$
 $P_{7} = 8$
 $P_{8} = 8$
 $P_{9} = 40$
 $P_{9} = 40$

1.36 Find V_x in the network in Fig. P1.36 using Tellegen's theorem.

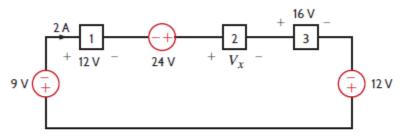


Figure P1.36

Sower supplied = Power absorbed

$$P_{24} + P_{12} = P_{9V} + P_{1} + P_{2} + P_{3}$$
 $24I + 12I = 9I + 12I + P_{2} + 16I$
 $36I = 37I + P_{2}$
 $P_{2} = (-1)(I)$
 $V_{X}(I) = -1(I)$
 $V_{X} = -1V$

1.37 Find I_r in the circuit in Fig. P1.37 using Tellegen's theorem.

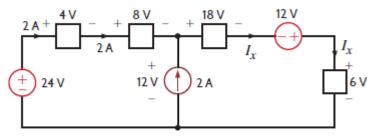


Figure P1.37

$$P_{24V} = (24)(-2) = -48W$$
 $P_{24V} = 48W \text{ supplied}$
 $P_{4V} = (4)(2) = 8W \text{ absorbed}$
 $P_{8V} = (8)(2) = 16W \text{ absorbed}$
 $P_{2A} = 12(-2) = -24W$
 $P_{2A} = 24W \text{ supplied}$
 $P_{18V} = 18I_X \text{ absorbed}$
 $P_{18V} = 12(-1_X) = -12I_X$
 $P_{12V} = 12I_X \text{ supplied}$

$$P_{6V} = 6I_X$$
 absorbed
Sower supplied = Pewer absorbed
 $P_{24V} + P_{2A} + P_{12V} = P_{4V} + P_{8V} + P_{18V} + P_{6V}$
 $48 + 24 + 12I_X = 8 + 16 + 18I_X + 6I_X$
 $12I_X = 48$
 $I_{X} = 48$
 $I_{X} = 48$

1.38 Is the source V_s in the network in Fig. P1.38 absorbing or supplying power, and how much?

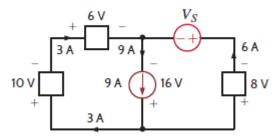


Figure P1.38

1.39 Find I_a in the network in Fig. P1.39 using Tellegen's theorem.

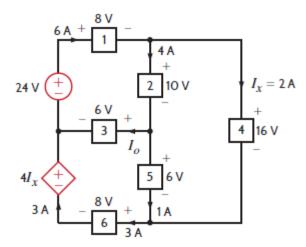


Figure P1.39

$$P_{24V} = 24(-6) = -144 \text{ M}$$
 $P_{24V} = 144 \text{ M}$ supplied

 $P_1 = 8(6) = 48 \text{ M}$ absorbed

 $P_2 = 10(4) = 40 \text{ M}$ absorbed

 $P_3 = 6I_0 \text{ ABSORBED}$
 $P_4 = 16(2) = 32 \text{ M}$ absorbed

 $P_5 = 6(1) = 6 \text{ M}$ absorbed

 $P_6 = 8(3) = 24 \text{ M}$ absorbed

 $P_{4I_X} = 4I_X(-3) = -12(2) = -24 \text{ M}$
 $P_{4I_X} = 24 \text{ M}$ supplied

Power supplied = Power absorbed

 $P_{24V} + P_{4I_X} = P_1 + P_2 + P_3 + P_4 + P_5 + P_6$
 $144 + 24 = 48 + 40 + 6I_0 + 32 + 6 + 24$
 $I_0 = 3A$

1.40 Calculate the power absorbed by each element in the circuit in Fig. P1.40. Also, verify that Tellegen's theorem is satisfied by this circuit.

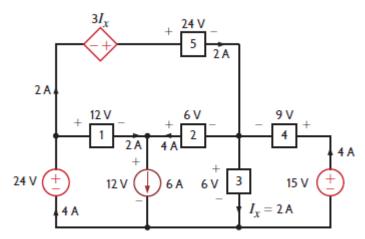


Figure P1.40

#1:
$$P = (12)(2) = 24\omega$$

#2: $P = (6)(-4) = -24\omega$
#3: $P = (6)(2) = 12\omega$
#4: $P = (9)(4) = 36\omega$
#5: $P = (24)(2) = 48\omega$
 $24V: P = (24)(-4) = -96\omega$
 $15V: P = (15)(-4) = -60\omega$
 $6A: P = (12)(6) = 72\omega$
 $3T_x: P = [(3)(2)](-2) = -12\omega$

1.41 Calculate the power absorbed by each element in the circuit in Fig. P1.41. Also, verify that Tellegen's theorem is satisfied by this circuit.

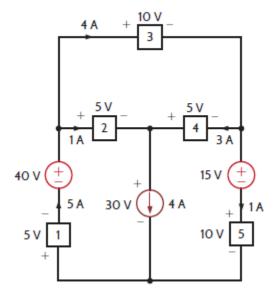


Figure P1.41

#1:
$$l = (5)(5) = 45\omega$$

#2: $l = (5)(1) = 5\omega$
#3: $l = (10)(4) = 40\omega$
#4: $l = (5)(3) = -15\omega$
#5: $l = (10)(1) = 10\omega$
 $4A : l = (30)(4) = 120\omega$
 $4A : l = (40)(-5) = -200\omega$
 $4C : l = (40)(-5) = -200\omega$
 $4C : l = (15)(1) = 15\omega$

1.42 In the circuit in Fig. P1.42, element 1 absorbs 40 W, element 2 supplies 50 W, element 3 supplies 25 W, and element 4 absorbs 15 W. How much power is supplied by element 5?

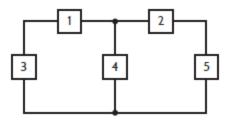


Figure P1.42

$$\leq$$
 Pabsorbed =0
 $40-50-25+15+P_5=0$
 $-20+P_5=0$
 $P_5=20\omega$
Power absorbed by element 5
is 20ω .
Power supplied by element 5
is -20ω .