Chapter 1. Solutionsto Problems

Problem 1.1.
a. A=X(2-X)+y(Yo- V1) +2(z2-2)=X(6-1) +y(-3-0) +2(0-1) =x5-y3 -2
Scalar componentsare: Ax=5,Ay=-3,and A;=-

b. B=xX(X1— X0) +Y(y1-Yo) + 2(z1 - 20) =X(1 - 0) +y(0-0) +Z(1 - 0) =X + 2
Scalar componentsare: Ax=1,A/=0,and A;=1

c. From (a), the vector is. A = X5 — )?3 -7

Its magnitude is A =|A| = VAZ+ AZ+ AZ =52+ (-3)%+ (-1)2 =135

Problem 1.2.

Magnitude of velocity is v = \v\ 50 km/h = 13 889 m/s

a. v = Ev cos 45° + Nv sin 45° = E9.821 + N9.821 ‘mi/s]

b. t = 3,000,000 /9.821= 305,467.69 s — t = 84hrs,51min.
C. D =wvt =13.889 x 305,467.69= 4242640.7 m = 4242.64 km
Problem 1.3.

a. First we convert speed to [m/s):

800 | km/h| = 222.222 [m/s| 100[km/h| =27.778 | mi/s]

For the aircraft to fly west (in the negative x direction), with awind pushing it south (negative y direction), it must fly in
anorthwesterly direction so that its north directed component (positive y direction) equals the magnitude of the wind
velocity. Figure A shows this. From Figure A, the vertical and horizontal components of the aircraft speed are:

v = vsind || = vcoso
The'y component of the aircraft velocity must equal (in magnitude) the wind velocity:

222222 cosh=27.778 — cosh= 20718 =125 —  @=82.82°=82°49
222,222

The aircraft must fly at 82°49' from the north (y direction) or at 7°11' north relative to west (negative x direction).
b. The magnitudes of the horizontal and vertical components of the aircraft velocity are:

Vy = 222.222 sin 82.82 = 220.48 vy =27.778 [%}
The velocity vector of the airplaneis:

V = —x220.48 + y27.778 [g
The speed in the London-NY direction is 220.48 m/s. Vaircraft y
c. Thetotal distance traveled in the westerly direction !
is 5,000 km at the speed above. The time required is: New York !
5000000 _ 678 (g *=x ' I London
220.48
Thisis 6 hours and 18 minutes. _ Woind
Figure A.
Problem 1.4.
a Al= VAZ + A7+ AZ=15%+ 3%+ (-1)* =V35 = 5.916
b. A+ B=X[5+(-3)] +y(3+5)+Z(-1)+ (-2)] =xX2 + y8 - 23
c. A-B=X5-(-3)+y(3-5+7(-1)- (-2)|=x8-y2+2
d. B-A=X[(-3)-5/+y(5-3)+7(-2)- (-)] =-x8+y2 -2
e G=B-A- -XB+y2-2 _ 58 ,y2 51

B- A {(g2+2%+(1? V69 "Voo Voo
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Problem 1.5.
a. See Figures A through F

b. A+B+C= X(3-3+1)+y(1l+3-2)+2(3+3+2)=X +y2+28
A+B-C=x(3-3-1)+y(1+3+2)+2(3+3-2)=-X+y6+24
A-B-C=Xx(3+3-1)+y(1-3+2)+2(3-3-2)=x5-122
A-B+C=xX(3+3+1)+y(1-3-2)+2(3-3+2)=x7-y4+722

A+ (B - C)=X[3+(-3-1)] +y[1+ (3+2)] +2[3+ (3- 2)]=-X + y6 + 24

(A+B)- C=X[(3-3)-1] +y[(1+3)+2] +2[(3+3)- 2] =—X + Y6 + 24

c. Thedirect method is easier in computation but is not as expressive, especialy when physical quantities are involved.

Figure A Figure B

Figure C

Figure D
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Problem 1.6.
a. The velocity vector of the satellite before firing the rocket:
v1=¢ 16,000 [km/h]
The velocity vector of the satellite after firing the rocket:
V2 —¢(16 000- 1,000) = ¢ 15,000 [km/h]

b. The scaling factor is the ratio between the final and initial speed:
k=VY2 =15000 _ 9375

Vi 16,000
Problem 1.7.
The vector is scaled by afactor of 2 without change in direction. Motion isin the direction of the unit vector
a. The vector after scaling is:
v = XV gV 4 V2 = 5800 4 $50 _ 5100 = 150 + 925 — 250 [m}
k k k 2 2 2 S
The direction of motion is the unit vector in the direction of the vector:
X150 +y25-750 _3 6 iyl -3 150 4y 25 _3 50 %

TV - 6 4yl 52
Va1 F VH 160.08 160.08 160.08

VI {1502+ 257 + (-50)°
b. The speed of the particle is the magnitude of its velocity:

=|v| = 160.08 m/s

Problem 1.8.
The scalar component of F in the direction of A isthe projection of F on A. The vector component is in the direction of

the unit vector A. The unit vector in the direction of the A is:
A=A - X3*ty-z _$3 ,y1 51

_W_V3+1+(1) Vi1r Y11 11

To find the projection of F onto A we use the scalar product:

F.A = FACOS 6ra = Fcos Gra = F-A
Al
F:‘F‘:l, A:|A|:\/ﬁ FA =3 . FCOSHFA:F'A:(slr): 3
A Y11 w11

r
Thus, the vector component of F in the direction of A ISA\ Fa:

FA:AFCOSQFA: X 3 +y
ViT Vi i

ﬁi



Problem 1.9.

The unit vector is found through the cross product. Two vectors in each of the planes are first found. Then their cross-
product gives anormal vector. Division of this vector by the magnitude of the vector gives the normal unit vector.

The planeisgiven as: 3x + 4y + z= 0. Find three points on that plane so that two vectors may be identified. The points
are arbitrary aslong asthey are distinct and on the plane. The following three points satisfy these conditions:

P40, 0, 0), P1(0, 1, -4), and PA1, 1, -7)
Let P, and P1 form avector A; Po and P2 form a vector B:
A=y -724 B=X+y -27
The cross-product is:
X y z
AxB=| g 1| _4|=X(-T+8)+Y(-4-0)+2(0-1) =-X3-y4-2
1 1 -7
A unit vector normal to this planeis
F]\ = A XB - -
/AxB| F F F
Problem 1.10.

The unit vector is found through the cross product. Two vectors in each of the planes are first found. Then their cross-
product gives anormal vector. Division of this vector by the magnitude of the vector gives the normal unit vector.

a. The surface is described as z= —x - y. Find three points on that plane so that two vectors may be identified. The
points are arbitrary as long as they are distinct and on the plane. The following three points satisfy these conditions:

P40, 0, 0), Pi(-1,-1,2), and  PA0,1,-1)

Let P, and P1 form avector A; Po and P2 form a vector B:

~

A:—;(\—§/\+22 B:gl\_
To evaluate the vector product we use the determinant method:
X y z
AxB=| 1 _1 o2 |=X(1-2)+y(0-1)+2(-1-0)=-X -y -2
0 1 -1
A unit vector normal to the surfaceis:

AxB_  X-y-z  _ g1 g1 _ 31

AXB {(C1f + (-1 + (-1 3 V3 V3

Note: The solution is not unique. It depends on the choice of the vectors A and B

n=

b. To find two vectors we again specify three points in the plane as follows:

4x-3y +z+5=0 = x=0,y=0=0-0+z+5=0 — P4(0, 0,-5)
x=1,y=1=4-3+2z+5=0=2=-6 — P21, 1, -6)
x=-1,y=+1=-4-3+2+5=0=2=-5+7=2 - Pi(-1,1,2)
The vectors are from P1 to P2 and from P; to Ps are;
A=Py,Pr=X+y -2 B = P1,Ps=-X +y +27
AxB=(X +y-2)x (- X+ Y +27)=Z - Y742+ X7 +y +X = X8 -y 6+ 22

AxB| =164+ 36+ 4 =1104

therefore:
n=AxB_3 8 _§ 6 4+7 2 =%0784-y0.588+20.196
AxB| Y104 Y104 V104
See notein (a)



c. The surface is given as. z = ax + by. Three points on the surface are;

Po(0, 0, 0), P1(0, 1, b), and P21, 1, a+b)
The vectors from Pg to P1 and from P1 and P, are;
A=y+7zb B=xXx+y+za+h)
The vector product is:
X y z
AxB=| g 1 p |=x(@+b-b)+y(b-0)+20-1)=Xxa +yb -2
1 1 a+b
A normal unit vector istherefore:
~_AxB_Xatyb-7
AxB| @2+ p?+1
See notein (a)
Problem 1.11.

The area of the triangle may be found from the fact
that the magnitude of the cross product of two vectors
equals the area of the parallelogram defined by the two
vectors. Taking two vectors to be two sides of the
triangle, the area calculated equals twice the area of the
triangle (see Figure A). The area of the triangle is
then given as.

Figure A.

5= AxB
The three vertex points define two vectors as follows:
A=x(@-a)+ylb -b)+2zc -c) B =x(a -a)+ylb - b)+Zzc -c)
X y z

AxB=| 4 _a b _b c—c|=xlb-bfc'-c)-(b"-b)c -c)+

a-a b-b c-c
y[(a -afc' -c)-(a-a)c' -c)]+Z(a-afb -b)-(a - afb - b)]

The area of the triangle is therefore:
S= %{[(b ~b)c'-¢c)- (b - b)c - c)f +[(a -a)c - c)- (a -a)c - )P+
[(@-a)fb - b)-(a -a)b - b)]P}"*

Problem 1.12.

Since we need to express the relations in terms of
sines, the vector product may be used, again by
defining the sides of the triangle as vectors as shown
in Figure A. The magnitude of the vector product of
each of the two vectors equals twice the area of the
triangle. Thus:

Figure A.

AxB = nAB sin fas, AxC = nAC sin Gac, BxC = nBC sin Gsc
Taking the magnitudes:

AB sin 6ag — AC sin 6ac — BC sin 6sc

2 2
Dividing each product by ABC gives:
Sin Oag — SIN Hac — Sin B¢ — A - B - _C
C B A SN Osc SN Oac SN Oas



Problem 1.13.

The z axis is described by a unit vector in the z direction. The angle between A and the z axisis then found from the scalar
product. In (b), the cross product between the vectors is found.

a. Let vector B be along the z axis, B = Z.The angle between A and the z axisis:

O = cOS™ (A-B) = cos! (x3+y1-22)2 ) = cos? (i) = 180° + 57.688°
AlB V(3 +1+29(1) V14

b. A vector C perpendicular to A and the z axis may be defined as follows:

X y oz
C=AxB=| 3 1 -2 2;(\—93
0O 0 1
Problem 1.14.
The magnitude of avector in the direction of another
vector is the magnitude of its projection. This may be
calculated by first finding the unit vector in the
direction of A and then the scalar product between F
and A (see Figure A).
-=a OS
W\ Figure A
,/A:: _X3+y2_22 :_;(\i+g/\L—E\L

Now:

The scalar product of F in the direction of A is9/V17.
An alternative way is to calculate the product:

FA_(X+y5-2)(-x3+y2-22) _ _34+1042 _ 9
A V324 224 22 V32422422 V17

which gives the same result.

Problem 1.15.

The area of a parallelogram equals the magnitude of the vector product between any two vectors that make its sides,
provided both vectors emanate from the same vertex. While the choice of vectorsis not unique, he area remains the same
regardless of the pair of vectors chosen.

a. For the given vertices, we define two vectors emanating from P1. One ends in P, the other in P3. The two vectors are:
A=X(X2— X1) + V(Y2 - y1) + 2(z2- 21) =X (2-7) +y(1-3) +Z(0- 1)=-X5-y2 -2
B=X(x-x)+Y(ys- Y1)+ 2(z3- 22) =X (2-7) +Y(2- 3 +2(5- 1) =-X5-y + 724

The vector product AxB is:

-~ ~

X oy z
AxB=| _5 _p _1 |=X(-8-1)+y(5+20)+2(5-10)=- X9 +y25-25

-5 -1 4
The area of the parallelogramiis:

A x Bl = V(~9)2+ (25)%+ (-5)? =731 = 27.04

b. The solution is not unique. There are atotal of three different parallelograms (one given above in Figure A, the other
two shown in Figures B and C) but the area of each parallelogram is the same.
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Figure A Figure B Figure C

Problem 1.16.

a. The four vertices of the parallelepiped form six vectors:

1. Vector A1 from Py to P2 4. Vector A4 from P3 to P2
2. Vector A, from P71 to P3 5. Vector As from P4 to P2
3. Vector Az from P1 to P4 6. Vector Ag from P4 to Ps .

Of course, any one of these vectors may be reversed.

b. There are four vertices, each emanating three vectors. Thus, there are four parallel epipeds:
1. With P1 astheroot vertex. 3. With P3 as the root vertex.
2. With P2 as the root vertex. 4. With P4 asthe root vertex.

c. There are four distinct parallelepiped that can be defined that satisfy the requirement of three vectors emanating from a
node. These are defined by taking each vertex as aroot node.
1. P1 astheroot node:

A1=X(Xo - X1) +Y(y2 - Y1) + 2(z2- z1) =X (@-0) +y(0- 0) +Z(1L - 0)= Xa + z
Ao=X(Xa—X1) +y(ys- VY1) +z(zz- z1)= Xa + y2+zcC
Az=X(Xa-Xx1) +y(ya-y1) +zZ(za-z1)= X+ yb+2z

The volume of the parallelepiped is defined by A1.(A 2xA3). We calculate the vector product first:

X vy oz
AxxAsz=| a 2 ¢ |=X(2-bc)+y(c -a)+2z(@b -2)
1 b 1

The volume of the parallelepiped is.
Ar(Azx Az)=a(2-bc)+(ab -2)=a(2-bc+b)-2
2. P2 astheroot node.
Bi=x(X1-x)+y(y1-VY2) +2(z1- )= - xa-2z
Ba=X(x3-X2) +y(ys - Vy2) + z(z3- z2) =y2+ z(c - 1)
Bas=X(Xa-X2) +Y(ya—-Y2) +2(za-22) = X(1-2a)+yb

~

V4
o1 | =X [-b(c - 1)+ y[(c -1)(1- &) + Z-2(1 - a)]
0

X

B2xBs=| g

o N <)

1-a
Bi(B2x Bs)=ab(c-1)+2(1-a)=a(bc-b -2)+2
3. P3 asthe root node.

C1:§(\(X1—X3)+§/\(y1—y3)+2(21—23): - Xa —372—?c
Co=x(X2-X3) +Y(y2-y3) + z(z2- z3) =-y2+2z(1-c)
Cs=x(xa-X3) +y(ya-ys) +z(za-z3)=x(1-a)+y(b -2)+z(1-c)



X y z
CoxC3=| g _2 1. |=X1-2(1-c)-(b -2)(1-c)]+Yy[(1-c)1-a)+Z-2(1-a)
l-a b-2 c-1
C1(C2xCs)=2a(l-c)+ab-2)(1-c)-2(1-a)(l-c)- 2c(1l- a=a(b-bc+2)-2

4. P4 as the root node.
Di=X(x1-Xa) +y(y1-ya) + Z(zn-z)= - X -yb - Z
Da=X (X2~ Xa) + V(Y2 - ya) + Z(z2- z) =X (@~ 1) - yb
Ds=X(x3 - %) + Y(y3 - ya) + 2(za- z2) = x(a- 1)+ y(2-b) +Z(c- 1)

~

X 'y z

DaxDs=3_1 —p o |=X[-b(c-1)]+y[-(a-1)(c- 1]+ Z(a-1)(2-b)+b(a-1)]
a-12-b c-1

D1(D2x D3)=b(c-1)+b(a-1)(c-1) -(a-1)(2-b)-b@a-1)=ac-b-2)+2

Note: the four parallelepipeds have the same volume. In the calculations above, volumes (2) and (4) are the negatives of
volumes (1) and (3). This merely means that the sequence chosen for the vector productsin (2) and (4) needs to be reversed
or, aternatively, that the magnitude of the scalar triple product needs to be used.

Problem 1.17.
The volume of the parallelepiped equals the triple scalar product AxB.C. The area of the parallelogram forming the basis
of the parallelepiped equals |JAxB|. Thus, the height equals:

h _AxB.C
NEfaldsid
AxB|
Similar calculation provides the height of the second and the third parall el epiped.
X y z
a. AxB=| 1 1 o |=X(2-2)+y(4-2)+2(1-2)=y2-7
2 1 2
(AxB)C=-4-3=—7 (AxBC__7_ 343 - h=3.13
AxB 5

Note: The negative sign simply means that we took the vector product AxB rather than BxA, hence we need to take the
absolute value of the projection.

X vy oz
b. AxC=| 1 1 o2 |=X(B+4)+y(2-3)+2(-2-1)=Xx7-y - 23
1 -2 3
(AxC)B=14-1-6=7 AxCB_ 7 5911 h=0.911
A x C 59
X vy oz
c BxC=| o 1 2 |=X(3+4)+y(2-6)+2(-4-1)=x7-y4-25
1 -2 3
(Bx C)A=7-4-10=—7 (BxCVA _ -7 _ (738 - h=0.738

BxC V90
The height of the parallelepipedsis different (but their volumesis the same)



Problem 1.18. 1.5+

a. See Figure A. 1.4
b. To find the zero slope points we calcul ate the 7
derivative with respect to x and y and set to zero. The 13 B e N
X . . . I;I;I;l/;;;;lll;lllllllllll,,,Il,llllllllll{\\\\\\‘\\\ \\\\\\\

scalar function may be written as: P ’W%W%M‘

2 2 2 1.2 7 NN
P=xi(y-2) +X(y-2) = x¥ - 2x? - xy + 2x +1 7\ YN\

T A

T =xf-x=x(x-1)=0 — x=0,x=1 Y ,,IIIII[II;;IIII,I/I[[[[/ N
ay > /IIII/,,,;;;;/III

£:2x(y—2)—(y—2):o — y=2forx=00rx=1
X

A_tpqintx=1,y=2andx=0,y=2,thes|opeofthe Y 07§ : X
fieldis zero. Figure A
Problem 1.19.

A =x+vy.SeeFigure A for a3D plot and a contour plot.
B = x-y. See Figure B for a 3D plot and a contour plot.

c="X*"Y see Figure C for a 3D plot and a contour plot.
X +y

1.00 — :1:4

7 —12

] _—

0.50 — :0:6()

] —0.40

] —0.20

0.00 —

050 = ——0.60
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-1.00 -0.50 0.00 0.50 oo —I8

contour plot

=t
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1 080
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. —0.40
N —020

0.00
050 —0.60
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~1.00 -0.50 0.00 0.50 100 — 18

3D plot contour plot

Figure B



—0.60
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—0.40
1.00 —0.30
= \4
0.50—
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0.00— — ! e ——
-0.50
_100 1 T T T T T T | T T 7777]3
-1.00 -0.50 0.00 0.50 1.00 —-14
contour plot
Figure C
Problem 1.20.
A :fy+ yx. See Figure A.
B:Qy— 37x. See Figure B.
c=XX*yy, See Figure C.
X2 +y
] ] L =
1.00 — - 1.00— =~
N ==
0.00 — x RN 0.00 =N \\'\K\‘ SN
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Figure C
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Problem 1.21.
a. The transformation from Cartesian to cylindrical coordinatesis (Eq. (1.63)):

r=Vx%+y?, ¢:tan‘l(¥), z=z @

Substitution of the Cartesian coordinates of the three pointsin Eq. (1) gives:
rn=V12+12=v2, ¢1:tan'1(%):45°, =1
rp =12+ 12 =42, ¢2:tan'l(%):45°, =0
rs =02+ 1% =1, ¢3=tan‘l%)=90°, =1

P.(V2, 45°, 1), Py(V2, 45°, 0), and Ps(1, 90°, 1) @)
The transformation to spherical coordinatesis:
R=VEeyrez, o=t (V) st (Y) 6

Substitution of the Cartesian coordinates of the three pointsin Eq. (3) gives:

2 2
Ry = V1% + 1%+ 12 =43, 61 = tan™" ("1;1) = 54.736° ¢1=tan* (l) =45°

2 2

Ry = 112+ 1%+ 0% =2, 02 = tan™* (Vlgl) =90°, ¢2 = tan™* (%) = 45°
2 2

Rs = V0% + 1%+ 12 =2, 63 = tan™* (V01+1) =45° ¢3= tan™* (%) = 90°

P1(V3, 54.736°, 45°), P,(V2, 90°, 45°), and Ps(V2, 45°, 90°)

b. To find the equation of the plane we define two vectors connecting the three points so that they emanate from P1. A
third vector also emanating from P1 to some arbitrary point P(x,y,2) is also defined. Now we calculate the volume of the
parallelepiped defined by the three vectors. Setting this volume to zero forces the three vectors to bein aplane. The
resulting equation is the equation of the plane.

A= Q(xz— X1) + 37(y2_ y1) + 2(22— zl):—E
B =X(Xs-X1) +Yy(ys - y1) + 2(z3- 21) =-X
C=x(X-x)+y(y-y)+z(z-2z1)=x(Xx-1)+y(y-1)+z(z - 1)

The equation of a plane through three pointsin Cartesian coordinatesis:
C-(A x B)=(x(x - 1) + Yy - 1) + 2z - D){(-D)x(-)) =
(Xx - +yly -+ 2z- D)y = (y - 1)=0
or:
y=1

c. In the cylindrical coordinate system, we use the coordinate transformation (Eq. (1.62)):

X = I COS¢p y =rsing z=2
Since we only need the transformation for y, we write:

y = rsing — rsing =1

Note that this describes a plane as ¢ varies from zero to 2 for any value of r.

d. In the spherical coordinate system, we use again the transformation from spherical to Cartesian coordinates (Eq.
(1.82)):

X =Rsin(6)cos(¢) y =Rsin(8)sin(¢) Z =Rcos(6)
Again we only need the transformation for y:
y =Rsin(0)sin(¢) — Rsin(6)sin(¢) = 1

and again, this describes a plane for values of 8 between zero and 7, and for values of ¢ varying between zero and 2. For
these values, R varies from 1 to o over the plane.
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Problem 1.22.
a. In Cartesian coordinates: X

b. In cylindrical coordinates, since r = Vx2 + y?:

c. In spherical coordinates:

Problem 1.23.
We choose a general point on the sphere and transform it into Cartesian coordinates.
a. We choose a point:
P (a, 6, ¢)

In Cartesian coordinates:

X = asin (0)cos (¢), y=sin (0)sin (¢), zZ=acos (0)
or:

P (asin (6)cos (¢), sin (8)sin (¢), a cos ()

b. In Spherical coordinates, the point is simply described as:

P(a,o ¢)
Problem 1.24.
The transformation from Cartesian to spherical coordinates for the scalar componentsis (Eq. (1.89)):
'Ar| | sinfcos¢ snOsing cos0 || Al
Ap|=| cosfcos¢ cosOsing -sin 6 Ay
|Ag] L -sing oS ¢ 0 JLAz]
The vector has scalar components Ax=2, Ay=-5, A,=3. Substituting these gives:
'AR| | sin@cosg sinBsing cos 0 2 |
Ag|=| cosOcos¢ cosOsing -sin 0 -5
1Ay L -sing CoS ¢ 0 3

Expanding, this gives:
Ar = 2sin 6 cos ¢ — 5sin 6 sin ¢ + 3cos 6
Ag = 2cos 6 cos ¢ — 5¢cos 6 sin ¢ — 3sin 6
Ap=-2sin ¢ - 5cos ¢
The vector A in spherical coordinatesis:
A =R(2sin 6 cos ¢ - 5sin 0 sin ¢+ 3cos 6) + 6(2cos O cos ¢ - 5cos 6 sin ¢ - 3sin ) + §(-2sin ¢ - 5cos ¢) (1)

Now we must transform the coordinates given from Cartesian to spherical coordinates (Eq. (1.81)):

R =Vx7+y7+ 2, i“z*y). ¢=tan” (2]
for P(-2,3,1), these give:

6= tan‘l(

R=VxZ+yZ+22=V(-2?+3*+1°=y14
2 2
”(‘2)1+3) = tan™" (3.60555) = 74.5°

than‘l(

$=tan* (y;) =tan™* (%) —tan"*(-15)=-56.31° o ¢=123.69°

The second solution isvalid since x < 0, y > 0 (second quadrant). Thus, ¢ = 123.69°. Substituting these values into the
vector A in Eq. (1) gives:
A = R(2sin (74.5°)cos (123.69°) - 5sin (74.5°)sin (123.69°) + 3cos (74.5°%)) +
6(2cos (74.5°)cos (123.69°) - 5cos (74.5°)sin (123.69) - 3sin (74.5%)) +

~

&(-2sin (123.69°) - 5cos (123.69°))
or, after evaluating the various sin and cos terms: A=- a 4.276 - 8 4.299 + $1.1094
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Problem 1.25.
a. To transform the vector to Cartesian coordinates we use the general transformation from cylindrical to Cartesian
coordinates (Eq. (1.70)):

Ax cosp -sing 0 Ar cosp -sing 0 3cos¢
Ay [=| sing cosg 0 Ay |=| sing cosg 0 —
A; 0 0 1 Az 0 0 1 r¢

Expanding, we obtain:
A=A oS ¢ — Aysin ¢ = 3 cos? ¢ + 2 sin ¢
Ay = A sing — AgCosg = 3 OS¢ Sing — 24 COS ¢
Az=r1¢
Thus, the vector is:
A = X(3 cos?p + 2ifsin ¢) + y(3 cosgsing — 2vrcos ¢) + zr ¢

b. In spherical coordinates we use the transformation from cylindrical to spherical coordinatesin Eq. (1.92):

Ar sinf 0 cosf || Ar sinf 0 cosf 3cosg
Ag=| cos& 0 -sin® |A¢|T| cos® 0  -sind || -2F
Ay 0 1 0 Az 0 1 0 re

Expanding gives the scalar components:
Ar = 3c0s¢Sing + r ¢cos 0, Ap = 3c0ospcoso - r ¢sing, Ap= -2

Problem 1.26.

Position vectors are calculated as any vector but the root of the vector is at (0,0,0). Thus:

a. ri=x(a - 0)+y(b - 0)+ z(c - 0)=xa+yb+zc

b. r2=x(a - 0) + y(b' - 0) + Z(c' - 0) = xa' + yb'+ z¢’

c. R =x(a -a)+y(b' - b)+ z(c' - ¢)

g r2—rAl:(fa‘+zb‘+2c')—(A§a+37b+20):

' x(a -a)+y(b' - b)+Zzc-c)=R
Problem 1.27.

It iseasiest to first transform the coordinates into Cartesian coordinates. Then we can define vectors, position vectors and
the like and, if necessary, transform them back into any other system of coordinates. Thisis not the only way but the
most straightforward way.

Transformation of coordinates from spherical to Cartesian coordinates (Eg. (1.82)):

X =Rsin(6)cos(¢) y =Rsin(8)sin(¢) Z =Rcos(0)
Substituting the coordinates for point P1 and P2 we get:
x1 =3sin(0°)cos(30°) =0 y1 =3sin(0°)sin(30°) =0 z1=3c0s(0°) =3
X2 = 3sin(45°)cos(45°) = 1.5 y2 = 3sin(45°)sin(45°) = 1.5 7> = 3cos(45°) = 3%

The two points are:
P1(0,0,3) P2(1.5,1.5,3V2)

a. The position vectors for P1 and P2, denoted asr1 and r, are:
ri=2z3 r2 = X1.5+y 1.5+ 23/2/2
b. The vector R from P1to P2 is:
R=r-r1=x1.5+y15+23/2/2- 23=x1.5+y 1.5+ z(3/2 - 6)/2

c. The position vectors as well as the vectors are now transformed into Cylindrical coordinates and spherical coordinates
using the appropriate transformation formulas.

13



Cylindricd coordinates:

Forry

Expanding gives:

For r2:

or:

the vector is:

For R:

or:

|r1r] cosp  sing 0 |rﬂ cosp  sing 0 0

Mg =| -sing cos¢ 0 ly -sing  cosg 0 0
M1z M1z
0 0 1 0 0 1 3
lr= 23 — r = 23

For cosp  Sing 0 15

f2g |=| -sing cos¢ 0 1.5

2z

0 0 1 3V2/2
ror = 1.5cosp + 1.5sind, rzp = - 1.5sing + 1.5c0sp, ro; =3V2/2

r2=r(1.5cosp + 1.5sing) + 4A>(— 1.5sing + 1.5c0s¢) + 23V2/2

Rr cosp  sing 0 15

Ry |=| -sing cosg 0 1.5

R 0 0 1 32-6
2

R= ?(1.Scos¢ + 1.5sin¢) + <|A>(— 1.5sin¢ + 1.5cos¢) + z 22‘ 6

Spherical coordinates:

or:

Thevectorriis:

For r2:

For R:

AR sinfcosp  sinfsing cosf Ax
Ag |=| cosBcosp cosfsing - sind Ay
Ay - sing Cos¢ 0 Az

rir = 3cos6, rip =-3sin6

ri= I33cos¢9 - 03sin6

- sinfcosy  sinfsing cosf 15
|r29]: cosfcosy  cosOsing - sing 15
r .
¥ -sinp  cosp 0 3(2/2

Fa2= §(1.53in9cos¢ + 1.5sin6sing + %cos@)

+ 8(1.50056)00545 + 1.5cosfsing - %sin@) + $(— 1.5sing + 1.5cos¢ )

- sinfcosp  Sinfsing cosf 15
\I’w]: cosfcosp cosfsing  — sind 15
r .
2 - sing Cos¢ 0 32 -6
2

R = I3(1.53in6005¢ + 1.5sinf0sing + @cos@)

+ 8(1.5cos€cos¢ + 1.5cosfsing — @Qne) + $(_ 1.5sing + 1.5cos¢ )
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