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Chapter 1: Solutions to Problems

Problem 1.1.
a.   A = x(x2 − x1) + y(y2 − y1) + z(z2 − z1) = x(6 − 1) + y(−3 − 0) + z(0 − 1)  = x5 − y3 − z  
Scalar components are:  Ax = 5 , Ay = −3 , and  Az = −1

b . B = x(x1 − x0) + y(y1 − y0) + z(z1 − z0) = x(1 − 0) + y(0 − 0) + z(1 − 0) = x  +  z  
Scalar components are:  Ax = 1 , Ay = 0 , and  Az = 1

c. From (a), the vector is: A = x5 − y3 − z

Its magnitude is A  = A  = Ax
2 + Ay

2 + Az
2  = 52 + (−3)2 + (−1)2  = 35

Problem 1.2.
Magnitude of velocity is v = v  = 50 km/h = 13.889 m/s

a. v = Ev cos 45o + Nv sin 45o = E9.821 + N9.821          m/s  
b.  t = 3,000,000 /9.821= 305,467.69 s           →          t = 84hrs,51min.  
c. D = vt = 13.889  × 305,467.69= 4242640.7 m = 4242.64 km  

Problem 1.3.
a.  First we convert speed to [m/s]:

800 km/h   = 222.222 m/s           100 km/h   = 27.778 m/s  

For the aircraft to fly west (in the negative x direction), with a wind pushing it south (negative y direction), it must fly in
a northwesterly direction so that its north directed component (positive y direction) equals the magnitude of the wind
velocity. Figure A shows this. From Figure A, the vertical and horizontal components of the aircraft speed are:

vx  = vsinθ            vy  = vcosθ  

The y component of the aircraft velocity must equal (in magnitude) the wind velocity:

222.222 cosθ = 27.778      →      cosθ = 27.778
222.222

 = 0.125      →      θ = 82.82° = 82°49'  

The aircraft must fly at 82°49' from the north (y direction) or at 7°11' north relative to west (negative x direction).

b. The magnitudes of the horizontal and vertical components of the aircraft velocity are:

vx = 222.222 sin 82.82 = 220.48          vy =27.778      m
s

 
The velocity vector of the airplane is:

v = −x220.48 + y27.778          m
s

 

The speed in the London-NY direction is 220.48 m/s.

c. The total distance traveled in the westerly direction
is 5,000 km at the speed above. The time required is:

T = 5,000,000

220.48
 = 22,678       s

This is 6 hours and 18 minutes.
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Problem 1.4.
a. A  = Ax

2 + Ay
2 + Az

2 = 52 + 32 + (−1)2  = 35  = 5.916  
b. A +  B =  x 5 + (−3)  + y(3 + 5) + z (−1) +  (−2)  = x 2 + y8 − z3  
c. A −  B =  x 5 − (−3)  + y(3 − 5) + z (−1) −  (−2)  = x 8 − y2 + z  
d. B −  A =  x (−3) − 5  + y(5 − 3) + z (−2) −  (−1)  = −x8 + y2 − z  
e. c = B −  A

B −  A
 = −x8 + y2 − z

(−8)2 +  22 +  (−1)2
 = −x 8

69
 + y 2

69
 − z 1

69
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Problem 1.5.
a. See Figures A through F
b . A +  B +  C =   x(3 − 3 + 1) + y(1 +  3  −  2) + z(3 +  3  +  2) = x  + y2 + z8  

A +  B −  C =  x (3 − 3 − 1) + y(1 +  3  +  2) + z(3 +  3  −  2) = −x + y6 + z4  
A −  B −  C =  x (3 + 3 − 1) + y(1 −  3  +  2) + z(3 −  3  −  2) = x 5 − z2  

A −  B +  C =  x (3 + 3 + 1) + y(1 −  3  −  2) + z(3 −  3  +  2) = x 7 − y4 + z2  
A +  B −  C  = x [3 + (−3 − 1)] + y[1 +  (3 +  2)] + z[3 +  (3 −  2)] = −x + y6 + z4  

A +  B  −  C =  x [(3 − 3) − 1] + y[(1 +  3) +  2] + z[(3 +  3) −  2] = −x + y6 + z4  

c.  The direct method is easier in computation but is not as expressive, especially when physical quantities are involved.
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Problem 1.6.
a. The velocity vector of the satellite before firing the rocket:

v 1  = φφφφ  16,000           km/h  

The velocity vector of the satellite after firing the rocket:

v 2  = φφφφ(16,000 −  1,000) = φφφφ  15,000           km/h  

b. The scaling factor is the ratio between the final and initial speed:

k = v2

v1
 = 15,000

16,000
 = 0.9375  

Problem 1.7.
The vector is scaled by a factor of 2 without change in direction. Motion is in the direction of the unit vector.
a. The vector after scaling is:

v =  x vx

k
 + y

vy

k
 + zvz

k
 = x300

2
 + y50

2
 − z100

2
 = x150 + y25 − z50          m

s
 

The direction of motion is the unit vector in the direction of the vector:

v =  v
v

 = x150 + y25 − z50

1502 +  252 +  (−50)2
 = x 6

41
 + y 1

41
 − z 2

41
 = x 150

160.08
 + y 25

160.08
 − z 50

160.08
          m

s
 

b. The speed of the particle is the magnitude of its velocity: v  = v  = 160.08 m/s

Problem 1.8.
The scalar component of F in the direction of A is the projection of F on A. The vector component is in the direction of

the unit vector A . The unit vector in the direction of the A is:

A = A
A

 = x3 + y  −  z

32 +  12 +  (−1)2
 = x 3

11
 + y 1

11
 − z 1

11
  

To find the projection of F onto A we use the scalar product:

F .A =  FAcos θFA          ⇒          Fcos θFA = F .A
A

 

F = F  = 1
r
,          A =  |A | = 11             F.A =  3

r
          →         Fcos θFA = F .A

A
 = (3/r)

11
 = 3

r 11
 

Thus, the vector component of F in the direction of A is AFA:

FA = A F cos θFA =  x 3
11

 + y 1
11

 − z 1
11

 1
r
 3

11
 = x 9

11r
 + y 3

11r
 − z 3

11r
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Problem 1.9.
The unit vector is found through the cross product. Two vectors in each of the planes are first found. Then their cross-
product gives a normal vector. Division of this vector by the magnitude of the vector gives the normal unit vector.
The plane is given as: 3x + 4y + z = 0.  Find three points on that plane so that two vectors may be identified. The points
are arbitrary as long as they are distinct and on the plane. The following three points satisfy these conditions:

Po 0, 0, 0 ,          P1 0, 1, −4 ,          and          P2 1, 1, −7

Let Po and P1 form a vector A; P0 and P2 form a vector B:

 A =  y  − z 4             B =  x +  y  − z7
The cross-product is:

A×B = 

x y z

0 1 −  4

1 1 −  7

 = x (−7 + 4) + y(−  4 −  0) + z(0 − 1)  = − x 3 − y4  − z

A unit vector normal to this plane is

n = A ×B
A×B

 =  − x 3
26

 − y 4
26

 − z 1
26

Problem 1.10.
The unit vector is found through the cross product. Two vectors in each of the planes are first found. Then their cross-
product gives a normal vector. Division of this vector by the magnitude of the vector gives the normal unit vector.

a. The surface is described as z = −x − y. Find three points on that plane so that two vectors may be identified. The
points are arbitrary as long as they are distinct and on the plane. The following three points satisfy these conditions:

Po 0, 0, 0 ,        P1 −1, −1, 2 ,        and        P2 0, 1, −1

Let Po and P1 form a vector A; P0 and P2 form a vector B:

 A =  −x −  y  +  z 2                     B =  y  −  z 

To evaluate the vector product we use the determinant method:

A×B = 

x   y  z

−1 −1 2

0 1 −1

 = x (1 − 2) + y(0 −  1) + z(−1 −  0) = − x  − y  −  z

A unit vector normal to the surface is :

n = A ×B
A×B

 = −x −  y  −  z

−1 2  +  −1 2  +  −1 2   
 =  −x 1

3
 − y 1

3
 − z 1

3

Note: The solution is not unique. It depends on the choice of the vectors A and B.

b. To find two vectors we again specify three points in the plane as follows:
4x − 3y  + z + 5 =0    ⇒     x = 0, y = 0 ⇒  0 − 0 + z + 5 = 0           →         P1 0, 0,−5

x = 1, y = 1 ⇒  4 − 3 + z + 5 = 0 ⇒  z = − 6          →          P2 1, 1, −6
x = −1, y = +1 ⇒  − 4 − 3 + z + 5 = 0  ⇒  z = − 5 + 7 = 2          →          P3 −1, 1, 2

The vectors are from P1 to P2 and from P1 to P3 are:

A = P1,P2 = x  + y  −  z            B =  P1,P3 = − x  + y  +  z7

A×B = x  + y  −  z  ×  −    x + y  +  z7  = z  −  y 7  +z +  x 7  +y +x = x 8  − y 6  + z 2

 A×B  = 64 +  36 +  4  = 104
therefore:

n = A ×B
A×B

 = x 8
104

 − y 6
104

 + z 2
104

 = x 0.784 − y 0.588 + z 0.196

See note in (a)
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c. The surface is given as: z = ax + by. Three points on the surface are:

P0 0, 0, 0 ,           P1 0, 1, b ,          and         P2 1, 1, a +b

The vectors from P0 to P1 and from P1 and P2 are:

A = y  +  z b            B =  x  + y  +  z a +b 
The vector product is:

A×B = 

x y z

0 1 b

1 1 a + b

 = x (a  + b − b) + y(b −  0) + z(0 − 1) = x a   +  yb  − z

A normal unit vector is therefore:

n = A ×B
A×B

 = x a + y b − z

a2 + b2 + 1
See note in (a)

Problem 1.11.
The area of the triangle may be found from the fact
that the magnitude of the cross product of two vectors
equals the area of the parallelogram defined by the two
vectors. Taking two vectors to be two sides of the
triangle, the area calculated equals twice the area of the
triangle (see Figure A). The area of the triangle is
then given as:

A

B S= A×B

Figure A.

S = 
A×B

2
The three vertex points define two vectors as follows:

A = x a′ − a  + y b ′ − b  + z c ′ − c            B  =x a″ − a  + y b ″ − b  + z c″ − c

A×B = 

x y z

a′ − a b ′ − b c ′ − c

a″ − a b ″ − b c″ − c

 = x b ′ − b c″ − c  − b ″ − b c ′ − c  + 

y a″ − a c ′ − c  − a′ − a c″ − c  + z a′ − a b ″ − b  − a″ − a b ′ − b

The area of the triangle is therefore:

S = 1
2

 b ′ − b c″ − c  − b ″ − b c ′ − c
2
 + a″ − a c ′ − c  − a′ − a c″ − c 2 +

 a′ − a b ″ − b  − a″ − a b ′ − b
2 1/2

Problem 1.12.
Since we need to express the relations in terms of
sines, the vector product may be used, again by
defining the sides of the triangle as vectors as shown
in Figure A. The magnitude of the vector product of
each of the two vectors equals twice the area of the
triangle. Thus:

A
B

C
θBC

θAC

θAB

Figure A.

A×B = n AB sin θAB ,  A×C = n AC sin θAC ,  B×C = n BC sin θBC

Taking the magnitudes:
AB sin θAB

2
 = AC sin θAC

2
 = BC sin θBC

2
Dividing each product by ABC gives:

sin θAB

C
 = sin θAC

B
 = sin θBC

A
          →           A

sin θBC

 = B
sin θAC

 = C
sin θAB
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Problem 1.13.
The z axis is described by a unit vector in the z direction. The angle between A and the z axis is then found from the scalar
product. In (b), the cross product between the vectors is found.

a. Let vector B be along the z  axis, B = z . The angle between A and the z  axis is:

θAz = cos−1 A.B
A B

 = cos−1 
x3 + y1 − z2 .z

32 + 1 + 22 1
 = cos−1 −2

14
 = 180o ± 57.688o

b. A vector C perpendicular to A and the z  axis may be defined as follows:

C = A×B = 

x y z

3 1 −  2

0 0 1

 = x  −  y 3

Problem 1.14.
The magnitude of a vector in the direction of another
vector is the magnitude of its projection. This may be
calculated by first finding the unit vector in the
direction of A and then the scalar product between F

and A (see Figure A).
A

F

φ
φ

|F|cos

.
Figure A

A = − x 3 + y2  − z2

32 +  22 +  22
 = − x 3

17
 + y 2

17
 − z 2

17
Now:

F ⋅A = x +  y5 − z . − x 3
17

 + y 2
17

 − z 2
17

 = − 3
17

 + 10
17

 + 2
17

 = 9
17

 

The scalar product of F in the direction of A is 9/ 17.
An alternative way is to calculate the product:

F .A
A

 = 
x  + y5 − z . − x3 + y2 − z2

32 +  22 +  22
 = − 3 + 10 + 2

32 +  22 +  22
 = 9

17
 

which gives the same result.

Problem 1.15.
The area of a parallelogram equals the magnitude of the vector product between any two vectors that make its sides,
provided both vectors emanate from the same vertex. While the choice of vectors is not unique, he area remains the same
regardless of the pair of vectors chosen.

a. For the given vertices, we define two vectors emanating from P1. One ends in P2, the other in P3. The two vectors are:

A = x (x2 − x1) + y(y2 − y1) + z(z2 −  z 1) = x (2 − 7) + y(1 −  3) + z(0 − 1) = − x5  − y 2 − z  
B = x (x3 − x1) + y(y3 − y1) + z(z3 −  z 1) = x (2 − 7) + y(2 −  3) + z(5 − 1) = − x 5  − y  + z4  

The vector product A×B is:

A×B = 

x y z

−5  −2 −1

−5  −1 4

 = x (−    8 − 1) + y(5 +  20) + z(5 − 10) = −    x9 + y25 − z5

The area of the parallelogram is:

A ×  B = (−9)2 +  (25)2 +  (−5)2  = 731  = 27.04

b. The solution is not unique. There are a total of three different parallelograms (one given above in Figure A, the other
two shown in Figures B and C) but the area of each parallelogram is the same.
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Problem 1.16.
a. The four vertices of the parallelepiped form six vectors:
1. Vector A1 from P1 to P2

2. Vector A2 from P1 to P3

3. Vector A3 from P1 to P4

4. Vector A4 from P3 to P2

5. Vector A5 from P4 to P2

6. Vector A6 from P4 to P3 .
Of course, any one of these vectors may be reversed.

b. There are four vertices, each emanating three vectors. Thus, there are four parallelepipeds:
1. With P1 as the root vertex.
2. With P2 as the root vertex.

3. With P3 as the root vertex.
4. With P4 as the root vertex.

c. There are four distinct parallelepiped that can be defined that satisfy the requirement of three vectors emanating from a
node. These are defined by taking each vertex as a root node.
1. P1 as the root node:

A 1 = x (x2 − x1) + y(y2 − y1) + z(z2 −  z1) = x (a − 0) + y(0 −  0) + z(1 − 0) =  xa  + z  
A 2 = x (x3 − x1) + y(y3 − y1) + z(z3 −  z1) =  xa   +  y2  + z c  

A 3 = x (x4 − x1) + y(y4 − y1) + z(z4 −  z1) =  x +  yb  + z  

The volume of the parallelepiped is defined by A1. A2×A3 . We calculate the vector product first:

A 2×A 3 = 

x   y  z

a  2 c

1  b 1

 = x (2 − bc) + y (c   −  a) + z(ab  − 2)

The volume of the parallelepiped is:

A1⋅ A 2 ×  A 3  = a (2 − bc) + (ab  − 2) = a (2 − bc + b ) − 2

2. P2 as the root node.

B 1 = x (x1 − x2) + y(y1 − y2) + z(z1 −  z2) =   −     xa − z
B 2 = x (x3 − x2) + y(y3 − y2) + z(z3 −  z2) = y2  + z (c  − 1)

B 3 = x (x4 − x2) + y(y4 − y2) + z(z4 −  z2) =  x(1  −  a) + yb  

B2×B3 = 

x y z

0  2 c−1

1−a  b 0

 = x  −b c  − 1  + y (c  −1)(1 −  a)  + z − 2(1 − a)

B1⋅ B 2 ×  B 3  = ab (c − 1) + 2(1 − a) = a (bc − b  − 2 ) + 2

3. P3 as the root node.

C 1 = x (x1 − x3) + y(y1 − y3) + z(z1 −  z3) =   −     xa   −  y2  − z c 

C 2 = x (x2 − x3) + y(y2 − y3) + z(z2 −  z3) = − y2  + z (1 − c )

C 3 = x (x4 − x3) + y(y4 − y3) + z(z4 −  z3) = x (1 −  a) + y (b   −  2) + z (1 −  c )
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C 2×C 3 = 

x y z

0  −2 1−c

1−a  b−2  c−1 

 = x  −2 1 − c  − (b  − 2)(1 − c )  + y (1 − c )(1 −  a)  + z −2(1 − a)

C1⋅ C 2 ×  C 3  = 2a (1 − c) + a(b − 2)(1 − c) − 2(1 − a)(1 −  c) −  2c(1 −  a)= a (b − bc + 2) − 2

4. P4 as the root node.

D 1 = x (x1 − x4) + y(y1 − y4) + z(z1 −  z4) =   −     x −  yb   −  z
D 2 = x (x2 − x4) + y(y2 − y4) + z(z2 −  z4) = x (a − 1) − yb  

D 3 = x (x3 − x4) + y(y3 − y4) + z(z3 −  z4) =  x(a  −  1) + y(2 −  b)  +  z (c −  1)

D 2×D 3 = 

x y z

a − 1  −b 0

a − 1  2−b  c−1 

 = x  −b c − 1  + y −(a − 1)(c −  1)  + z (a − 1)(2 −  b) + b (a − 1)

D1⋅ D 2 ×  D 3  = b c − 1  + b (a − 1)(c −  1) − (a − 1)(2 −  b) − b (a − 1) = a (bc − b − 2) + 2

Note: the four parallelepipeds have the same volume. In the calculations above, volumes (2) and (4) are the negatives of
volumes (1) and (3). This merely means that the sequence chosen for the vector products in (2) and (4) needs to be reversed
or, alternatively, that the magnitude of the scalar triple product needs to be used.

Problem 1.17.
The volume of the parallelepiped equals the triple scalar product A×B.C. The area of the parallelogram forming the basis
of the parallelepiped equals |A×B|. Thus, the height equals:

h1 = A×B.C
A×B

Similar calculation provides the height of the second and the third parallelepiped.

a . A×B = 

x   y  z

1  1 2

2  1 2

 = x (2 −  2) + y(4 −  2) + z(1 −  2) = y 2  − z

(A ×  B)⋅C =  −    4    − 3  = −7       (A ×  B) ⋅C
A ×  B

 = −7
5

 = −3.13           →           h = 3.13

Note: The negative sign simply means that we took the vector product ΑΑΑΑ××××ΒΒΒΒ rather than ΒΒΒΒ××××ΑΑΑΑ, hence we need to take the
absolute value of the projection.

b . A×C = 

x y z

1  1 2

1  −2 3

 = x (3 +  4) + y(2 −  3) + z(−    2 −  1) = x 7  − y  −  z 3

(A ×  C)⋅B =  14 −  1  −  6  = 7       (A ×  C) ⋅B
A ×  C

 = 7
59

 = 0.911          →          h = 0.911

c . B×C = 

x y z

2  1 2

1  −2 3

 = x (3 +  4) + y(2 −  6) + z(−    4 −  1) = x 7  − y 4  − z 5

(B ×  C)⋅A =  7  −  4  −  10 = −7       (B ×  C) ⋅A
B ×  C

 = −7
90

 = −0.738           →          h =  0.738

The height of the parallelepipeds is different (but their volumes is the same)
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Problem 1.18.
a. See Figure A.
b. To find the zero slope points we calculate the
derivative with respect to x and y and set to zero. The
scalar function may be written as:

P = x2(y − 2) + x(y − 2) = x2y − 2x 2 − xy + 2x +1

∂P

∂y
 = x2 − x = x(x  − 1)= 0        →        x = 0, x = 1

∂P

∂x
 = 2x (y − 2) − (y − 2) = 0    →    y = 2 for x = 0 or x = 1

At point x = 1, y = 2 and x = 0, y = 2, the slope of the
field is zero.
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1.1
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Figure A

Problem 1.19.
A  = x + y . See Figure A for a 3D plot and  a contour plot.
B = x − y. See Figure B for a 3D plot and  a contour plot.

C  = x + y

x 2 + y2
. See Figure C for a 3D plot and  a contour plot.
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Problem 1.20.
A = xy +  y x. See Figure A.
B = xy −  y x. See Figure B.

C = xx +  y y

x 2 + y2
. See Figure C.
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Problem 1.21.
a. The transformation from Cartesian to cylindrical coordinates is (Eq. (1.63)):

r  = x 2 + y2 ,       φ = tan−1 y
x

 ,       z = z (1)

Substitution of the Cartesian coordinates of the three points in Eq. (1) gives:

r1  = 12 + 12  = 2,       φ1 = tan−1 1
1

 = 45° ,       z1 = 1

r2  = 12 + 12  = 2,       φ2 = tan−1 1
1

 = 45° ,       z2 = 0

r3  = 02 + 12  = 1,       φ3 = tan−1 1
0

 = 90° ,       z3 = 1

P1 2, 45°, 1 ,          P2 2, 45°, 0 ,         and         P3 1, 90°, 1 (2)

The transformation to spherical coordinates is:

R  = x 2 + y2 + z2 ,          θ = tan−1 x 2 + y2

z
 ,           φ = tan−1 y

x
(3)

Substitution of the Cartesian coordinates of the three points in Eq. (3) gives:

R1  = 12 + 12 + 12  = 3,          θ1 = tan−1 12 + 12

1
 = 54.736° ,           φ1 = tan−1 1

1
 = 45°

R2  = 12 + 12 + 02  = 2,          θ2 = tan−1 12 + 12

0
 = 90° ,           φ2 = tan−1 1

1
 = 45°

R3  = 02 + 12 + 12  = 2,          θ3 = tan−1 02 + 12

1
 = 45° ,           φ3 = tan−1 1

0
 = 90°

P1 3, 54.736°, 45° ,          P2 2, 90°, 45° ,          and          P3 2, 45°, 90°

b. To find the equation of the plane we define two vectors connecting the three points so that they emanate from P1. A
third vector also emanating from P1 to some arbitrary point P(x,y,z) is also defined. Now we calculate the volume of the
parallelepiped defined by the three vectors. Setting this volume to zero forces the three vectors to be in a plane. The
resulting equation is the equation of the plane.

A = x (x2 − x1) + y(y2 − y1) + z(z2 −  z1) = −z
B = x (x3 − x1) + y(y3 − y1) + z(z3 −  z1) = −x

C = x (x  − x1) + y(y  − y1) + z(z  −  z1) = x (x  − 1) + y(y  − 1) + z(z  −  1)

The equation of a plane through three points in Cartesian coordinates is:

 C ⋅(A ×  B) = x (x  − 1) + y(y  − 1) + z(z  −  1) . (−z)×(−x)     =

    x(x  − 1) + y(y  − 1) + z(z  −  1) .y =  (y  − 1) = 0
or:

y  = 1

c. In the cylindrical coordinate system, we use the coordinate transformation (Eq. (1.62)):

x  = r cosφ          y  = r sinφ          z = z  

Since we only need the transformation for y, we write:

y  = rsinφ         →          rsinφ  = 1  

Note that this describes a plane as φ varies from zero to 2π for any value of r.

d. In the spherical coordinate system, we use again the transformation from spherical to Cartesian coordinates (Eq.
(1.82)) :

x  =Rsin(θ)cos(φ)          y  =Rsin(θ)sin(φ)          z  =Rcos(θ)  

Again we only need the transformation for y:

y  =Rsin(θ)sin(φ)          →          Rsin(θ)sin(φ) = 1  

and again, this describes a plane for values of θ between zero and π, and for values of φ varying between zero and 2π. For
these values, R varies from 1 to ∞ over the plane.
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Problem 1.22.
a. In Cartesian coordinates:   x2 + y2 + z2 = a2

b. In cylindrical coordinates, since  r = x 2 + y2 :

 r2 + z2 = a2

c. In spherical coordinates:
 R = a

Problem 1.23.
We choose a general point on the sphere and transform it into Cartesian coordinates.
a.  We choose a point:

 P (a, θ, φ)
In Cartesian coordinates:

x = a sin (θ)cos (φ),           y = sin (θ)sin (φ),          z =a cos (θ) 
or:

P a sin (θ)cos (φ), sin (θ)sin (φ), a cos (θ)

b.  In Spherical coordinates, the point is simply described as:

P a , θ, φ

Problem 1.24.
The transformation from Cartesian to spherical coordinates for the scalar components is (Eq. (1.89)):

AR

Aθ

Aφ

 = 

sin θ cos φ   sin θ sin φ  cos θ

cos θ cos φ cos θ sin φ −sin θ

−sin φ cos φ 0

 

Ax

Ay

Az

The vector has scalar components Ax=2, Ay=−5, Az=3. Substituting these gives:

AR

Aθ

Aφ

 = 

sin θ cos φ   sin θ sin φ  cos θ

cos θ cos φ cos θ sin φ −sin θ

−sin φ cos φ 0

 

2

−5

3
Expanding, this gives:

AR = 2sin θ cos φ − 5sin θ sin φ + 3cos θ
Aθ = 2cos θ cos φ − 5cos θ sin φ − 3sin θ

Aφ = − 2sin φ − 5cos φ
The vector A in spherical coordinates is:

A = R 2sin θ cos φ − 5sin θ sin φ + 3cos θ  + θθθθ 2cos θ cos φ − 5cos θ sin φ − 3sin θ  + φφφφ −2sin φ − 5cos φ (1)

Now we must transform the coordinates given from Cartesian to spherical coordinates (Eq. (1.81)):

R  = x 2 + y2 + z2 ,          θ = tan−1 x 2 + y2

z
 ,           φ = tan−1 y

x
for P(−2,3,1), these give:

R  = x 2 + y2 + z2  = (−2)2 + 32 + 12  = 14

θ = tan−1 (−2)2 + 32

1
 = tan−1 3.60555  = 74.5°

φ = tan−1 y
x

 = tan−1 3
−2

 = tan−1 − 1.5  = − 56.31°        or:        φ = 123.69°

The second solution is valid since x < 0, y > 0 (second quadrant). Thus, φ = 123.69°. Substituting these values into the
vector A in Eq. (1) gives:

A = R 2sin (74.5°)cos (123.69°) − 5sin (74.5°)sin (123.69°) + 3cos (74.5°)  + 

θθθθ 2cos (74.5°)cos (123.69°) − 5cos (74.5°)sin (123.69) − 3sin (74.5°)  +

 φφφφ −2sin (123.69°) − 5cos (123.69°)

or, after evaluating the various sin and cos terms: A = − R 4.276 − θθθθ 4.299 + φφφφ1.1094
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Problem 1.25.
a. To transform the vector to Cartesian coordinates we use the general transformation from cylindrical to Cartesian
coordinates (Eq. (1.70)):

 

Ax

Ay

Az

= 

 cosφ −sinφ 0

sinφ cosφ 0

0 0 1

 

Ar

Aφ

Az

 = 

 cosφ −sinφ 0

sinφ cosφ 0

0 0 1

 

3cosφ

− 2 r

rφ

 

Expanding, we obtain:
 Ax = Ar cos φ − Aφsin φ = 3 cos2 φ  +  2 r sin φ  

Ay = Ar sinφ − Aφcosφ = 3 cosφ sinφ − 2 r cos φ  

Az = rφ  
Thus, the vector is:

A = x 3 cos2φ +  2 rsin φ  + y 3 cosφsinφ − 2 rcos φ  + zrφ  

b. In spherical coordinates we use the transformation from cylindrical to spherical coordinates in Eq. (1.92):

 

AR

Aθ

Aφ

= 

sinθ 0 cosθ

cosθ 0 − sinθ

0 1 0

 

Ar

Aφ

Az

 = 

sinθ 0 cosθ

cosθ 0 − sinθ

0 1 0

 

3cosφ

− 2 r

rφ

 

Expanding gives the scalar components:

AR = 3cosφ sinθ + rφcos θ,            Aθ = 3cosφ cosθ − rφsinθ,            Aφ = − 2 r  

Problem 1.26.
Position vectors are calculated as any vector but the root of the vector is at (0,0,0). Thus:

a . r1 = x a  − 0  + y b  − 0  + z c  − 0  = xa + yb + zc 

b . r2 = x a' − 0  + y b' − 0  + z c' − 0  = xa' + yb'+ zc'

c . R = x a' − a  + y b' − b  + z c' − c

d.
r2 −  r1  = xa' + yb'+ zc'  − xa + yb + zc  = 

x a' − a  + y b' − b  + z c' − c  = R

Problem 1.27.
It is easiest to first transform the coordinates into Cartesian coordinates. Then we can define vectors, position vectors and
the like and, if necessary, transform them back into any other system of coordinates. This is not the only way but the
most straightforward way.
Transformation of coordinates from spherical to Cartesian coordinates (Eq. (1.82)):

x  =Rsin(θ)cos(φ)          y  =Rsin(θ)sin(φ)          z  =Rcos(θ)  

Substituting the coordinates for point P1 and P2 we get:

x1 =3sin(0°)cos(30°) = 0          y1 =3sin(0°)sin(30°) = 0          z1 =3cos(0°) = 3  

x2 = 3sin(45°)cos(45°) = 1.5          y2 = 3sin(45°)sin(45°) = 1.5          z2 = 3cos(45°) = 3 2
2

 

The two points are:
P1(0,0,3)          P2(1.5,1.5,3 2)  

a. The position vectors for P1 and P2, denoted as r1 and r2 are:

r1 = z 3                r2  =  x1.5 + y 1.5 + z 3 2/2  

b. The vector R from P1 to P2 is:

R =  r2 −  r1 = x1.5 + y 1.5 + z 3 2/2 − z 3  = x1.5 + y 1.5 + z 3 2  −  6 /2  

c. The position vectors as well as the vectors are now transformed into Cylindrical coordinates and spherical coordinates
using the appropriate transformation formulas.
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Cylindrical coordinates:

For r1

 
r1r

r1φ

r1z

= 

 cosφ sinφ 0

−sinφ cosφ 0

0 0 1

 
r1x

r1y

r1z

= 

 cosφ sinφ 0

−sinφ cosφ 0

0 0 1

 

0

0

3

 

Expanding gives:

r1r = z3           →         r 1  =  z3  
For r2:

 
r2r

r2φ

r2z

= 

 cosφ sinφ 0

−sinφ cosφ 0

0 0 1

 

1.5

1.5

3 2/2

 

or:
r2r = 1.5cosφ  + 1.5sinφ,          r2φ = − 1.5sinφ  + 1.5cosφ,          r2z =3 2/2  

the vector is:

r2 = r(1.5cosφ  + 1.5sinφ) + φφφφ(− 1.5sinφ  + 1.5cosφ) + z3 2/2  
For R:

 

Rr

Rφ

Rz

= 

 cosφ sinφ 0

−sinφ cosφ 0

0 0 1

 

1.5

1.5

3 2  − 6
2

 

or:

R = r(1.5cosφ  + 1.5sinφ) + φφφφ(− 1.5sinφ  + 1.5cosφ) + z3 2 − 6
2

 

Spherical coordinates:

 

AR

Aθ

Aφ

= 

sinθcosφ sinθsinφ cosθ

cosθcosφ cosθsinφ − sinθ

− sinφ cosφ 0

 

Ax

Ay

Az
 

or:
r1R = 3cosθ,        r1θ = −3sinθ  

The vector r1 is:

r1 = R 3cosθ  − θθθθ3sinθ  
For r2:

 
r2R

r2θ

r2φ

= 

sinθcosφ sinθsinφ cosθ

cosθcosφ cosθsinφ − sinθ

− sinφ cosφ 0

 

1.5

1.5

3 2/2
 

r2 = R 1.5sinθcosφ  + 1.5sinθsinφ  + 3 2
2

cosθ

+ θθθθ 1.5cosθcosφ  + 1.5cosθsinφ  − 3 2
2

sinθ  + φφφφ − 1.5sinφ  + 1.5cosφ  
 

For R:

 
r2R

r2θ

r2φ

= 

sinθcosφ sinθsinφ cosθ

cosθcosφ cosθsinφ − sinθ

− sinφ cosφ 0

 

1.5

1.5

3 2  − 6
2

 

and:

R = R 1.5sinθcosφ  + 1.5sinθsinφ  + 3 2  − 6
2

cosθ

+ θθθθ 1.5cosθcosφ  + 1.5cosθsinφ  − 3 2  − 6
2

sinθ  + φφφφ − 1.5sinφ  + 1.5cosφ  
 


